12 United States Patent

Frank et al.

US007680832B1

US 7,680,832 B1
Mar. 16, 2010

(10) Patent No.:
45) Date of Patent:

30(1)

30(2)

30(3)

(54) TECHNIQUES FOR MANAGING 7,114,147 B2 9/2006 Ballantyne et al.
CONFIGURATION INFORMATION AMONG 7,210,097 Bl 4/2007 Clarke et al.
DIFFERENT PHYSICAL DEVICES 7,340,728 B2 3/2008 Kutter
7,580,950 B2* §2009 Kavurietal 707/103 R
(75) Inventors: Joseph Frank, Boulder, CO (US); Brian 5080008708 A4 0 /o0t [errell etal oo b
Foster, Haverhill, MA (US); Pareeja CISINZET wevvvvrnenennennnnnn.
Vivek, San Jose, CA (US); Brian R. ¥ cited by examiner
Gruttadauria, Sutton, MA (US) y
_ _ ‘ Primary Examiner—ILeslie Wong
(73) Assignee: ?Mf Corporation, Hopkinton, MA (74) Attorney, Agent, or Firm—BaimnwoodHuang
US
(37) ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 33 A technique mvolves managing configuration information
U.S.C. 154(b) by 444 days. used by an application. The techmque involves disposing a
_ first file 1n a first physical device. The first file includes first
(21) Appl. No.: 11/824,431 configuration information. The technique further involves
o disposing a second file 1n a second physical device. The
(22) Filed: Jun. 29, 2007 second file includes second configuration information. The
(51) Int.Cl. second physical device 1s different than the first physical
GOGF 17/30 (2006.01) device. The technique further involves providing access to a
(52) U.Se Cle oo 707/200; 717/163 ‘oplevellilehaving afirst path string to the first file in the first
: . : physical device and a second path string to the second file in
(58) Field of Classification Search 7077/200, . . . L
207205 717/163 the second physical device. The top level file 1n combination
Q lication file f lof hhi E with the first and second files operates as a single virtual
c¢ dpPUEALIDLL HE T0E COMPICTE SEATL IUSTOLY. document which includes the first configuration information
(56) References Cited of the first file and the second configuration information of the
second file.
U.S. PATENT DOCUMENTS
7,028,306 B2 4/2006 Boloker et al. 20 Claims, 5 Drawing Sheets
20
CONTROLLER 24 ARRANGED TO PROVIDE APPLICATION 34
SINGLE VIRTUAL DOCUMENT ACCESSTO | — — — — — — —_
APPLICATIONS 34 USING A LIBRARY 32 AND _\
A TOP LEVEL FILE 30(0) SINGLE VIRTUAL 38
DOCUMENT 36
26 28
PHYSICAL
PHYSICAL PHYSICAL PHYSICAL PHYSICAL DEVICE
DEVICE DEVICE DEVICE DEVICE 26(5) 29
26(1) 26(2) 26(3) 26(4) (E.G.,
(E.G., SDRAM) (E.G., FLASH (E.G., HARD (E.G., CD-ROM) INTERNET ‘/
MEMORY) DISK) ACCESSIBLE
FILE) 20

(o R

L Ol

(Z)og

US 7,680,832 B1

(313
378ISS300V | _ (AJOW3W o
13NN LNI (WOYH-aD "93) dyvH "9'3) HSV1d "©3) (NVYYHAas "©3)

“y'g) (¥)oz (€)ac (2)9¢ (1)9¢

S0z 32IN3a 321A3A 32INA30 32IA3d
" 39IA3A IVIOISAHd TVOISAHd IVOISAH TVOISAHd
o TVIISAHd
Y
D
P
i s = =
7
= %\
~ Ya 9¢
<&
Y
>

9¢ ININNDO0A
= 8¢ WA LHIA JTONIS - (0Jog 34 13A31dOL Y
/. ANV Z€ ANVYHEIT V ONISN ¥€ SNOILVYOINddY

- - - - — 7 O1 SS300V LNJWNOO0A 1VNLAIA J1ONIS
— A3ONVHYEY 2 43TT0HLNOD
PE NOILVOIl 1ddV 30AiAO¥d 01 a9

U.S. Patent

U.S. Patent Mar. 16, 2010 Sheet 2 of 5 US 7.680.832 B1

— - ___l
SINGLE VIRTUAL
DOCUMENT 36
- FILE 30(A)
ON PHYSICAL
DEVICE 24(1)
(E.G., SDRAM)
52(A)
52
" 52(B)

FILES 30(B)
AND 30(C) ON
PHYSICAL DEVICE
24(2)

(E.G., FLASH
MEMORY)

TOP LEVEL
FILE 30(0)
HAVING PATH
STRINGS 52 52(C)
LINKING TO

' |
' |
‘ |
‘ |
‘ |
|
‘ |
|
|
| |
FILES 30 ON I
| SEPARATE FILE 30(D)
PHYSICAL 52(D) ON PHYSICAL I
| DEVICE 24(3)
(E.G., HARD DISK) |
' |
' 1
' |
' |
' |
' |
' |
' |
' |

DEVICES 24

52(E)

FILE 30(E)
ON PHYSICAL

DEVICE 24(5)
(E.G., INTERNET
ACCESSIBLE
FILE)

£ Old

US 7,680,832 B1

122

\f

I~

-

e,

g .
= (v)og

0 |
o

&

& <$98$300.d/> ‘(Jnq) Joaz1s ‘jnq *, sweu/[g]ssacoid/ssas0oid),)iaynglaobyo
i </,0.,=91€ls ,829,=P! Jo|puey,=aweu ssao0.d>

- </.0.=3)els .£9,=p! ,Job660| =aweu ssas0id>)
> <S95sS900id>

U.S. Patent

¥ Old

US 7,680,832 B1

1742
\f,
I~
&
.4 B
E
= (g)oc .
7
= ‘Onuwwonblo
& <ajeqbjo/> '(.LAWZ1SW, ‘,euozjuaino/sanieasiep/walshsy,)seyngias o
& </,2Wl] ulejuno,=aweu .| AINZLSW.=pP! duoczawi> ‘(Moo6;0
- </.8Wi] ulg)ses,=aweu , | ANS1S3.=p! duozawy>
m <a)eqbjo> :

U.S. Patent

U.S. Patent Mar. 16, 2010 Sheet 5 of 5 US 7.680.832 B1

DISPOSE A FIRST FILE IN A FIRST DEVICE, THE FIRST FILE INCLUDING
FIRST CONFIGURATION INFORMATION

82

DISPOSE A SECOND FILE IN A SECOND DEVICE (OR SECOND PARTITION)
THAT IS DIFFERENT THAN THE FIRST DEVICE (OR FIRST PARTITION),
THE SECOND FILE INCLUDING SECOND CONFIGURATION INFORMATION

84

PROVIDE ACCESS TO A TOP LEVEL FILE HAVING A FIRST PATH STRING
TO THE FIRST FILE IN THE FIRST DEVICE AND A SECOND PATH STRING
TO THE SECOND FILE IN THE SECOND DEVICE, THE TOP LEVEL FILE
COMBINING WITH THE FIRST AND SECOND FILES TO OPERATE AS A

SINGLE VIRTUAL DOCUMENT WHICH IS ACCESSIBLE VIA AN
APPLICATION PROGRAMMING INTERFACE

86

FIG. 5

US 7,680,832 Bl

1

TECHNIQUES FOR MANAGING
CONFIGURATION INFORMATION AMONG
DIFFERENT PHYSICAL DEVICES

BACKGROUND

Extensible Markup Language (XML) 1s a markup lan-
guage which was developed by the World Wide Web Consor-
tium (W3C). A traditional XML document has an .xml file
extension, and typically includes XML tags which are defined
by the document’s author. Such a document enables the
author to describe data 1n a manner that complements, but
does not replace, Hyper Text Markup Language (HTML)
which 1s commonly used for web pages.

In a typical XML document, opening and closing tags
delimit elements. In particular, each XML document contains
a root element, and other elements nested within this root
clement. Furthermore, parent elements can have child (or
sub) elements which are nested within these parent elements.

A variety of tools exist which enable the author to navigate
through an XML document. For example, the XML Docu-
ment Object Model (XML DOM) defines a standard way to
access and manipulate XML documents. In particular, the
XML DOM presents an XML document as an inverted tree
having elements, attributes and text defined as nodes of the
inverted tree. The author 1s capable of traversing and access-
ing components within the XML document using a set of
standard functions.

SUMMARY

Unfortunately, accessing components within XML docu-
ments using an XML DOM and a set of standard functions 1s
awkward and cumbersome. For example, accessing a single
data element requires traversing the inverted tree and making
numerous function calls, even 11 only a single item of data 1s
needed. Such an approach is prone to error due to the number
of steps required. Moreover, an attempt to group data into
separately maintained files would prove to be extremely
costly 1n terms of the number of function calls and the effort
needed to carry this out.

In contrast to conventional approaches, improved tech-
niques manage configuration mformation within separate
files residing on different physical devices (or memory parti-
tions), but enable a user to view these separate files as a single
virtual document (e.g., a general purpose configuration
library) without having to change the method of accessing the
information for each physical device. In particular, such tech-
niques enable the use of an application programming inter-
tace (API) having standard function calls which reference the
files using unique path strings. Accordingly, most informa-
tion can be accessed using a single simple function call
regardless of where the information 1s stored (e.g., hard disk,
flash memory, volatile semiconductor memory, etc.) or how 1t
1s actually retrieved (e.g., from a local drive, from main
memory, over the Internet, etc.). As a result, the configuration
information 1s easily accessible via particular path strings.

One embodiment 1s directed to a technique which involves
managing configuration information used by an application.
The technique mvolves disposing a first file 1n a first physical
device (e.g., SDRAM). The first file includes first configura-
tion information. The technique further involves disposing a
second file 1n a second physical device (e.g., flash memory).
The second file includes second configuration information.
The second physical device 1s different than the first physical
device. The technique further involves providing access to a
top level file (e.g., stored on disk) having a first path string to

10

15

20

25

30

35

40

45

50

55

60

65

2

the first file 1n the first physical device and a second path string
to the second file 1n the second physical device. The top level
file 1n combination with the first and second files operates as
a single virtual document which includes the first configura-
tion information of the first file and the second configuration
information of the second file. Such a technique can be built
on top of XML while nevertheless preserving the flexibility
and standards-based approach of an XML configuration file.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accompa-
nying drawings in which like reference characters refer to the
same parts throughout the different views. The drawings are
not necessarily to scale, emphasis instead being placed upon
illustrating the principles of various embodiments of the
invention.

FIG. 1 1s a block diagram of a system which manages
configuration information among different physical devices.

FIG. 2 1s a logical diagram of a single virtual document
formed by multiple files distributed within the system of FIG.
1.

FIG. 3 1s a block diagram illustrating a read operation
carried out by a read function call in accordance with an API
offered by the system of FIG. 1.

FIG. 4 1s a block diagram 1illustrating a write operation
carried out by a write function call 1n accordance with the API
offered by the system of FIG. 1.

FIG. § 1s a flowchart of a procedure which 1s performed by
a controller of the system of FIG. 1.

DETAILED DESCRIPTION

An 1mmprove technique mvolves managing configuration
information within separate files residing on different physi-
cal devices (or memory partitions), but enables a user to view
these separate files as a single virtual document (e.g., a gen-
eral purpose configuration library) without having to change
the method of accessing the information for each physical
device. In particular, such a technique enables the use of an
application programming interface (API) having standard
function calls which reference the files using unique path
strings. Accordingly, most information 1s accessible using a
single simple function call regardless of where the informa-
tion 1s stored (e.g., hard disk, flash memory, volatile semicon-
ductor memory, etc.) or how 1t 1s actually retrieved (e.g., from
a local drive, from main memory, over the Internet, etc.).
Thus, the configuration information 1s easily accessible via
particular path strings.

FIG. 1 shows a system 20 which 1s arranged to manage
configuration information 22. The system 20 includes a con-
troller 24, multiple physical devices 26(1), 26(2), . . . (collec-
tively, physical devices 26), and a communications medium
28 (e.g., buses, cables, a computer network, wireless trans-
missions, combinations thereof, etc.) that connects the con-
troller 24 to the devices 26. The configuration information 22

resides in multiple files 30(1), 30(2), . . . which are distributed
across the devices 26.

By way of example, the device 26(1) includes volatile
semiconductor memory (e.g., SDRAM) having a configura-
tion file 30(1). The device 26(2) includes tlash memory con-
figuration file 30(2). The device 26(3) includes magnetic disk
drive memory configuration file 30(3). The device 26(4)
includes CD-ROM memory configuration file 30(4). The

device 26(5) includes Internet accessible memory (e.g., a

US 7,680,832 Bl

3

remote computer, a storage appliance, etc.) configuration file
30(5). The system 20 1s capable of including other memory-
based physical devices 26 having additional files 30 as well
such as magnetic tape devices, DVD readers/writers, disk
arrays, floppy drives, mirrored storage, combinations thereof,
etc

A top level file 30(0) links to the multiple files 30(1), 30(2),

... (collectively, files 30) using respective path strings. A path
string 1s a string of characters which uniquely identifies a
particular file 30 on a particular device 26. A suitable format
for a path string 1s the format “/xxx/yyy/zzz”” wherein “/” 1s a
separator, “xxx” and “yyy” are elements, and “zzz” 1s an
attribute. The top level file 30(0) can reside within any of the
devices 26 (e.g., the hard disk device 26(3)). Upon 1nitializa-
tion of a library 32 with the top level file 30(0), the system 20
1s able to provide access to the configuration information 22
by presenting the files 30 to an application 34 as a single
virtual document 36 (e.g., a single virtual configuration file),
and allowing the application 34 to store and retrieve the

configuration mformation 22 via an API 38 (i.e., the API 1s
illustrated by the dashed line 38 in FIG. 1).

It should be understood that the configuration information
22 on each physical device 26 1s capable of being tailored to
the memory characteristics of that device 26. Along these
lines, suppose that the controller 24 1s implemented using the
processing circuitry of a computer (1.€., one or more proces-
sors running code). In this example, the particular configura-
tion information 22 1n the file 30(1) of the volatile semicon-
ductor memory of the physical device 26(1) enjoys quick
accessibility (e.g., fast reads and writes). Additionally, the
particular configuration information 22 stored in the file 30(3)
on the magnetic disk drive memory of the physical device
26(3) enjoys non-volatility and may be rather sizable without
greatly consuming other computer resources (e.g., main
memory which 1s thus available for other uses). Furthermore,
the particular configuration information 22 stored in the file
30(2) of a tlash memory read-only partition of the physical
device 26(2) 1s accessible 1n a manner that 1s faster than disk
drive access times but also safe since the read-only partition
prevents the configuration information 22 within the file
30(2) from being changed. Further details will now be pro-
vided with reference to FIG. 2.

FIG. 2 1s a logical diagram 50 of the single virtual docu-
ment 36 formed by the files 30 which are distributed among
the various physical devices 26 of the system 20. As men-
tioned earlier, the top level file 30(0) includes path strings 52
uniquely 1dentitying the respective files 30 on the separate
physical devices 26.

At this point, it should be understood that each file 30 1s
preferably a separate XML document stored in the memory of
a particular physical device 26. Due to the high level tlexibil-
ity and extensibility provided by XML as well as XML’s
ability to be used with standard parsing libraries, XML docu-
ments are well-suited for use as the files 30. To turther illus-
trate the path string features of the system 20, the following
example will now be provided in the context of XML docu-
ments as the files 30.

In some arrangements, a library 32 parses the XML on
input and formats the XML for output. An external method 1s
capable of 1dentifying the root configuration file (e.g., “file-
cont”). On mput, the entire top level file 30(0) 1s read 1nto
memory. However, the secondary files 30(1), 30(2), . . . are
read as they are accessed 1n the tree.

The following example will now be provided with refer-
ence to FIGS. 1-4. FIGS. 3 and 4 illustrate how a user 1s able
to access certain configuration information 22 with extremely

10

15

20

25

30

35

40

45

50

55

60

65

4

simple function calls that alleviate the need for extensive,
complex and burdensome device-specific considerations.

Suppose that we want to organize configuration informa-
tion 22 into broad categories such as processes, system, and
administrators. The API 38 of the system 20 1s capable of
providing configuration iformation 22 using simple stan-
dard function calls such as cigGetBuiller() to read configu-
ration information 22 from the files 30 within the system 22,
and cigSetButfer() to write configuration information 22 to
the files 30 within the system 22. The system 20 1s arranged to
support these function calls regardless of the particular type
of device or memory partition thus enabling users (e.g., devel-
opers) the freedom to access configuration information 22
without having to change the method of accessing the infor-
mation for each physical device as 1n conventional
approaches to managing configuration data. Rather, the func-
tion calls provided by the API 38 enable the users to carryout
access to any and all of the files 30 via particular path strings
52.

Along these lines, suppose that the file 30(1) 1s stored 1n
main memory, 1.¢., the physical device 24(1), and contains
information about active processes. Here, by way of example,
the file 30(A) 1s given the filename cigprocess.xml and 1s
accessible using the path string 32(A) */tmp/cigpro-
cess.xml”. The system 20 populates the file 30(A) with the
active process information as each process starts. By way of
example, the contents of the file 30(A) are as follows.

<Processes™
<process name="logger” 1d="643" state="0"/>
<process handler="logger” 1d="622" state="0"/>

</processes=>

Additionally, suppose that the file 30(B) 1s stored 1n a
read-only partition of flash memory, 1.¢., the physical device
24(2), and contains information about available time zones.
Here, by way of example, the file 30(B) 1s given the filename
cigdate.xml and 1s accessible using the path string 352(B)
“/mnt/tflashO/cigdate.xml”. The system 20 reliably stores this
information 1n a safe manner since the file 30(B) resides 1n a
read-only partition. By way of example, the contents of the

file 30(B) are as follows.

<clgdate>
<timezone 1Id="EST5MDT” name="Eastern Time”’/>
<timezone 1Id=""MST5MDT” name=""Mountain Time”/>

</cigdate>

In contrast, suppose that the file 30(C) 1s stored 1n a read/
write partition of the flash memory, 1.e., the physical device
24(2), and contains current time zone information for the
system 20. Here, by way of example, the file 30(C) 1s given
the filename cigdateval.xml and 1s accessible using the path
string 52(C) “/mnt/tlashl/cigdateval.xml”. The system 20

stores this currently selected time zone information 1n the file
30(C) are as follows.

<clgdateval currentzone="MST7MDT”/>

At this point, 1t should be understood that the top level file
30(0) conveniently includes path strings 52(A), 32(B), 52(C)
to respective files 30(A), 30(B), and 30(C). The top level file
1s Turther capable of providing access to configuration infor-
mation 22 i other files 30(D), 30(E) on other devices 26 (hard
disks, Internet accessible files, etc.) using other path strings
52(D), 52(E), and so on. In this example, the top level file
30(0) looks like this:

<config>
<process _File_="“tmp/cigprocess.xml”/>
<system name="My System”>

US 7,680,832 Bl

S

<dateoptions _File ="/mnt/tlash0/cigdate.xml”/>
<datevalues _File_="/mmt/flashl/cigdate.xml”/>
</system>

<admins>

<admin name="j0e”’/>

<admin name="brian’’/>

</admins>

</config>

Based on the above-provided example details, one will
appreciate that an application 34 1s capable of the accessing
the configuration information 22 without the complexities of
traversing the files using an XML DOM and numerous func-
tion calls as would be required 1n a conventional approach.
Rather, the system 20 offers access to the configuration infor-
mation 22 via simple function calls.

For example, the following command 1s capable of provid-

ing a system name to the application 34:
cigGetButller(*/system/name”, buf, sizeoi(but));

As shown above, name references are simply paths.

As another example and as 1llustrated 1n FIG. 3, the fol-
lowing command provides a process name to the application
34:

cigGetButler(*“/processes/process[0]/name”,
(but)):

Again, the type of memory storing the file 30(A) and the
particular physical device 26 on which the file 30(A) 1s stored
1s transparent to the user.

As yet another example and as 1illustrated 1n FIG. 4, the
following commands enable a user to set the current time
zone.

ciglock();

cigSetBufl

s1zeol (but));
cigCommuat();

buf, sizeof

‘er(“‘/system/datevalues/currentzone”, but,

The cigl.ock() and cigCommuit() commands reliably enable
the configuration information 22 to be set without other
threads or processes mtervening. In particular, the command
ciglock() obtains alock on the top level file and the file 30(B)
being changed (1.e., cigdateval.xml), the command cigSet-
Butfer() sets the current time zone mformation within the
cigdateval.xml file, and the command cigCommuit() writes
the appropriate data and releases the file locks.

As described above, the configuration information 22 1s
accessible by the user through the API 38 without concern
over device-specific details that would otherwise increase the
burden on the user and the likelihood of error. It should be
understood that the configuration information 22 can even be
disposed remotely and transparently on a remote physical
device (e.g., another computer, see the device 26(5) in FIG.
2). A summary of procedure performed by the system 20 will
now be provided with reference to FIG. 5.

FIG. 5 1s a flowchart of a procedure 80 which 1s performed
by the controller 24 of the system 20. In step 82, the controller
24 disposes a first file 1n a first physical device, the first file
including first configuration information. For instance, 1n the
above-provided example, the controller 24 handles manage-
ment of the active process information stored in main
memory.

In step 84, the controller 24 disposes a second file 1 a
second physical device, the second file including second con-
figuration 1nformation. Again, in the above-provided
example, the controller 24 handles management of the time
zone information stored in flash memory.

In step 86, the controller 24 provides access to a top level
file having a first path string to the first file in the first physical

15

20

25

30

35

40

45

50

55

60

65

6

device and a second path string to the second file in the second
physical device. Conveniently, the top level file 1n combina-
tion with the first and second files operate as a single virtual
document which includes the first configuration information
of the first file and the second configuration information of the
second file. In the above-provided example, the user 1s able to
subsequently access the process and time zone information
using simple function calls provided by the API 38 as 11 the
user were simply accessing a single virtual document.

As described above, an improve technique ivolves man-
aging configuration information 22 within separate files 30
residing on different physical devices 26 (or memory parti-
tions), but enables the user to view these separate files 30 as a
single virtual document 36 without having to change the
method of accessing the information for each physical device
26 (see the logical diagram 50 1n FIG. 2). In particular, such
a technique enables the use of an API 38 having standard
function calls which reference the files 30 using unique path
strings 32. Accordingly, most information 1s accessible using
a single simple function call regardless of where the informa-
tion 1s stored (e.g., hard disk, flash memory, volatile semicon-
ductor memory, etc.) or how 1t 1s actually retrieved (e.g., from
a local drive, from main memory, over the Internet, etc.).
Therefore, the configuration information 22 1s easily acces-
sible via particular path strings 52.

While various embodiments of the imnvention have been
particularly shown and described, 1t will be understood by
those skilled 1n the art that various changes 1n form and details
may be made therein without departing from the spirit and
scope of the invention as defined by the appended claims.

For example, the devices 26 were described above as being,
separate physical devices for 1llustration purposes. It should
be understood that the various file locations can be separate
partitions, e.g., the application (read-only) partition, the tlash
read-write partition, the “/tmp” memory partition, the RAID
set read-write partition, and so on.

Additionally, the system 20 was described above as using
XML documents as the files 30 by way of example only.
Other types of files are suitable for use as well such as Exten-
sible Hypertext Markup Language (XHTML), RSS, and

Atom, among others.

What 1s claimed 1s:

1. A method of managing configuration mformation used
by an application, the method comprising:

disposing a first file 1n a first physical device, the first file
including first configuration information;

disposing a second file 1n a second physical device, the
second file including second configuration information,
the second physical device being different than the first
physical device; and

providing access to a top level file having a first path string
to the first file 1n the first physical device and a second
path string to the second file 1n the second physical
device, the top level file 1n combination with the first and
second files operating as a single virtual document
which includes the first configuration information of the
first file and the second configuration information of the
second file.

2. The method as 1n claim 1 wherein providing access to the

top level file includes:

imitializing a library with the top level file to provide the
application with function call access to the first configu-
ration mformation of the first file 1n the first physical
device and the second configuration information of the
second file 1n the second physical device via a configu-
ration application programming interface (API).

US 7,680,832 Bl

7

3. The method as in claim 2 wherein the first physical
device stores the first file 1n a first type of physical memory;
and

wherein the second physical device stores the second file 1n
a second type of physical memory which 1s different
than the first type of physical memory.

4. The method as 1n claim 3 wherein the first file 1s a first
Extensible Markup Language (XML) document having the
first configuration mformation i XML code format;

wherein the second file 1s a second XML document having
the second configuration mformation in XML code for-
mat; and

wherein the top level file 1s a top level XML document
having the first path string to the first file and the second
path string to the second file 1n XML code format.

5. The method as 1n claim 4, further comprising:

reading a value 1n the first file using a function call of the
configuration API which identifies the first file by the
first path string to the first file 1n the first device.

6. The method as 1n claim 4, further comprising:

(1) obtaining a file lock, (11) setting a value in the first file
using a function call of the configuration API, the first
function call identifying the first file by the first path
string to the first file 1n the first device, and (111) releasing
the file lock.

7. The method as 1n claim 4, further comprising:

providing read-only access to the first type of physical
memory, and read-and-write access to the second type of
physical memory.

8. The method as 1n claim 4, further comprising:

disposing the top level file 1n a third type of physical
memory;

wherein the first type of physical memory 1s non-volatile
semiconductor memory;

wherein the second type of physical memory 1s volatile
semiconductor memory; and

wherein the third type of physical memory 1s volatile semi-
conductor memory 1s magnetic disk drive memory.

9. The method as 1n claim 4, further comprising:

disposing another XML document having other configu-
ration information i XML code format 1n a remote
physical device which 1s accessible through the Internet;
and

adding another path string to the top level file to enable the
application to access to the other configuration informa-
tion through the Internet using the API after iitializa-
tion of the library with the top level file.

10. A system of managing configuration information used

by an application, the system comprising:

a first physical device which stores a first file having first
configuration information;

a second physical device which stores a second file having
second configuration information; and

a controller coupled to the first physical device and the
second physical device, the controller being arranged to
provide access to a top level file having a first path string
to the first file stored in the first physical device and a
second path string to the second file stored in the second
physical device, the top level file in combination with the
first and second files operating as a single virtual docu-
ment which includes the first configuration information
of the first file and the second configuration information
of the second file.

11. The system as 1n claim 10 wherein the controller, when

providing access to the top level {ile, 1s arranged to:
initialize a library with the top level file to provide the
application with function call access to the first configu-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ration information of the first file 1n the first physical
device and the second configuration information of the
second file 1n the second physical device via a configu-
ration application programming interface (API).

12. The system as in claim 11 wherein the first physical
device stores the first file 1n a first type of physical memory;
and

wherein the second physical device stores the second file 1n
a second type of physical memory which 1s different
than the first type of physical memory.

13. The system as 1n claim 12 wherein the first file 1s a first
Extensible Markup Language (XML) document having the
first configuration information in XML code format;

wherein the second file 1s a second XML document having
the second configuration information in XML code for-
mat; and

wherein the top level file 15 a top level XML document
having the first path string to the first file and the second
path string to the second file 1n XML code format.

14. The system as 1n claim 13 wherein the controller 1s

turther arranged to:

read a value in the first file using a function call of the
configuration API which identifies the first file by the
first path string to the first file 1n the first device.

15. The system as 1n claim 13 wherein the controller 1s

further arranged to:

(1) obtain a file lock, (11) set a value 1n the first file using a
function call of the configuration API, the first function
call identifying the first file by the first path string to the
first file 1n the first device, and (1) release the file lock.

16. The system as 1n claim 13 wherein the configuration
API has read-only access to the first type of physical memory,
and read-and-write access to the second type of physical
memory.

17. The system as 1n claim 13 wherein the top level file 1s
disposed 1n a third type of physical memory;

wherein the first type of physical memory 1s non-volatile
semiconductor memory;

wherein the second type of physical memory 1s volatile
semiconductor memory; and

wherein the third type of physical memory 1s volatile semi-
conductor memory 1s magnetic disk drive memory.

18. The system as 1n claim 13, further comprising;:

a remote physical device which 1s coupled to the controller
through a computerized network, the remote physical
device storing another XML document having other
confliguration information i XML code format; and

wherein the top level file further has another path string to
the other XML document stored in the remote physical
device to provide the application with function call
access to the other configuration information.

19. A computer program product comprising a computer-
readable medium having computer readable instructions
recorded thereon to manage configuration information used
by an application, the computer readable 1nstructions being
operative, when performed by a computerized device, to
cause the computerized device to:

dispose a first file 1 a first physical device, the first file
including first configuration information;

dispose a second file 1n a second physical device, the sec-
ond file including second configuration information, the
second physical device being different than the first
physical device; and

provide access to a top level file having a first path string to
the first file 1n the first physical device and a second path
string to the second file in the second physical device, the
top level file 1n combination with the first and second

US 7,680,832 Bl

9

files operating as a single virtual document which
includes the first configuration information of the first
file and the second configuration information of the sec-
ond file.

20. The computer program product as 1n claim 19 wherein

providing access to the top level file includes:

initializing a library with the top level file to provide the
application with function call access to the first configu-
ration mformation of the first file 1n the first physical
device and the second configuration information of the
second file 1n the second physical device via a configu-
ration application programming interface (API);

wherein the first physical device stores the first file 1n a first
type of physical memory;

10

10

wherein the second physical device stores the second file 1n
a second type of physical memory which 1s different
than the first type of physical memory;

wherein the first file 1s a first Extensible Markup Language
(XML) document having the first configuration infor-
mation 1n XML code format;

wherein the second file 1s a second XML document having
the second configuration information in XML code for-
mat; and

wherein the top level file 1s a top level XML document
having the first path string to the first file and the second
path string to the second file 1n XM code format.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

