US007673341B2

12y United States Patent (10) Patent No.: US 7,673,341 B2

Kramer et al. 45) Date of Patent: Mar. 2, 2010
(54) SYSTEM AND METHOD OF EFFICIENTLY 2002/0144129 Al1* 10/2002 Malivanchuk et al. 713/188
IDENTIFYING AND REMOVING ACTIVE 2002/0174358 Al1* 11/2002 Wolffetal. 713/200
MALWARE FROM A COMPUTER 2002/0178374 Al* 11/2002 Swimmer et al. 713/200
2003/0212906 Al* 11/2003 Armoldetal. 713/201
(75) Inventors: Michael Kramer, Yonkers, NY (US); 2003/0229801 Al* 12/2003 Kouznetsov et al. 713/200
Matthew Braverman, Redmond, WA 2004/0073810 Al1* 4/2004 Dettinger etal. 713/201
(US); Marc E. Seinfeld, Hong Kong 2004/0172551 Al* 9/2004 Fieldingetal. 713/200
(HK); Jason Garms, Woodinville, WA 2005/0120238 Al* 6/2005 Choi ..coeeeeeeveevvvnnnnnnnnn, 713/200
(US); Adrian M. Marinescu, 2006/0021041 Al* 1/2006 Challener etal. 726/24
Sammamish, WA (US); George Cristian
Chicioreanu, Redmond, WA (US); Scott
A. Field, Redmond, WA (US) * cited by examiner
(73) Assignee: Microsoft Corporation, Redmond, WA Primary Examiner—Nasser Moazzam1
(US) Assistant Examiner—Michael S McNally
(74) Attorney, Agent, or Firm—Workman Nydegger
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by 1093 days.
(21) Appl. No.: 11/012,892 The present invention provides a system, method, and com-
puter-readable medium for 1dentifying and removing active
(22) Filed: Dec. 15, 2004 malware from a computer. Aspects of the present invention
are included 1n a cleaner tool that may be obtained automati-
(65) Prior Publication Data cally with an update service or may be downloaded manually
from a Web site or similar distribution system. The cleaner
US 2006/0130141 Al Jun. 15, 2006 tool includes a specialized scanning eng)i;ne that searches a
(51) Int.CI. computer for acj[ive malware. Since the scanning engine only
GOGF 12/14 (2006.01) searches for actwe‘ malware, the amount of data downloaded
(52) US.Cl 76/23 and resource requirements of the cleaner tool are less than
S.CLo e traditional anfivirus software. The scanning engine searches
(38) gleld oii.(jla:‘smﬁglatlfon Sear(.l:ht """"" e 726/23 specific locations on a computer, such as data mapped in
o€ dpplCAatioll HIC 100 COMpIEte seattll AStOLY. memory, configuration files, and file metadata for data char-
(56) References Cited acteristic of malware. If malware 1s detected, the cleaner tool

U.S. PATENT DOCUMENTS

removes the malware from the computer.

[.e Pennecetal. 726/ 1

(' BEGIN SCANNING METHOD)602
‘ IDENTIFY ACTIVE PROCESSES I_/\GM

SELECT ACTIVE PROCESS

8/2005

6,928.550 B1* 30 Claims, 6 Drawing Sheets

OBTAIN MEMORY SNAPSHOT
OF SELECTED PROCESS

610 70 CLEAN INFECTION

DOWNLOAD AND INSTALL
PROGRAM CODE REQUIRED

COMPARE MEMORY
SNAPSHOT TO MALWARE
STGNATURES

ADDITIONAL
PROCESSES

CLEAN INFECTION
622
SEARCH CONFIGURATION

WRITE RESULTS 170 L0G
FILE
624
REPORT RESULTS TO USER
DATA FOR ENTRIES
CHARACTERISTIC OF 626

MALWARE END

628

SEARCH FILE SYSTEM DATA
FOR ENTRIES
CHARACTERISTIC OF ACTIVE
MALWARE

616

U.S. Patent Mar. 2, 2010 Sheet 1 of 6 US 7,673,341 B2

104
106

 w |
k
el /

100
y—~'
114

(PRIOR ART)

112

..-l_.-""--_- __-"-"'-'--.._
-_-ﬂ- .h...‘
'-'# -‘-"'-..
~ e
- o
- o
- Y
F. I

110

LWARE

S

102

Q0
=
T~

US 7,673,341 B2

Sheet 2 of 6

Mar. 2, 2010

U.S. Patent

WILSAS ddAINdWNOD
NO ddTIVISNI
ST ALVAdI SNYIALLNY

0LC

Y4t}

80¢C

SINALSAS dALNdWNOOD
d4INO3S OL dIUIAOAd
SIALVUdII SNYIALINY V

MOANIM ALT'TEVIIN'TINA

00<

90¢

AUOMILIN

NO FAMTVIN MIN

SLOJLdd dIAINOdd

ALAVd SNNOIOI'IVIA

4114

SNAIN-LINV

AdOMIAN

NO FAVMTVIN
MIN SIASVI'Idd

c0¢

(FNILL)

U.S. Patent Mar. 2, 2010 Sheet 3 of 6 US 7,673,341 B2

o
2] £
;EE
&
IS S
e O
=
2z,
S
8'—"1
E
S & =
|/
| e— —— | H"
Lo | | =2 §
\

Il

O
ooy
3P

30

US 7,673,341 B2

Sheet 4 of 6

Mar. 2, 2010

U.S. Patent

g #51d

INAHI'LD
ALVddl

oy

007

cly

01F 11 %

dSvaviva A11AON JATTVISNI
FUNLIVNIIS ONILYOdTY

907

ANTONH
ININNVIS
HIVMTVIN

AALLIV

HTLNdWOD INAIT)

TO0L YANVIHT)

oy

TTNAOW GNLS

HAIVAAAINI

dAST]

1444

U.S. Patent Mar. 2, 2010 Sheet 5 of 6 US 7,673,341 B2

504

UPDATED

VERSION

AVAHLABLE
4

SERVICE
7 YES

506

51(DISPLAY GRAPHICAL
DO o o TALL INTERFACE TO USER

508

SILENT FLAG
ENABLED
?

YES

NO

LOAD ENGINE 514

IDENTIFY AND REMOVE
516

ACTIVE MALWARE
(FIG 6)

REPORT RESULTS TO
REMOTE COMPUTER 518

520

SER OPTS OUT O
CLEANER SERVICE
2

NO

VES Fig.5.

U.S. Patent Mar. 2, 2010 Sheet 6 of 6 US 7,673,341 B2

BEGIN SCANNING METHOD 602
IDENTIFY ACTIVE PROCESSES 604

618
SELECT ACTIVE PROCESS NO
606
YES

608
OBTAIN MEMORY SNAPSHOT
OF SELECTED PROCESS
610

COMPARE MEMORY
SNAPSHOT TO MALWARE

DOWNLOAD AND INSTALL
PROGRAM CODE REQUIRED
TO CLEAN INFECTION

CLEAN INFECTION
ADDITIONAL

622
WRITE RESULTS TO LOG
FILE
PROCESSES
?

' 624

NO 614
REPORT RESULTS TO USER

SIGNATURES

612

SEARCH CONFIGURATION
DATA FOR ENTRIES
CHARACTERISTIC OF 676
MALWARE
628

SEARCH FILE SYSTEM DATA
FOR ENTRIES

CHARACTERISTIC OF ACTIVE
MALWARE

616

Fig.6.

US 7,673,341 B2

1

SYSTEM AND METHOD OF EFFICIENTLY
IDENTIFYING AND REMOVING ACTIVE
MALWARE FROM A COMPUTER

FIELD OF THE INVENTION

The present invention relates to computers and, more par-
ticularly, to removing active malware from a computer.

BACKGROUND OF THE INVENTION

As more and more computers are interconnected through
various networks, such as the Internet, computer security has
become increasingly more important, particularly from inva-
s1ons or attacks delivered over a network or over an informa-
tion stream. As those skilled in the art will recognize, these
attacks come 1n many different forms, including, but certainly
not limited to, computer viruses, computer worms, system
component replacements, denial of service attacks, even mis-
use/abuse of legitimate computer system features—all of
which exploit one or more computer system vulnerabilities
tfor illegitimate purposes. While those skilled 1n the art will
realize that the various computer attacks are technically dis-
tinct from one another, for purposes of the present invention
and for simplicity 1n description, all of these attacks will be
generally referred to hereafter as computer malware, or more
simply, malware.

When a computer system 1s attacked or “infected” by a
computer malware, the adverse results are varied, including
disabling system devices; erasing or corrupting firmware,
applications, or data files; transmitting potentially sensitive
data to another location on the network; shutting down the
computer system; or causing the computer system to crash.
Yet another pernicious aspect of many, though not all, com-
puter malware 1s that an infected computer system is used to
infect other computers.

FIG. 1 1s a pictorial diagram illustrating an exemplary
networked environment 100 over which a computer malware
1s commonly distributed. As shown in FIG. 1, the typical
exemplary networked environment 100 includes a plurality of
computers 102-108, all interconnected via a communication
network 110, such as an intranet, or via a larger communica-
tion network, including the global TCP/IP network com-
monly referred to as the Internet. For whatever reason, a
malicious party on a computer connected to the network 110,
such as computer 102, develops a computer malware 112 and
releases 1t on the network. The released computer malware
112 1s recerved by and infects one or more computers, such as
computer 104, as indicated by arrow 114. As 1s typical with
many computer malware, once infected, computer 104 1s used
to infect other computers, such as computer 106, as indicated
by arrow 116, which, in turn, infects yet other computers,
such as computer 108, as indicated by arrow 118. Clearly, due
to the speed and reach of the modern computer networks, a
computer malware 112 can “grow’ at an exponential rate and
quickly become a local epidemic that quickly escalates into a
global computer pandemic.

A traditional defense against computer malware and, par-
ticularly computer viruses and worms, 1s antivirus software.
Generally, antivirus software scans incoming data arriving
over a network, looking for 1dentifiable patterns associated
with known computer malware. Frequently, this 1s done by
matching patterns within the data to what 1s referred to as a
“signature” of the malware. One of the core deficiencies 1n
this malware detection model 1s that an unknown computer
malware may propagate unchecked in a network until a com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puter’s antivirus software 1s updated to 1dentify and respond
to the new computer malware.

As antivirus software has become more sophisticated and
elficient at recognizing thousands of known computer mal-
ware, so too have the computer malware become more
sophisticated. For example, many recent computer malware
are polymorphic. These polymorphic malware are frequently
difficult to identify by antivirus soitware because they modity
themselves before propagating to another computer system.
Thus under the present system, there 1s a period of time,
referred to hereafter as a vulnerability window, that exists
between when a new computer malware 1s released on the
network 110 and when a computer system 1s updated to
protect 1t from the computer malware. As the name suggests,
it 1s during this vulnerability window that a computer system
1s vulnerable or exposed to the new computer malware. FIG.
2 1s a block diagram of an exemplary timeline illustrating this
vulnerability window. In regard to the following discussion,
significant times will be 1dentified and referred to as events.
FIG. 2 1llustrates a vulnerability window 200 with regard to a
timeline 202 under which a malware 1s released that exploits
a previously unknown vulnerability. Thus, as shown on time-
line 202, at event 204, a malicious party releases a new com-
puter malware. As this 1s a computer malware that exploits a
previously unknown vulnerabaility, antivirus software may not
be able to protect vulnerable computer systems from the
attack. Correspondingly, the vulnerability window 200 1is
opened.

At some point aiter the new computer malware 1s circulat-
ing on the network 110, an antivirus software provider or
similar entity detects the new computer malware, as indicated
by event 206. As those skilled i the art will appreciate,
typically the presence of the new computer malware 1s
detected within a matter of hours by antivirus software pro-
viders. Once the computer malware 1s detected, the antivirus
soltware provider may begin the process of i1dentifying a
pattern or signature by which the antivirus software may
recognize the computer malware. As a result of these efforts,
at event 208, the antivirus soitware provider releases an anti-
virus update, which addresses the computer malware. Subse-
quently, at event 210, the update 1s installed on a user’s
computer system, thereby protecting the computer system
and bringing the vulnerability window 200 to a close.

As may be seen from the example provided above, which 1s
only one representative scenario 1n which computer malware
poses a security threat to a computer system, a vulnerability
window exists between the time that a computer malware 112
1s released on a network 110 and when an antivirus update 1s
installed on a user’s computer system to detect the new mal-
ware and close the vulnerability window. As a result, antivirus
software providers typically produce malware “cleaners,”
¢.g., computer soltware designed to identily and remove mal-
ware that 1s infecting a computer. One known method of
“cleaning” a computer that 1s infected with malware includes
searching each file stored on the computer for data character-
istic of malware. When the data characteristic of malware 1s
identified, the soltware cleaner performs certain steps
designed to remove or quarantine the malware. However,
searching each file stored on a computer for data character-
1stic of malware 1s a resource-intensive and time-consuming
process. A computer may functional at a degraded perior-
mance level for a significant period of time when the cleaner

US 7,673,341 B2

3

1s searching file data. Frequently, computer users will be
deterred from using a malware cleaner or will not receive the
tull benefit a malware cleaner because of the time and
resources required to search files.

SUMMARY OF THE INVENTION

The present mvention provides a system, method, and
computer-readable medium for identifying and removing
active malware from a computer. Also, the present invention
may beused to target high impact malware, ¢.g., malware that
1s particularly destructive and/or prolific. One aspect of the
present invention 1s a method that includes obtaining a
cleaner tool from a remote computer such as a download
center. The cleaner tool may be obtained automatically with
an automatic update service or the cleaner tool may be down-
loaded manually from a Web site or similar distribution sys-
tem. When the cleaner tool 1s installed, a specialized scanning,
engine included 1n the cleaner tool searches the computer for
active malware. If active malware 1s detected, the method
identifies the malware and implements logic to remove the

malware from the computer. Then, data that describes the
actions performed by the cleaner tool, including the removal
ol any active malware, 1s transmitted to a remote computer
that tracks the effectiveness of the cleaner tool and the spread
of malware on a communication network.

Another aspect of the present invention 1s a method that
determines when active malware 1s infecting a computer and
implements logic to remove the active malware. This aspect
of the present invention includes scanning specific locations
on a computer for data characteristic of active malware. Sys-
tem configuration files such as a system registry are scanned
for specific entries that are associated with active malware.
Data in memory 1s compared to a database that contains
signatures characteristic of active malware. Also, the file sys-
tem 1s searched for file attributes when malware 1s infecting a
computer. If active malware 1s identified, all of the actions
required to remove the malware are entered 1n a “journal”
prior to being executed. These actions include, but are not
limited to, killing processes, deleting files, and removing
entries 1 configuration files that are associated with active
malware. Once all of the actions required to remove the active
malware are entered in the journal, the actions 1n the journal
are executed, resulting 1n the removal of the active malware.

In yet another aspect of the present invention, a software
system 1s provided that 1s configured to remove active mal-
ware from a computer. More specifically, the software system
includes an update application, an active malware-scanning
engine, a stub module, an installer, a reporting module, and a
signature database. The update application 1s configured to
obtain a software package from a remote computer that
includes the active malware-scanning engine, the stub mod-
ule, the staller, the reporting module, and the signature
database. The active malware-scanning engine 1s operative to
identily and remove active malware from the computer using
data contained in the signature database. In this regard, the
stub module coordinates the actions performed by the active
malware-scanning engine and manages the information
exchanged with the user. When the active malware-scanning
engine and stub module complete, a reporting module may
transmit data that describes actions performed to a remote
computer.

10

15

20

25

30

35

40

45

50

55

60

65

4

In still another embodiment, a computer-readable medium
1s provided with contents, 1.e., a program that causes a com-
puter to operate in accordance with the methods described
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this imnvention will become more readily appreciated
as the same become better understood by reference to the
following detailed description, when taken 1n conjunction
with the accompanying drawings, wherein:

FIG. 1 1s a pictorial diagram illustrating an exemplary
network environment, as found 1n the prior art, over which a
computer malware 1s commonly distributed;

FIG. 2 1s a block diagram 1llustrating an exemplary time-
line demonstrating a vulnerability window with regard to
computer malware released on a network;

FIG. 3 1s a pictonial diagram illustrating an exemplary
network environment that may be used to implement aspects
ol the present invention;

FIG. 4 1s a block diagram of a set of components suitable to
detect and remove active malware from a computer in accor-
dance with the present invention;

FIG. 5§ 1s a flow diagram illustrating one exemplary
embodiment of a method that 1dentifies and removes active
malware from a computer 1n accordance with the present
invention; and

FIG. 6 1s a flow diagram illustrating one exemplary
embodiment of a method that may be used 1in conjunction
with the method illustrated 1n FIG. 5 to 1dentify and remove
active malware from a computer 1in accordance with the
present invention.

DETAILED DESCRIPTION OF THE PR
EMBODIMENT

(L]
=]

ERRED

The present invention provides a system, method, and
computer-readable medium for identifying and removing
active malware from a computer. Embodiments of the present
invention are included 1n a cleaner tool that may be obtained
automatically with an update service or may be downloaded
manually from a Web site or similar distribution system. The
cleaner tool includes a specialized scanning engine that
searches a computer for active malware (e.g., malware that
contains program code and/or data loaded 1n memory). Since
the scanning engine searches for active malware, the amount
of data downloaded and resource requirements of the cleaner
tool are much less than prior art systems. As a result, the
cleaner tool 1s able to rapidly search and identify active mal-
ware 1nstalled on a computer. In this regard, the scanming
engine searches specific locations on a computer, such as data
mapped 1n memory, configuration files, and file metadata for
data characteristic of active malware. If active malware 1s
detected, the cleaner tool removes the malware from the
computer and sends data that describes the actions performed
by the cleaner tool to a remote computer for analysis by
developers.

Although the present invention will primarily be described

in the context of identifying and removing active malware
from a computer, those skilled 1n the relevant art and others
will appreciate that the present invention is also applicable to
other types of malware than those described. The following
description first provides an overview of a system 1n which
the present invention may be implemented. Then methods
that implement the present invention are described. The illus-
trative examples provided herein are not mntended to be

US 7,673,341 B2

S

exhaustive or to limit the mvention to the precise forms dis-
closed. Similarly, any steps described herein may be inter-
changeable with other steps, or combinations of steps, 1n
order to achieve the same result.

Referring now to FIG. 3, the following 1s mntended to pro-
vide an exemplary overview of one suitable computer net-
working environment 300 1n which aspects the invention may
be implemented. The 1llustrated environment 300 comprises
a plurality of client computers 302, 304, and 306, an update
server 308, and a collection server 310. The client computers
302, 304, and 306 are shown associated with users 312, 314,
and 316, respectively. The update server 308 and the collec-
tion server 310 are communicatively connected to the client
computers 302-306 via the network 318, which may be
implemented as a local area network (“LAN™), wide area
network (“WAN™), the Internet, or even a direct communica-
tion link. Also, as 1llustrated in FIG. 3, the collection server
310 1s associated with a statistics database 320. As known to
those skilled 1n the art and others, the computers illustrated in
FIG. 3 may be configured to exchange documents, com-
mands, and other types of data over the network 318.

The present invention provides a service to client comput-
ers 302-306 1n the form of a cumulative malware cleaner that
removes active malware from a computer. As known to those
skilled 1n the art and others, some types of malware require
allirmative action on behalf of a user to infect a computer. For
example, one type of malware, commonly known as a virus,
1s unable to function as a standalone program. Instead, a virus
attaches 1tself to an innocuous host, such as a word processing
document, and implements malicious functionality when a
user executes the host. In some instances, a user never 1ssues
a command to execute the host and, as a result, the virus 1s
never executed. In other instances, malware 1s active on a
computer whenever the computer 1s functioning. For
example, modern computers typically support automatic pro-
gram startup functions. Malware that infects a computer may
alter configuration settings so that the malware 1s activated
whenever the computer begins functioning.

In order to 1dentify all malware on a computer, modern
antivirus software searches every file on the computer for data
that matches a malware signature. As known to those skilled
in the art and others, searching file data 1s a slow and resource
intensive process. However, 1n some 1nstances, only active
malware needs to be removed from a computer. For example,
some malware spreads on a communication network, infect-
ing a high percentage of computers connected to the network.
Typically, this type of malware remains active on computers
infected so that additional computers connected to the net-
work may be infected. In this instance, where the malware 1s
active on most, 1f not all, computers connected to the com-
munication network, performing a traditional scan of file data
on a computer 1s ineificient. Instead, the present invention
identifies and removes active malware that 1s loaded in
memory. Since the domain 1n which active malware may
operate 1s limited, the present invention executes quickly
when compared to traditional scanning techniques.

Returning to FIG. 3, the cleaner tool that complements
aspects of the present invention 1s accessible from the update
server 308. In general terms, the update server 308 acts as a
distribution point for the malware cleaner. As described 1n
more detail below with reference to FIGS. 4-6, client com-
puters 302-306 may obtain the cleaner tool with an automatic
update service. In this regard, the update server 308 may
include a server-based application for automatically provid-
ing software updates to client computers via the network 318.
Alternatively, the cleaner tool may be downloaded manually
from a Web site or similar distribution system. To satisiy

10

15

20

25

30

35

40

45

50

55

60

65

6

manual requests, the update server 308 may include a Web
server application operative to publish the cleaner tool on the
network 318 and satisty requests to download the cleaner
tool. In one embodiment of the present invention, updates to
the cleaner tool are available at regular intervals (e.g., daily,
weekly, monthly, etc.). Also, the updates are cumulative 1n
that the active malware identified by the cleaner tool increases
as new malware 1s released on the network 318.

After the cleaner tool searches and removes any active
malware from a client computer, the results of the cleaning
process may be reported to the collection server 310. In this
regard, the collection server 310 1s communicatively con-
nected to the statistics database 320, which 1s capable of
storing data. As described 1n more detail below, the type of
data transmitted to the collection server 310 and stored in the
statistics database 320 includes, but 1s not limited to, the
identity ol any malware on a client computer, whether the
cleaner tool successtully removed the malware, and the exist-
ence of any error conditions. In this way, the data in the
statistics database 320 assists developers in determining the
severity of an infection, the ability of the cleaner to remove
malware, and the frequency of multiple infections.

Now with reference to FIG. 4, components of the client
computer 302 that include the software-implemented rou-
tines of the present mnvention will be described. As 1llustrated,
the client computer 302 includes a cleaner tool 400 and an
update client 402. In one embodiment of the present inven-
tion, components of the cleaner tool 400 1nclude a stub mod-
ule 404, an active malware-scanning engine 406, an installer
408, a reporting module 410, and a signature database 412.
Also 1 the embodiment of the present invention 1llustrated in
FIG. 4, the stub module 404 contains a user interface 414. The
update client 402 communicates with a server-based applica-
tion located on aremote computer (1.¢., the update server 308)
and automatically downloads the cleaner tool 400. The
cleaner tool 400 searches specific locations on the client
computer 302 and removes any active malware. Then the
cleaner tool 400 writes the results of the actions performed to
a log file. After data 1s written to the log file, the cleaner tool
400 1s deleted from the client computer 302. However, the log
file remains, so that later versions of the cleaner tool 400 may
determine which actions were undertaken by earlier versions.

As illustrated in F1G. 4, the client computer 302 includes an
update client 402. In one embodiment of the present inven-
tion, the update client 402 1s operative to automatically down-
load aspects of the cleaner tool 400 required to scan for
malware. If malware 1s 1dentified, then additional data
required to clean or remove the malware from the computer 1s
also downloaded. A detailed description of an update client
that was integrated with the present invention may be found in
commonly assigned U.S. Pat. No. 6,493,871, 1ssued Dec. 10,
2002, titled “METHOD AND SYSTEM FOR DOWN-
LOADING UPDATES FOR SOFTWARE INSTALLA-
TION,” the content of which 1s expressly incorporated herein
by reference. As described previously, the cleaner tool 400
may be downloaded manually from a Web site or similar
distribution system. In this instance, the update client 402
may not be 1nstalled on the client computer 302. Instead, the
client computer 302 includes a Web browser client applica-
tion capable of downloading the cleaner tool 400.

A component of the cleaner tool 400 shown in FIG. 415 a
stub module 404. The stub module 404 coordinates the
actions performed by the active malware-scanning engine
406, and manages the information exchanged with the user.
For example, the stub module 404 1dentifies any command
line arguments and sets the mode of execution. In one
embodiment of the present invention, the user may configure

US 7,673,341 B2

7

the cleaner tool 400 to execute 1n the “background” without
input from the user. Alternatively, the cleaner tool 400 may be
event driven so that actions taken occur 1n response to coms-
mands 1ssued by the user. In any event, the stub module 404
identifies user preferences and sets the mode of execution.
Then the active malware-scanning engine 406 and signature
database 412 (discussed below) are loaded mnto memory. As
discussed 1n further detail below, the active malware-scan-
ning engine 406 and signature database 412 are configured to
collectively identily and remove active malware from the
client computer 302.

The stub module 404 includes a user interface 414 for
communicating with users. As described previously, the
cleaner tool 400 may execute 1n a mode that 1s event driven, so
that active malware 1s 1dentified and removed 1n response to
user-generated commands. As known to those skilled in the
art and others, a user interface 1s an mput/output system
characterized by the use of graphics on a computer display to
communicate with a computer user. For example, informa-
tion regarding any malware on the client computer 302 may
be displayed on the user interface 414. Also, the user interface
414 allows a user to click buttons and generate commands 1n
order to 1dentily and remove malware from a computer.

The cleaner tool 400 also maintains an active malware-
scanning engine 406, which provides the primary malware
detection and removal functionality of the cleaner tool 400. In
order to 1dentily malware on a computer, modern antivirus
soltware searches file data for a malware signature. However,
in some 1nstances, only active malware needs to be removed
from a computer. Thus, the active malware-scanning engine
406 searches specific locations for data that 1s characteristic
of active malware, including (1) configuration files, (2) data
mapped 1n memory, and (3) file metadata. By analyzing only
specific locations on a computer, the scanning engine 406 1s
able to 1dentily malware much faster than existing antivirus
software. If active malware 1s detected, the active malware-
scanning engine 406 implements logic to remove the malware
from the client computer 302. In this regard, the scanning
engine 406 kills processes, removes entries 1n configuration
files, and deletes files that are associated with active malware.
As described 1n further detail below with reference to FIG. 6,
the active malware-scanning engine 406 1s also designed to
remove seli-preserving malware that generates new pro-
cesses when detected.

Asillustrated 1n F1G. 4, the client computer 302 includes an
installer 408 operative to install the cleaner tool 400 on the
client computer 302. Since, techniques for installing a pro-
gram on a computer are generally known 1n the art, many
functions of the installer 408 will not be described here.
However, since the cleaning tool 400 only searches for a
limited set of signatures associated with active malware, the
functions performed by the installer 408 are fast when com-
pared to installers associated with traditional antivirus soft-
ware. For example, the data contained 1n the signature data-
base 412 (described below) contains a fraction of the total
number of known malware signatures. Thus, the amount of
data “unpacked” by the installer 408 1s small, thereby result-
ing in a quick installation process.

The cleaner tool 400 also maintains a reporting module 410
operative to gather and transmit data to a remote computer
(1.e., the collection server 310). In one embodiment of the
present invention, the stub module 404 receives data from the
acttve malware-scanning engine 406 after it completes
executing. The data includes, but 1s not limited to, the identity
of any active malware on a client computer 302, whether the
actrive malware was successiully removed, and the existence
of any error conditions. The stub module 404 passes this data

10

15

20

25

30

35

40

45

50

55

60

65

8

to the reporting module 410. Then the reporting module 410
transmits the data to a remote computer for storage and/or
analysis by developers. As a result, developers may easily
determine the severity of an infection and the effectiveness of
the cleaner tool.

As 1llustrated in FI1G. 4, another component of the cleaner
tool 400 1s a signature database 412. The signature database
412 typically maintains definitions of active malware that are
particularly prolific and/or destructive. One technique for
identifying malware includes obtaining a copy of the malware
“in the wild.” Then program code that implements the mal-
ware 1s processed with a hash function that converts the
malware program code 1nto a set of data that may be used to
umquely 1identily the malware. For each active malware 1den-
tified by the present invention, the signature database 412
contains a signature of the malware generated using a hash
function. When the active malware-scanning engine 406
scans data mapped 1n memory, the malware signatures 1n the
database 412 are referenced for a match. In addition, the
signature database 412 contains additional data used to 1den-
tify malware. For example, some malware alters configura-
tion files, such as a system registry. This type of data that
describes attributes of active malware 1s also stored in the
signature database 412.

As 1llustrated 1n F1G. 4, each component of the cleaner tool
400——e.g., the stub module 404, the active malware-scanning
engine 406, the installer 408, the reporting module 410, and
the signature database 412—is interconnected and able to
communicate with other components. As known to those
skilled 1n the art and others, FIG. 4 1s a simplified example of
one cleaner tool 400 and client computer 302 capable of
performing the functions implemented by the present inven-
tion. Actual embodiments of the cleaner tool 400 and client
computer 302 will have additional components not 1llustrated
in FIG. 4 or described 1n the accompanying text. Also, FIG. 4
shows a component architecture for safely 1dentifying and
removing active malware from a client computer 302, but
other component architectures are possible.

FIG. 5§ 1s a flow diagram illustrating one exemplary
embodiment of a cleaning method 500 formed 1n accordance
with the present invention. In summary, the cleaning method
500 causes a cleaner tool to be downloaded from a remote
computer and 1nstalled on a local computer associated with a
user. When the cleaner tool 1s installed, a search for active
malware 1s performed. If active malware 1s detected, the
cleaning method 500 1dentifies the malware and implements
logic to remove the malware. Then data that describes the
malware 1s transmitted to a remote computer so that develop-
ers may track the spread of malware and the effectiveness of
the cleaner tool. With continuing reference to FIGS. 1-4 and
the accompanying descriptions, an exemplary cleaning
method 500 1llustrated 1n FIG. 5 will now be described.

As 1llustrated 1n FI1G. §, the cleaning method 500 begins at
either block 502 or block 504. As mentioned above, the
present mnvention provides a service that removes active mal-
ware from a computer. In order to identily and remove newly
discovered malware, developers regularly update the cleaner
tool 1n order to detect the newly discovered malware. At
decision block 502, the cleaning method 500 remains 1dle and
waits until a user generates imnput that indicates a willingness
to participate in the service provided by the present invention.
In one embodiment, after a user indicates a willingness to
participate in the service, updated versions of the cleaner tool
are automatically installed when they become available. For
example, the update client 402 (FIG. 4) may be used to
automatically download and 1nstall the cleaner tool. When a
user 1s already a participant in the service, the cleaming

US 7,673,341 B2

9

method 500 begins at decision block 504. In this instance, an
updated version of the cleaner tool was made available from
a download center. As mentioned previously, 1n one embodi-
ment of the present invention, updates are made available at
regular 1ntervals (e.g., daily, weekly, monthly, etc.). In any
event, the cleaning method 500 may begin at either decision
block 502 or 504, depending on whether the user 1s already a
participant 1n the cleaner service.

At block 3506, the cleaning method 500 downloads and
installs the cleaner tool from the download center. Since
communication protocols for transmitting data over a net-
work and methods for installing programs are generally
known 1n the art, descriptions of the techniques used to imple-
ment this aspect of the method 500 will not be provided here.
However, 1t should be well understood that downloading and
installing the cleaner tool may be performed quickly. At block
506, only program code that 1s required to scan for malware 1s
downloaded. As described in more detail below, only when
malware 1s detected will additional data required to clean the
malware infection be downloaded.

Atdecision block 508, the cleaning method 500 determines
whether a “silent tlag” was enabled when the cleaner tool was
installed at block 506. As mentioned previously, a user of the
present invention may set different modes of execution. For
example, the user may configure the present invention to
execute 1n the background without obtaining input from the
user. Alternatively, the actions performed by the present
invention may be event-driven so that malware detection and
removal 1s performed 1n response to user-generated com-
mands. Typically, a user will imnput the mode of execution
during the installation process. When the cleaner tool begins
executing, the value of the variable (1.¢., the silent flag) that
represents the mode of execution 1s 1dentified from a com-
mand line argument. I the silent flag indicates that the present
invention will operate 1n the background, the cleaning method
500 proceeds to block 514 described below. Conversely, 11 the
silent flag indicates that the present invention will perform
actions in response to user commands, the cleaning method
500 proceeds to block 518.

As 1llustrated 1n FIG. 5, the cleaning method 500 at block
510 displays a graphical user interface to the user. If block 510
1s reached, the mode of execution 1s set so that actions are
performed in response to commands generated by the user. In
one embodiment of the present invention, the graphical user
interface 1s a “wizard” that includes a sequence of prompts for
displaying options to the user. For example, one option avail-
able to the user with the wizard 1s a command to scan for
active malware. As known to those skilled in the art and
others, a wizard that generates prompts and performs actions
in response to commands generated by a user 1s one example
of a graphical user interface.

Atblock 512, the cleaning method 500 remains 1dle until a
scanning event 1s received. If block 512 1s reached, the mode
of execution 1s set so that actions are performed 1n response to
commands generated from a graphical user interface. Since
methods for receiving events from a graphical user interface
are generally known 1n the art, the technique used at block 512
to listen for a scanning event will not be described here.

In order to scan for active malware, the stub module 404
(FIG. 4) loads the active malware-scanning engine 406 nto
memory at block 514. Typically, to execute a program, an
address space (1.¢., memory) for the program 1s allocated and
the code and data that implement the functionality of the
program are loaded into the imitialized address space. At
block 514, the active malware-scanning engine 406 1s loaded
into memory by the stub module 404 so that a scan for active
malware may be performed.

10

15

20

25

30

35

40

45

50

55

60

65

10

At block 516, a scan for active malware that 1s defined 1n
the signature database 412 1s performed. If the scan detects
malware on the computer, logic 1 the active malware-scan-
ning engine 406 removes the malware. One embodiment of a
method that 1dentifies and removes active malware from a

computer 1n accordance with the present invention 1is
described below with reference to FIG. 6.

As 1llustrated 1n FIG. §, data 1s reported, at block 518, to a
remote computer. As described previously with reference to
FIG. 3, data that describes the state of a computer and actions
performed by the cleaner tool i1s helptul to developers in
identifying the severity of an infection and 1n preventing the
spread of malware. At block 3518, the cleaner method 500
sends data to a remote computer that includes, but 1s not
limited to, the identity of any malware found on the computer,
whether the malware was successtully removed, and the
existence of any error conditions caused by the cleaner tool.
The data transmitted at block 518 may be formatted to facili-
tate searching and sorting functions available from modern
databases. As known to those skilled 1n the art, other types of
data may also be transmitted to a remote computer at block
518 and the examples provided above should be construed as
exemplary and not limiting.

At decision block 520, the cleaner method 500 determines
whether the user chose to “opt out” of the service provided by
the present mvention. Since aspects of the present invention
may be event driven, a user may “opt out” of the service at any
time by accessing a user interface and 1ssuing a command. IT
the user chose to “opt out,” the method 500 proceeds to block
522, where 1t terminates. Conversely, 1f the user will recerve
the cleaner tool 1n the future, the cleaning method 500 pro-
ceeds back to block 504 and blocks 504 through block 520
repeat until the user “opts out” of the service.

Implementations of the present invention are not limited to
the exemplary method 500 shown 1n FIG. 5. Other methods
may include additional actions or eliminate some actions
shown. For example, the exemplary method 500 shown 1n
FIG. 5 1s described in the context of system where software
updates are provided automatically with an update program.
However, as mentioned previously, the cleaner tool may be
downloaded manually from a Web site or similar distribution
system. In this embodiment, blocks 502 and 504 described
above are not performed. Thus, the method 500 depicted 1n
FIG. S and described in the accompanying text 1s one embodi-
ment of the present invention, and other embodiments are
possible.

FIG. 6 1s a flow diagram illustrating one exemplary
embodiment of a scanning method 600 formed 1n accordance
with the present invention. In summary, the scanming method
600 determines when active malware 1s present on a com-
puter. If active malware 1s present, the method 600 removes
the malware. With continuing reference to FIGS. 1-5 and the
accompanying descriptions, an exemplary scanning method
600 1llustrated 1n FIG. 6 will now be described.

As 1llustrated 1n FI1G. 6, the scanning method 600 begins at
block 602. Typically, scanning for malware begins after the
active malware-scanning engine 406 (FIG. 4) 15 loaded 1n
memory. In this instance, the scanning method 600 1s
designed to work in conjunction with the cleaming method
500 described above with reference to FIG. 5. However,
actions performed by the scanning method 600 may be imple-
mented by other programs that are not described herein. For
example, any program may issue a call to the active malware-
scanning engine 406 (FIG. 4) to imtiate a scan for active
malware.

At block 604, the scanning method 600 1dentifies the pro-
cesses on the computer. As known to those skilled 1n the art

US 7,673,341 B2

11

and others, 1n order to execute a program, code and data
associated with the program are loaded in memory. Internally,
a program that 1s being executed or scheduled to be executed
1s represented as a “process.” In order to support switching
between processes, modern computers maintain a table (here-
inafter referred to as a “process table™) that contains an entry
tor each process on the computer. The process table contains
information necessary to restart a suspended process, such as
a process memory state that includes pointers to the memory
areas used by the process. As described in further detail
below, data in the process table 1s used to identily data that 1s
loaded 1n memory. In any event, active processes are 1dent-
fied at block 604 by performing a table lookup of the process
table using techniques generally known in the art.

As 1llustrated 1n FIG. 6, the scanning method 600 selects a
process 1n the process table described at block 604. The
scanning method 500 sequentially selects each process 1n the
process table and obtains a memory “snapshot” of the
selected process. Then the program code and data associated
with the selected process are scanned for data characteristic of
malware.

At block 608, a memory snapshot of the selected process
that 1dentifies the program code and data used by the process
1s obtained. As described previously, modern computers
maintain a process table that stores pointers to areas of
memory used by a process. At block 608, the scanning
method 500 performs a table lookup 1n the process table and
identifies the memory locations that store the program code
and data that are associated with selected process

At block 610, the program code and data in memory asso-
ciated with the selected process are scanned for a malware
signature. As described previously with reference to FIG. 4,
one known technique for identitying malware includes (1)
obtaining a copy of the malware, (2) generating one or more
malware signatures using a hash function, and (3) comparing,
the signature to data in a file or data stream. The signature
database 412 (FI1G. 4) stores a plurality of malware signatures
that were generated using a hash function. At block 610,
program code and data 1n memory that are associated with the
selected process are compared to malware signatures in the
signature database 412 for a match. Since techniques for
comparing data are generally known in the art, further
description of the techniques implemented by the presented
invention at block 610 to search the signature database 412
will not be described here.

Scanning data that 1s loaded in memory, as occurs at block
610, reduces the time required to identily and remove mal-
ware from a computer. For example, as known to those skilled
in the art and others, when a file or data stream 1s scanned for
a malware signature, data 1s typically read from an Input/
Output (“1/O”) device, such as a hard drive. Performing read
operations from an I/O device 1s substantially slower than
performing read operations on data that 1s loaded 1n memory.
Also, 1n one embodiment of the present invention, only sig-
natures of high priority malware are contained in the signa-
ture database 412. Performing a search of a database that
contains malware signatures 1s a resource-1ntensIve process.
For example, some databases contain a signature for each
malware known to infect computer systems. In this instance,
identifying malware 1s slow since each signature 1n the data-
base 1s compared to data 1n a file or data stream. In one
embodiment of the present invention, the signature database
412 contains a limited set of signatures known to be spreading
on a communication network. Obviously, searching for a
limited set of malware reduces the number of comparisons
made, thereby decreasing the time period required to identify
malware.

10

15

20

25

30

35

40

45

50

55

60

65

12

At block 612, the scanning method 600 determines
whether all of the processes 1n the process table have been
selected. As described above, the process table contains an
entry for each process that 1s executing or scheduled to be
executed. Unless all of the processes have been selected,
additional processes will be selected so that all program code
and data in memory are scanned for malware. In any event, 1f
all of the processes were previously selected, the method 600
proceeds to step 614, described below. Conversely, 1f any
process was not previously selected, the method 600 proceeds
back to step 606 and steps 606 through 612 repeat until all of
the processes have been selected.

As illustrated 1n FIG. 6, the scanning method 600 searches
for configuration data that 1s characteristic of malware at
block 614. Typically, malware that infects a computer alters
configuration files so that the malware 1s activated when a
computer begins functioning. For example, an entry may be
made 1n the system registry so that malware 1s added to a
“startup” menu of programs that begin executing each time an
operating system “boots.” As known to those skilled 1n the art
and others, the system registry is a file used to store settings,
options, and preferences regarding the operation of a com-
puter, including preferences that identity programs activated
at startup. By way of another example, malware may register
as a service with a component of the operating system known
as the service control manager (“SCM”). When a malware
registers as a service, the functionality of the malware may be
activated whenever the computer 1s functioning. In addition
to matching malware signatures, the signature database 412
(FI1G. 4) 1s also used to 1dentily configuration data character-
1stic of malware. Thus, at block 614 the scanning method 600
scans the system registry and the SCM for one or more entries
that are characteristic of malware. In this regard, the signature
database 412 1s queried during the scan to determine 1f the
computer 1s infected with malware.

At block 616, file system metadata 1s searched for entries
that are characteristic of malware. As known to those skilled
in the art and others, each file on a computer 1s associated with
metadata that describes attributes of the file. For example, a
file name, permissions, location, and size are all contained 1n
file metadata. In some 1nstances, malware designers use nam-
ing conventions or other invariable methods of storing files
that contain malware. For example, malware designers ire-
quently use a file name that appears to be a critical system file
to discourage users from deleting the file. The signature data-
base 412 (FIG. 4) 1s used to i1dentily file metadata that 1s
characteristic of malware. At block 614, the scanming method
600 scans the file system for metadata that 1s characteristic of
malware. In this regard, the signature database 412 1s queried
during the scan to determine 11 the metadata being scanned 1s
associated with a file that contains malware.

At decision block 618, the scanning method 600 deter-
mines whether malware was detected on the computer. If
malware was not detected, the method 600 proceeds to block

624 described below. Conversely, if malware was detected,
the method 600 proceeds to block 620.

At block 620, the scanning method 600 downloads and
installs program code designed to remove the malware from
the computer. In order to minimize impact on a user, the
present invention only downloads program code used to
remove malware when an infection 1s detected. If block 620 1s
reached, a computer 1s 1infected with malware and program
code designed to remove the malware 1s needed. Since com-
munication protocols for transmitting program code over a
network are generally known 1n the art, descriptions of the
techniques used to implement this aspect of the method 600
will not be provided here.

US 7,673,341 B2

13

At block 622, the scanning method 600 removes any mal-
ware that was detected on the computer. In one embodiment
of the present invention 1 which execution occurs in the
background, malware 1s removed automatically without addi-
tional user iput. In another embodiment, malware 1s
removed 1n response to a command generated from a user
interface. In any event, one known technique for automati-
cally removing malware from a computer includes (1) “kall-
ing”” or terminating processes associated with the malware,
(2) removing malware-generated entries in configuration files
such as the system registry, and (3) deleting files that contain
malware program code and data. One aspect of the present
invention records or “journals™ the actions required to remove
malware. Simply stated, this aspect of the present invention
identifies all actions required to remove the malware before
starting the removal process, thereby insuring that all mal-
ware components are identified. In some 1nstances, 1f the
actions required to remove malware are not identified before
starting the removal process, components ol the malware may
be diflicult or impossible to identily. For example, an entry in
the system registry may point to a file that 1s executed each
time a computer “boots.” Deleting this entry 1n the system
registry may make 1t difficult or impossible to later identify
the file associated with the entry. Thus, to remove all of the
components ol malware, the present invention creates journal
entries for each action required to remove the malware. Also,
in the event that changes made by the cleaner were incorrectly
applied, the journal may be used to restore the computer to the
state that existed before the journal entries were executed.

Some malware 1mplement self-preservation techniques
designed to prevent removal of the malware from a computer.
For example, two processes may be used to implement a
self-preservation technique. In this instance, a first process
implements the functionality of the malware and the second
process momnitors the status of the first process. The second
process remains dormant until a command to terminate the
first process 1s 1ssued. Then the second process causes the
computer to become infected again after the first process
terminates. The present invention 1s designed to remove from
a computer malware that implements self-preservation tech-
niques. For example, when a process associated with malware
1s 1dentified, the process 1s immediately suspended. Suspend-
ing a process ends the operation of the process but does not
typically trigger the creation of additional processes that may
be used to reinfect the computer. In this example the present
invention suspends both malware processes, thereby prevent-
ing either of the processes from reinfecting the computer.
Then the actions required to remove the malware are entered
in the journal. Typically, these actions include the same
actions described above, namely, (1) “killing” or terminating
processes assoclated with the malware, (2) removing mal-
ware-generated entries in configuration files, and (3) deleting,
files that contain program code and data associated with the
malware. Then the journal entries are sequentially executed,
resulting 1n the removal of the malware.

At block 624, the results of the actions performed by the
cleaner tool are recorded 1n a log file. As mentioned previ-
ously, executable and installer files are removed from a com-
puter after the cleaner tool completes executing. Since future
versions of the cleaner tool may need to know the 1dentity of
any previously installed cleaner tools, a version number for
the cleaner tool 1s recorded 1n the log file. Also, the identity of
any malware detected and whether the malware was success-
tully removed are recorded in the log file. However, 1t should
be well understood that other data will typically be recorded
in the log file and the examples provided above should be
construed as exemplary, and not limiting.

10

15

20

25

30

35

40

45

50

55

60

65

14

At block 626, the results of the routines performed by the
cleaner tool are reported to the user. As described previously,
a user of the present ivention may set different modes of
execution, including a mode where execution occurs 1n the
background. In this instance, the present mnvention does not
report the results of the scanning method 600 to the user at
block 626. Alternatively, the actions performed by the present
invention may be event driven, so that malware detection and
removal are performed 1n response to user-generated com-
mands. In this instance, after the cleaning method 600
attempts to remove the malware, the results are displayed to
the user. Then the scanning method proceeds to block 628
where 1t terminates.

While the preferred embodiment of the invention has been
illustrated and described, it will be appreciated that various
changes can be made therein without departing from the spirit
and scope of the 1nvention.

The embodiments of the invention in which an exclusive
property or privilege 1s claimed are defined as follows:

1. In a computer that includes a client application for com-
municating with a remote computer, a computer-imple-
mented method of removing active malware from the com-
puter, the method comprising:

searching a set of locations on the computer for active

malware:

identifying active malware resident on the computer;

identifying actions required to remove the 1dentified active

malware resident on the computer;

downloading and installing a software application having,

routines that remove the active malware from the remote
computer after the active malware 1s 1dentified as resi-
dent on the computer;

creating journal entries for each required action before any

of the required actions are executed;

executing the routines of the software application to

remove the active malware from the computer;

storing the results of the execution of the routines 1n a log

file that remains on the computer after the software
application 1s removed;

transmitting data to the remote computer that includes the

identity of any active malware 1dentified on the com-
puter and whether the malware was successtully
removed; and

removing the software application after storing the results

of the execution of the routines and transmitting the data
to the remote computer.

2. The method as recited 1n claim 1, further comprising
storing information 1n the log file on the computer that
includes the i1dentity of any active malware 1dentified and
whether the malware was successiully removed.

3. The method as recited 1n claim 1, wherein routines that
search a set of data on the computer for active malware are
included 1n a software application that 1s downloaded from
the remote computer.

4. The method as recited 1n claim 1, wherein a software
application 1s automatically downloaded and installed on the
computer when an updated version of the software applica-
tion becomes available.

5. The method as recited 1n claim 1, wherein searching a set
of locations on the computer for active malware 1includes:

identifying the active processes on the computer;

identifying data 1n memory that 1s associated with the
active processes; and

comparing the data in memory to malware signatures.

6. The method as recited in claim 5, wherein identifying the
active processes includes performing a search of a table that
stores the state associated with the active processes.

US 7,673,341 B2

15

7. The method as recited 1n claim 5, wherein the malware
signatures are generated using a hash function.

8. The method as recited in claim 1, wherein searching a set
of data on the computer for active malware includes searching
configuration databases for entries generated by malware.

9. The method as recited 1n claim 8, wherein a configura-
tion database searched 1s a system registry.

10. The method as recited in claim 1, wherein searching the
computer for active malware includes searching metadata for
file names that are associated with active malware.

11. The method as recited in claim 1, wherein 1dentifying
the actions required to remove the active mal ware includes
suspending processes generated by the malware

12. The method as recited in claim 1, wherein executing the
actions required to remove the active malware from the com-
puter includes: killing processes associated with the malware;

removing entries made by the malware 1n configuration
databases; and

deleting files used by the malware.

13. A system embodied on a computer-readable storage
medium bearing computer-executable instructions that, when
executed by a processor operatively coupled to memory on a
computer that includes a client application for communicat-
ing with a remote computer, carries out a method for remov-
ing active malware from the computer, the method compris-
ng:

searching a set of locations on the computer for active

malware;

identifying active malware 1n the searched set of locations;

identifying actions required to remove identified active
malware from the computer;

downloading and installing computer-executable nstruc-
tions to the computer having routines that when
executed, perform the actions required to remove the
identified active malware, the instructions are down-
loaded from the remote computer after the active mal-
ware 1s 1dentified as resident on the computer;

creating journal entries for each required action before any
of the required actions are executed;

executing the routines configured to remove the active
malware from the computer;

storing the results of the execution of the routines 1n a log
file that remains on the computer after the mstructions
having the routines are removed from the computer;

transmitting data to the remote computer that includes the
identity of any active malware 1dentified on the com-
puter and whether the malware was successiully
removed; and

removing the instructions having the routines from the
computer after the results are stored in a log file and the
data 1s transmitted to the remote computer.

14. The method as recited 1n claim 13, further comprising
storing information in the log file on the computer that
includes the identity of any active malware i1dentified and
whether the malware was successtiully removed.

15. The method as recited 1in claim 13, wherein routines
that search a set of data on the computer for active malware
are mcluded 1n a software application that 1s downloaded
from the remote computer.

16. The method as recited 1n claim 15, wherein a software
application 1s automatically downloaded and installed on the
computer when an updated version of the software applica-
tion becomes available.

17. The method as recited in claim 13, wherein searching a
set of locations on the computer for active malware includes;

10

15

20

25

30

35

40

45

50

55

60

65

16

1dentifying active processes on the computer;

identifying data 1n memory that 1s associated with the
active processes;

and comparing the data in memory to malware signatures.

18. The method as recited 1n claim 17, wherein 1identifying
the active processes includes performing a search of a table
that stores a state associated with the active processes.

19. The method as recited in claim 17, wherein the malware
signatures are generated using a hash function.

20. The method as recited 1n claim 13, wherein searching a
set of data on the computer for active malware includes
searching configuration databases for entries generated by
malware.

21. The method as recited 1n claim 20, wherein a configu-
ration database searched is a system registry.

22. The method as recited 1n claim 13, wherein searching,
the computer for active malware includes searching metadata
for file names that are associated with active malware.

23. The method as recited in claim 13, wherein identifying,
the actions required to remove the active mal ware includes
suspending processes generated by the malware.

24. The method as recited 1n claim 13, wherein executing
the actions required to remove the active malware from the
computer includes:

killing processes associated with the malware; removing
entries made by the malware 1n configuration databases;
and deleting files used by the malware.

25. A computer system comprising a processor and
memory which stores one or more computer executable com-
ponents that when executed by the processor perform the
following steps to remove active malware from the computer
system:

search a set of locations on the computer for active mal-
ware; 1dentily
active malware resident on the computer;

identify actions required to remove the idenftified active
malware resident on the computer;

download and installing a software application having rou-
tines that remove the active malware from the remote
computer after the active malware 1s 1dentified as resi-
dent on the computer;

create journal entries for each required action before any of
the required actions are executed;

execute the routines of the software application to remove
the active malware from the computer;

store the results of the execution of the routines 1n a log file
that remains on the computer after the software applica-
tion 1s removed;

transmit data to the remote computer that includes the
identity of any active malware 1dentified on the com-
puter and whether the malware was successiully
removed; and

remove the software application after storing the results of
the execution of the routines and transmitting the data to
the remote computer.

26. The computer system as recited in claim 25, wherein
the one or more computer executable components further
perform the step of automatically downloading and installing
the software application when a new version of the software
application becomes available.

277. The computer system as recited in claim 25, wherein
the one or more computer executable components farther
perform the step of suspending processes generated by mal-
ware when malware 1s detected.

US 7,673,341 B2

17 18
28. The computer system as recited 1n claim 25, wherein 30. The software system as recited in claim 25, wherein the
the set of locations includes configuration databases on the set of locations includes metadata that identifies file names
computer. that are associated with active malware.

29. The software system as recited in claim 25, wherein the
set of locations includes a table that stores a state associated 5
with active processes running on the computer system. I I

	Front Page
	Drawings
	Specification
	Claims

