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RECOVERING DEVICE DRIVERS

RELATED APPLICATIONS

This application 1s based on a prior copending provisional

application, Ser. No. 60/669,139, filed on Apr. 6, 2005, the
benelit of the filing date of which 1s hereby claimed under 35

U.S.C. §119(e).

GOVERNMENT RIGHTS

This invention was made with U.S. Government support
under grant Nos. CCR-0326546 and I'TR-00085670 awarded
by the National Science Foundation. The U.S. Government
has certain rights 1n the ivention.

BACKGROUND

It 1s generally accepted that device drivers cause the major-
ity of failures in commodity operating systems (OSs). Earlier
work has shown that an OS kernel reliability system can
prevent driver errors from crashing the Linux™ OS kernel,
thus maintaining OS 1ntegrity. Thus far, however, reliability
subsystems have been unable to maintain the integrity of
applications using a failed device driver. The failure and
recovery ol a device driver typically terminates all applica-
tions using that device driver, since applications are rarely
written to handle device driver errors.

The importance of recovery has long been known 1n the
database commumnity, where transactions prevent data corrup-
tion and allow applications to manage failure. More recently,
tailure recovery has become an important 1ssue for OSs and
applications.

The most general approach to recovery 1s to run application
replicas on two machines, a primary and a backup. All inputs
to the primary are mirrored to the backup. After a failure of the
primary, the backup machine takes over to provide service.
The replication can be performed within the hardware, at the
hardware-software interface, at the system call interface, or at
a message passing or application interface. However, this
approach adds considerable cost and complexity.

Another common recovery approach 1s to restart applica-
tions after a failure. Many systems periodically save the appli-
cation state as checkpoints, while others combine check-
points with logs. These systems transparently restart failed
applications from their last checkpoint (possibly on another
machine) and replay the log if one 1s present. However, recent
work has shown that this approach 1s limited when recovering,
from application faults, since applications often become cor-
rupted before they fail, and thus, their logs or checkpoints
may also be corrupted. Yet another approach 1s simply to
reboot the failed component.

A system that was previously developed to handle device
driver and extension faults called “Nooks™” takes this latter
approach and unloads and reloads failed OS kernel exten-
s10ms, such as device drivers. Rebooting has been proposed as
a general strategy for building high-availability software, but
forces applications to handle the failure, for example, by
taking over the task of re-1initializing state that has been lost by
the rebooted component. However, few existing applications
are able to reboot without losing state. Accordingly, this
approach 1s not practical for improving the reliability of exist-
ing applications. Clearly, a solution 1s needed that addresses
the problems of device driver failures by transparently restor-
ing device driver state lost 1n the reboot, 1nvisibly to applica-
tions, so that the failure of the device driver minimally
impacts the OS and any applications using the device driver.
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The solution should also facilitate device driver 1solation 1n
order to prevent failed device drivers from corrupting the OS
or applications. Such isolation can be provided in various
ways. It has been proposed to encapsulate extensions using
soltware fault 1solation, and to use transactions to repair OS
kernel state after a fault. Nooks™ and other approaches 1so-
late extensions in protection domains enforced by virtual
memory hardware. MicroOS kernels and their derivatives
force 1solation by executing extensions in user mode. Rather
than concealing failures, though, all of these systems take a
revealing strategy, in which the application or user 1s made
aware of the failure. The OS typically returns an error code,
telling the application that a system call failed, but little else
(e.g., 1t does not indicate which component failed or how the
failure occurred). The burden of recovery then rests on the
application, which must decide what steps to take to continue
executing. Most applications are not prepared to handle the
failure of device drivers, since device driver faults typically
cause a system crash on commodity OSs.

Mechanisms have been proposed that transparently
improve the reliability of existing soitware through interpo-
sition. Other systems approach the same goal by verifying the
correctness ol system calls, restarting applications after a
failure, retrying failed system and library calls, restarting OS
kernel extensions after a failure, or reconnecting applications
to databases after a failure. Accordingly, it would be desirable
to use procedure call interposition to mirror and redirect OS
kernel-device driver communications.

Several systems have narrowed the scope of recovery to
focus on a specific subsystem or component. For example, the
Rio file cache achieves high performance by 1solating a single
system component, the file cache, from OS kernel failures.
Another technique provides transparent recovery after the
failure of a single component type, replicated databases 1n
multi-tier applications. Thus, 1t appears that a solution to the
problem of system stability should focus on recovery for a
single OS component type, the device driver, which 1s the
leading cause of OS failure. By abandoning general-purpose
recovery, a major cause ol application and OS failure can be
resolved, while simplifying implementation and reducing
runtime overhead. In a more general sense, the solution that 1s
developed for handling device driver failures should be appli-
cable for similarly handling failure of other types of software
modules, so that the OS and applications using the modules
are minimally (or not at all) affected by the failure of a
module.

SUMMARY

The following discussion presents a solution to the prob-
lem of maintaining application integrity when device drivers
tail. This approach, although 1mtially targeted at handling
failed device drivers, 1s also usetful 1n handling the failures of
other types of software modules. While the following discus-
sion1s primarily directed to the application of this approach to
device driver failures, 1t will be understood, that the term
“device driver” as used 1n this description can 1n most cases
simply be replaced by the more general term “module” to
understand how the approach 1s useful for handling the fail-
ures of other types of modules.

A new mechanism 1s employed for the present novel
approach, called the shadow driver. The shadow driver 1s an
OS kernel agent that monitors communication between the
OS kernel and the device driver 1t “shadows.” When a device
driver error occurs, the shadow driver acts 1n place of the
tailed device driver, intercepting and responding to calls from
the OS kernel and the device driver during cleanup, unload-
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ing, reloading, and re-mitialization of the failed device
driver—but not functioning as an alternative or replacement
for the failed device driver. By impersonating device drivers
during recovery (although without providing the functional-
ity ol the device driver), shadow drivers conceal errors caused
by device driver failures, thereby protecting the OS kernel
and applications that may use the device driver to interface
with a hardware device. Such applications and the OS kernel
are thus 1solated from the failure of the device driver.

In some ways, like device driver replication schemes,
shadow drivers mirror all communications between the OS
kernel and device driver (the primary), sending copies to the
shadow driver (the backup). If the device driver fails, the
shadow driver takes over temporarily until the device driver
recovers. However, shadow drivers differ from typical repli-
cation schemes 1n several ways. First, because the goal 1s to
tolerate only device driver failures, not hardware failures,
both the shadow driver and the “real” device driver run on the
same machine. Second, and more importantly, the shadow
driver 1s not a replica of the device driver. Instead, 1t imple-
ments only the services needed to manage the recovery of the
tailed device driver and to shield applications from the recov-
ery. For this reason, the shadow driver is typically much
simpler than the device driver i1t shadows.

In the broader sense, a shadow driver can be viewed as a
recovery agent for an extensible system that includes an envi-
ronment and a set of components. The environment defines a
set of interfaces that the environment uses to invoke or call
components. A shadow driver performs two tasks 1n such a
system: (1) i1t conceals the failure of a component from the
environment; and, (2) it restores the component to a function-
ing state after failure.

An exemplary shadow driver implementation discussed
below 1s based solely on the interface to components and not
to the implementation of those components. To conceal fail-
ures, a shadow driver answers requests on behalf of the com-
ponent. For this approach to work properly, a possible
response to all requests into a component must be one of the
following: (1) replay the response to a similar previous
request; (2) respond that the component 1s currently busy; (3)
block the caller until recovery completes; (4) queue the
request to be processed later, which implies that the request 1s
guaranteed to succeed or that the failure of the request can be
ignored by the environment; or (35) 1gnore the request, which
implies that either the request 1s i dempotent and was previ-
ously queued, or that the request has no significant side-
elfects on the component. Furthermore, to conceal failures, 1t
must be possible to either drop or replay requests to the
component without impacting correctness. Otherwise, the
environment must be noftified of requests that were 1n
progress at the time of failure, since they may be completed
betore the failure was detected.

To recover after a failure, the shadow driver preferably
replays a subset of the requests/responses from the environ-
ment mto the component. For this approach to be effective,
several properties must hold. First, the “useful” state of the
component, meaning the state that impacts how the compo-
nent processes requests, must be determined by communica-
tion with the environment and not with other agents (e.g., the
outside world 1n the case of drivers). Second, the state of a
driver must be determined by a small subset of the inputs to a
component and not by all inputs. For example, 1n the case of
device drivers, only configuration requests and connection
operations must be replayed.

Another extensible systems where these properties hold
are media players with plug-in decoders. The state of these
decoders 1s based on the past few packets, and the configura-
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tion state at the beginning of a media stream. It 1s possible to
drop a few samples or frames without significant impact on
application correctness. Thus, 1t will be apparent that the
concept of a shadow driver 1s applicable to a varniety of dii-
ferent types of extensible systems and 1s not limited to an
operating system environment.

One exemplary aspect of this approach 1s directed to a
method for recovering from a failure of a component execut-
ing on a computing device. The method includes the step of
monitoring communications between the component and an
extensible system on the computing device. Data for the
component that were derived from the communications are
stored and are mdicative of a state of device driver before it
falled. Any failure of the component 1s detected, and 1n
response, 1teraction of the component with the extensible
system 1s temporarily interrupted. The component 1s then
re-initialized using the data that were stored, so that the com-
ponent 1s restored to 1ts prior state and full functionality. The
component 1s enabled to again interact with the extensible
system.

Another aspect of the present approach 1s directed to a
system that 1s able to recover from a failure of a device driver.
The system includes a memory 1n which machine instructions
are stored. The machine mstructions are used to implement an
operating system kernel, a device driver, and a shadow driver.
Also 1ncluded 1n the system 1s a processor coupled 1n com-
munication with the memory. The processor runs the operat-
ing system kernel, the device driver, and the shadow driver, by
executing the machine instructions provided for each and
employs the shadow driver for monitoring communications
between the device driver and the operating system kernel, to
determine a state of the device driver. The state of the device
driver 1s stored 1n the memory. The shadow driver also deter-
mines when a failure of the device driver has occurred, and 1in
response to detecting such a failure, temporarily interrupts
communications between the device driver and the OS kernel
and successively unloads the device driver, reloads the device
driver, and re-initializes the device driver to the state that was
stored 1n the memory. Communications between the device
driver that has been re-initialized and the OS kernel are then

restored by the shadow drniver, so that the device driver 1s
recovered from the failure.

Shadow drivers were iitially implemented 1n the Linux
OS and were tested and measured with a dozen Linux device
drivers. The results demonstrate that shadow drivers: (1) suc-
cessiully mask device drniver failures from applications; (2)
impose minimal performance overhead; (3) require no
changes to existing applications and device drivers; and, (4)
can be implemented using relatively little code.

This Summary has been provided to introduce a few con-
cepts 1n a simplified form that are further described 1n detail
below 1n the Description. However, this Summary 1s not
intended to 1dentily key or essential features of the claimed
subject matter, nor 1s 1t intended to be used as an aid 1n
determining the scope of the claimed subject matter.

DRAWINGS

Various aspects and attendant advantages of one or more
exemplary embodiments and modifications thereto will
become more readily appreciated as the same becomes better
understood by reference to the following detailed description,
when taken 1n conjunction with the accompanying drawings,
wherein:
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FIG. 1 1s a functional block diagram of a device driver for
a sound card that exports services defined by the device’s
class interface and imports services from an OS kernel 1nter-
face;

FI1G. 2 15 a functional block diagram illustrating a shadow
driver operating 1n passive mode, where taps are inserted
between the OS kernel and the sound device driver to ensure
that all communication between the two 1s passively moni-
tored by the shadow driver;

FIG. 3 1s a functional block diagram of a shadow driver
operating 1n active mode, indicating that the taps “shut down”
communication between the OS kernel and the failed device
driver and istead dispatch all necessary communication
directly to the shadow driver;

FIG. 4 1s a functional block diagram of the OS kernel with
several device drivers and the device driver recovery sub-
system, wherein the new code components consist of the
shadow manager and a set of shadow drivers, built on top of an
carlier device driver fault 1solation system (Nooks™);

FIG. 5 1s a graph comparing application performance, rela-
tive to Linux-Native, for three configurations;

FIG. 6 1s a graph showing absolute CPU utilization by an
application for the three configurations of FIG. 5;

FI1G. 7 1s a flow chart showing the logical steps employed
by the present approach 1n handling requests from the OS
kernel;

FI1G. 8 1s a flow chart showing the logical steps employed
by the present approach in handling the recovery from a
device driver fault; and

FIG. 9 1s a functional block diagram of an exemplary
computing device that 1s useful for employing the present
approach for recovering device drivers.

DESCRIPTION

Figures and Disclosed Embodiments are not
Limiting

Exemplary embodiments are illustrated in referenced Fig-
ures of the drawings. It 1s intended that the embodiments and
Figures disclosed herein are to be considered illustrative
rather than restrictive.

Three Shadow Drivers: Principles and Architecture

Shadow drivers are OS kernel components that transpar-
ently assume the role of device drivers when the device driv-
ers are unavailable, but not the full functionality. The shadow
drivers thus hide failures of the device drivers that they are
shadowing from the OS and from any applications that are
using the device drivers, and facilitate restarting the device
drivers to again become functional. The design for shadow
drivers 1n the present ivention reflects four principles:

1. Device driver failure should be transparent to the OS and
hence, to applications. The notion here 1s simple—it the
OS 1s unaware that a device driver has failed, 1t will
shield applications from the failure.

2. Recovery logic should be centralized 1n a single sub-
system. Some OS components must be aware of failures
in order to trigger and service recovery. However, 1t 1s
preferable to avoid spreading recovery knowledge
through a large number of existing components.

3. Device drniver recovery logic should be generic. It would
be 1mpractical to expect programmers to write a new
recovery module for each of the tens of thousands of
existing device drivers. Therefore, a single shadow
driver must be able to handle recovery for many device
drivers, e.g., for any device driver that 1s a member of a
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6

class of device driver for which the shadow driver is
designed to provide its “shadowing” functionality.

4. Recovery services should have low overhead when not
needed. The recovery system that employs shadow driv-
ers should impose relatively little overhead for the com-
mon case (viz., when device drivers are operating nor-
mally).

Overall, the design principles employed in the present
approach are intended to minimize the effort required to build
and mtegrate shadow drivers while maximizing their leverage
and efficiency 1n existing commodity OSs.

A shadow driver 1s a recovery agent for an extensible
system. An extensible system includes an environment and a
set of components. The environment defines a set of inter-
faces that 1t uses to invoke or call components.

A shadow driver performs at least two important tasks,
including concealing the failure of a component from the
environment, and restoring the component to a functioning
state after failure. The exemplary shadow driver implemen-
tation discussed below 1s based solely on the interface to
specific components and not to the implementation of those
components.

To conceal failures, a shadow driver answers requests on
behalf of a component that 1t 1s shadowing. For this function
to be successiul, a possible response to all requests mto a
component will preferably be one of the following;:

replay the response to a similar previous request;

respond that the component 1s currently busy;

block the caller until recovery of the component 1s com-
pleted;

queue the request so that 1t can be processed later, which
implies that the request 1s guaranteed to succeed or that
the failure of the request can be 1gnored by the environ-
ment; or

ignore the request, which implies that either the request 1s
idempotent and was previously queued, or that the
request has no significant side-etfiects on the component.

Furthermore, to conceal failures, 1t must be possible to
either drop or replay requests to the component without
adversely impacting continued functionality of the environ-
ment. Otherwise, the environment must be notified of
requests that were 1n progress at the time of failure, since they
may have been completed before the failure was detected.

To recover after a failure, the shadow driver replays a
subset of the requests/responses from the environment into
the component. For this approach to be effective, the “usetul”™
state of the component (meaming the state that impacts how
the component processes requests) must be determined by
communication with the environment and not with other
agents (e.g., the outside world 1n the case of drivers). Also, the
state of a driver must be determined by a small subset of the
inputs to a component, and not by all inputs. Otherwise, the
tracking of state implemented by shadow drivers would func-
tion no differently than existing logging techniques. For
example, in the case of device drivers, only configuration
requests and connection operations must be replayed into the
device driver to restore 1ts state before a failure of the device
driver occurred.

Another exemplary type of extensible system where the
preceding properties are also applicable for implementing
shadow drivers 1s a media player with plug-in decoders. The
state of these decoders 1s based on the past few packets
processed, and the configuration state at the beginning of a
media stream. For this type of extensible system, 1t 1s possible
to drop a few samples or frames without significant adverse
impact on the perceived application functionality.
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Exemplary System Configuration Using Device Drivers

A device driver 1s a specific type of OS kernel-mode soft-
ware component that provides the interface between the OS
and a hardware device. The device driver converts requests
from the OS kernel into requests to the hardware. The OS
kernel calls into a network device driver to send a packet; in
response, the device driver converts the request into a
sequence ol I/O nstructions that direct the device to send the
packet. FIG. 1 shows a block diagram 10 illustrating the
standard structure of an exemplary device driver. As the Fig-
ure shows for this example, a device driver relies on two
interfaces—a class interface 16 that the device driver exports
to an OS kernel 12, and an OS kernel interface 14 that the
device driver imports from the OS. For the example 1llus-
trated, a sound card device driver 18 1s shown, for use with a
sound card 20. Specifically, the sound card device driver
serves as an mterface between sound card 20 and the OS.

It 1s assumed that device driver failures are transient, 1.e.,
most of the time, a device driver operates without failure, but
occasionally, a device driver fails. For chronically failing
device drivers, 1t 1s not clear that any automatic recovery
mechanism would be suifficient to address the chronic fail-
ures. It1s further assumed that device drivers are fail-stop, 1.e.,
the device driver stops or 1s stopped from executing before the
cifects of the failure can be perceived by other OS kernel
modules. As an example, a hard disk device driver that
attempts to store beyond the end of a memory bufler must be
stopped at the offending write to avoid overwriting memory
used for other purposes.

There are several techniques for ensuring that device driv-
ers execute 1n a fail-stop fashion. An embodiment of the
present 1nvention relies on the services developed for
Nooks™, an earlier OS kernel reliability subsystem that oper-
ates each device driver within 1ts own 1n-OS kernel protection
domain. When a fault occurs 1n a device driver, Nooks™ stops
execution within the device driver’s protection domain. To
recover, Nooks™ deallocates all of the device driver’s OS
kernel resources and unloads, reloads, and restarts the failed
device driver. However, 1n the present approach, shadow driv-
ers replace Nooks’ recovery process and enable a much more
robust technique for handling device driver failure without

crashing applications that may use the device driver, or the
OS.

In practice, every device driver 1s a member of a class,
which 1s defined by 1ts interface. For example, all network
device drivers obey the same device driver-OS kernel inter-
face for the class of network device drivers, and all sound card
device drivers obey the same device driver-OS kernel inter-
tace for the class of sound card device drivers. This class
orientation simplifies the introduction of new device drivers
into the OS, since no OS changes are required to accommo-
date them.

Shadow Drivers

A shadow driver 1s a “class device driver,” 1n that 1t pro-
vides transparent recovery for all of the device drivers within
a single class of related devices. As a class device driver, the
shadow driver 1s aware of the interface to the device drivers 1t
serves, but not of the details for their implementation. Thas
critical simplifying principle has two key implications. First,
implementing a shadow driver does not require a detailed
understanding of the mternals of each of the device drivers
with which it 1s used. Rather, it requires only an understand-
ing of those device drivers’ mteractions with the OS kernel.
Second, 1f a new device driver 1s loaded into the OS kernel, no
new shadow driver 1s required so long as a shadow driver for
that class already 1s mnstalled on the system. Thus, a shadow
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driver designed for use with a specific class of device drivers
should be usable with any device driver in that class. For
example, 11 a new network interface card and device driver are
inserted into a PC, the existing network shadow driver for an
carlier-used network card can provide “shadow driver” func-
tionality for the new device driver supporting the new net-
work card, without change. Similarly, device drivers can be
patched or updated without requiring changes to the shadow
drivers for each corresponding class of device drivers.
Shadow driver updating 1s required only to respond to a
change in the device driver-OS kernel programming inter-
face, 1.e., to respond to a change that affects the entire class of
device drivers supported by a specific shadow driver.

A shadow driver executes 1n two modes, including a pas-
stve mode and an active mode. The passive mode, used during
normal (non-faulting) operation of the device driver, eaves-
drops on all communication between the OS kernel and the
device driver for which 1t provides shadow driver functional-
ity. This communication monitoring 1s achieved via repli-
cated procedure calls, which are described below. An OS
kernel call to a device driver function causes an automatic,
identical call to a corresponding shadow driver function.
Similarly, a device driver call to an OS kernel function causes
an automatic, identical call to a corresponding shadow driver
function. These passive-mode calls are invisible to the device
driver and to the OS kernel. They are not intended to provide
any service to either entity and exist only to permit state
tracking by the shadow driver.

The shadow driver 1s switched to its active mode to facili-
tate recovery of a device driver from a failure, thereby per-
forming two functions. First, 1n the active mode, the shadow
driver replaces (but not 1n regard to the functionality of the
falled device driver) and “impersonates” the failed device
driver, intercepting and responding to calls from the OS ker-
nel, which lets the OS kernel and higher-level applications
continue operating in as normal a fashion as possible. Second,
the shadow driver impersonates the OS kernel, intercepting
and responding to calls from the restarted device driver. This
approach hides recovery details from the device dniver, 1.e.,
the device driver 1s unaware that 1t 1s being restarted by a
shadow driver after a failure, and from the OS kernel. Once
the device driver 1s restarted, the active-mode shadow driver
reintegrates the device driver into the system. For example, 1t
restarts any outstanding requests that may have been queued
by the shadow driver during failure and recovery of the device
driver. It must be emphasized that the shadow driver does not
act as a replacement for the device driver for which 1t 1s
intended to provide shadow driver functionality. Instead, 1t 1s
limited to performing only the functions required to restart
the device driver that has failed in a manner that hides the
failure from the OS kernel and from any applications that may
be using the device driver.

Dynamic Call Binding

A shadow dniver receives two-way communication
between a functioming device driver and the OS kernel and
impersonates one component to the other during failure and
recovery. To support these functions, a mechanism called a
“tap” 1s employed. Conceptually, a tap 1s a T-junction that
“wires” shadow drivers into the communication channels
used between device drivers and the OS kernel. The shadow
driver monitors every call directed into and out of the device
driver and transparently mirrors or redirects the calls, as
approprate to hide the failure of the device driver.

A tap operates in one of two modes, corresponding to the
state of the shadow driver attached to the tap. During passive-
mode operation, the tap: (1) mvokes the original device
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driver; and then, (2) mvokes the shadow driver with the
parameters and results of the call, 1.e., the data indicative of
state for the device driver. This operation 1s shown 1n FIG. 2,
in connection with block diagram 10 for the example of FIG.
1. In FIG. 2, a tap 22 monitors the communication channel
from OS kernel interface 14 to sound device driver class
interface 16, providing a copy of the communications con-
veyed thereon to a sound device driver chassis interface 28 of
a shadow driver for sound 26. Similarly, a tap 24 monaitors the
communication channel from sound device driver class inter-
face 16 to OS kernel interface 14, providing a copy of the
communications, to an OS kernel interface 30 of the shadow
driver for sound.

Following a failure of the device driver, these taps switch to
active mode, as shown 1n FIG. 3. In this mode, taps 22 and 24:
(1) shut off all normal communication between the device
driver and the OS kernel; and, (2) vector all appropriate invo-
cations to their corresponding interfaces 28 and 30 1n the
shadow driver. In active mode, both the OS kernel and the
recovering device driver interact only with the shadow driver,
but not directly with each other. Following recovery of the
device driver from a failure, the tap 1s “turned back” to restore

communication to passive-mode operation, as shown 1n FIG.
1.

Most OSs implement communication with procedure calls.
Taps depend on the ability to dynamically dispatch procedure
calls to the appropriate modules in both the device driver and
the OS. Consequently, all communication into and out of a
device driver being shadowed must occur through a proce-
dure call. Fortunately, most device drivers operate this way.
However, some do not, and therefore, cannot be shadowed
using taps. For example, video architectures often split the
device driver into OS kernel-mode and user-mode compo-
nents, separated by a proprietary interface.

It should be noted that while an 1nitial implementation of
the approach discussed herein was implemented using the
Linux™ OS, the present approach can also be employed with
almost any other commercial OS. It 1s contemplated that
shadow drivers can readily be provided for any of Microsoit

Corporation’s Windows™ OSs, or Apple Corporation’s
MaclIntosh™ OSs, as well as for other OSs.

Shadow Manager

FI1G. 4 1s a block diagram 40 that 1llustrates a device driver
reliability subsystem 44 used 1in connection with a Linux OS
kernel 42. Recovery 1s supervised by a shadow manager 46,
which 1s a single OS kernel agent that interfaces with and
controls all shadow drivers being used on the OS. The shadow
manager instantiates new shadow drivers, such as shadow
drivers 48 and injects taps into the call interfaces between
their corresponding device drivers 50, and the Linux OS
kernel. Device drivers 50 are provided for each device 52 used
by the OS. The shadow manager also registers with the OS’s
reliability subsystem (for example, Nooks™) to recerve fail-
ure notifications.

When a device driver fails, the shadow manager transitions
taps and shadow drivers to active mode. In this mode, requests
for the device driver’s services are sent to an approprately
prepared shadow driver. The shadow manager then directs the
shadow driver through the recovery sequence to restore the
device driver. When recovery ends, the shadow manager
switches the shadow driver and taps back to passive-mode
operation so the device driver can resume service.
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Shadow Driver Implementation

The shadow driver architecture strives to simplity the cod-
ing and integration of shadow drivers into existing systems.
Each shadow driver 1s a single module written with explicit
knowledge of the behavior (interface) of a class of device
drivers, enabling 1t to conceal the failure of a device driver and
correctly restart the device driver after a fault. Shadow drivers
normally operate 1n passive-mode, observing device driver/
OS kernel communication. They switch to active mode when
tailures occur, substituting for the failed device driver and
managing 1ts recovery. The following section focuses on the
details of shadow driver implementation.

In an 1mitial test of the present invention, shadow drivers
were implemented for three classes of device drivers 1n the
Linux OS, mcluding: sound card device drivers, network
interface device drivers, and IDE disk and CD/ROM device
drivers. This section describes the shadow driver implemen-
tation, starting with a review of the general infrastructure for
shadow drivers, then describing passive mode operation, and
finally, focusing on the recovery process for a failed device
driver.

General Infrastructure

All shadow drivers share a generic service infrastructure
that provides three functions. First 1s an 1solation service,
which prevents device driver errors from corrupting the OS
kernel, thereby ensuring fail-stop device driver behavior. Sec-
ond 1s a transparent redirection mechamsm (“taps™), which
can change the destination of OS kernel-device driver
requests during and after recovery. Third 1s an object tracking
service, which maintains an object table describing OS kernel
resources created or held by the device driver.

The shadow driver implementation 1s built on top of a
Linux™/Nooks™ device driver isolation subsystem 54,
which provides support for the service infrastructure.
Nooks™ isolates device drivers within separate OS kernel
protection domains 56. The domains trap device driver faults
while protecting the integrity of OS kernel memory. A wrap-
per mechanism interposes proxy procedures 58 on all com-
munication, in both directions, between a device driver and
the OS kernel. The tap code 1s inserted mto these Nooks™
proxies to implement communication mirroring during pas-
stve-mode observation and redirection during active-mode
recovery. Finally, object-tracking code 1n proxies 58 follows
device driver memory allocation and deallocation requests
and records object pointers passed into the device driver from
the OS kernel. Based on this information, the proxies main-
tain an object table 60 describing all OS kernel objects held by
a device driver. During recovery, a shadow driver uses object
table 60 to perform “garbage collection” of OS kernel
resources that are no longer needed.

This exemplary implementation also adds a shadow man-
ager to Linux™., As described above, the shadow manager has
two responsibilities. First, it receives notification of device
driver errors and directs the recovery, as discussed 1n detail
below. Second, the shadow manager handles the 1nitial instal-
lation of shadow drivers. In Linux™, the module loader con-
sults a configuration file to learn the device driver’s type when
it 1s loaded and passes this information to the OS kemel. The
Linux™ OS kernel was modified to pass this information to
the shadow manager. On receiving this information, the
shadow manager selects the appropriate shadow driver for the
device driver, loads 1t into the system, and hooks 1t into the
device driver by inserting taps into the OS kernel-interface
proxies for the device driver.

Because a single shadow driver services a class of device
drivers, there may be several instances of a shadow driver
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executing at any time. When a new device driver 1s loaded, for
example, to service any application 62 that 1s being executed
by Linux™ OS kernel 42, the shadow manager creates a new
shadow driver instance for that device driver. The new
instance shares the same code with all other instances of that
shadow driver class. The reliability subsystem contains the
shadow manager and a set of shadow drivers, each of which
can handle one or more device drivers. The shadow manager
and shadow drivers use services provided by the Nooks™
device driver 1solation system.

Passive-Mode Observation

Shadow drivers most often execute 1n passive mode. In this
mode, the shadow driver tracks the state of a device driver and
device drniver-related OS kernel data structures so it can pro-
vide transparent recovery and reintegration in case of failure.
Tracking 1s enabled by taps on all OS kernel/device driver
communication, which are provided by the shadowing infra-
structure. The tap merely delivers information to the shadow
driver. The shadow driver itsellf must determine what device
driver state, 1f any, has changed, based on a tapped commu-
nication.

The passive-mode shadow driver tracks three types of
information. First, it tracks requests made to the device driver.
Request tracking depends on the device driver and its OS
kernel interface. For connection-oriented device drivers, the
shadow driver records the state of each active connection,
such as offset or positioning information, and any configura-
tion passed through device IOCTL (Input/Output Control)
commands. For request-oriented device drivers, the shadow
driver maintains a log of pending commands and arguments.
An entry remains in the log until a tapped call or 1ts return
indicate that the request has been handled.

Second, the shadow driver records any state that the OS
kernel passes into the device driver, such as configuration
parameters or OS kernel objects. During recovery, the
shadow driver uses this information to act 1n the device driv-
er’s place, e.g., by returning the same imnformation that was
passed 1n previously and stored as state data. It also uses this
information to reconfigure the device driver to 1ts pre-failure
state when restarting 1t. For example, the shadow driver sound
device driver keeps a log of IOCTL calls (command numbers
and arguments). This log makes 1t possible for the shadow
driver for the exemplary sound device driver to: (1) act as the
device driver by remembering the sound formats it supports;
and, (2)recover the device driver by resetting properties (such
as the volume and sound format 1n use, 1 this example).

Third, the shadow driver tracks all OS kernel objects that
the device driver allocated or received from the OS kernel.
These objects would otherwise be lost, causing a memory
leak when the device driver fails. For example, the shadow
driver must record all timer callbacks registered and all hard-
ware resources owned, such as iterrupt lines and I/O
memory regions.

In many cases, passive-mode calls require the shadow
driver to perform no work. Most calls are null procedures;
thus, the shadow driver returns immediately to the caller. For
example, the dominant calls to a sound-card device driver are
read and write, which record or play sound. In passive mode,
the shadow driver implements these calls as no-ops, since
there 1s no need to copy the real-time sound data flowing
through the device driver. For an IOCTL call, however, the
sound-card shadow driver logs the command and data for the
connection as part of the state of the device driver. Similarly,
the shadow driver for an IDE disk does little or no work in
passive mode, since the OS kernel and disk device driver
handle all of the I/O and request queuing. Finally, for the
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network shadow driver, much of the work 1s already per-
formed by the Nooks™ object-tracking system, which keeps
references to outstanding packets.

The Active-Mode Recovery Process

A device driver typically fails by generating an illegal
memory reference or passing an ivalid parameter across an
OS kernel interface. An OS kemel-level failure detector
notices the failure and triggers the shadow manager, which
begins to restore the device driver to its pre-failed state. The
shadow manager locates the responsible shadow driver and
communicates with 1t through a special interface. The three
steps of recovery, described below, include: (1) unloading the
falled device driver, (2) reloading and re-imitializing the
device driver from a clean state, and (3) transferring relevant
device driver state into the new device driver.

Unloading the Failed Device Driver

The shadow manager begins recovery by contacting the
shadow driver and imnforming 1t that a failure of the device
driver being shadowed has occurred. It also switches the taps,
1solating the OS kernel and device driver from one another’s
subsequent activity during recovery. After this point in time,
the tap redirects all OS kernel requests to the shadow man-
ager, until recovery of the device driver 1s complete.

Informed of the failure, the shadow driver first disables
execution of the failed device driver. It also disables the
hardware device for which the device driver provides an
interface function, to prevent it from interfering with the OS
while not under device driver control. For example, the
shadow driver disables the device driver’s interrupt request
line. Otherwise, the associated hardware device may continu-
ously 1terrupt the OS kernel and prevent recovery. On some
hardware platiorms, the shadow driver would remove
memory mappings used by the device to prevent direct
memory accesses (DMAs) mto OS kernel memory. The

shadow driver then unloads the device driver, removing it
from the OS kernel.

To prepare for restarting the device driver, the shadow
driver next deallocates selected device driver-held OS kernel
resources. The resources released are typically transient
objects, such as dynamic memory that the device driver allo-
cated to store its own state, or device driver wait queues for
blocking callers. Because the OS kernel does not associate
these objects with the device driver and 1ts services, freeing
them 1s invisible to the OS kernel and does not adversely
impact the OS kernel operation. The shadow driver retains
objects that the OS kernel uses to explicitly request device
driver services, such as the device driver object or connection
objects. This approach ensures that the OS kernel does not see
the device driver “disappear” as the shadow driver switches to
passive mode and the device driver 1s restarted.

Reloading and Re-Initializing the Device Driver

The shadow driver next “reboots” the device driver from a
clean state. Normally, restarting a device driver requires
reloading the device driver from disk. However, 1t cannot be
assumed that the disk 1s functional during recovery. For this
reason, when creating a new shadow driver instance, the
shadow manager caches in the mnstance a copy of the device
driver’s 1nitial, clean data section. These data sections tend to
be quite small. The device driver’s code 1s OS kernel-read-
only, so 1t 1s not cached and can be reused from memory.

The shadow driver restarts the device driver by mitializing
the device driver’s state and then replicating the OS kernel’s
device driver initialization sequence. For some device driver
classes, such as sound card device drivers, this process may
consist of a single call into the device driver’s mitialization
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routine. Other device drivers, such as network interface
device drivers, require additional calls to connect the device
driver into the network stack.

The shadow driver next reattaches the device driver to its
pre-failure OS kernel resources. During device driver reboot,
the device driver makes a number of calls 1nto the OS kernel
to discover information about 1tself and to link 1tself into the
OS kernel. For example, when a device driver restarts, it calls
the OS kernel to register 1tself as a device driver and to request
hardware and OS kernel resources. The taps redirect these
calls to the shadow driver, which reconnects the device driver
to existing OS kernel data structures. Thus, when the device
driver attempts to register with the OS kernel, the shadow
driver intercepts the call and reuses the existing device driver
object, avoiding the allocation of a new one. For requests that
generate callbacks, such as a request to register the device
driver with the PCI subsystem, the shadow driver emulates
the OS kernel, making the same callbacks to the device driver
with the same parameters. In essence, the shadow driver
iitializes the recovering device driver by calling and
responding as the OS kernel would when the device driver
restarts. The shadow driver 1s thus not evident to the device
driver when the device driver 1s being restarted.

As the device driver initializes, 1t also acquires hardware
resources. If these resources were previously disabled at the
first step of recovery, the shadow driver re-enables them, e.g.,
by re-enabling interrupt handling for the device’s interrupt
line.

Transierring State to the New Device Driver

The final recovery step restores the device driver to the
state that existed at the fault, permitting it to respond to
requests as 1 1t had never failed. Thus, any properties that
either the OS kernel or an application had downloaded to the
device driver must be restored. Furthermore, any requests that
were 1n progress or connections that were open at the time of
tailure must be restarted.

The details of this final state transfer depend on the device
driver class. Some device drivers are connection oriented. For
these, the remaining state consists of the state of the connec-
tions belfore the failure. The shadow driver re-opens the con-
nections and resets the state of each active connection with
IOCTL calls. Other device drivers are request oriented. For
these, the shadow driver resets the state of the device driver
(again with IOCTL calls) and then resubmits to the device
driver any requests that were outstanding when the device
driver crashed.

As an example, for a failed sound card device driver, the
shadow driver scans the state of the device driver in memory,
specifically scanning the list of open connections and then
calls the open function in the device driver, to reopen each
connection in the list. The shadow driver then walks 1ts log of
IOCTL commands (also part of the state data) and replays all
commands that set device driver properties.

For some device driver classes, the shadow driver cannot
completely transter 1ts state into the device driver. However, 1t
may be possible to compensate 1n other (albeit less elegant)
ways. For example, a sound device driver that 1s recording
sound 1nput stores the number of bytes 1t has recorded since
the last reset. After recovery, the sound device driver 1nitial-
1zes this counter to zero. Because no interface call 1s provided
to change the counter value, the shadow driver must insert its
“true” value 1nto the return argument list whenever the appli-
cation reads the counter to maintain the illusion that the
device driver has not crashed. The shadow driver can do this
because itrecerves control (on its mirrored call) before the OS
kernel returns to user space with the restarted device driver.

10

15

20

25

30

35

40

45

50

55

60

65

14

After resetting device driver and connection state, the
shadow driver must handle requests that were either outstand-
ing when the device driver crashed or arrived while the device
driver was recovering. Unfortunately, shadow drivers cannot
guarantee exactly one time behavior for device driver
requests and must rely on devices and higher levels of soft-
ware to absorb duplicate requests. For example, 11 a device
driver crashes after submitting a request to a device but before
notifying the OS kernel that the request has completed, the
shadow driver cannot know whether the request was actually
processed by the OS kernel. During recovery, the shadow
driver has two choices—restart in-progress requests and risk
duplication, or cancel the request and risk lost data. For some
device driver classes, such as disks or networks, duplication 1s
acceptable. However, other device driver classes may not
tolerate duplicates. In these cases, the shadow driver instead
cancels outstanding requests.

After this final step, the device driver has been re-initial-
1zed, linked into the OS kemnel, reloaded with 1ts pre-tailure
state, and 1s ready to process commands. At this point, the
shadow driver notifies the shadow manager, which switches
the taps to restore OS kernel-device driver communication
and reestablish passive-mode monitoring.

Active Proxying of OS Kernel Requests

While a shadow driver 1s restoring a failed device driver, it
1s also acting 1n place of the device driver (but without 1ts tull
functionality) to conceal the failure and the recovery of the
device driver from applications and the OS kernel. For each
OS kernel request during this period, the shadow driver’s
actions depend on the device driver class and the semantics of
the request. In general, the shadow driver will take one of five
actions: (1) respond with information that the shadow driver
has recorded; (2) silently drop the request; (3) queue the
request for later processing; (4) block the request until the
device driver recovers; or, (35) report that the device driver 1s
busy and the OS kernel or application should try again later.

Writing a shadow driver that successtully proxies for a
falled device driver requires knowledge of the OS kernel-
device driver interface, interactions, and requirements. For
example, the OS kernel may require that some device driver
functions are never blocked, while others are always blocked
during a device driver failure. Or, some OS kernel requests are
idempotent (e.g., many IOCTL commands), permitting
duplicate requests to be dropped, while others return different
results on every call (e.g., many read requests). The shadow
driver for a device driver class uses these requirements to
select the response strategy.

Some device driver interfaces support a notion of “busy,”
which enables the shadow driver to simply instruct the OS
kernel to block calls. For example, network devices 1in Linux
may reject requests and turn themselves off if their queues are
tull. The OS kernel then refrains from sending packets until
the device driver turns itself back on. In this implementation
of the present mvention, the shadow driver network device
driver exploits this behavior during recovery by returning a
“busy” error on send packet calls. IDE device drivers support
a similar notion when request queues {ill up. Sound device
drivers can report that their buffers are temporarily full.

The shadow driver sound-card device driver uses a mix of
all five strategies for emulating different functions 1n its ser-
vice 1nterface. The shadow driver blocks OS kemnel read and
write requests, which play or record sound samples, until the
tailed device driver recovers. The shadow driver processes
IOCTL calls directly, erther by responding with information 1t
captured or by logging the request to be processed later. For
IOCTL commands that are idempotent, the shadow driver
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silently drops duplicate requests. Finally, when applications
query for butfer space, the shadow driver responds that buil-
ers are full. As a result, applications block themselves rather
than requiring that the blocking occur in the shadow driver.

Flowcharts Showing Logical Steps for Implementing
Approach

A flowchart 200 1n FIG. 7 illustrates the logical steps
implemented by the present approach in handling requests
from the OS kernel, while a flowchart 250 1n FIG. 8 illustrates
the logical steps implemented 1n handling recovery from a
device driver fault. These steps have been generally described
above and are only briefly discussed 1n this section.

Referring to FI1G. 7, a step 202 indicates that a request from
the OS kernel 1s detected on the communication between the
OS kernel interface and the device driver being shadowed. A
decision step 204 determines 11 the shadow driver 1s operating
1n 1ts active mode to recover from a device driver fault. If not,
a step 206 calls the device driver to communicate the request
from the OS kernel. A step 208 then calls the shadow driver to
copy the request to it. In response, the shadow driver stores
the request as part of the state of the device driver, 1n a step
210. The logic then returns to the OS kernel 1n a step 212.

If the shadow driver 1s operating 1n 1ts active mode because
the device driver has failed, a step 214 calls the shadow driver
so that 1t can deal with the request from the OS kemnel. A
decision step 216 then determines 1f the request should be
handled by blocking the process currently ongoing. If so, a
step 218 provides for blocking the process. Otherwise, a
decision step 220 determines 11 the request should be handled
by simply dropping the request. For some devices and pro-
cesses, 1t will not be possible to cache the request until the
driver 1s restarted, so dropping the request will be preferable,
as 1indicated in step 222. Alternatively, a decision step 224
determines if the request should be placed 1n a queue, to await
restart ol the device driver. If so, a step 226 queues the request.
Otherwise, a decision step 228 determines 11 the request 1s to
be handled by answering it, for example, with data included in
the stored state. I1 so, the request 1s answered 1n a step 230.
Otherwise, a step 232 simply fails the request, which will
likely cause the OS kernel to repeat the request, so that after
the device driver 1s restarted by the shadow driver, the
repeated request will be handled by the restarted device
driver. Thereafter, or after any of steps 218,222,226, and 230,
the logic proceeds to step 212, which provides for returning to
the OS kernel.

With reference to FIG. 8, a device driver failure 1s detected
by either a hardware trap, 1n a step 252, or a solftware check,
in a step 234, or an external notification that the device driver
has failed, in a step 256. In response to any of these mecha-
nisms used for detecting a failed device driver, a step 2358
provides for switching the taps from the passive mode, to the
active mode, corresponding to the modes of the shadow
driver. Direct communication between the device driver and
the OS kernel interface 1s precluded when the taps and the
shadow driver are 1n the active mode, and all communication
1s between the OS kernel interface and the corresponding
interface of the shadow driver, and between the device driver
class interface and the corresponding interface of the shadow
driver (as shown in FIG. 3). Then, a step 260 provides for
disabling the device or hardware that the device driver serves.
A decision step 262 determines 11 any threads were active in
the device driver, and if so, a step 264 signals each such thread
to terminate. A step 266 releases unneeded OS kernel objects,
for example, to Iree resources that may have been improperly
employed by the device driver as it was beginning to fail. A
step 268 resets the extension data for the device driver, and a
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step 270 restarts the extension. In a step 272, the shadow
driver reconnects the extension callbacks. A step 274 trans-
ters the prior state that was previously saved, to the device
driver, so that 1t can be restarted without appearing to have
failed. A step 276 enables the hardware with which the device
driver 1s associated. A decision step 278 determines 1f any
requests were blocked while the device driver was failed and
being restarted, and if so, a step 280 retries the requests. After
step 280 or 1f no requests were blocked, a step 282 restores the
taps to the passive state (as shown in FIG. 1). The shadow
driver agent 1s then terminated (i.e., switched to passive
mode) 1n a step 284, since the device driver has now been
restarted and should be functioning.

[.1mitations

Several limitations of the shadow driver architecture and
implementation have been described above, but these are
aggregated and summarized 1n the following discussion. First
and foremost, shadow drivers rely on dynamic unloading and
reloading of device drivers. If a device driver cannot be
reloaded dynamically, or will not re-initialize properly, then a
shadow driver cannot recover the device driver following a
failure. Second, shadow drivers rely on taps to mirror and
redirect all communication between the device driver and OS
kernel. If device driver-OS kernel communications take place
through a proprietary or ad hoc mterface (such as shared
memory), the shadow manager cannot automatically insert
taps. Further, a separate shadow driver would be required for
cach proprietary interface, which 1s likely impractical. Third,
shadow drivers assume that device driver failure does not
cause wrreversible side effects. If a corrupted device driver

stores persistent state (e.g., printing a bad check or writing
bad data on a disk or CD/ROM), the shadow driver will not be

able to correct that undesired action.

The effectiveness of shadow drivers 1s also limited by the
properties of the 1solation and failure-detection subsystem. IT
this layer cannot prevent OS kernel corruption, then shadow
drivers cannot fully recover the system to a desired state. In
addition, 1f the fault-1solation subsystem does not detect a
failure, then shadow drivers will not be properly invoked to
perform recovery and restart of the failed device driver.

Details of Exemplar Linux™ Shadow Driver Implementation

This section presents the details of the Linux™ shadow
driver implementation. The shadow driver concept 1s straight-
forward: passively observe normal operations, proxy during
failure, and reintegrate during recovery. Ultimately, the value
of shadow drivers depends on the degree to which they can be
implemented correctly, efliciently, and easily 1n an OS. The
following section evaluates some of these questions both
qualitatively and quantitatively.

Evaluation
Shadow drivers are evaluated according to three criteria:

1. Fault-Tolerance. Can applications that use a device
driver continue to run even aiter the device driver fails?
This criterion 1s the “litmus test” of the effectiveness and
benefit of the shadow driver concept.

2. Performance. What 1s the performance overhead of
shadow drivers during normal operation (i.e., in the
absence of failure)? This criterion 1s the dynamic cost of
the mechanism.

3. Code size. How much code is required for shadow driv-
ers and their supporting intfrastructure? This criterion 1s
the engineering cost of building and integrating shadow
drivers 1nto an existing system.

Based on experiments of applications executing with fail-

ing device drivers, results show that shadow drivers: (1) mask
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device driver failures from applications; (2) impose relatively

little performance overhead; and, (3) can be implemented
with a modest amount of code.

TABL.

L]
[

Three classes of shadow drivers were implemented for the
Linux device drivers on which they were tested. Results

are discussed only for the device drivers identified by
bold font (i.e., e1000, emulOkl, & 1de-disk).

Class device driver Device

Network e1000 Intel Pro/1000 Gigabit Ethernet
pcnet32 AMD PCnet32 10/100 Ethernet
3¢c59x 3COM 3¢309b 10/100 Ethernet
¢100 Intel Pro/100 Ethernet
ep1c100 MC EtherPower 10/100 Ethernet

Sound emulOkl SoundBlaster Live! sound card
sb SoundBlaster 16 sound card
esl371 Ensoniq sound card
cs4232 Crystal sound card
1810 audio Intel 810 sound card

IDE ide-disk )E disk
1de-cd JE CD-ROM

The experiments were run on a 1.7 GHz Intel Pentium 4™
personal computer with 890 MB of RAM and a 41 GB, 7200

RPM IDE disk drive. Three Linux™ shadow drivers were
tested for three device driver classes: network 1nterface con-
troller, sound card, and IDE disk. To ensure that the generic
shadow drivers worked consistently across device driver
implementations, there were tested on twelve different
Linux™ device drivers, as shown 1n Table 1. To simplify this
evaluation, results are discussed for only one Linux™ device
driver 1n each class: €1000 (Gigabit Ethernet), emulOkl
(SoundBlaster sound card), and ide-disk (IDE disk drive).

Fault-Tolerance

The crucial question for shadow drivers 1s that of applica-
tion fault tolerance: can an application continue functioning,
during and after the failure of a device driver upon which 1t
relies? To answer this question, three OS configurations were
produced based on the Linux™ version 2.4.18 OS kernel:

1. Linux™-Native 1s the unmodified Linux™ OS kernel.

2. Linux™-Nooks™ 1s a version of Linux™-Native that
includes the Nooks™ fault-1solation system. When a
device driver fails, this system simply restarts the device
driver. It does not advance the device driver to its pre-
failed state or offer active shadowing during recovery.

3. Linux™-SD 1s a version of Linux™-Nooks™ that

includes the shadow driver infrastructure and the three
shadow drivers.

Ten applications were tested on these configurations. The
applications were chosen to exercise the three device driver
classes that the shadow drivers support. For each test, com-
mon bugs were simulated by 1njecting a software fault into a
device driver while an application using that device driver
was running. The behavior of the application was then
observed.
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The observed behavior of several applications following the failure
of the device drivers on which they rely. There are three behaviors:
a checkmark (p) indicates that the application continued to operate
normally; CRASH indicates that the application failed completely

(1.e., 1t terminated); MALFUNCTION indicates that while the application
continued to run, its behavior was abnormal.

Application Behavior

device Linux- Linux-
driver Application Activity Native  Nooks ™ Linux-SD
Sound mp3 player (zinf) CRASH MAL- p
(emulOkl playing 128 kb/s FUNCTION
device audio
driver) audio recorder CRASH MAL- p
(audacity) recording FUNCTION
from microphone
speech synthesizer CRASH p p
(festival) reading
a text file
strategy game CRASH CRASH P
(Battle of Wesnoth)
Network network file CRASH p p
(1000 transfer (scp)
device of a 100 MB file
driver) remote window CRASH p p
manager (vnc)
network analyzer CRASH MAL- p
(ethereal) FUNCTION
snifling packets
IDE compiler (make/gcc) CRASH CRASH p
(1de-disk compiling 788 C
device files
driver) encoder (LAME) CRASH CRASH p
converting 90 MB
file .wav to .mp3
database (mySQL) CRASH CRASH p

processing the
Wisconsin Benchmark

Table 2, above, shows the three application behaviors
observed. In the face of device driver failure, each application
either: continued to run normally (p); failed completely
(“CRASH”); or continued to run but behaved abnormally
(“MALFUNCTION™), typically requiring manual interven-
tion to reset or terminate the program. This table clearly
demonstrates that with shadow drivers (Linux™-SD), appli-
cations continue to run normally even as device drivers failed.
In contrast, all applications on Linux™-Native failed when
device drivers failed. Most test programs running on
Linux™-Nooks™ failed or demonstrated abnormal behavior
as well, despite the Nooks™ device driver 1solation system.

For Linux™-Native, the results were not surprising: all of
the tests except one caused Linux™-Native to crash. For mp3
player, the OS survived the device driver failure but termi-
nated the application. This difference results from the treat-
ment ol device driver faults in the Linux™ OS kernel.
Linux™ executes device driver code 1n etther process-mode,
when responding to an application’s system call request, or in
interrupt-mode, when responding to an interrupt. An 1nter-
rupt-mode failure always results 1n a system crash. In con-
trast, a process-mode failure causes the requesting applica-
tion process to fail (i.e., Linux™ kills the application). Other
OSs, such as Microsolit Corporation’s Windows XP™ OS,
are more conservative when encountering OS kernel-mode
errors and crash the OS after any device driver fault.

The comparison of Linux™-SD with Linux™-Nooks™ 1s
more instructive and shows the benefits of shadow drivers
relative to the protection offered by Nooks. Nooks™ 1solates
the OS kernel from device driver faults and reboots (unloads,
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reloads, and restarts ) the device driver. However, it lacks two
key features of shadow drivers: (1) 1t does not advance the
device driver to 1ts pre-fail state, and (2) 1t has no component

to “pinch hit” for the failed device driver during recovery. As

a result, Linux™-Nooks™ handles device driver failures by 5
returning an error to the application, leaving it to recover by
itself. Unifortunately, few applications are so robustly
designed.

Some applications on Linux™-Nooks™ survived the
device driver failure, although not without crippling effects. 10
For example, mp3 player and audio recorder continued run-
ning, but malfunctioned and lost their ability to produce or
consume sounds until the user manually reconfigured. Simi-
larly, network analyzer, which interfaces directly with the
network device driver, lost 1ts ability to receive packets once 15
the device driver was reloaded. Theretfore, packet sniffing had
to be manually restarted. Finally, strategy game became non-
responsive while waiting for a status message from a previous
incarnation of the device driver. Since this message would
never arrive, the process had to be killed manually. 20

Three applications continued to function properly after
device drniver failure on Linux™-Nooks™. For example,
speech synthesizer includes the code to reestablish 1ts context
within an unreliable sound card device driver. Two of the
network applications survived on Linux™-Nooks™ because 25
they accessed the network device driver through OS kernel
services (TCP/IP and sockets) that are themselves resilient to
device driver failures. As Table 2 shows, this resilience 1s
irrelevant for Linux™-Native, because the system or program
crashes. 30

The failure of the three disk-oriented applications under
Linux™-Nooks™ illustrates that device driver state can be
frustratingly pervasive. Following 1ts failure, the IDE device
driver, which had been unloaded from the OS kernel, was then
required to reload itself. The circularity could only be 35
resolved by a system reboot. While a second non-IDE disk
would mitigate this problem, few machines are configured
this way. Even fewer run with two disks on two different
controllers using independent device drivers.

In contrast, Linux-SD recovers transparently from disk 4V
device driver failures, because the IDE shadow driver
instance for the failing IDE device driver maintains a copy of
the device driver’s mnitial state, including its code and data.
The value of automatic state recovery thus becomes clear 1n
light of the different behaviors under the various configura- 4>
tions. In general, programs that directly depend on device
driver state but are unprepared to deal with its loss benefit the
most from shadow drivers. In contrast, those that do not
directly depend on device driver state benefit the least. Simi-
larly, those designed to recover from the loss of device driver >©
state also receive little benefit from shadow drivers.

Experience suggests that few applications are as fault-
tolerant as speech synthesizer. Were future applications to be
pushed 1n this direction, software manufacturers would either
need to develop custom recovery solutions on a per-applica-
tion basis or find a general solution that could protect any
application from the failure of an OS kernel device dniver.
Cost 1s a barrier to the first approach. Shadow drivers are a
path to the second.

55

60
Application Behavior During Recovery
Although shadow drnivers prevented application failure,
they are not “real” device drivers and do not provide complete
device services. As a result, a slight timing disruption was
often observed while the device driver recovered. At best, 65
output was queued 1n the shadow driver. At worst, input was
lost by the device. The length of the delay was primarily
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determined by the recovering device driver itself, which, on
(re)initialization, must first discover and then configure the
hardware.

Few device drivers implement fast reconfiguration, leading
to brietf recovery delays. For example, the temporary loss of
the e1000 network device driver prevented applications from
receiving packets for about five seconds. Programs using files
stored on the disk managed by the 1de-disk device dniver
stalled for about four seconds during recovery. In contrast, the
normally smooth sounds produced by the emulOkl device
driver were iterrupted by a pause of about one-tenth of a
second, which sounds like a slight click 1n the audio stream.

Of course, the significance of these delays depends on the
application. Streaming applications may become unaccept-
ably “qittery” during recovery. Those processing input data in
real-time might become lossy. Others may simply run a few
seconds longer 1n response to a disk that appears to be oper-
ating more sluggishly than usual. In any event, a short delay
during recovery 1s best considered 1n light of the non-shadow
driver-device driver alternative, 1.¢., application failure.

Performance

The second criterion evaluated 1s performance, 1.e., what 1s
the performance cost of shadow drivers during normal (fail-
ure-free) operation? To answer this question, the performance
ol nine applications that exercised the three shadow drivers
was measured. Different applications have different metrics
of interest. For the disk device driver and sound device driver,
the applications shown 1n Table 2 were run, and elapsed time
was measured. For the network device driver, throughput 1s a
more useful metric; therefore, throughput-oriented network
send and network receive benchmarks were substituted for
the programs shown in Table 2. Also measured was CPU
utilization while those programs ran. All measurements were
repeated several times and showed varnation of less than one
percent.

FIG. 5 1s a bar graph 100 that shows the performance of
Linux™-Nooks™ and Linux™-SD relative to Linux™-Na-
tive. FIG. 6 1s a bar graph 110 that compares CPU utilization
for execution of the same applications on the three OS ver-
sions. Overall, these Figures make clear that shadow drivers
(and 1solation in general ) impose an extremely modest impact
on both performance and CPU utilization during normal
operation.

The low performance overhead of shadow drivers may be
surprising and 1s explained by a quick review of passive-mode
behavior. First, overhead 1s introduced by the Nooks™ {fault-
1solation system, which runs each device driver 1n its own
protection domain. Second, overhead 1s introduced by
shadow drivers and the costs of passive-mode communication
and state maintenance. In the first case, the overhead 1s
directly related to the number of domain crossings on each
interaction (procedure call) between the OS kernel and device
driver. For audio recorder, the most intensive sound-card
application, the OS kernel and device driver interact approxi-
mately 1000 times per second. For the most disk-intensive of
the disk applications, the database benchmark, the device
driver calls the OS kernel only 200 times per second.

Neither of these interactions 1s likely to have a noticeable
performance impact. On the other hand, the network send
benchmark transmits 45,000 packets per second, causing
45,000 domain crossings. The associated overhead 1s visible
in FIG. 6, where CPU utilization for this benchmark increases
from 15% to 28% with device driver fault 1solation.

From a comparison of the Linux™-Nooks™ and Linux™-
SD bars 1n FIG. 3, the second effect—the cost of running the
shadow driver in passive mode—is small or negligible. This
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may be surprising as well. However, as noted above, many
passive-mode shadow driver-device driver functions are null
calls. While the shadow driver requires various types of infor-
mation for recovery, 1t can often benefit from the work of
other system components that already maintain that informa-
tion. For example, the OS kernel maintains the disk device
driver request queue, which 1s used by the disk shadow driver
during recovery. The Nooks™ object tracker remembers out-
standing network packets, which are used by the network
shadow driver during recovery. And the sound device driver
does not need to track read and write requests during passive
mode. As aresult, the incremental passive-mode performance
cost over basic faultisolation 1s low or virtually unmeasurable
1N many cases.

In summary, the performance measurements show that the
overall performance penalty of shadow drivers 1s low. This
result implies that shadow drivers could easily be used across

a wide range of applications and environments.

Code Si1ze

This section considers the 1ssue of code complexity, which
1s examined from two points of view: the size of the shadow
driver itself, and the modifications required to integrate
shadow drivers into Linux.

TABLE 3

Shadow driver size compared to Linux ™ device driver
size in lines of code. The table also shows the number of Linux ™ device
drivers in each of the three classes and the cumulative lines

of code 1n all of those device drivers.
device # of device  Code Size For Shadow
driver drivers in All device  Example device driver
Class Class drivers in Class driver Size Code Size
Sound 4R 111,600 8080 (emulOkl) 666
Network 190 264,500 9842 (e1000) 198
IDE Disk 8 29,000 5358 (1de-disk) 321

Table 3 presents code size 1n lines of code for the three
device driver classes. For each class, the number of existing
Linux™ device drivers and the cumulative lines of code for
all device drivers 1n that class are shown. The total code size
1s presented as an indication of the leverage gained through
the shadow driver’s class-device drniver structure. For com-
parison, the size of an example Linux™ device driver for each
class, along with the size of the corresponding shadow driver
for each class, are also shown. As the table indicates, a
shadow driver 1s significantly simpler than the device drwer it
shadows. For example, the sound-card shadow driver 1s only
8% of the size of the emulOk1 device driver it shadows; the
disk shadow driver 1s only 6% percent of the Linux™ 1de- dlsk
device driver.

Integrating shadow drivers into the Linux™ OS kernel was
relatively simple and benefited greatly from the Nooks™
1solation layer that was built upon, which contains about
23,000 lines of code. Shadow drivers required the addition of
approximately 600 lines of code for the shadow manager, 800
lines of common code shared by all shadow drivers, and
another 730 lines of general utilities. In total, about 3300 lines
of code were added to the Linux/Nooks™ system to support
the three class device drivers.

Clearly, the code required to build and support shadow
drivers 1s modest. The complexity of implementing the
Nooks™ layer 1s more substantial, but represents a one-time
cost that yields a variety of benefits. Given the size of modern
OSs and their associated device drivers (millions of lines of
code), and the enormous cost of device driver failure, it 1s
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apparent that shadow drivers and fault-1solation subsystems
are a small and worthwhile addition.

SUMMARY OF CONCLUSIONS

An examination of the fault-tolerance, performance, and
code size of shadow drivers demonstrate that: (1) applications
that failled 1n any form on Linux™-Native or Linux™-
Nooks™ ran normally with shadow drivers; (2) the perfor-
mance overhead of shadow drivers during normal operation1s
small; and, (3) shadow drivers do not have a high implemen-
tation cost. Overall, these results indicate that shadow drivers
have the potential to significantly improve the reliability of
applications on modern OSs.

Improving the reliability of commodity systems demands
that the quality of software be improved (to reduce the causes
of failure) and that the resilience of the systems be increased
(to reduce the effects of failure). It was to this end that shadow
drivers were designed. Shadow drivers mask device driver
failures from both the OS and applications. Unlike most
recovery mechanmisms, shadow drivers focus on a single goal:
transparent recovery from device driver failures.

The experience discussed above shows that shadow driv-

ers, while simple to implement and integrate, are highly lever-
aged, because a single shadow driver can enable recovery for
an entire class of device drivers. They are also ellicient,
imposing virtually no performance degradation. They are
transparent, requiring no code changes to existing device
drivers. Finally, and most importantly, they improve applica-
tion reliability, because they conceal a device driver’s failure
from applications and the OS while actively recovering the
device driver to its pre-fail state.

FIG. 9 1llustrates a simplified block diagram of a system or
computing device 300 that 1s suitable for implementing the
exemplary approach discussed above. The computing device
can be a typical personal computer, but can take almost any
other form, for example, a personal data assistant (PDA), a
cell phone, or an appliance. This list of computing devices 1s
not intended to be limiting in any respect. A processor 302 1s
employed for executing machine instructions that are stored
in a memory 306. The machine instructions may be trans-
terred to memory 306 from a data store 308 over a generally
conventional bus 304, or may be provided on some other form
of memory media (1.e., computer readable memory medium),
such as a digital versatile disk (DVD), a compact disk read
only memory (CD-ROM), or other non-volatile memory
device. Processor 302, memory 306, and data store 308,
which may be one or more hard drive disks or other non-
volatile memory, are all connected in communication with
cach other via bus 304. Also connected to the bus are an
input/output interface 310 (which may include one or more
data ports such as a serial port, a umiversal serial bus (USB)
port, a Firewire (IEEE 1394) port, a parallel port, a personal
system/2 (PS/2) port, etc.), and a display interface or adaptor
312. Any one or more ol a number of different input devices
314 such as a keyboard, mouse or other pointing device,
trackball, touch screen input, etc. are connected to I/O inter-
face 310. A momitor or other display device 316 1s coupled to
display interface 312, so that a user can view graphics and text
produced by the computing system as a result of executing the
machine instructions, both in regard to an operating system
and any applications being executed by the computing sys-
tem, enabling a user to interact with the system.

Although the concepts disclosed herein have been
described 1n connection with the preferred form of practicing
them and modifications thereto, those of ordinary skill in the
art will understand that many other modifications can be
made thereto within the scope of the claims that follow.
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Accordingly, 1t 1s not itended that the scope of these con-
cepts 1n any way be limited by the above description, but
instead be determined entirely by reference to the claims that
follow.

The mvention 1 which an exclusive right 1s claimed 1s
defined by the following:

1. A method for recovering from a failure of a component
executing on a computing device, by using a shadow process
for impersonating the failed component during recovery but
without providing the functionality of the failed component,
comprising the steps of:

(a) monitoring communications between the component

and an extensible system on the computing device;
(b) using the shadow process for storing data for the com-
ponent that were recerved from the extensible system
and were being provided to the component, where said
data are derived from the communications;
(¢) detecting a failure of the component;
(d) responsive to detecting the failure, temporarily halting
interaction of the component with the extensible system
and acting 1n place of the component that failed without
providing the functionality of the component during
recovery, by answering requests on behalf of the com-
ponent using the shadow process; and
() re-imitializing the component using the data that were
stored, so that the component 1s restored to full function-
ality and 1s enabled to again interact with the extensible
system.
2. The method of claim 1, further comprising the step of
hiding the failure of the component from the extensible sys-
tem, so that the failure of the component does not adversely
impact functionality of the extensible system and any sofit-
ware application using the component.
3. The method of claim 1, wherein the failure of the com-
ponent causes communications between the extensible sys-
tem and the component to be diverted so that the component
and extensible system do not directly communicate until the
component has been re-1nitialized.
4. A method for recovering from a failure of a device driver
executing on a computing device, comprising the steps of:
(a) employing a shadow driver for monitoring communi-
cations between the device driver and an OS kermnel to
determine a state of the device driver;
(b) storing the state of the device driver in a memory;
(c) detecting a failure of the device driver, and in response:
(1) temporarily interrupting communications between
the device driver and the OS kernel; and

(11) employing the shadow driver to successively unload
the device driver, reload the device driver, and re-
imitialize the device driver to the state that was stored
in the memory; and

(d) restoring communications between the device driver
that has been re-1nitialized and the OS kermel, so that the
device driver 1s recovered from the failure.

5. The method of claim 4, wherein the shadow driver 1s
specifically designed for a class of device drivers in which the
device driver 1s included.

6. The method of claim 4, further comprising the step of
employing the shadow driver to mask the failure of the device
driver from the OS kernel by enabling the shadow driver to
communicate with the OS kernel after the device driver fails
and until the device driver 1s re-mitialized, although the
shadow driver does not function as a replacement for the
device driver.

7. The method of claim 6, further comprising the step of
employing the shadow driver to block a request intended for
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the device driver that 1s received from the OS kernel while the
device driver that has failed i1s being recovered from the
tailure.

8. The method of claim 6, wherein while the device driver
that has failed 1s being recovered from the failure, further
comprising the step of employing the shadow driver to handle
a request itended for the device driver that 1s received from
the kernel, by dropping the request.

9. The method of claim 6, further comprising the steps of:

(a) employing the shadow driver to handle a request
intended for the device driver that 1s received from the
OS kernel while the device driver that has failed 1s being
recovered from the failure, by queuing the request; and

(b) after the device driver has been recovered, forwarding
the request to the device driver.

10. The method of claim 6, further comprising the step of
employing the shadow driver to handle a request intended for
the device driver that 1s received from the OS kernel while the
device driver that has failed i1s being recovered from the
failure, by answering the request based upon the state of the
device driver that 1s stored 1n memory.

11. The method of claim 4, further comprising the step of
operating the shadow driver 1n a passive mode while the
device driver 1s extensible, and switching the shadow driver to
an active mode when the failure of the device driver is
detected.

12. The method of claim 4, further comprising the step of
1solating the device driver from the OS kernel, so that failures
of the device driver are trapped, and an 1ntegrity of memory
accessed by the OS kernel 1s protected from failures of the
device driver.

13. The method of claim 4, wherein the step of monitoring
communications between the device driver and the OS kernel
comprises the steps ol tapping communications channels; and
copying predefined types of data from the communications to
track the state of the device driver over time.

14. A computer readable memory medium storing machine
instructions for carrying out the steps of claim 4.

15. A system that 1s able to recover from a failure of a
device driver that 1s executed on the system, comprising:

(a) a memory 1in which machine instructions are stored, the
machine 1nstructions being used to implement an oper-
ating system (OS) kernel, a device driver, and a shadow
driver; and

(b) a processor coupled 1n communication with the
memory, the processor executing the machine instruc-
tions to implement a plurality of functions, including;:
(1) running the OS kernel, the device driver, and the

shadow driver, by executing the machine 1nstructions
provided for each;

(11) employing the shadow driver for monitoring com-
munications between the device driver and the OS
kernel, to determine a state of the device driver;

(1) storing the state of the device driver in the memory;

(1v) detecting when a failure of the device driver has
occurred;

(v) 1n response to a failure of the device driver being
detected, temporarily interrupting communications
between the device driver and the OS kernel, and
employing the shadow driver to successively unload
the device driver, reload the device driver, and re-
imitialize the device driver to the state that was stored
in the memory; and

(v1) restoring communications between the device driver
that has been re-initialized and the OS kernel, so that
the device driver 1s recovered from the failure.
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16. The system of claim 15, wherein the shadow driver 1s
designed for use with a class of device drivers of which the
device driver 1s a member, the shadow driver being usable
with any device driver that 1s a member of the class.

17. The system of claim 135, wherein the shadow driver
masks the failure of the device driver from the OS kernel by
communicating with the OS kernel after the device driver
fails, until the device driver is re-initialized, although the
shadow driver does not function as a replacement for the
device driver.

18. The system of claim 135, wherein the shadow driver

blocks a request intended for the device driver that 1s recerved
from the OS kernel, while the device driver that has failed 1s
being recovered from the failure.

19. The system of claim 15, wherein while the device driver
that has failed 1s being recovered from the failure, the shadow
driver handles a request intended for the device driver that 1s
received from the OS kernel, by dropping the request.

20. The system of claim 15, wherein while the device driver
that has failed 1s being recovered from the failure, the shadow
driver handles a request intended for the device driver that 1s
received from the OS kernel, by queuing the request, and after
the device driver 1s recovered, forwards the request to the
device driver.

21. The system of claim 15, wherein while the device driver
that has failed is being recovered from the failure, the shadow
driver handles a request intended for the device driver that 1s
received from the OS kernel, by answering the request based
upon the state of the device driver that 1s stored 1n the memory.

22. The system of claim 15, wherein the shadow driver 1s
operated 1n a passive mode while the device driver 1s exten-
sible and 1s switched to an active mode when the failure of the
device driver 1s detected.

23. The system of claim 135, wherein the machine nstruc-
tions executed by the processor 1solate the device driver from
the OS kernel, so that failures of the device driver are trapped,
and an mtegrity of the memory accessed by the OS kernel 1s
protected from failures of the device driver.

24. The system of claim 15, wherein the shadow driver taps
communications channels between the device driver and the
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OS kernel and copies predefined types of data passing over
the communication channel, to track the state of the device
driver over time.

25. A method for using a shadow process to reduce any
adverse elfects to applications and an extensible system that
might be caused by a failure of a component, comprising the
steps of:

(a) monitoring communications between the component
and the extensible system to 1dentity data conveyed from
the extensible system that are directed to the component
and are related to a state of the component;

(b) storing the data related to the state of component, for
restoring the state of the component, if the component 1s
restarted after failing;

(¢) determining when the component has failed;

(d) 1n response to the component failing, interrupting com-
munications between the component and the extensible
system and diverting the communications to the shadow
process so that the shadow process can impersonate the
component that failed without providing the functional-
ity of said component; and

() stopping and re-initializing the component 1n a manner
that 1s hidden from the extensible system and from any
applications that depend on the component, so that the
component 1s restarted and enabled to again communi-
cate with the extensible system, the steps of stopping and
re-imtializing the component and failure of the compo-
nent being hidden from the extensible system and any
applications using the component because the compo-
nent that failed 1s impersonated until the component 1s
restarted and enabled.

26. The method of claim 25, wherein the component
includes an interface to a hardware device, so that while the
component 1s failed and being restarted, the hardware device
1s unavailable to the extensible system or to any applications.

277. The method of claim 235, further comprising the step of
using the data related to the state of the component that was
stored for restoring the state of the component before restart-
ing the component, so that the failure of the component will
not be apparent to the extensible system or to any applications
using the component.
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