12 United States Patent

US007673119B2

(10) Patent No.: US 7,673,119 B2

Asal et al. 45) Date of Patent: Mar. 2, 2010

(54) VLIW OPTIONAL FETCH PACKET HEADER 6,366,998 B1* 4/2002 Mohamed ......ccceve....... 712/17
EXTENDS INSTRUCTION SET SPACE 6,499,006 B1* 12/2002 SuzuKi ..oeovvevevevnenenannnn 712/24
6,615,339 B1* 9/2003 Tto etal. ..ocovvrrvrerernenn. 712/24

(75) Inventors: Michael D. Asal, Austin, TX (US); Eric 6,658,551 B1* 12/2003 Berenbaum et al. ........... 712/24
J. Stotzer, Houston, TX (US); Todd T. 6,684,320 B2*  1/2004 Mohamed etal. ............. 712/24

Hahn, Sugarland, TX (US) 6.859.870 B1*  2/2005 Kimetal. wovovoeevoronnn.. 712/24

. 6,892,293 B2* 5/2005 Sachsetal. ......o....... 712/215

(73) Assignee: Texas Instruments Incorporated, 7,136,989 B2* 11/2006 IShii wveveeoveeeeoeoeeren 712/23

Dallas, TX (US)

( *) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 296 days.
(21) Appl. No.: 11/382,134
(22) Filed: May 8, 2006

(65) Prior Publication Data
US 2006/0259739 Al Nov. 16, 2006

Related U.S. Application Data
(60) Provisional application No. 60/680,666, filed on May

13, 2003.

(51) Imt. CL.
GO6F 9/30 (2006.01)
GO6F 15/76 (2006.01)

(52) US.CL ., 712/206; 712/24
(58) Field of Classification Search .................... 712/24
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,638,525 A * 6/1997 Hammond etal. .......... 712/209
6,081,884 A * 6/2000 Miler .............oooelll. 712/204

* cited by examiner

Primary Examiner—Eddie P Chan

Assistant Examiner—Jacob Petranek
(74) Attorney, Agent, or Firm—Robert D. Marshall, Jr.; Wade

J. Brady, III; Frederick J. Telecky, Ir.

(57) ABSTRACT

This 1invention 1s useful 1n a very long instruction word data
processor that fetches a predetermined plural number of
instructions each operation cycle. A predetermined one of
these instructions 1s used as a special header. This special
header has a umique encoding different from any normal
istruction. When decoded this special header instructs
decode hardware to decode this fetch packet 1n a special way.
In one embodiment a bit field in the header signals the decode
hardware whether to decode each instruction word normally
or 1n an alternative way. The header may include extension
opcode bits corresponding to each of the other instruction
slots. In another embodiment another bit field signals whether
to decode an 1nstruction field as one normal length 1nstruction
or as two hali-length instructions.

24 Claims, 5 Drawing Sheets

601 610 611 612

613 614 615 616



U.S. Patent Mar. 2, 2010 Sheet 1 of 5 US 7,673,119 B2

100
FIG. 1 ¥
(PRIOR ART)
M/P
64
32
o /> o4 - EXTERNAL
256 MEMORY
121
I (1) 161
S 141
4 -7
256 | 32 e
2 =7 ) DMA °
CPU 110 50 o
~__(® —= :
7 T~~L_ | T~
143
32 PERIPHERALS
64 DTB 64 64, 169
64 64 2
sl 02 64,
M/P

(1) L11 CACHE MISS FILL FROM L2

(2) L1D CACHE MISS FILL FROM L2

(3) L1D WRITE MISS TO L2, OR L1D VICTIM TO L2, OR L1D SNOOP RESPONSE TO L2
(4) L2 CACHE MISS FILL, OR DMA INTO L2

(9) L2 VICTIM WRITE BACK, OR DMA OUT OF L2

(
(

6) DMA INTO L2
/) DMA OUT OF L2




@\
aa
&N
- £
— 6 SdAIL €21 IHIVD VIvaA INO 13ATT -4
£ T19VININVHIOHA
&
~ S1HOd VI43S
7. 3
= ) S1HOd 1SOH |«
P
/L ag 5 1
l S1dNyddLNI ¢ttt 143 e el (¢
NOLLYTNIA
. 01 — - | . . \wmm
= Gl
- T
m my 0 g 3114 H31S193Y v 3114 H31S193Y
JD0T1 — — ——
TOHINGQD 0¢ 07 VPPN
= HLVd Y1Vd H1Vd Y1vd
= / N
—
“ ST G v
5 ¢l 30023 NOILONYLSNI
= €l —
> Sy11SHIY 1 HO1VdSIQ NOLLONYLSNI MOQ
TOHLINOD — HIMOC
0l HO134 INVHDOHd 002
e’ 9
21 JHOVO NOLLONHLSNI INO T3A3T N Qmﬂmwwwy

U.S. Patent



U.S. Patent Mar. 2, 2010 Sheet 3 of 5 US 7,673,119 B2

FETCH DECODE EXECUTE
310 320 330
———— —
FIG. 5 PG | PS|PW | PR [DP |DC | E1 | EZ2 | ES | E4 | ES

(PRIOR ART)
311 312 313 314 321 322 331 332 333 334 335

31 29 28 27 2322 1817 1312 2 1 0

FIG. 4 creg | z dst src2 | srcl/cst opcode S|P
(PRIOR ART)

|< 256 bits

FIG. 5 [ \wordo | Word1 | Word2 | Word3 | Word4 | Words
(PRIOR ART)

FI[(y. 6 |Header | Word0 | Word1 | Word2 | Word3 | Word4 | Word5 | Word6

601 610 611 612 613 614 615 616

31 2827 2423 2019 1615 1211 8 7 4 3 O
FIG. 7 HC ExO Ex1 Ex2 Ex3 Ex4 Ex5 EX6

01 10 711 712 M3 714 7115 716



U.S. Patent Mar. 2, 2010 Sheet 4 of 5 US 7,673,119 B2

FIG. 8
2120 18 17 1514 12 11 6 5
801 810 611 812 813 814 815 816
FIG. 9

21 20 1413 1211 10 9

901 902 910 911 912 913 914 N5 916

FIG. 10
1001 1010 1020 1030 1040 1050 1060 1070

vesser[ 0 [ [ @ [0 [a] s [6]w]e]n] m_

1011 1012 1031 1032 1051 1052 1061 1062

FIG. 11
21 20 16 13

i [ ow [ o o

1110 1140 1130 1120

FIG. 13

18 17 16 15

1011 1010 1012



U.S. Patent Mar. 2, 2010 Sheet 5 of 5 US 7,673,119 B2

FIG. 12 10

PROGRAM FETGH UNIT

1210 | 1211 | 121 1213 | 121 | 1215 | 1216 | 1217




US 7,673,119 B2

1

VLIW OPTIONAL FETCH PACKET HEADER
EXTENDS INSTRUCTION SET SPACE

CLAIM OF PRIORITY

This application claims priority under 35 U.S.C. 119(e)(1)
to U.S. Provisional Application No. 60/680,666 filed May 13,

2005.

TECHNICAL FIELD OF THE INVENTION

The technical field of this invention 1s mstruction specifi-
cation 1n instructions for data processing systems.

BACKGROUND OF THE INVENTION

Designers are constantly striving to improve program-
mable data processors such as microprocessors and digital
signal processors. Often desired improvements mnvolve mak-
ing the programmable data processor capable of executing
additional data processing functions. Such additional data
processing functions can be achieved by proposing a new
programmable data processor with a new instruction set
architecture defining processor operations. However, 1t 1s
considered desirable to code such new 1nstructions within the
same 1nstruction word length of a prior programmable data
processor. This permits users, customers of the original data
processor vendor, to re-use their prior investment 1n program-
ming tools and system designer expertise in using the new
functions. Such an upgrade of an existing instruction set
architecture merely requires an incremental change by the
customer. An entirely new data processor with a new instruc-
tion set architecture would require a radical change by the
customer.

A known manner to address this problem 1s to change an
instruction decoder to detect the desired additional functions
and to control operation of a functional unit to achieve the
function. One problem with this approach is the limitation of
opcode space. Opcode space 1s the theoretical space defined
by the bits of an instruction word available for instruction
definition. Not all bits of an 1instruction word are available for
instruction defimition. It 1s conventional to use some 1nstruc-
tion bits to define two data registers for source operands and
a further instruction bits to define a destination 1nstruction
registers. It 1s common for programmable data processors to
have 32 such data registers. Thus 3xlog, 32 or 15 instruction
word bits are needed just to specily data registers. Other
instruction word bits are commonly used for additional sig-
naling and control functions. With many programmable data
processors employing 32-bit istruction words, bits that can
be devoted to opcodes are limited. In many known data pro-
cessors few unallocated opcodes exist.

Another problem faced by designers of programmable data
processors 1s known as code bloat. With instruction lengths
generally set at 32 bits, the amount of memory required to
store 1nstructions may be very large. It 1s known that many
commonly used structions could be coded with fewer bits,
such as 16 bits because these instructions do not need to
specily three data registers or because all possible signaling
and control functions are not relevant and need not be coded.
In many useful product applications at least a significant
portion of the system program could be specified with
instruction words shorter than the standard length. The
designer 1s left with the problem of distinguishing between
this shorter instruction word code and the normal length
instruction word code.

10

15

20

25

30

35

40

45

50

55

60

65

2

A known solution to these two problems involves data
processor modes. The data processor has a normal mode
which operates 1n the same manner as the prior data processor
in the same family. An alternative mode enables access to
alternate or extended instructions by redefining how the lim-
ited opcodes are decoded. These alternate or extended
instructions could include smaller length instructions or
instructions not present in the original instruction set. Gener-
ally such data processor modes are mvoked by a mode
instruction 1n each mode. A normal mode instruction when
executed switches the data processor to the alternative mode.
An alternative mode 1nstruction when executed switches the
data processor to the normal mode.

Such data processor modes achieve their purpose of
ecnabling the extended or alternative instructions but intro-
duce additional problems. Tracking the current data proces-
sor mode and insuring that the imstructions to be executed are
approprate for the current mode 1s a problem. Often there 1s
a significant overhead in changing modes. This prevents free
mixing of normal mode and extended mode 1nstructions. In
the case of normal length alternative or extended 1nstructions
mode changes can be reduced by providing commonly used
instructions in both modes. This may reduce the number of
required mode changes but takes up limited opcode space in
both modes. When implementing a smaller length imstruction
set, only commonly used instructions are encoded because of
limited opcode space. Thus data processor modes are not a
completely satistactory solution to this problem.

SUMMARY OF THE INVENTION

This invention 1s useful 1n a very long instruction word data
processor that fetches a predetermined plural number of
instructions each operation cycle. A predetermined one of
these nstructions 1s used as a special header. This special
header has a umique encoding different from any normal
istruction. When decoded this special header instructs
decode hardware to decode this fetch packet 1n a special way.
In one embodiment a bit field in the header signals the decode
hardware whether to decode each 1nstruction word normally
or 1n an alternative way. The header may include extension
opcode bits corresponding to each of the other instruction
slots. In another embodiment another bit field signals whether
to decode an 1nstruction field as one normal length instruction
or as two half-length instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are illustrated 1n
the drawings, 1n which:

FIG. 1 1llustrates the organization of a typical digital signal
processor to which this invention 1s applicable (prior art);

FIG. 2 illustrates details of a very long instruction word
digital signal processor core suitable for use 1n FIG. 1 (prior
art);

FIG. 3 illustrates the pipeline stages of the very long
instruction word digital signal processor core illustrated 1n
FIG. 2 (prior art);

FIG. 4 illustrates the instruction syntax of the very long
instruction word digital signal processor core illustrated 1n
FIG. 2 (prior art);

FIG. 5 1llustrates one fetch packet of the very long instruc-
tion word digital signal processor core 1illustrated 1n FIG. 1
(prior art);

FIG. 6 1llustrates one fetch packet of the very long instruc-
tion word digital signal processor core according to this
invention;



US 7,673,119 B2

3

FIG. 7 illustrates a first exemplary coding of the header
word of the fetch packet illustrated 1n FIG. 6;

FI1G. 8 1llustrates a second exemplary coding of the header
word of the fetch packet 1llustrated 1n FIG. 6;

FI1G. 9 illustrates a third exemplary coding of the header >
word of the fetch packet illustrated 1n FIG. 6;

FIG. 10 illustrates an exemplary fetch packet of variable
length 1nstructions according to an embodiment of this inven-
tion;

FI1G. 11 illustrates an exemplary coding of the header word
of the fetch packet illustrated 1n FIG. 10;

FI1G. 12 1llustrates exemplary decoding hardware enabling
the very long instruction word digital signal processor core
illustrated in FIG. 2 to practice this invention; and

FIG. 13 1llustrates an example of two half-length instruc-
tions within an instruction slot having p and s bits at prede-
termined locations.

10

15

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
Y

ERRED

20

A preferred embodiment of this invention will be described
in this section. This mvention 1s not limited to the preferred
embodiment. It would be a straightforward task for one
skilled 1n the art to apply the invention to a larger class of data
processing architectures that employ plural instruction fetch

packets. This description corresponds to the Texas Instru-
ments TMS32006400 digital signal processor.

FI1G. 11llustrates the organization of a typical digital signal 5
processor system 100 to which this mvention 1s applicable
(prior art). Digital signal processor system 100 includes cen-
tral processing unit core 110. Central processing unit core 110
includes the data processing portion of digital signal proces-
sor system 100. Central processing unit core 110 could be ;4
constructed as known 1n the art and would typically includes
a register file, an integer arithmetic logic unit, an integer
multiplier and program flow control units. An example of an
appropriate central processing unit core 1s described below 1n
conjunction with FIGS. 2 to 4. 40

Digital signal processor system 100 includes a number of
cache memories. FIG. 1 1llustrates a pair of first level caches.
Level one instruction cache (IL11) 121 stores mstructions used
by central processing unit core 110. Central processing unit
core 110 first attempts to access any instruction from level one 45
instruction cache 121. Level one data cache (L1D) 123 stores
data used by central processing unit core 110. Central pro-
cessing unit core 110 first attempts to access any required data
from level one data cache 123. The two level one caches are
backed by a level two unified cache (I.2) 130. In the event of 50
a cache miss to level one 1nstruction cache 121 or to level one
data cache 123, the requested instruction or data 1s sought
from level two unified cache 130. It the requested instruction
or data 1s stored 1n level two unified cache 130, then it 1s
supplied to the requesting level one cache for supply to cen- 55
tral processing umt core 110. As 1s known 1n the art, the
requested instruction or data may be simultaneously supplied
to both the requesting cache and central processing unit core
110 to speed use.

Level two unified cache 130 1s further coupled to higher so
level memory systems. Digital signal processor system 100
may be a part ol a multiprocessor system. The other proces-
sors of the multiprocessor system are coupled to level two
unified cache 130 via a transfer request bus 141 and a data
transier bus 143. A direct memory access unit 150 provides 65
the connection of digital signal processor system 100 to exter-
nal memory 161 and external peripherals 169.

4

FIG. 2 1s a block diagram 1llustrating details of a digital
signal processor integrated circuit 200 suitable but not essen-
tial for use in this invention (prior art). The digital signal
processor mtegrated circuit 200 includes central processing
unit 1, which 1s a 32-bit eight-way VLIW pipelined processor.
Central processing unit 1 1s coupled to level 1 istruction
cache 121 included 1n digital signal processor integrated cir-
cuit 200. Digital signal processor mtegrated circuit 200 also
includes level one data cache 123. Digital signal processor
integrated circuit 200 also includes peripherals 4 to 9. These
peripherals preferably include an external memory interface
(EMIF) 4 and a direct memory access (DMA) controller 5.
External memory interface (EMIF) 4 preferably supports
access to supports synchronous and asynchronous SRAM
and synchronous DRAM. Direct memory access (DMA) con-
troller 5 preferably provides 2-channel auto-boot loading
direct memory access. These peripherals include power-
down logic 6. Power-down logic 6 preferably can halt central
processing unit activity, peripheral activity, and phase lock
loop (PLL) clock synchronization activity to reduce power
consumption. These peripherals also include host ports 7,
serial ports 8 and programmable timers 9.

Central processing umt 1 has a 32-bit, byte addressable
address space. Internal memory on the same integrated circuit
1s preferably organized in a data space including level one
data cache 123 and a program space including level one
instruction cache 121. When off-chip memory 1s used, pret-
crably these two spaces are unified mto a single memory
space via the external memory interface (EMIF) 4.

Level one data cache 123 may be internally accessed by
central processing unit 1 via two internal ports 3a and 35.
Each internal port 3a and 35 preferably has 32 bits of data and
a 32-bit byte address reach. Level one instruction cache 121
may be mternally accessed by central processing unit 1 via a
single port 2a. Port 2a of level one instruction cache 121
preferably has an instruction-fetch width of 256 bits and a
30-bit word (four bytes) address, equivalent to a 32-bit byte
address.

Central processing unit 1 includes program fetch unit 10,
instruction dispatch umt 11, mstruction decode unit 12 and
two data paths 20 and 30. First data path 20 includes four
functional units designated L1 unit 22, S1 unit 23, M1 unit 24
and D1 unit 25 and 16 32-bit A registers forming register file
21. Second data path 30 likewise includes four functional
units designated L2 umt 32, S2 unit 33, M2 unit 34 and D2
unit 35 and 16 32-bit B registers forming register file 31. The
functional units of each data path access the corresponding
register {ile for their operands. There are two cross paths 27
and 37 permitting access to one register 1n the opposite reg-
ister file each pipeline stage. Central processing unit 1
includes control registers 13, control logic 14, and test logic
15, emulation logic 16 and interrupt logic 17.

Program fetch unit 10, mstruction dispatch umt 11 and
instruction decode unit 12 recall instructions from level one
instruction cache 121 and deliver up to eight 32-bit instruc-
tions to the functional units every instruction cycle. Process-
ing occurs 1n each of the two data paths 20 and 30. As previ-
ously described above each data path has four corresponding
functional units (L, S, M and D) and a corresponding register
file containing 16 32-bit registers. Each functional unit 1s
controlled by a 32-bit instruction. The data paths are further
described below. A control register file 13 provides the means
to configure and control various processor operations.

FIG. 3 1llustrates the pipeline stages 300 of digital signal
processor core 110 (prior art). These pipeline stages are
divided into three groups: fetch group 310; decode group 320;
and execute group 330. All instructions 1n the instruction set




US 7,673,119 B2

S

flow through the fetch, decode, and execute stages of the
pipeline. Fetch group 310 has four phases for all instructions,
and decode group 320 has two phases for all instructions.
Execute group 330 requires a varying number of phases
depending on the type of instruction.

The fetch phases of the fetch group 310 are: Program
address generate phase 311 (PG); Program address send
phase 312 (PS); Program access ready wait stage 313 (PW);
and Program fetch packet receive stage 314 (PR). Digital
signal processor core 110 uses a fetch packet (FP) of eight
instructions. All eight of the instructions proceed through
tetch group 310 together. During PG phase 311, the program
address 1s generated 1n program fetch unit 10. During PS
phase 312, this program address 1s sent to memory. During,
PW phase 313, the memory read occurs. Finally during PR
phase 314, the fetch packet 1s received at CPU 1.

The decode phases of decode group 320 are: Instruction
dispatch (DP) 321; and Instruction decode (DC) 322. During
the DP phase 321, the fetch packets are split into execute
packets. Execute packets consist of one or more mnstructions
which are coded to execute 1n parallel. During DP phase 322,
the instructions 1n an execute packet are assigned to the
appropriate functional units. Also during DC phase 322, the
source registers, destination registers and associated paths are
decoded for the execution of the istructions 1n the respective
functional unaits.

The execute phases of the execute group 330 are: Execute
1 (E2)331; Execute 2 (E2) 332; Execute 3 (E3) 333; Execute
4 (E4) 334; and Execute 5 (EJ5) 335. Dafferent types of
instructions require different numbers of these phases to com-
plete. These phases of the pipeline play an important role in
understanding the device state at CPU cycle boundaries.

During E1 phase 331, the conditions for the instructions are
evaluated and operands are read for all instruction types. For
load and store instructions, address generation 1s performed
and address modifications are written to a register file. For
branch 1nstructions, branch fetch packet in PG phase 311 1s
alfected. For all single-cycle instructions, the results are writ-
ten to a register file. All single-cycle mnstructions complete
during the E1 phase 331.

During the E2 phase 332, for load instructions, the address
1s sent to memory. For store instructions, the address and data
are sent to memory. Single-cycle instructions that saturate
results set the SAT bit in the control status register (CSR) 1
saturation occurs. For single cycle 16x16 multiply instruc-
tions, the results are written to a register file. For M unit
non-multiply mstructions, the results are written to a register
file. All ordinary multiply unit instructions complete during
E2 phase 322.

During E3 phase 333, data memory accesses are per-
formed. Any multiply instruction that saturates results sets the
SAT bit in the control status register (CSR) 1f saturation
occurs. Store instructions complete during the E3 phase 333.

During E4 phase 334, for load instructions, data 1s brought
to the CPU boundary. For multiply extensions instructions,
the results are written to a register file. Multiply extension
instructions complete during the E4 phase 334.

During E5 phase 335, load instructions write data into a
register. Load mstructions complete during the ES phase 335.

10

15

20

25

30

35

40

45

50

55

FI1G. 4 illustrates an example of the instruction coding of 60

instructions used by digital signal processor core 110 (prior
art). EFach instruction consists of 32 bits and controls the
operation of one of the eight functional units. The bit fields are
defined as follows. The creg field (bits 29 to 31) 1s the condi-
tional register field. These bits 1dentity whether the nstruc-
tion 1s conditional and 1dentily the predicate register. The z bit
(bit 28) 1indicates whether the predication 1s based upon zero

65

6

or not zero in the predicate register. If z=1, the test 1s for
equality with zero. If z=0, the test 1s for nonzero. The case of
creg=0 and z=0 1s treated as always true to allow uncondi-
tional mstruction execution. The creg field 1s encoded 1n the
instruction opcode as shown 1n Table 1.

TABLE 1
Conditional creg v
Register 31 30 29 28
Unconditional 0 0 0 0
Reserved 0 0 0 1
BO 0 0 1 Z
Bl 0 1 0 ya
B2 0 1 1 7z
Al 1 0 0 ya
A2 1 0 1 7z
AQ 1 1 0 ya
Reserved 1 1 1 X

Note that “z” 1n the z bit column refers to the zero/not zero
comparison selection noted above and “x” 1s a don’t care
state. This coding can only specily a subset of the 32 registers
in each register file as predicate registers. This selection was
made to preserve bits 1n the 1mstruction coding.

The dst field (bits 23 to 27) specifies one of the 32 registers
in the corresponding register file as the destination of the
instruction results.

The scr2 field (bits 18 to 22) specifies one of the 32 registers
in the corresponding register file as the second source oper-
and

The scrl/cst field (bits 13 to 17) has several meanings
depending on the 1nstruction opcode field (bits 2 to 12). The
first meaning specifies one of the 32 registers of the corre-
sponding register file as the first operand. The second mean-
ing 1s a S-bit immediate constant. Depending on the instruc-
tion type, this 1s treated as an unsigned integer and zero
extended to 32 bits or 1s treated as a signed integer and sign
extended to 32 bits. Lastly, this field can specily one of the 32
registers in the opposite register file if the mstruction invokes
one of the register file cross paths 27 or 37.

The opcode field (bits 2 to 12) specifies the type of instruc-
tion and designates appropriate instruction options. A
detailed explanation of this field 1s beyond the scope of this
invention except for the instruction options detailed below.

The s bit (bit 1) designates the data path 20 or 30. If s=0,
then data path 20 1s selected. This limaits the functional unit to
L1 unit 22, S1 umit 23, M1 unit 24 and D1 unit 25 and the
corresponding register file A 21. Similarly, s=1 selects data
path 20 limiting the functional unit to L2 unit 32, S2 unit 33,

M2 unit 34 and D2 unit 35 and the corresponding register file
B 31.

The p bit (bit 0) marks the execute packets. The p-bit
determines whether the instruction executes 1n parallel with
the following instruction. The p-bits are scanned from lower
to higher address. If p=1 for the current instruction, then the
next mstruction executes 1n parallel with the current mnstruc-
tion. If p=0 for the current 1nstruction, then the next mnstruc-
tion executes 1n the cycle after the current instruction. All
istructions executing in parallel constitute an execute
packet. An execute packet can contain up to eight mnstruc-
tions. Each instruction 1n an execute packet must use a dif-
ferent functional unit.

FIG. 5 illustrates a fetch packet of the digital signal pro-
cessor integrated circuit 200 illustrated 1 FIG. 2. As previ-
ously described program fetch unit 10 fetches eight mstruc-




US 7,673,119 B2

7

tions WordO to Word7 per operational cycle. Because each
instruction WordO to Word7 has 32 bits, the mstruction fetch
packet consists of 256 bits. In the preferred embodiment, each
fetch packet begms at a 256 bit boundary, that 1s the byte
address ends 1n “00000” (five zeros). This alignment also
automatically aligns each nstruction Word0 to Word/7 on 32
bit boundaries.

FIG. 6 1llustrates an exemplary fetch packet of this mven-
tion. This fetch packet consists of header 601 and seven

instruction words Word0 610, Word1 611, Word2 612, Word3
613, Word4 614, Word5 615 and Word6 616. In the preferred
embodiment header 601 occupies a predetermined location
within the fetch packet. The example FIG. 6 illustrates this
predetermined location as the most significant bits. The seven
istruction words Word0 610, Word1 611, Word2 612, Word3
613, Word4 614, Word5 615 and Word6 616 occupy the other
instruction word slots within the fetch packet. Header 601 1s
limited to a coding not used for ordinary instructions 1n a
manner further detailed below.

FIG. 7 illustrates a first example of the coding of header
601 of FIG. 6. This coding 1s used to extend the opcode of
each of the seven instruction words Word0 610, Wordl1 611,
Word2 612, Word3 613, Word4 614, WordS 615 and Word6
616 by four bits. Head code 701 occupies a predetermined
location within the header 610. The example of FIG. 7 1llus-
trates this as the most significant bits. Head code 701 must be
uniquely 1dentifiable. FIG. 7 illustrates seven extension code
fields Ex0710,Ex1 711, Ex2 712, Ex3 713, Ex4 714, Ex5 715
and Ex6 716. Asillustrated in the example of FIG. 7 extension
code field Ex0 710 occupies bits 24 to 27, Ex1 711 occupies
bits 23 to 20, Ex2 712 occupies bits 19 to 16, Ex3 713
occupies bits 15 to 12, Ex4 714 occupies bits 11 to 8, Ex5 715
occupies bits 7 to 4 and Ex6 716 occupies bits 3 to 0. Each of
the seven extension code fields Ex0 710, Ex1 711, Ex2 712,
Ex3 713, Ex4 714, Ex5 715 and Ex6 716 correspond to one of
the seven instruction words Word0 610, Word]1 611, Word?2
612, Word3 613, Word4 614, WordS 615 and Word6 616. As
will be further described below, each of the seven instruction
words WordO 610, Wordl 611, Word2 612, Word3 613,
Word4 614, Word5 615 and Word6 616 1s extended by i

four
bits by the corresponding extension code fields Ex0 710, Ex]1
711, Ex2 712, Ex3 713, Ex4 714,

Ex5 715 and Ex6 716. This

1s the equivalent of having 36 bit instructions.

FIG. 8 illustrates a second example of the coding of header
601 of FIG. 6. This coding 1s used to extend the opcode of
each of the seven instruction words Word0O 610, Word1 611,
Word2 612, Word3 613, Word4 614, Word5 615 and Word6
616 by three bits. Head code 801 occupies a predetermined
location within the header 610. The example of FIG. 8 1llus-
trates this as the most significant bits. Head code 801 must be
uniquely 1dentifiable. FI1G. 8 illustrates seven extension code
fields Ex0810,Ex1 811, Ex2 812, Ex3 813, Ex4 814, Ex5 815
and Ex6 816. As illustrated in the example of FIG. 8 extension
code field ExO 810 occupies bits 20 to 18, Ex1 811 occupies
bits 17 to 15, Ex2 812 occupies bits 14 to 12, Ex3 813
occupies bits 11 to 9, Ex4 814 occupies bits 8 to 6, Ex5 815
occupies bits 3 to 3 and Ex6 816 occupies bits 2 to 0. Each of
the seven extension code fields Ex0 810, Ex1 811, Ex2 812,
Ex3 813, Ex4 814, Ex5 815 and Ex6 816 correspond to one of
the seven 1nstruction words Word0O 610, Wordl 611, Word?2
612, Word3 613, Word4 614, Word5 615 and Word6 616. As
will be further described below, each of the seven instruction
words Word0O 610, Wordl 611, Word2 612, Word3 613,
Word4 614, WordS 615 and Word6 616 1s extended by three
bits by the corresponding extension code fields Ex0 710, Ex]1
711, Ex2 712, Ex3 713, Ex4 714, Ex5 715 and Ex6 716. This

1s equivalent of having 35 bit instructions.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 9 1llustrates a third example of the coding of header
601 of FIG. 6. This coding 1s used to extend the opcode of
each of the seven 1nstruction words Word0O 610, Word1 611,
Word2 612, Word3 613, Word4 614, WordS 615 and Word6
616 by two bits. Head code 901 occupies a predetermined
location within the header 610. The example of FIG. 9 1llus-
trates this as the most significant bits. Head code 901 must be
umquely 1dentifiable. FIG. 9 1llustrates seven extension code
fields Ex0910, Ex1 911, Ex2 912, Ex3 913, Ex4 914, Ex5 915
and Ex6 916. As illustrated in the example of FIG. 9 extension
code field Ex0 910 occupies bits 13 to 12, Ex1 911 occupies
bits 11 to 10, Ex2 912 occupies bits 9 to 8, Ex3 913 occupies
bits 7 to 6, Ex4 914 occupies bits 5 to 4, Ex5 915 occupies bits
3 to 2 and Ex6 916 occupies bits 1 to 0. Each of the seven
extension code fields Fx0 910, Ex1 911, Ex2 912, Ex3 913,
Ex4 914, Ex5 915 and Ex6 916 correspond to one of the seven
instruction words Word0 610, Word1 611, Word2 612, Word3
613, Word4 614, Word5 615 and Word6 616. As will be
further described below, each of the seven instruction words
Word0 610, Word1 611, Word2 612, Word3 613, Word4 614,
Word5 615 and Word6 616 1s extended by two bits by the
corresponding extension code fields Ex0 910, Ex1 911, Ex2
912, Ex3 913, Ex4 914, Ex5 915 and Ex6 916. This 1s equiva-
lent of having 34 bit istructions.

FIG. 9 further 1llustrates the header 601 also includes mode
field 902 occupying bits 20 to 14. Each bit of mode field 902
corresponds to one of the seven mstruction words Word0O 610,
Wordl 611, Word2 612, Word3 613, Word4 614, WordS 615
and Word6 616. In this example, a “0” 1n a bit of mode field
902 indicates that the corresponding 1nstruction word 1s to be
decoded normally without addition The of a corresponding
extension field. A “1”” 1n a bit of mode field 902 indicates that
the corresponding instruction word 1s to be decoded specially
using the two bits of the corresponding extension field. Thus
normal and extended 1nstructions can be placed in the same
tetch packet and properly decoded with reference to mode
field 902.

FIG. 10 1llustrates another example fetch packet according,
to this invention. The fetch packet of FIG. 10 includes header
1001 and seven instruction slots 1010, 1020, 1030, 1040,
1050, 1060 and 1070. Four of these instruction slots are
divided into two 1nstructions each. Instruction slot 1010
includes instructions 10 1011 and 11 1012. Instruction slot
1020 1ncludes instruction 12. Instruction slot 1030 1ncludes
instructions I3 1031 and 14 1032. Instruction slot 1040
includes mstruction I5. Instruction slot 1050 includes 1nstruc-
tions 16 1051 and I7 1052. Instruction slot 1060 includes
instructions I8 1061 and 19 1062. Instruction slot 1070
includes nstruction 110.

FIG. 11 1illustrates header 1001 illustrated in FIG. 10.
Header 1001 includes head code 1110, which must permait
header 1001 to be uniquely 1dentified. Header 1001 includes
d bits field 1120. The d bit field 1120 includes seven bits 6 to
0. Each bit within the d bit field 1120 indicates whether the
correspondmg instruction slot 1010, 1020, 1030, 1040, 1050
and 1060 1s decoded as one normal length instruction or as a
pair of half-length instructions. In the preferred embodiment
a “0” 1n corresponding d bit indicates a single normal length
instruction, while a “1”” indicates a pair of hali-length imstruc-
tions. Thus to encode the 1instructions 1llustrated in FIG. 10, d
bit field 1120 1s 1010110, This technique permits mixing
normal length and reduced length instructions in the same
tetch packet. This mixing does not require any mode switch-
ing overhead as required by the prior art.

These halt-length instructions must be coded to determine
execute packets and the data path to execute the instruction. In

one embodiment, half-length 1nstructions also include the p




US 7,673,119 B2

9

and s bits like normal length instructions as described 1n
conjunction with FIG. 4. These bits are decoded 1n the same
manner as previously described except that the p and s bits of
the first instruction 1n a pair of half-length instructions in an
instruction slot are located 1n a different position within the
instruction slot. FIG. 13 1llustrates an example of two hali-
length mnstructions 10 1011 and 11 1012 within instruction slot
1100 having p and s bits at predetermined locations. In this
example hali-length instruction I1 1012 has ap bitat bit 0 and
an s bit at bit 1. This 1s the same location within the instruction
slot 1010 as the normal length instruction illustrated in F1G. 4.
Halt-length instruction 10 1011 has ap bitat bit 16 and an s bat
at bit 17. This p bit and s bit are at different locations within
the instruction slot 1010 than illustrated 1n FIG. 4 but 1n the
same location relative to halt-length instruction 10 1011 and
the corresponding p and s bits in half-length instruction 11
1012. In the preferred embodiment normal length instruc-
tions are 32 bits and half-length instructions are 16 bits.
Including p bits and s bits within these instructions reduces
the number of bits available for operand selection and instruc-
tion encoding. FIG. 11 illustrates an alternative embodiment
that removes these bits from half-length instructions. FI1G. 11
illustrates p bits field 1130 and s bats field 1140. The p bits
field 1130 includes seven bits 13 to 7. Each bit corresponds to
one of mstruction slots 1010 to 1060. If the corresponding bit
within d bit field 1120 indicates halt-length mstructions, then
a corresponding bit within p bit field 1130 indicates the
execute packet for the pair of instructions within the instruc-
tion slot. Similarly, s bit field 1140 includes seven bits 20 to
14. IT the corresponding bit within d bit field 1120 1ndicates
half-length instructions, then a corresponding bit within bit
ficld 1140 indicates the data path for the pair of instructions
within the instruction slot. This alternative coding requires
that the two hali-length instructions within a single mnstruc-
tion slot be included in the same fetch packet and execute in
the same data path. Thus this alternative trades compiler
scheduling flexibility for opcode bits.

FIG. 12 1llustrates part of digital signal processor inte-
grated circuit 200 of FIG. 2 showing how the 1nstructions of
this invention can be decoded. A fetch packet of 8 consecutive
instructions comes from program fetch unit 10. Two consecu-
tive fetch packets are stored in corresponding instruction
buffers 1210, 1211, 1212, 1213, 1214, 1215, 1216 and 1217
for one fetch packet and corresponding instruction builers
1230, 1231, 1232, 1233, 1234, 1235, 1236 and 1237 for the
other fetch packet. According to this example, the header
must be 1n the first instruction slot and thus will always be
stored 1n 1nstruction butier 1210 or in 1nstruction builer 1230
il present. Decoder 1220 compares the mnstruction stored 1n
instruction buffer 1210 to detect a unique head code within
this istruction butlfer. If decoder 1220 detects a unique head
code marking the instruction, then 1t generates signals on
lines 1221 and 1223 to switch 1250. The signal on lines 1221
are control signals. These may correspond to bits within mode
field 902 indicating normal or special decoding of a corre-
sponding instruction. These may correspond to the normal
length/half-length 1ndicator of d bit field 1120. These two
types of information will be handled differently as will be
explained below 1n conjunction with the description of switch
1230. The signals on lines 1223 are the extension bits ExO,
Ex1, Ex2, Ex3, Ex4, Ex5 and Ex6 as illustrated in FIGS. 7 to
9. Decoder 1240 operates similarly 1n relation to any header
stored 1n mstruction buffer 1230. If decoder 1240 detects a
header, then 1t generates control signals on lines 1241 and
data signals on 1243 to switch 1250.

Switch 1250 handles the transmission of instructions to the
function units .LL1 22, .S1 23, .M1 24, .D1 25, 1.2 32, .S2 33,

10

15

20

25

30

35

40

45

50

55

60

65

10

M2 34 and .D2 35 for execution. Switch 1250 directs nstruc-
tions from one or more of instruction buiters 1210, 1211,
1212,1213,1214,1215,1216,1217,1230,1231,1232, 1233,
1234, 1235, 1236 or 1237 to the appropriate decode units
1260, 1261, 1262, 1263, 1264, 1265, 1266 and 1267. Switch
1250 15 responsive to the p bits of the instructions stored 1n
instruction bufters 1210, 1211, 1212, 1213, 1214, 1215,
1216,1217,1217,1230,1231,1232,1233,1234, 1235, 1236
and 1237 to dispatch only instructions within the same
execute packet. Note that the p bit coding enables an execute
packet to cross the boundary between two fetch packets. This
1s coded by the last instruction within the fetch packet having
a p bit set to “1”” indicating the next instruction 1s executed 1n
parallel with that mstruction. Providing instruction builers
for two consecutive fetch packets as illustrated 1n FIG. 12
enables switch 1250 to simultaneously dispatch such execute
packets. Switch 1250 1s also responsive to the s bits of these
instructions to dispatch instructions to the indicated data path
20 or 30. Lastly, switch 1250 must partially decode the
opcodes of the selected instructions to determine 1f an 1struc-
tion 1s to be dispatched to an L unit, an S unit, an M unit or a
D unit. In the preferred embodiment the compiler determines
which functional unit executes which instruction. All this
information 1s 1cluded in the nstruction coding. Central
processing unit 1 has no hardware option but merely follows
the direction of the compiler as coded 1n the instructions. This
operation 1s not shown in detail as it 1s practiced by the prior
art TMS320C6400 digital signal processor. This aspect of
switch 1250 operates according to the known art.

Switch 1250 operates diflerently than the prior art in accor-
dance with this invention. When decoder 1220 or 1240
detects a header indicating use of this mvention it signals
switch 1230. Decoder 1220 supplies control signals on lines
1221 and extended opcode bits on lines 1223 to switch 1250.
If decoder 1220 detects one of one or more headers indicating
one of the fetch packets of this ivention, decoder 1220
includes this information in control bits on lines 1221.
Decoder 1240 simailarly supplies control signals on lines 1241
and extended opcode bits on lines 1243 to switch 1250.
Switch 1250 1s responsive to these signals. I a header
detected by decoder 1220 or decoder 1240 1s one that 1ndi-
cates extension opcode bits, the decoder supplies these
extended opcode bits to switch 1250. Switch 1250 operates to
supply these extended opcode bits to the decoder 1260, 1261,
1262,1263,1264,1265, 1266 or 12677 otherwise indicated by
the coding of the 1nstruction fetch packet. Depending on the
istruction coding such extension opcode bits 1 a single
execute packet can come from one or two fetch packets. Inthe
event that the coding of F1G. 9 1s detected by decoder 1220 or
1240, the decoder supplies bits on control lines 1221 or 1241
corresponding to mode field 902 to switch 1250. Switch 1250
1s responsible to signal the appropriate decoder 1260, 1261,
1262, 1263, 1264, 1265, 1266 or 1266 of the normal or
extended status indicated by the corresponding bit of mode
field 902. Decoders 1260, 1261, 1262, 1263, 1264, 1265,
1266 and 1266 must be altered to be able to decode the
extended 1nstructions and make appropriate control of func-
tional units 22, 23, 24, 25, 32, 33, 34 and 35.

Switch 12350 operates differently 1f decoder 1220 or
decoder 1240 detects the mstruction packet of FIG. 10. The
decoder supplies bt fields DO 1130, D1 1131, D2 1132, D3
1133, D4 1134, D5 1135 and D6 1136 to switch 1250. Switch
1250 employs these bt fields with the p and s bits to supply
appropriate normal length or half-length instructions to the
decode units 1260, 1261, 1262, 1263, 1264, 1265, 1266 and
126°7. These p and s bits may be included within the hali-
length mstructions or included within the p bats field 1130 and




US 7,673,119 B2

11

the s bits field 1140 as described above. Switch 1250 uses
these signals 1n conjunction with the modified opcodes of
half-length instructions in the same manner that switch 1250
handles normal length instructions. That 1s, the compiler
completely specifies the mapping of both normal length and
half-length instructions from the fetch packet to a selected
one of the functional units. Fach of the decode units 1260,
1261, 1262, 1263, 1264, 1265, 1266 and 1267 to which hali-
length instructions can be dispatched must be altered to be
capable of decoding the modified coding of these hali-length
instruction. Note that not all of the functional unit types L, S,
M and D need be capable of operating in conjunction of
hali-length instructions for this invention to be used. Further,
no execute packet can include more instructions 1n any com-
bination of normal length and half-length exceeding the num-
ber of functional units.

The special fetch packet header of this invention signals the
hardware to mterpret an mstruction word normally or differ-
ently. In one embodiment the header bits signal that there are
additional bits 1n the header that can be used to extend the
opcode space and therefore extend the instruction set. As
described above, 1n a 32-bit header each of the other 7 instruc-
tions 1n a fetch packet can have their instruction extended by
a number of bits taken from predetermined locations 1n the
header. This enabled extended bit instructions such as greater
than 32-bits or additional 32-bit instructions can be added to
an 1nstruction set. This can be achieved even when there 1s
very little opcode space remaining at the cost of only a minor
increase i1n code size. This increase i1n code space 1s one
instruction per fetch packet where a special nstruction 1s
needed. This invention introduces no latency penalty and
does not involve switching modes.

In another embodiment, the header bits signal what bits in
the fetch packet should be interpreted as 16-bit mnstructions
and what bits should be interpreted as 32-bit instructions. A
16-bit 1nstruction space can be created that 1s a subset of a
32-bit instruction set. These 16-bit instructions can be used 1n
pairs. The header tells where the 16-bit instructions are
located and where the 32-bit mstructions are located. In the
preferred embodiment, 32-bit instructions cannot span 32-bit
boundaries. Thus only 7 bits 1n the header can indicate what
words 1n the fetch packet are 32-bit instructions and what
words 1n the fetch packet are pairs of 16-bit mstructions. The
16-bit 1nstructions such as instructions 10 1011, I1 1012, I3
1031, 14 1032, 16 1051, I7 1052, I8 1061 and 19 1062 1llus-
trated in FIG. 10 can have p and s that are decoded 1n the
manner described above to determine the execute packets and
the data path for each such instruction. Alternatively the addi-
tional bits 1n field 1120 of FIG. 11 can be used 1n place of p
and s bits to indicate what instructions execute 1n parallel
which data path 1s encoded. The modeless 1nstruction set of
this invention and selecting a 16-bit instruction set that 1s a
subset of a 32-bit 1struction set, enables the compiler to
delay instruction size selection until after the traditional com-
piler phases of instruction selection, register allocation and
instruction scheduling. Eliminating the limitations of instruc-
tion modes allows a compiler greater freedom 1n instruction
selection and allows the compiler/code generation tools to use
32-bitnstructions when necessary and use 16-bit instructions
when possible. The 16-bit instructions can be used at a finer
granularity than normally used 1n architectures with modes.

What 1s claimed 1s:

1. A method of operating a programmable data processor
that fetches instructions 1n predetermined fetch packets of
plural instructions slots comprising the steps of:
optionally substituting a header word for an nstruction in

a predetermined instruction slot within a fetch packet,

10

15

20

25

30

35

40

45

50

55

60

65

12

said header word including a umique 1dentifier different
from all normal 1nstructions;

detecting whether the unique identifier 1s within the prede-
termined 1nstruction slot of a fetch packet;

upon not detecting the unique 1dentifier 1s within the pre-
determined 1nstruction slot of a fetch packet, decoding
instructions 1n mstruction slots within the fetch packet
including said predetermined instruction slot 1n a first
manner; and

upon detecting the unique 1dentifier 1s within the predeter-
mined instruction slot of a fetch packet, decoding
instructions 1n other mstruction slots than said predeter-
mined 1nstruction slot within the fetch packet in a second
manner different from the first manner.

2. The method of claim 1, wherein:

said step of optionally substituting a header word for a
predetermined instruction within a fetch packet includes
providing an extension opcode field within said header
word corresponding to each instruction slot other than
said predetermined instruction slot within the fetch
packet;

said method further comprising the step of supplying each
extension opcode field to a decoder together with an
instruction 1n said corresponding instruction slot; and

said step of decoding instructions in other istruction slots
than said predetermined instruction slot within the fetch
packet 1n a second manner includes decoding said cor-
responding extension opcode field 1n conjunction with
decoding each instruction permitting decoding instruc-
tions with more bits than included within an nstruction
slot.

3. The method of claim 1, wherein:

said step of optionally substituting a header word for a
predetermined instruction within a fetch packet includes
providing a mode bit within said header word corre-
sponding to each instruction slot other than said prede-
termined 1nstruction slot within the fetch packet; and

said step of decoding instructions in other istruction slots
than said predetermined mstruction slot within the fetch
packet 1n a second manner includes decoding each
istruction 1n said first manner 1f said corresponding
mode bit has a first digital state and decoding each
instruction 1n said second manner 1f said corresponding,
mode bit has a second digital state opposite said first
digital state.

4. The method of claim 1, wherein:

said step of optionally substituting a header word for a
predetermined instruction within a fetch packet includes
providing a length bit within said header word corre-
sponding to each instruction slot other than said prede-
termined 1nstruction slot within the fetch packet; and

said step of decoding instructions in other istruction slots
than said predetermined mstruction slot within the fetch
packet 1n a second manner includes decoding each
instruction slot as a single normal length instruction
filling said 1nstruction slot if said corresponding length
bit has a first digital state and decoding each 1nstruction
slot as two reduced length instructions within said
istruction slot 1f said corresponding length bit has a
second digital state opposite said first digital state.

5. The method of claim 4, further comprising the steps of:

detecting data indicating instructions that can execute
simultaneously 1n parallel as an execute packet includ-
ng
detecting a p bit at a predetermined location within an

instruction slot having a corresponding length bit 1n
the first digital state, and




US 7,673,119 B2

13

detecting a corresponding p bit within said header word
for each instruction within an instruction slot having a
corresponding length bit in the second digital state;
and
simultaneously dispatching each instruction 1n an execute
packet to a corresponding functional unit for execution
including
dispatching any instruction in a next following nstruc-
tion slot 1n a same execute packet with all instructions
in an struction slot 11 the p bit corresponding to that
instruction slot has a first digital state, and
dispatching any instruction 1n a next following instruc-
tion slot1n a next execute packet following all instruc-
tions in an istruction slot if the p bit corresponding to
that instruction slot has a second digital state opposite
to the first digital state.
6. The method of claim 1, wherein:

said step ol optionally substituting a header word for a
predetermined instruction within a fetch packet includes
providing an extension opcode field within said header

word corresponding to each instruction slot other than
said predetermined 1nstruction slot within the fetch
packet,
providing a mode bit within said header word corre-
sponding to each instruction slot other than said pre-
determined instruction slot within the fetch packet;
said method further comprising the step of supplying each
extension opcode field to a decoder together with an
instruction 1n said corresponding instruction slot;
said step of decoding instructions in other mstruction slots
than said predetermined instruction slot within the fetch
packet 1 a second manner includes
decoding said corresponding extension opcode field 1n
conjunction with decoding each instruction permit-
ting decoding instructions with more bits than
included within an instruction slot,

decoding each instruction in said first manner 1t said
corresponding mode bit has a first digital state and
decoding each instruction 1n said second manner 1
said corresponding mode bit has a second digital state
opposite said first digital state.

7. A programmable data processor comprising;

a program fetch umt operable to fetch mstructions from a
memory 1n predetermined fetch packets of plural
instructions slots;
a plurality of instruction butlers, each operable to store an
instruction of one of said plural instruction slots;
a header decoder connected to a predetermined one of said
plurality of instruction buflers operable to detect
whether a header word 1n a predetermined 1nstruction
slot includes a unique 1dentifier different from all normal
instructions;
a plurality of instruction decoders operable to decode
instructions;
a plurality of functional units, each connected to a corre-
sponding one of said plurality of instruction decoders
and operable to execute a data processor operation cor-
responding to a decoded nstruction; and
a switch connected to said plurality of instruction butters,
said header decoder and said plurality of instruction
decoders, said switch operable to
dispatch an instruction from at least one instruction
butfer to a corresponding instruction decoder,

signal each instruction decoder to decode instructions 1n
instruction slots within a fetch packet including said
predetermined mstruction slot 1n a first manner when

5

10

15

20

25

30

35

40

45

50

55

60

65

14

said header decoder does not detect said header word
includes said unique 1dentifier different from all nor-
mal instructions, and
signal each instruction decoder to decode instructions in
other instruction slots than said predetermined
instruction slot within the fetch packet in a second
manner different from the first manner when said
header decoder detects said header word includes said
unique 1dentifier different from all normal 1nstruc-
tions.
8. The programmable data processor of claim 7, wherein:
said header decoder upon detection of said unique 1denti-
fier 1s further operable to detect an extension opcode
field within said header word corresponding to each
instruction slot other than said predetermined instruc-
tion slot within the fetch packet and supply said exten-
ston opcode fields to said switch; and
said switch 1s further operable to dispatch each extension
opcode field to a corresponding instruction decoder; and
cach of said plurality of instruction decoders 1s further
operable to decode instructions in the second manner
including decoding said corresponding extension
opcode field 1n conjunction with decoding each instruc-
tion permitting decoding instructions with more bits
than included within an 1nstruction butfer.
9. The programmable data processor of claim 7, wherein:
said header decoder upon detection of said unique 1denti-
fier 1s turther operable to detect a mode bit within said
header word corresponding to each instruction slot other
than said predetermined mstruction slot within the fetch
packet; and
said switch 1s further operable to
signal each instruction decoder to decode instructions
within the fetch packet 1n said first manner when said
corresponding mode bit has a first digital state, and
signal each instruction decoder to decode instructions 1n
other instruction slots than said predetermined
instruction slot within the fetch packet 1n said second
manner when said corresponding mode bit has a sec-
ond digital state opposite said first digital state.
10. The programmable data processor of claim 7, wherein:
said header decoder upon detection of said unique 1denti-
fier 1s Turther operable to detect a length bit within said
header word corresponding to each instruction slot other
than said predetermined mstruction slot within the fetch
packet; and
said switch 1s further operable to
dispatch all bits within an 1nstruction buffer to a corre-
sponding 1nstruction decoder when said correspond-
ing length bit has a first digital state, and
dispatch a first half of bits within an instruction butifer to
a first corresponding instruction decoder and dispatch
a second half of bits within said instruction butfer to a
second corresponding instruction decoder different
from said first corresponding instruction decoder
when said corresponding length bit has a second digi-
tal state opposite said first digital state.
11. The programmable data processor of claim 10,

wherein:

said header decoder 1s further operable to

detect a p bit at a predetermined location within said
predetermined one of said plurality of instruction
butifers corresponding to one of said instruction buil-
ers other than said predetermined one of said plurality
of instruction builers having a corresponding length
bit 1n said first digital state, and

supply said p bit to said switch; and




US 7,673,119 B2

15

said switch 1s further operable to

dispatch any instruction 1n a next following instruction
buifer 1n a same execute packet with all instructions 1n
an 1nstruction buftfer 11 the p bit corresponding to that
instruction buifer has a first digital state, and

dispatch any instruction in a next following instruction
butifer 1n a next execute packet following all istruc-
tions 1n an instruction butfer 11 the p bit corresponding
to that instruction bufier has a second digital state
opposite to the first digital state.

12. The programmable data processor of claim 7, wherein:

said header decoder upon detection of said unique 1dent-

fier 1s Turther operable to

detect an extension opcode field within said header word
corresponding to each instruction slot other than said
predetermined instruction slot within the fetch packet
and supply said extension opcode fields to said
switch, and

detect a mode bit within said header word corresponding
to each instruction slot other than said predetermined
instruction slot within the fetch packet;

said switch 1s further operable to

dispatch each extension opcode field to a corresponding
instruction decoder,
signal each instruction decoder to decode instructions
within the fetch packet 1n said first manner when said
corresponding mode bit has a first digital state, and
signal each mnstruction decoder to decode instructions in
other 1instruction slots than said predetermined
instruction slot within the fetch packet 1n said second
manner when said corresponding mode bit has a sec-
ond digital state opposite said first digital state; and
cach of plurality of said instruction decoders 1s further
operable to decode instructions in the second manner
including decoding said corresponding extension
opcode field 1n conjunction with decoding each instruc-
tion permitting decoding instructions with more bits
than included within an struction butfer.

13. A method of operating a programmable data processor
that fetches 1nstructions 1n predetermined fetch packets of a
predetermined number of plural instructions slots comprising,
the steps of:

coding istructions by

optionally selecting either a normal packet mode or an
alternative packet mode for each fetch packet;
upon selection of the normal packet mode, coding a
normal mode instruction in each instruction slot of the
fetch packet; and
upon selection of the alternative packet mode
coding a header word 1n a predetermined 1nstruction
slot within the fetch packet, said header word
including a unique i1dentifier different from all nor-
mal mode instructions and including at least one bit
indicating an alternative instruction mode for at
least one corresponding instruction slot in the fetch
packet,
coding an alternative mode instruction i1n each
instruction slot where the header word indicates the
alternative instruction mode, and
coding a normal mode struction for any 1nstruction
slot where the header word does not indicate the
alternative instruction mode; and

controlling operation of the programmable data processor

using the coded 1nstructions.

14. The method of claim 13, wherein:

said at least one bit indicating the alternative instruction

mode of the header word includes an extension opcode

10

15

20

25

30

35

40

45

50

55

60

65

16

field within said header word corresponding to each
instruction slot within the fetch packet other than the
predetermined 1nstruction slot; and

said step of coding an alternative mode 1nstruction includes
coding an alternative mode instruction for each instruc-
tion slot within the fetch packet other than the predeter-
mined instruction slot including a corresponding exten-
sion opcode field within the header word, whereby each
such alternative mode instruction includes more opcode
bits than included within an instruction slot.

15. The method of claim 13, wherein:

said at least one bit indicating the alternative instruction
mode of the header word includes a length bit corre-
sponding to each instruction slot within the fetch packet
other than said predetermined instruction slot;

said step of coding a normal mode struction for any
istruction slot within a fetch packet selected for the
alternative packet mode where the header word does not
indicate alternative instruction mode codes a normal
mode 1nstruction 1n an instruction slot 1f said corre-
sponding length bit has a first digital state; and

said step of coding an alternative mode nstruction codes
two reduced length instructions within said 1nstruction
slot 11 said corresponding length bit has a second digital
state opposite said first digital state.

16. The method of claim 13, wherein:

said at least one bit indicating the alternative instruction
mode of the header word includes

a mode bit corresponding to each instruction slot within
the fetch packet other than said predetermined
instruction slot, and

an extension opcode field within said header word cor-
responding to each instruction slot within the fetch
packet other than the predetermined 1nstruction slot;

said step of coding a normal mode instruction for any
instruction slot within a fetch packet selected for the
alternative packet mode codes a normal mode 1nstruc-
tion 1n an struction slot 1f said corresponding mode bit
has a first digital state; and

said step of coding an alternative mode mstruction codes an
alternative mode instruction for each istruction slot
within the fetch packet other than the predetermined
istruction slot including a corresponding extension
opcode field within the header word 11 said correspond-
ing mode bit has a second digital state opposite said first
digital state, whereby each such alternative mode
istruction includes more opcode bits than included
within an instruction slot.

17. The method of claim 13, wherein:

said at least one bit indicating the alternative instruction
mode of the header word includes a length bit corre-
sponding to each instruction slot within the fetch packet
other than said predetermined 1nstruction slot;

the method further comprising the step of determining
which normal mode nstructions and alternative mode
istructions can execute simultaneously in parallel as an
execute packet;

said step of coding a normal mode istruction for any
istruction slot within a fetch packet selected for the
normal packet mode indicates the normal packet mode
codes a normal mode instruction including a p bit at a
predetermined location within the instruction slot hav-
ing a {irst digital state 11 the normal mode 1nstruction can
execute simultaneously in parallel with an instruction 1n
a next mstruction slot and having a second digital state



US 7,673,119 B2

17

opposite to said first digital state 11 the normal mode
instruction cannot execute simultaneously in parallel
with a next instruction;
said step of coding a normal mode instruction for any
istruction slot within a fetch packet selected for the
alternative packet mode and the corresponding length bat
has a third digital state codes a normal mode 1nstruction
including a p bit at a predetermined location within the
istruction slot having a first digital state 11 the normal
mode 1nstruction can execute simultaneously in parallel
with an mstruction in the next instruction slot and having,
a second digital state opposite to said first digital state 1f
the normal mode instruction cannot execute simulta-
neously 1n parallel with a next mstruction; and
said step of coding an alternative mode 1nstruction codes
two reduced length instructions within said 1nstruction
slot 1f said corresponding length bit has a fourth digital
state opposite said third digital state, each reduced
length 1nstruction having a p bit at a predetermined
location within the 1nstruction slot having a first digital
state 11 the reduced length instruction can execute simul-
taneously in parallel with an instruction in the next
istruction slot and having a second digital state oppo-
site to said first digital state if the reduced length instruc-
tion cannot execute simultaneously in parallel with an
instruction 1n the next instruction slot.
18. The method of claim 13, wherein:
said at least one bit indicating the alternative instruction
mode of the header word includes
a length b1t corresponding to each instruction slot within
the fetch packet other than said predetermined
instruction slot, and
a p bit corresponding to each instruction slot within the
fetch packet other than said predetermined 1instruction
slot;
the method further comprising the step of determining
which normal mode nstructions and alternative mode
istructions can execute simultaneously in parallel as an
execute packet;
said step of coding a normal mode instruction for any
istruction slot within a fetch packet selected for the
normal packet mode codes a normal mode 1nstruction
including a p bit at a predetermined location within the
instruction slot having a first digital state 1f the normal
mode 1nstruction can execute simultaneously in parallel
with an 1nstruction 1n a next nstruction slot and having
a second digital state opposite to said first digital state 1f
the normal mode instruction cannot execute simulta-
neously 1n parallel with a next instruction;
said step of coding a normal mode instruction for any
instruction slot within a fetch packet selected for the
alternative packet mode and the corresponding length bat
has a third digital state codes a normal mode 1nstruction
including a p bit at a predetermined location within the
instruction slot having a first digital state 1f the normal
mode 1nstruction can execute simultaneously 1n parallel
with an 1nstruction in the next instruction slot and having
a second digital state opposite to said first digital state 1f
the normal mode 1instruction cannot execute simulta-
neously 1n parallel with a next instruction; and
said step of coding an alternative mode instruction codes
two reduced length instructions within said instruction
slot 1f said corresponding length bit has a fourth digital
state opposite said third digital state, the p bit for said
corresponding instruction slot in the header word having
the first digital state 11 the two reduced length nstruc-
tions can execute simultaneously in parallel with a next

5

10

15

20

25

30

35

40

45

50

55

60

65

18

instruction and having the second digital state opposite
to said first digital state if the two reduced length instruc-
tions cannot execute simultaneously 1n parallel with a
next mnstruction.

19. A method of operating a programmable data processor

that fetches instructions 1n predetermined fetch packets of a
predetermined number of plural imnstructions slots comprising,

the steps of:

optionally selecting either a normal packet mode or an
alternative packet mode for each fetch packet;
upon selection of the normal packet mode, coding a normal
mode instruction in each instruction slot of the fetch
packet;
upon selection of the alternative packet mode
coding a header word 1n a predetermined instruction slot
within the fetch packet, said header word including a
unique 1dentifier different from all normal mode
instructions and including at least one bit indicating
an alternative mstruction mode for at least one corre-
sponding 1nstruction slot 1n the fetch packet,
coding an alternative mode 1nstruction 1n each instruc-
tion slot where the header word indicates alternative
instruction mode, and
coding a normal mode nstruction for any instruction
slot where the header word does not indicate an alter-
native packet mode;
upon decoding a fetch packet detecting whether the unique
identifier of a header word 1s included within the prede-
termined instruction slot of a fetch packet;
upon not detecting the umique 1dentifier included within the
predetermined struction slot of a fetch packet, decod-
ing instructions in instruction slots within the fetch
packet including said predetermined mstruction slotin a
normal mode; and
upon detecting the unique i1dentifier included within the
predetermined 1nstruction slot of a fetch packet,
decoding instructions 1n the alternative packet mode for
each instruction slot where the header word 1ndicates
the alternative packet mode, and
decoding instructions 1n a normal mode struction for
cach instruction slot where the header word does not
indicate the alternative packet mode.
20. The method of claim 19, wherein:
said at least one bit indicating alternative packet mode of
the header word includes an extension opcode field
within said header word corresponding to each nstruc-
tion slot within the fetch packet other than the predeter-
mined 1nstruction slot;
said step of coding an alternative packet mode nstruction
includes coding an alternative packet mode instruction
for each istruction slot within the fetch packet other
than the predetermined instruction slot including a cor-
responding extension opcode field within the header
word, whereby each such alternative packet mode
instruction includes more opcode bits than included
within an instruction slot;
the method further comprising the step of upon decoding a
tetch packet, supplying each extension opcode field to a
decoder together with an mstruction in said correspond-
ing instruction slot; and
said step of decoding instructions 1n the alternative packet
mode includes decoding said corresponding extension
opcode field 1n conjunction with decoding the instruc-
tion.
21. The method of claim 19, wherein:
said at least one bit indicating the alternative instruction
mode of the header word includes a length bit corre-



US 7,673,119 B2

19

sponding to each instruction slot within the fetch packet
other than said predetermined 1nstruction slot;

said step of coding a normal mode instruction for any
instruction slot within a fetch packet selected for the
alternative packet mode codes a normal mode 1nstruc-
tion 11 an 1nstruction slot if said corresponding length bit
has a first digital state;

said step of coding an alternative mode 1nstruction codes
two reduced length instructions within said instruction
slot 11 said corresponding length bit has a second digital
state different from said first digital state;

said step of decoding instructions in a normal mode for
cach nstruction slot within a fetch packet selected for
the alternative packet mode decodes each instruction
slot as a single normal length instruction filling said
instruction slot1f said corresponding length bit has a first
digital state; and

said step of decoding instructions in the alternative mode
decodes each instruction slot as two reduced length
istructions within said instruction slot 1f said corre-
sponding length bit has said second digital state.

22. The method of claim 19, wherein:

said at least one bit indicating alternative instruction mode
of the header word includes

a mode bit corresponding to each instruction slot within
the fetch packet other than said predetermined
instruction slot, and

an extension opcode field within said header word cor-
responding to each instruction slot within the fetch
packet other than the predetermined instruction slot;

said step of coding a normal mode instruction for any
istruction slot within a fetch packet selected for the
alternative packet mode codes a normal mode 1nstruc-
tion 1n an mstruction slot if said corresponding mode bit
has a first digital state;

said step of coding an alternative mode instruction codes an
alternative mode 1nstruction for each instruction slot
within the fetch packet other than the predetermined
instruction slot including a extension opcode field
within the header word corresponding to each instruc-
tion slot within the fetch packet other than the predeter-
mined instruction slotif said corresponding mode bit has
a second digital state opposite said first digital state,
whereby each such alternative mode 1nstruction
includes more opcode bits than included within an
instruction slot;

the method further comprising the step of upon decoding a
tetch packet, supplying each extension opcode field to a
decoder together with an mstruction in said correspond-
ing instruction slot;

said step of decoding instructions in a normal mode for
cach instruction slot within a fetch packet selected for
the alternative packet mode decodes each instruction
slot as a normal mode instruction 1f said corresponding,
mode bit has a first digital state; and

said step of decoding instructions in the alternative mode
decodes said corresponding extension opcode field 1n
conjunction with the instruction 1f said corresponding
mode bit has a second digital state opposite to the first
digital state.

23. The method of claim 19, wherein:

said at least one bit indicating the alternative instruction
mode of the header word includes a length bit corre-
sponding to each mnstruction slot within the fetch packet
other than said predetermined instruction slot;

5

10

15

20

25

30

35

40

45

50

55

60

65

20

the method further comprising the step of determining
which normal mode nstructions and alternative mode
instructions can execute simultaneously in parallel as an
execute packet;
said step of coding a normal mode istruction for any
istruction slot within a fetch packet selected for the
normal packet mode codes a normal mode struction
including a p bit at a predetermined location within the
istruction slot having a first digital state 11 the normal
mode 1nstruction can execute simultaneously 1n parallel
with an mstruction 1n a next instruction slot and having
a second digital state opposite to said first digital state 1f
the normal mode instruction cannot execute simulta-
neously 1n parallel with a next instruction;
said step of coding a normal mode instruction for any
instruction slot within a fetch packet selected for the
alternative packet mode and the corresponding length bat
has a third digital state includes a p bit at a predetermined
location within the instruction slot having the first digital
state 11 the normal mode 1nstruction can execute simul-
taneously 1n parallel with an instruction in the next
instruction slot and having the second digital state if the
normal mode instruction cannot execute simultaneously
in parallel with a next instruction;
said step of coding an alternative mode struction codes
two reduced length instructions within said 1nstruction
slot 11 said corresponding length bit has a fourth digital
state opposite said third digital state, each reduced
length instruction having a p bit at a predetermined
location within the instruction slot having the first digital
state 1f the reduced length instruction can execute simul-
taneously 1n parallel with an instruction in the next
instruction slot and having the second digital state if the
reduced length instruction cannot execute simulta-
neously in parallel with an instruction 1in the next instruc-
tion slot;
the method further comprises the step of dispatching an
instruction 1 an execute packet to a corresponding func-
tional unit including
dispatching any instruction i a next instruction slot
simultaneously 1 a same execute packet with a nor-
mal mode instruction in a current instruction slotif the
p bit of a current normal mode 1nstruction has the first
digital state, and
dispatching any istruction in a next imnstruction slot in a
next execute packet following a normal mode instruc-
tion 1n a current mnstruction slot it the p bit of the
current normal mode instruction has the second digi-
tal state,
dispatching any instruction in a next instruction slot
simultaneously 1n the same execute packet with an
alternative mode 1nstruction in the current instruction
slot 1f the p bit of a current alternative mode 1nstruc-
tion has the first digital state, and
dispatching any instruction in a next instruction slot in a
next execute packet following an alternative mode
instruction 1f the p bit of the current alternative mode
instruction has the second digital state.
24. The method of claim 19, wherein:
said at least one bit indicating alternative instruction mode
of the header word includes
a length b1t corresponding to each 1nstruction slot within
the fetch packet other than said predetermined
instruction slot, and
a p bit corresponding to each instruction slot within the
tetch packet other than said predetermined instruction
slot;




US 7,673,119 B2

21

the method further comprising the step of determining

which normal mode instructions and alternative mode
instructions can execute simultaneously in parallel as an
execute packet;

said step of coding a normal mode instruction for any

istruction slot within a fetch packet selected for the
normal packet mode codes a normal instruction 1nclud-
ing a p bitat a predetermined location within the mstruc-
tion slot having a first digital state 1f the normal mode
istruction can execute simultaneously in parallel with
an 1nstruction in a next imstruction slot and having a
second digital state opposite to said first digital state 1f
the normal mode instruction cannot execute simulta-
neously in parallel with an instruction in the next istruc-
tion slot;

said step of coding a normal mode instruction for any

istruction slot within a fetch packet selected for the
alternative packet mode and the corresponding length bat
has a third digital state codes a normal mode 1nstruction
including a p bit at a predetermined location within the
instruction slot having a first digital state 11 the normal
mode 1nstruction can execute simultaneously in parallel
with an istruction 1in the next instruction slot and having,
a second digital state opposite to said first digital state 1f
the normal mode instruction cannot execute simulta-
neously in parallel with an instruction in the next instruc-
tion slot; and

said step of coding an alternative mode 1nstruction codes

two reduced length instructions within said 1nstruction
slot 1f said corresponding length bit has a fourth digital
state opposite said third digital state, the p bit for said

10

15

20

25

30

22

instruction slot having a first digital state i1f the two
reduced length instructions can execute simultaneously
in parallel with an instruction 1n the next instruction slot
and having a second digital state opposite to said first
digital state 1f the two reduced length instructions cannot
execute simultaneously in parallel with an instruction 1n
the next instruction slot;
the method further comprises the step of dispatching an
instruction 1 an execute packet to a corresponding func-
tional unit including
dispatching any instruction in a next instruction slot
simultaneously 1n a same execute packet with a nor-
mal mode instruction in a current instruction slotif the
p bit of the current normal mode 1nstruction has the
first digital state, and
dispatching any instruction 1n a next instruction slot in a
next execute packet following a normal mode mnstruc-
tion in a current instruction slot 1f the p bit of a current
normal mode 1nstruction has the second digital state,
dispatching any instruction in a next instruction slot
simultaneously 1n the same execute packet with an
alternative mode instruction in the current instruction
slot1f the p bit of the header word corresponding to the
current instruction slot has the first digital state, and
dispatching any mstruction in a next imnstruction slot in a
next execute packet following an alternative mode
instruction 1i the p bit of the header word correspond-
ing to the current instruction slot has the second digi-
tal state.




	Front Page
	Drawings
	Specification
	Claims

