United States Patent

US007669183B2

(12) (10) Patent No.: US 7,669,188 B2
Nickell et al. 45) Date of Patent: Feb. 23, 2010
(54) SYSTEM AND METHOD FOR IDENTIFYING 6,502,102 B1* 12/2002 Haswelletal. 707/102
VIABLE REFACTORINGS OF PROGRAM 6,807,548 B1* 10/2004 Kemper 707/103 R
(SZI(J)I]%% USING A COMPREHENSIVE TEST OTHER PURT ICATIONS
L1 et al., “Tool support for refactoring functional programs” Aug.
(75) Inventors: Eric Stephen Nickell, Los Gatos, CA 2003, ACM, Haskell *03: Proceedings of the 2003 ACM SIGPLAN
(US); Ian E. Smith, Seattle, WA (US) workshop on Haskell .
Streckenbach et al. “Refactoring class hierarchies with Kaba” Oct.
(73) Assignee: Palo Alto Research Center ix([)ogj AFM;QCfMtSI_GPIEAN N‘?tic‘?}ﬂl"% 39 IS?;IF é Oi Coder
. TOWICT, Clacloring 1mproving C LJCSIEI XISUNE L.0dac,
Incorporated, Palo Alto, CA (US) Chs. 6-12, Addison-Wesley (1999)
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 927 days. Primary Examiner—James Rutten
(74) Attorney, Agent, or Firm—Patrick 1.S. Inouye; Krista A.
(21) Appl. No.: 11/003,254 Wittman
(22) Filed: Dec. 3, 2004 (57) ABSTRACT
(65) Prior Publication Data A system and method for identilying viable refactorings of
program code using a comprehensive test suite 1s presented.
US 2006/0123394 Al Jun. 3, 2006 Program code 1s maintained, including program statements
written 1n accordance with a programming language an
(51) Int.Cl ltten) d th a programming language and
GOESF 9 /44 (2006.01) defining operations executed following transformation into
GOGE 9/43 (200 6. O:h) machine code. A test suite associated with the program code
COGE 11/00 (200 6. O:L) 1s specified and includes one or more additional program
) US. Cl - 1'7/“1 56 7177125 717/137- operations to determine satisfactory generation of expected
(52) B " . ’ results during the operations execution. A plurality of refac-
714/19; 714/38 torings are speculatively applied to the program code b
: : : / & P Yy app prog y
(58) Field of ‘Cla‘smﬁcatlon Search - 71°7/124 evaluating one or more of the program statements against a set
See application file for complete search history. of refactoring rules and restructuring the program statements
(56) References Cited pursuant to at least one refactoring rule. The test suite 1s

U.S. PATENT DOCUMENTS

5,673,387 A * 9/1997 Chenetal. 714/38

5,974,255 A * 10/1999 Gossam et al. 717/124

6,002,869 A * 12/1999 Hinckley 717/124
30

\ 1

executed against the program code following each restructur-
ing of the program statements and each refactoring that passes
the test suite 1s determined.

21 Claims, 8 Drawing Sheets

3 4\ DEVELOPMENT PLATFORM 3

y \
REFACTORING
RULES

ORIGINAL CODE

REFACTORED] REFCTORNG
CODE r
_

-
T CODETESTER

32

33

REFACTORINGS | 97

U.S. Patent Feb. 23, 2010 Sheet 1 of 8 US 7,669,188 B2

US 7,669,188 B2

Sheet 2 of 8

Feb. 23, 2010

U.S. Patent

SONOLOVARY |, 3000 |, ' e b
318VLd300V Q0L
B oL MOLOVARY [T N 3000 NI¥LNIYA
\ \ \ \ \
GC e % 00 7
02

U.S. Patent Feb. 23, 2010 Sheet 3 of 8 US 7,669,188 B2

DEVELOPMENT PLATFORM %

REFACTORED REFACTORING REFACTORING

ENGINE RULES
E .

CODE TESTER .—

32
A A

REFACTORINGS | ¥

CODE

ORIGINAL CODE

F1G. 3

U.S. Patent Feb. 23, 2010 Sheet 4 of 8 US 7,669,188 B2

40

\

string key = tok.next ();
f (key.equals ("DESC")) {something (); }

string key = tok.next ();
f (key.equals (foo ())) {something (); }

F1G. 4

o0

N

string key = tok.next ();
string temp1 = “DESC”;
f (key.equals (temp1)) {something (); }

string key = tok.next ();
string temp1 = foo ();
f (key.equals (temp1)) {something (); }

FIG. S

U.S. Patent Feb. 23, 2010 Sheet 5 of 8 US 7,669,188 B2

00

N

string temp1 = “DESC”;
string key = tok.next ();
if (key.equals (temp1)) {something (); }

string temp1 = foo ();
string key = tok.next ();
if (key.equals (temp1)) {something (); }

F1G. 6

0

N

VOIQ parseb\o.ck (InputStream In) {

Token t1 = in.getloken ();
requireTokenBe (* {’);

Token 2 = in.getToken ();
requireTokenBe (“});

F1G. 7

U.S. Patent Feb. 23, 2010 Sheet 6 of 8 US 7,669,188 B2

80

\'

void parseblock (InputStream in) {

Token temp = in.getToken ();
Token t1 = temp;
requireTokenBe (“ {’);

Token t2 = temp;
requirelokenBe ("});

F1G. 8

U.S. Patent Feb. 23, 2010 Sheet 7 of 8 US 7,669,188 B2

SIART

RETRIEVE CODE AND TEST SUITE ™N< g

REFACTOR 0

EXECUTE TEST SUITE 03

95
NO | BACK OUT REFACTORING
(OPTIONAL)

YES

YES

0
NO

PRESENT REFACTORING(S) 07

END

F1G. 9

U.S. Patent Feb. 23, 2010 Sheet 8 of 8 US 7,669,188 B2

101 103

ORIGINAL CODE 0 REFACTORING

2

US 7,609,188 B2

1

SYSTEM AND METHOD FOR IDENTIFYING
VIABLE REFACTORINGS OF PROGRAM
CODE USING A COMPREHENSIVE TEST

SUITE

FIELD

This application relates 1n general to program code refac-
toring and, 1n particular, to a system and method for 1denti-
tying viable refactorings of program code using a compre-
hensive test suite.

BACKGROUND

Commercial software development 1s a maturing disci-
pline, which has historically been characterized by divergent
approaches to design, coding, testing, and maintenance.
Extreme programming, one ol several emerging, so-called
“agile methodologies,” attempts to unily the software devel-
opment cycle into a holistic process to improve code quality
and product viability, such as described 1n K. Beck, “Extreme
Programming Explained: Embrace Change,” Addison-Wes-
ley (2000), the disclosure of which 1s incorporated by refer-
ence. Extreme programming 1s practiced through simple
design, small releases, metaphors, testing, refactoring, pair
programming, and continuous integration.

Refactoring 1s an mherent part of extreme programming,
and has been adopted to facilitate the process of adding fea-
tures to existing program code. Refactoring, however, 1s not
exclusive to extreme programming and can be applied to
other software development methodologies. Refactoring 1s
defined as the process of changing soitware such that the
changes do not alter the external behavior of the code, yet
improve the internal code structure. As a result, refactoring
improves code design aiter the code has been written by
removing duplication, improving communication, simplify-
ing structure, and adding flexibility.

Testing 15 also an 1nherent part of extreme programming,
which divides testing into two categories. First, programmer
or unit tests are written and maintained as part of the devel-
opment activity in the same programming language as the
code. Unit tests are integrated at the class level, preferably
independently of each other and test the classes to verily
complicated functionality and unusual circumstances. Unit
tests also document code by explicitly indicating what results
should be expected for typical cases. Second, user or accep-
tance tests evaluate the functionality of an entire system,
generally as specified by a customer or end user. Acceptance
are typically written 1n a scripting language or in the same
programming language as the code to check the overall func-
tionality of the program by treating the code as a black box
and omitting specific knowledge of system internals. Accep-
tance tests touch at application programming and graphical
user interfaces to apply domain-specific data. When properly
written, unit tests and acceptance tests can form comprehen-
stve test suites that can dynamically verily program correct-
ness at runtime. As well, either unit tests or acceptance tests
can, by themselves, be considered comprehensive when each
point of Tunctionality has a set of covering tests, which ensure
correct functioning and show some resistance to easily fore-
seen faults.

In contrast, refactoring 1s static activity that 1s convention-
ally applied to code as a structured, yet subjective methodol-
ogy. In the general case, refactoring 1s as creative a process as
the development of original program code. The critical points
that distinguish general programming and refactoring are
that: (1) the needed functionality 1s not changed as the result

10

15

20

25

30

35

40

45

50

55

60

65

2

of the software changing, and (2) the soitware 1s improved 1n
some way, such as being smaller, simpler, or made amenable
to a subsequent development. Although refactoring can be
applied to all forms of structured program code, refactoring 1s
most effectively applied to object oriented code, preferably
within the context of a testing framework. Refactoring can
involve selecting and restructuring code according to well-
accepted refactoring rules, such as listed in the catalogue of
refactoring rules described i M. Fowler, “Refactoring
Improving The Design Of Existing Code,” Chs. 6-12, Addi-
son-Wesley (1999), the disclosure of which 1s incorporated
by reference. The validity of refactoring rules can be deter-
mined through testing or semantic proofs, which can also be
subject to assumptions regarding the code.

Ideally, refactoring should be applied as a continuous pro-
cess integral to the overall software development cycle. Iden-
tifying opportunities within code to apply refactoring 1s nev-
ertheless subjective and relatively ad hoc, involving visual
ispection and manual rewritings of code. Moreover, the set
of refactoring rules chosen tends to be highly dependent upon
the experience and preferences of the developers mvolved.
Consequently, automated refactoring methodologies gener-
ally are conservative and apply only to those refactorings,
which can be proven semantically correct, or can be proven
semantically correct after making certain assumptions. Thus,
the code 1s only evaluated within the context of literal class
definitions and runtime constraints and other factors placed
on the code 1n the dynamic environment are ignored during
refactoring selection. In addition, automated refactoring
methodologies require human initiation, often through the
use of an integrated development environment. As a result,
code refactored through automated methodologies often
remains suitable for further refactoring.

Therefore, there 1s a need for an approach to providing
automated 1identification of arange of useable refactorings for
code determined within a static and dynamic context. Prefer-
ably, such an approach would allow a wider range of refac-
torings than only those refactorings proven semantically cor-
rect and would apply comprehensive testing to validate the
program correctness.

SUMMARY

One embodiment provides a system and method for 1den-
tifying viable refactorings of program code using a compre-
hensive test suite. Program code 1s maintained, including
program statements written in accordance with a program-
ming language and defining operations executed following
transformation into machine code. A test suite associated with
the program code 1s specified and includes one or more addi-
tional program operations to determine satisfactory genera-
tion of expected results during the operations execution. A
plurality of refactorings are speculatively applied to the pro-
gram code by evaluating one or more of the program state-
ments against a set of refactoring rules restructuring the pro-
gram statements pursuant to at least one refactoring rule. The
test suite 1s executed against the program code following each
restructuring of the program statements and each refactoring,
that passes the test suite 1s determined.

Still other embodiments of the present immvention will
become readily apparent to those skilled 1n the art from the
following detailed description, wherein are described
embodiments by way of illustrating the best mode contem-
plated for carrying out the invention. As will be realized, the
invention 1s capable of other and different embodiments and
its several details are capable of modifications in various
obvious respects, all without departing from the spirit and the

US 7,609,188 B2

3

scope of the present invention. Accordingly, the drawings and
detailed description are to be regarded as 1llustrative in nature
and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing, by way of example, a
development workstation upon which to execute automated
refactorings.

FI1G. 2 1s a process tflow diagram showing the identification
of viable refactorings of program code using a comprehensive
test suite 1n accordance with one embodiment.

FIG. 3 1s a functional block diagram showing software
modules for identifying viable refactorings of program code,
such as used in the system of FIG. 1.

FIGS. 4-8 are block diagrams showing, by way of example,
pseudo code for a series of refactorings.

FIG. 9 1s a flow diagram showing a method for identifying,
viable refactorings of program code using a comprehensive
test suite, 1n accordance with one embodiment.

FIG. 10 1s a graph diagram 100 showing, by way of
example, constituent refactorings for a candidate compound
refactoring as depicted 1n a logically-defined graphical search
space.

DETAILED DESCRIPTION

Development Environment

FI1G. 1 1s a block diagram 10 showing, by way of example,
a development workstation 11 upon which to execute auto-
mated refactorings. Program code 16 1s written 1n accordance
with the programming language on a development platform
11 and 1s refactored through a refactoring engine, as further
described below with reference to FIG. 3.

Preferably, the development platform 11 1s a general-pur-
pose computer executing an operating system and providing,
an application development environment. The development
platform 11 includes components conventionally found 1n a
personal computer, such as, for example, a central processing
unit (CPU) 12, display 13, keyboard 14, mouse 15, and vari-
ous components for interconnecting these elements. Further
user interfacing means for iputting and displaying informa-
tion from and to a human developer could also be provided.
Program code, including software programs, and data is
loaded 1nto memory for execution and processing by the CPU
and results are generated for display, output, transmittal, or
storage.

Process Flow

FI1G. 2 1s a process flow diagram 20 showing the 1dentifi-
cation of viable refactorings of program code 16 using a
comprehensive test suite 1n accordance with one embodi-
ment. Processing occurs 1n five stages. Initially, the program
code 16 1s maintained (operation 21), generally as part of a
soltware development project by a team of developers, who
design, code, test and maintain the program code 16 within an
integrated development environment. As an integral part of
code design, the developers specily a comprehensive test
suite (operation 22) that provides verification of correct pro-
gram execution. Throughout the development process, the
program code 1s speculatively refactored (operation 23) by
applying one or more refactoring rules to restructure the
program code 16 without affecting external behavior. During,
refactoring, the refactored code 1s continually tested (opera-
tion 24) using the comprehensive test suite, which verifies
that the proposed refactorings do not alter the external behav-
10or of the program code 16 as specified by the comprehensive

10

15

20

25

30

35

40

45

50

55

60

65

4

test suite. Lastly, acceptable refactorings may be periodically
presented to the developers (operation 25).

Software Modules

FIG. 3 1s a functional block diagram 30 showing software
modules for identifying viable refactorings of program code
16, such as used 1n the system of FIG. 1. The development
platform 11 includes a refactoring engine 31 and code tester
32. The refactoring engine 31 applies refactorings by select-
ing one or more rules from a set of refactoring rules 36 to
original program code 33. The refactoring rules 36 specity
improvements to the internal structure of the code without
changing the external behavior of the code during execution.
The refactoring rules 36 can be selected from a catalogue,
such as described 1n M. Fowler, supra., and can also include
other refactoring rules specified by the developers, including
individual refactorings, which can be proven semantically
correct or testably correct, or compound refactorings, such as
described in commonly-assigned U.S. Pat. No. 7,451,439,
1ssued Nov. 11, 2008, to Nickell et al., the disclosure of which
1s incorporated by reference. The refactoring engine 31 gen-
erates refactored code 34 after the application of each refac-
toring rule 36. The refactored code 34 can include one or more
refactorings, which each can include the application of one or
more of the refactoring rules 36.

The code tester 32 tests the refactored code 34 to ensure
program correctness using a comprehensive test suite 35. The
test suite 35 must be sufficient to subjectively satisty the
developers and can include unit tests, acceptance tests, or a
combination of tests. Critically, the test suite 35 must be 1n an
executable form to enable automated correctness testing, yet
not be limited to ensuring only syntactic correctness. The
code tester 32 determines that each of the refactorings applied
to the original code 33 1s acceptable 11 the refactored code 34
passes the test suite 35. Those refactorings 37 that pass the test
suite 35 may be presented to the developers. In addition, there
may be other criteria for determining whether a refactoring,
should be presented to developers, as well as whether the
refactoring 1s valid.

REFACTORING EXAMPLES

FIGS. 4-8 are block diagrams showing, by way of example,
pseudo code for a series of refactorings.

FIG. 9 1s a flow diagram showing a method for identifying
viable refactoring of program code using a comprehensive
test suite, 1n accordance with one embodiment. Referring first
to FIGS. 4-6, a syntactically correct but testably incorrect
refactoring that can be speculatively applied 1s shown. Refer-
ring 1mitially to FIG. 4, an original code segment 40 1s shown
and includes two non-parametered conditional statements, 1f
(key.equals(“DESC”)) {something();} and if (key.equals
(“DESC™)) {something();}, that represent potentially dupli-
cated code. Referring next to FIG. 5, a first refactored code
segment 30 1s shown. The pair of conditional statements have
been refactored by removing the conditional test values 1nto
separate assignment statements, string temp1="DESC”"; and
string templ=foo(), and replacing the test values by the local
variable templ. Referring finally to FIG. 6, a second refac-
tored code segment 60 1s shown. The pair of assignment
statements, string key=tok.next(), has been “bubbled” down-
wards, attempting to increase the number of sequential 1den-
tical statements the two code fragments have 1n common.

While syntactically correct, the validity of this refactoring,
cannot be determined unless verified by testing or by pro-
grammer inspection because the reordering of the calls to foo
() and tok.next() may or may not be valid. The refactoring

US 7,609,188 B2

S

might be invalid, for example, 1f the method foo() itself
accesses or changes the state of the token input stream. This
refactoring would be 1dentified as improper upon execution of
the comprehensive test suite 35 and would be backed out of
the refactored code.

Referring next to FIGS. 7-8, a second example of a syn-
tactically correct but testably incorrect refactoring that can
also be speculatively applied 1s shown. Referring initially to
FIG. 7, an original code segment 70 1s shown and includes a
pair of assignment statements, Token t1=1n.getToken(), that
receive values through a call on a method mn.getToken() that
reads an 1mput stream in. Superficially, the assignment state-
ments appear to constitute duplicated code. Referring next to
FIG. 8, a refactored code segment 80 1s shown. The pair of
assignment statements have been refactored by replacing the
calls on the mnput stream method in.getToken() with a local
variable temp. In addition, the method call in.getToken() has
been bubbled upwards and introduced 1n a new assignment
statement, Token temp=in.getToken(). While also syntacti-
cally correct, this refactoring 1s improper because the con-
straints on the ordering of calls on the mnput stream method
call in.getToken() are 1ignored. This refactoring would also be
identified as improper upon execution of the comprehensive
test suite 35 and would be backed out of the refactored code.

Method

FIG. 9 15 a flow diagram 90 showing a method for identi-
tying viable refactorings of program code 16 using a compre-
hensive test suite 35, 1n accordance with one embodiment.
The purpose of the method 1s to speculatively refactor and test
program code against a comprehensive test suite 35 to 1den-
tify those refactorings, which are correct and viable and,
therefore, worthy for presenting to developers working 1n an
automated refactoring environment, depending on other cri-
teria. The method 1s described as a sequence of process opera-
tions or steps, which can be executed, for instance, by a
development platform 11.

Initially, the original program code 33 to be refactored and
the test suite 35 are retrieved (block 91). In one embodiment,
the program code 33 1s written in an object-oriented program-
ming language 1n conjunction with a framework that supports
unit testing. In a further embodiment, the test suite 35 speci-
fies acceptance tests written 1n a scripting language that can
be executed against the refactored code 34. The program code
16 1s then speculatively refactored (block 92) by applying one
or more refactorings through an automated process with each
refactoring requiring the application of one or more refactor-
ing rules 36. The test suite 35 1s executed against the refac-
tored code (block 93) following one or more refactorings. I
the refactored code does not successtully pass the execution
of the test suite 35 (block 94), the refactoring can optionally
be backed out of the program code 16 (block 95) or left in, 1T
the refactoring 1s performed on a copy of the program code
16. Otherwise, the refactoring 1s acceptable. Further refactor-
ings could be speculatively applied (block 96) and, upon
completion of the last refactoring, the refactorings are pre-
sented to the developers (block 97).

While the invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled 1n the art will understand that the foregoing and other
changes 1n form and detail may be made therein without
departing from the spirit and scope.

Referring next to FIG. 10, the states of the original code
segment 40 and the first refactored code segment 50 are
respectively shown as nodes 101, 102 1n a logically defined
graphical search space. The relative difference between the
states of the original code segment 40 and the refactored code

5

10

15

20

25

30

35

40

45

50

55

60

65

6

segment 50 are represented as a weight assigned to a directed
edge 104 from node 101 to node 102. The weight reflects the
improvement, degradation, or status quo of the first refactor-
ing. The state of the second refactored code segment 60 1s
shown as node 103. The relative difference between the states
of the first refactored code segment 50 and the second refac-
tored code segment 60 1s represented as a weight assigned to
a directed edge 105 from node 102 to node 103.

The relative differences, as reflected in the assigned
weights, reflect quantitative metrics, which are used to quan-
titatively measure the actual and potential differences of the
original code 33 and refactored code 34. The search space 1s
progressively built with each successive application of a
refactoring 37 and the relative differences can be cumula-
tively accrued on a per-refactoring basis or aggregated upon
completion of a series of refactorings, such as may occur
when no further refactorings can be found for the program
code. The quantitative metrics can be applied as a threshold
for presentation of a refactoring 37 to developers or to deter-
mine which of two or more refactorings 37 has a higher
priority for presentation to developers. In addition, quantita-
tive metrics can reflect the potential of a refactoring 37 foruse
in a further refactoring. Other types of quantitative metrics
and graphical representations are possible.

What 1s claimed 1s:

1. A system for identifying viable refactorings of program
code using a comprehensive test suite, comprising:

a memory configured to store data comprising:

original program code comprising program statements
written in accordance with a programming language
and defining operations executed following transior-
mation into machine code;

a test suite associated with the original program code
and comprising one or more additional operations and
expected results;

a refactoring engine, comprising;

a selection module configured to select a set of refactor-
ing rules and to automatically apply refactorings to
the original program code; and

an evaluation module configured to evaluate one or more
of the program statements in the original program
code against the refactoring rules and to restructure
the program statements pursuant to the one such
refactoring rule from the refactoring rule set; and

a code tester comprising:

a test execution module configured to execute the addi-
tional program operations against the program state-
ments as restructured;

a comparison module configured to compare actual
results from the original program operations’ execu-
tion against the expected results;

a reversion module configured to revert upon unsatisfac-
tory comparison the restructured program statements
to the original program statements and to select
another such refactoring rule from the refactoring rule
set for automatic application to the original program
code; and

a conversion module configured to save upon satisfac-
tory comparison the restructured program statements
to the original program statements and to select
another such refactoring rule from the refactoring rule
set for automatic application to the original program
code, wherein the refactorings resulting 1n satisfac-
tory comparison of the actual results to the expected
results are assigned weightings quantifying the
amount of difference between the original program
statements and the restructured program statements

US 7,609,188 B2

7

and are exposed based on the weightings to a devel-
oper through a user interface.

2. A system according to claim 1, wherein the test suite
comprises unit tests associated with specific program state-
ments collectively performing a related task.

3. A system according to claim 2, wherein the unit tests
comprise program statements written i accordance with the
programming language.

4. A system according to claim 1, wherein the test suite
comprises an acceptance test associated with the program
code overall.

5. A system according to claim 4, wherein the acceptance
test comprises program statements written in accordance with
a scripting language.

6. A system according to claim 1, wherein the refactoring
engine selects the refactoring rules set from the group of
refactorings comprising provably valid refactorings, prov-
ably valid refactorings subject to assumptions and testably
valid refactorings.

7. A system according to claim 1, wherein the refactorings
are integrated through a framework defining testing function-
ality and comprising program statements written 1n accor-
dance with the programming language.

8. A system according to claim 1, wherein the refactorings
resulting in satisfactory comparison of actual results to
expected results are exposed through a user interface.

9. A system according to claim 1, wherein the program-
ming language comprises an object oriented programming,
language.

10. A system according to claim 9, wherein a test class 1s
provided for each class 1n the program code.

11. A method for identifying viable refactorings of pro-
gram code using a comprehensive test suite executing on a
processor and memory, comprising:

maintaiming original program code comprising program

statements written in accordance with a programming

language and defining operations executed following
transformation into machine code;

speciiying a test suite associated with the original program
code and comprising one or more additional program
operations and expected results;

automatically applying refactorings to the original pro-
gram code, comprising:
selecting a set of refactoring rules;

evaluating one or more of the program statements in the
original program code against one such refactoring
rule from the refactoring rule set;

restructuring the program statements pursuant to the one
such refactoring rule;

executing the additional program operations against the
program statements as restructured;

10

15

20

25

30

35

40

45

50

8

comparing actual results from the additional program
operations’ execution against the expected results;

upon unsatisfactory comparison, reverting the restruc-
tured program statements to the original program
statements and selecting another such refactoring rule
from the refactoring rule set for automatic application
to the original program code; and

upon satisfactory comparison, saving the restructured
program statements to the original program code and
selecting another such refactoring rule from the refac-
toring rule set for automatic application to the original
program code, wherein the refactorings resulting 1n
satisfactory comparison of the actual results to the
expected results are assigned weightings quantifying
the amount of difference between the original pro-
gram statements and the restructured program state-
ments and are exposed based on the weightings to a
developer through a user interface.

12. A method according to claim 11, wherein the test suite
comprises unit tests associated with specific program state-
ments collectively performing a related task.

13. A method according to claim 12, wherein the unit tests
comprise program statements written 1n accordance with the
programming language.

14. A method according to claim 11, wherein the test suite
comprises an acceptance test associated with the program
code overall.

15. A method according to claim 14, wherein the accep-
tance test comprises program statements written in accor-
dance with a scripting language.

16. A method according to claim 11, further comprising;:

selecting the refactoring rules set from the group of refac-

torings comprising provably valid refactorings, prov-
ably valid refactorings subject to assumptions and test-
ably valid refactorings.

17. A method according to claim 11, further comprising;:

integrating the refactorings through a framework defining

testing functionality and comprising program state-
ments written 1n accordance with the programming lan-
guage.

18. A method according to claim 11, further comprising;:

exposing the refactorings resulting 1n satisfactory compari-

son of actual results to expected results through a user
interface.

19. A method according to claim 11, wherein the program-
ming language comprises an object oriented programming
language.

20. A method according to claim 19, further comprising:

providing a test class for each class 1n the program code.

21. A computer-readable storage medium holding code for
performing the method according to claim 11.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

