12 United States Patent

US007669180B2

(10) Patent No.: US 7,669,180 B2

Bassin et al. 45) Date of Patent: Feb. 23, 2010
(54) METHOD AND APPARATUS FOR 6,219,805 B1 4/2001 Jonesetal.ccu...... 714/38
AUTOMATED RISK ASSESSMENT IN 6,397,202 B1* 5/2002 Higgins et al.oe......... 706/47
6,675,127 B2* 1/2004 LaBlancetal. 702/181
SOFTWARE PROJECTS N
2003/0033191 Al1* 2/2003 Daviesetal. 705/10
: : _ 2005/0065753 Al* 3/2005 Bigusetal. 702/186
(75) Inventors: Kathryn Bassin, Harpursville, NY (US); 2005/0283751 AL* 12/2005 Bassin etal. ..o............ 717/100
Robert M. Delmonico, White Plains,
NY (US); Tamir Klinger, New York, OTHER PURL ICATIONS
NY (US); Theresa Kratschmer,
Yorktown Heights, NY (US); Bonnie Chen, Y., Probert, R. L., and Sims, D. P. 2002. Specification-based
Ray, South Nyack, NY (US); regression test selection with risk analysis. In Proceedings of the
Padmanabhan Santhanam, Yorktown 2002 Conference of the Centre For Advanced Studies on Collabora-
Heights, NY (US) tive Research (Toronto, Ontario, Canada, Sep. 30-Oct. 3, 2002). D. A.
! Stewart and J. H. Johnson, Eds. IBM Centre for Advanced Studies
(73) Assignee: International Business Machines Cont.”
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—IJames Rutten
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Michael J. Buchenhomer:;
U.S.C. 154(b) by 981 days. Douglas W. Cameron
(21) Appl. No.: 10/872,282 (57) ABSTRACT
(22) Filed: Jun. 18, 2004 A method, information processing system and computer
readable medium for assessing risk 1n a software develop-
(65) Prior Publication Data ment project. The method includes receiving software project
US 2005/0283751 A1 Dec. 22, 2005 data for assessing risks in a soitware development project and
identifying a plurality of focus areas for analysis. The method
(51) Imt. Cl. turther includes defining a set ot analysis tasks for each focus
GO6F 9/14 (2006.01) area and creating one or more rule sets for each analysis task,
GOG6F 11/00 (2006.01) each rule set comprising one or more rules including software
(52) US.CL oo, 717/101; 717/125; 714/57 projectdata. The method turther includes evaluating each rule
(58) TField of Classification Search None set against the software project data summarizing results of
Lt - evaluating each rule set corresponding to an analysis task.
See application file for complete search history. & ‘ ponding : Y
The method further includes providing a risk assessment
(56) References Cited value for each analysis task using the results of the summa-

5 771,179 A *

U.S. PATENT DOCUMENTS

6/1998 Whiteetal. 702/183

rizing element.

30 Claims, 7 Drawing Sheets

AN

2. |[dentify

D

Focus Areas (FA)

7. Prepare Data

1. Defect Data
l Reposltory
TIITIE
3. Define Analysis ~~ — Series
Tasks e —
4. Decision l
Flow
. 8. Rule
Diagrams — Evaluator

1

9. Build Textual Task

Hule
Rasults

Hule
Rasults

b
Rule-sets Machine /
Readable
Rule-sets
i
Task Rule-

set

/

P

/

6a. GUI 6b. Rule
Rule set Set Parser
builder

[E]

Y. Rule Set
Evaluator

Rule
Rasults
TaskE

Task‘] TaskE

Sat Set

Results

Sat
Rasults Results

for for Task for Task
Task1 2 3

y

10. Risk
Classifier

Risk
Assessment for
a Focus Area

US 7,669,180 B2
Page 2

OTHER PUBLICATIONS S. H. Kan, J. Parrish and D. Manlove, “In Process Metrics for Soft-
ware Testing,” IBM Systems Journal, vol. 40, Nov. 1, 2001, pp.

M.K. Daskalantonakis, “A Practical View of Software Measurement 220-241.

and Implementation Experiences Within Motorola,” IEEE Trans. K. Bassin, S. Biyani, and P. Santhanam, “Metrics to Evaluate Vendor-
Software Engineering, vol. 18, Nov. 11, 1992, pp. 998-1010. developed Software Based on Test Execution Results,” IBM Systems

G. Stark, R. C. Durst, and C. W. Vowell, “Using Metrics in Manage- Journal, vol. 41, Nov. 1, 2002, pp. 13-30.
ment Decision Making,” Computer vol. 27, No. 9, 1994, pp. 42-48. * cited by examiner

U.S. Patent Feb. 23, 2010 Sheet 1 of 7 US 7,669,180 B2

HG.)

U.S. Patent Feb. 23, 2010

Ny

2. |dentify
Focus Areas (FA)

Sheet 2 of 7

1. Defect Data

US 7,669,180 B2

/. Prepare Data

Repository
N Time
3. Def|1r_1aesixgaly5|s ; Series
4. Decision
oW 8. Rule
1agrams Evaluator
|
- Y F
5. Build Textual Task . F}I - Il
uie Lie uie
Rule-sets Machine Results Results Results
Readable for for for
Rule-sets Task" Task2 Task3
A
\ 4
Task Rule-
set 9. Rule Set
Evaluator

D
v ’

ba. GUI ob. Rule
Rule set Set Parser
builder

I
S

FIG.

Set Set Set
Results Results Results

for for Task for Task
Task1 p 3

h 4

10. Risk
Classifier

Risk
Assessment for
a Focus Area

U.S. Patent Feb. 23, 2010 Sheet 3 of 7 US 7,669,180 B2

FREQ 306
80 /
64 SEVERITY
N 1
0 L(_ * &2
- |k
=4

l-l” Sy
H . ‘..dl
1 Bk
-r-’- _ g v -"

10Jun01 013ui01 15Jul01 20JulD 18AugQ1 08SepOt 30Sep01 210¢01 11NovO §
L} _ OPENDATE
b0 &

FI1G. 3

U.S. Patent

Focus Area

| Analysis Task Definition

Feb. 23, 2010 Sheet 4 of 7

Product Stability

US 7,669,180 B2

| Defect Type vs. Time

Severity vs. Time
Defect Qualifer vs. Time

Defect Type vs. Qualifier

Intended Defect Type Signature vs. Actual

Test Effectiveness

\

Lo

Defect Type Signature

Trigeer vs. Time

Intended Trigger Signature vs Actual
Trigger Signature

‘o FIG. 4

Isthe#or
fraction of
Sav. | defacks
fiat or
Incressmng?

Isthe# of Sew |
defects

drapping, but
the # of Sev? is
grovangs

fs tho oumbaor .

tha 2 off Sav3
 mereasing?

| No
ofSev 1 &2 “(&a1 Saverityre
dropping. but are dropping)

U.S. Patent

Feb. 23, 2010

Sheet S of 7

US 7,669,180 B2

A 61
y,
20 ORI Salken, 3 RIPELT NI . . S R i TR e GO R CREcREd T hre Sh AT UASOSaTea
Product SiSeventyover fime | 20 ' S S e S
B E— Perce et len |3
Bnd {High impact SetPercent lessthanor= | 5O

1 land ISewnty!1 ~[Count oiThreshald ~_ Jarester than 0
p Jed ISeenlyt JCount |hind fourti threshdd [grester than 0
) 00000 land ISewnlyl JCount — |lastfouinTheshdd __lgreater than 0
R L L | (2 LT B

| and j(High Intpact Se{Percent Last fourth Threshold . 50
o0 |0k igedSeparen (st Theshid —Jorester fan

] MiSewdly? iPercet |lsstthesiliend |nondecreasing
o lend iHighlmpact SefPercent |lasi fomR Threshold | |Less than of =
=T

s Dt et et ik
v 1 oolsewdty3 |Percent |Last fourtH Threshoid [oreater than
o1 2S[Sewriy 310 SejPercent Last fowth Companoan __ |greater tan
F1G. 6
P 2 W Foy 766

Focus Area

Product Stability

Process
Etfectiveness

\nalysis Task Definition ___| Risk per task |
Delect Type vs. Time High
| Severity vs. Time Medum
Defect Qualifer vs. Time Low
Defect Type vs. Qualifier High
Intended Defect Type Signature vs. Actual | High]
Defect Type Signature |
Trigger vs. Time o Low
| Intended Tngger Signature vs Actual Medium
Trigger Signature |

FIG. 7

U.S. Patent

o

Focus Aren

Product Stability

Process
Effectiveness

407

Focus Area

Product Stability

Process
Effectiveness

Feb. 23, 2010 Sheet 6 of 7
g0 06
/ /
Analysis Task Definition Risk per
task

Defect Type vs. Tine
Severnty vs, Time

Defect Qualifer vs. Time

Trigger vs. Time

US 7,669,180 B2

%8

Risk per
Focus Area

Defect Type vs. Qualifier High High
Intended Defect Type Signature vs. Actual High l
Defect Type Signature

Low Medium
Intended Trigger Signature vs Actual Medium

Tngger Signature

FIG. 8

a0

/ /

Analysis Task Definition

Defect Type vs. Time

Severity vs. Time

Defect Qualifer vs. Time
Defect Type vs. Qualifier

Intended Detect Type Signature vs.
Actual Defect Type Signature

Tnigger vs. Time
Intended Trigger Signature vs
Actual Trigger Signature

Risk per | Risk per Overall
task ¥ocus Risk
Area Assessment

__[High |

Medium

Low High

High

High

Low l

Medium | Medium

FIG. 9

U.S. Patent Feb. 23, 2010 Sheet 7 of 7 US 7,669,180 B2

VRN
/ 160

“
_loob
“
/040

1008 L
“ Display Interface Display Unit
Secondary Memory
0] 2
[0y
Communication Hard Disk Drive
Infrastructure /01 f
(Bus) lole
Removable
Removable Storage
” Storage Drive Unit
1090 /04 2
/ Removable
Interface Storage
Unit
W02y /026

Communication
~ Communication Path
Interface

(G, o

US 7,609,180 B2

1

METHOD AND APPARATUS FOR
AUTOMATED RISK ASSESSMENT IN
SOFTWARE PROJECTS

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

Not Applicable.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

INCORPORATION BY REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable.
FIELD OF THE INVENTION

The invention disclosed broadly relates to the field of
project management and more particularly relates to the field
ol assessing risk associated with a software development
project.

BACKGROUND OF THE INVENTION

The success of a software development project depends on
various factors, including timely delivery, meeting the needs
of the customer, supporting the customer and providing a
product of acceptable quality. Software development organi-
zations collect a broad range of data and metrics during devel-
opment, such as change requests, defect information, status of
test cases, and others, to try and measure the status of the
project 1n some fashion. Over the years, there have been a
number of research efforts addressing the use of software
metrics for m-process project management. Generally, this
body of work focuses on specific sets of metrics to monitor
various aspects of risk during the execution of a project. The
metrics are evaluated one at a time using methods that may
vary from individual to individual, and the overall risk of the
project 1s evaluated subjectively from the individual metric
evaluations. There 1s currently no systematic method to ana-
lyze software development data in an automated fashion to
provide meamngiul feedback about the software develop-
ment process.

Therelore, a need exists to overcome the problems with the
prior art as discussed above, and particularly for a way to
simplily the task of providing automated risk assessments
during a software development project.

SUMMARY OF THE INVENTION

Briefly, according to an embodiment of the present inven-
tion, a method for assessing risk i a software development
project 1s disclosed. The method includes recetving software
project data for assessing risks 1n a solftware development
project and 1dentifying a plurality of focus areas for analysis.
The method further includes defining a set of analysis tasks
for each focus area and creating one or more rule sets for each
analysis task, each rule set comprising one or more rules
including software project data. The method further includes
evaluating each rule set against the software project data
summarizing results of evaluating each rule set correspond-
ing to an analysis task. The method further includes providing
a risk assessment value for each analysis task using the results
of the summarizing element.

10

20

25

30

35

40

45

50

55

60

65

2

Another embodiment comprises an information process-
ing system for assessing risk i a software development
project. The information processing system includes a
memory for storing software project data for assessing risks
in a soitware development project, a plurality of focus areas
for analysis, a set of analysis tasks for each focus area and one
or more rule sets for each analysis task, each rule set com-
prising one or more rules including software project data. The
information processing system further includes a processor
configured for evaluating each rule set against the software
project data, summarizing results of evaluating each rule set
corresponding to an analysis task and providing a risk assess-
ment value for each analysis task using the results of the
summarizing element.

The method can also be implemented as a machine read-
able medium comprising instructions for execution by a pro-
grammable 1nformation processing system or as hard coded
logic 1n a specialized computing apparatus such as an appli-
cation-specific integrated circuit (ASIC). The computer read-
able medium includes instructions for receirving soltware
project data for assessing risks 1n a software development
project and identifying a plurality of focus areas for analysis.
The computer readable medium further includes instructions
for defining a set of analysis tasks for each focus area and
creating one or more rule sets for each analysis task, each rule
set comprising one or more rules mcluding software project
data. The computer readable medium further includes
instructions for evaluating each rule set against the software
project data and summarizing results of evaluating each rule
set corresponding to an analysis task. The computer readable
medium further includes instructions for providing a risk
assessment value for each analysis task using the results of the
summarizing element.

The foregoing and other features and advantages of the
present invention will be apparent from the following more
particular description of the preferred embodiments of the
invention, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter, which 1s regarded as the invention, 1s
particularly pointed out and distinctly claimed 1n the claims at
the conclusion of the specification. The foregoing and other
features and also the advantages of the invention will be
apparent from the following detailed description taken 1n
conjunction with the accompanying drawings. Additionally,
the left-most digit of a reference number 1dentifies the draw-
ing in which the reference number first appears.

FIG. 1 1s a high level block diagram showing the main
components of one embodiment of the present invention.

FIG. 2 1s a more detailed block diagram showing the con-
trol flow of the process of one embodiment of the present
invention.

FIG. 3 1s a graph used for assessing severity of software
defects over time, 1n one embodiment of the present imnven-
tion.

FI1G. 4 1s a chart used for assigning analysis task definitions
to focus areas, in one embodiment of the present invention.

FIG. 5 1s a flowchart showing the control flow of the analy-
s1s task definition process, in one embodiment of the present
invention.

FIG. 6 1s a chart used to specity rules in English language
format, 1n one embodiment of the present invention.

FIG. 7 1s a chart used for assigning rule evaluation results
to analysis tasks, in one embodiment of the present invention.

US 7,609,180 B2

3

FIG. 8 1s a chart used for assigning analysis task evaluation
results to focus areas, in one embodiment of the present
invention.

FIG. 9 15 a chart used for assigning focus area evaluation
results to the overall software development project, in one 3
embodiment of the present invention.

FIG. 10 1s a high level block diagram showing an informa-
tion processing system usetul for implementing one embodi-

ment of the present invention.
10

DETAILED DESCRIPTION

We first describe a system and method for the assessment
ol risk associated with a software development project. The
term “risk” 1s used to refer to the possibility that a software
development project does not meet certain criteria, such as
deadlines, production requirements, performance criteria, or
any other measurable performance-related facet of a software
development project.

15

FIG. 1 1s a high level block diagram showing the main -

components of one embodiment of the present invention.
FIG. 1 shows a database 102 for storing input data 104 related
to the software development project. The database 102 can be
any commercially available database managed by a database
management system. The iput data 104 can be mput or
received from another computer or from a human user via an
interface such as a graphical user interface or a command line
interface.

25

The mput data 104 can include software project data relat- .,
ing to the software development project at hand. The software
project data can include any of a varniety of data related to the
soltware development project, including defect data, test case
history data and execution result data. Defect data refers to
data relating to a defect in the software development project. .
Examples of defect data include severity, defect removal
activity being performed when found, the environment or
condition that existed to expose the defect (1.e., the trigger),
the type of defect, the impact of the defect, data on test cases
planned, data on test cases executed, data on text cases suc- ,,
cessiul, and size of product (such as lines of code, function
points, etc.). Test case history data includes data on the type of
the test case, the definition of a test case, the times and dates
when a test case was performed, the current status of the data
on which the test case was performed, the results of the test
case, metadata on the results of a test case, and the develop-
ment or revisions of a test case. Execution result data refers to
the results of executing rules designed to capture risk data of
the software development project. The use of rules for this
purpose 1s described 1n greater detail below. 50

Input data 104 related to the software development project
can also 1include focus area data, task analysis data, rule data,
rule set data, results data or metadata related to any of the
previous data. A focus area refers to a general area of involve-
ment for a software development project, such as design ss
stability, code stability, test efiectiveness, development etlec-
tiveness and support concerns. An analysis task refers to a
specific analysis that 1s conducted to determine risk associ-
ated with a particular 1tem of a software development project.
An analysis task can include the execution of rules and algo- 4
rithms, as described in more detail with reference to figures
below.

FIG. 1 also includes a risk assessment engine 106. The
engine 106 performs risk assessment functions such as the
execution of rules and rules sets, as described 1n more detail 65
with reference to figures below. The engine 106 may also
perform other risk assessment functions such as the execution

4

of algorithms and other heuristics designed to assess risk 1n a
soltware development project.

The present invention provides a method, structure and
system for an automated risk assessment system which
implements software metrics-based project management
using rules and statistical analysis. The mvention uses soft-
ware project data to automatically assess risk and provide
teedback. Following 1s a brief description of the manner 1n
which risk 1s automatically assessed by the system of the
present invention.

A data repository or database contains the raw or input data
regarding the software development project under consider-
ation. Focus areas of analysis (such as product stability, test
cifectiveness, etc.) that will benefit the software development
project are defined. Subsequently, a set of analysis tasks for
cach focus area are defined, 1dentifying the suitable software
project data and the appropriate type of analysis. Then, a
decision flow diagram for each analysis task i1s defined,
depicting the meaningful conditions resulting 1n the risk
cvaluation of each analysis task as high, medium or low risk.
Next, textual rule sets are generated 1n natural language (e.g.
English) for each analysis task using the results of the previ-
ous steps. The textual rule-sets from the previous step are then
converted to a machine readable rule set through the use of a
graphical user interface (GUI) builder or a rule set parser.

A data preparation component processes the raw data into
the form needed for input into the rule system. In particular,
the data preparation component allows for summarization
over a specified time frame, merging of individual database
queries 1nto a single table, and creation of a time series from
the raw data. A rule evaluator evaluates each of the machine
readable rules 1n a rule set for each analysis task against the
prepared data and assures the validity of the rules being
obeyed or not obeyed. A rule set evaluator summarizes the
result of all the rules 1n a rule-set per analysis task and assigns
a single value of risk per analysis task. A risk classifier sum-
marizes the risk for each focus area based on the risks for the
individual tasks, resulting in a risk assignment for the focus
area. The risk across the various focus areas are summarized
for the overall project.

In an embodiment of the present invention, varying meth-
ods for summarization of risks associated with individual rule
evaluations can be used. Further, associated implication state-
ments for each rule, based on the meaning of analysis tasks,
can be generated. Lastly, output in the form of a report 1n
natural language text or other modes of output (e.g. sound)
can be performed.

Further, the system ol the present invention 1s implemented
using a rules language to carry out steps involving rule execu-
tion. The rules language relevant for analyzing the software
project data captures risk information. The present invention
further incorporates tooling for creating the rules (e.g., a
customizable GUI-based rule builder), specification of the
rules 1n the form of statistical algorithms, associating impli-
cations with each rule and creating a risk assessment report.

FIG. 2 1s a more detailed block diagram showing the con-
trol flow of the process of one embodiment of the present
invention. FIG. 2 shows the process by which risk 1n a soft-
ware development project 1s automatically assessed using
certain mput data 104. The control flow of FIG. 2 provides
more detail and shows the inner workings of the main com-
ponents of FIG. 1.

Theinput data to be used for project assessment 1s collected
in a data repository 202, similar or identical to the database
102 of FIG. 1. Input data 104 can be soiftware project data
including any of a variety of data related to the software
development project, including defect data, test case history

US 7,609,180 B2

S

data and execution result data. Input data 104 can also include
focus area data, task analysis data, rule data, rule set data,
results data or metadata related to any of the previous data.

Next, focus areas for analysis are defined 1n 204. A focus
area refers to a general area of mvolvement for a software
development project, such as design stability, code stability,
test effectiveness, development eflectiveness and support
concerns. Subsequently, analysis tasks are defined 1n 206 for
cach focus area. An analysis task refers to a specific analysis
that 1s conducted to determine risk associated with a particu-
lar 1tem of a software development project. An analysis task
can include the execution of rules and algorithms. The object
ol an analysis task 1s to associate software project data from
database 202 to the defined focus areas.

FIG. 3 1s a graph used for assessing severity of software
defects over time, 1n one embodiment of the present mven-
tion. The data shown 1n the graph of FIG. 3 1s typical of the
type of software project data that 1s present 1n the database
202 and 102. The graph of FIG. 3 shows a bar graph indicating
dates or time on the x-axi1s 302 and frequency of defects on the
y-axis 304. There are four levels of increasing defect severity:
severity level 1, sevenity level 2, severity level 3 and severity
level 4, as shown by the legend 306. Each bar also shows the
percentage of defects of each severity level.

FI1G. 4 1s a chart used for assigning analysis task definitions
to focus areas, 1n one embodiment of the present invention.
FIG. 4 shows that the column 402 shows a list of focus areas.
Column 404 includes a list of analysis task definitions for
cach focus area. For example, the first focus area, Product
Stability includes several analysis task definitions, including
Defect Type vs. Time, Severity vs. Time, Detect Qualifier vs.
Time, Defect Type vs. Qualifier and Intended Detfect Type
Signature vs. Actual Defect Type Signature.

Returming to FIG. 2, 1n 218, a decision flow diagram for
defining an analysis task 1s defined. As explained above, an
analysis task can be defined, among other things, by a flow
diagram representing an algorithm. FIG. 5 1s a flowchart
showing the control tlow of the analysis task definition pro-
cess, 1n one embodiment of the present invention. FIG. 3
shows a tlow diagram used to assess risk for an analysis task
representing severity of a defect over time. There are three
levels of increasing severity: severity level 1, severity level 2
and severity level 3. The tlow diagram begins with step 502
and proceeds directly to step 504.

In step 504, 1t 1s determined whether the number or fraction
of severity level 1 defects are flat or increasing over time. If
the result of the determination of step 504 1s aflirmative, then
control flows to step 506 which indicates a high risk assess-
ment. I the result of the determination of step 504 1s negative,
then control tlows to step 508.

In step 508, 1t 1s determined whether the number of severity
level 1 defects are dropping over time but the number of
severity level 2 defects are growing. It the result of the deter-
mination of step 508 1s alfirmative, then control tlows to step
510 which indicates a medium risk assessment. If the result of
the determination of step 508 1s negative, then control flows to
step 514.

In step 514, 1t 1s determined whether the number of severity
level 1 and level 2 defects are dropping over time but the
number of severity level 3 defects are growing. If the result of
the determination of step 514 1s aflirmative, then control flows
to step 512 which indicates a low risk assessment. If the result
of the determination of step 514 1s negative, then control flows
to step 516, which indicates that little if any risk 1s associated
with this part of the risk assessment.

Returming to FIG. 2, 1n 208, textual rule sets 210 are gen-
erated to implement an analysis task specified by software

10

15

20

25

30

35

40

45

50

55

60

65

6

project data and/or an algorithm. A variety of algorithms can
be implemented 1n a rule-based system. One example of an
algorithm 1s a comparison of distributions for determining
whether the distribution of one variable across a set of cat-
egories matches that of another variable. Another example of
an algorithm 1s a comparison to a constant for determining
whether the value of a vanable 1s above/below a specified
threshold value. Another example of an algorithm 1s a com-
parison to a variable for determining whether the value of one
variable 1s above/below that of another varnable. Another
example of an algorithm 1s a trend analysis for determining
whether a variable 1s evolving over time.

Subsequently, the task rule sets 210 are converted to
machine readable rule sets 216 through the use of a language,
such as a declarative rule language. Such a language
expresses rules for the classification of risk. FIG. 6 provides a
more detailed example of the declarative rule language. FIG.
6 1s a chart used to specily rules in English language format,
in one embodiment of the present invention. FIG. 6 shows the
name of the rule set 1n the column 602 and the number of the
rule 1n the column 604. FIG. 6 further shows a severity
attribute 1 column 606 and a unit of measure 1n column 608.
Further shown 1s a time frame for the rule in column 610, an
algorithm type of the rule in column 612, a definition of a
condition checked 1n column 614, a threshold value 1n col-
umn 616 and an associated risk value in column 618.

The rule language makes use of some mathematical con-
cepts that we describe here. A timeseries variable 1s a variable
that takes on different values at different points 1n time. A
timeframe 1s an interval of time (for example, “last quarter™ or
“the month of January™). A trend 1n a timeseries variable 1s a
pattern 1n 1ts values over some timeframe. For example, a
timeseries variable might be considered to be an “increasing’™
trend 11 1ts value increases with respect to time. A sum of a
timeseries variable 1s the sum of its values over a timeframe.
For example 11 a timeseries variable has the value 1 1n Jan, 2
in Feb and 3 1n Mar, then the sum of that variable over the
timeframe Jan-Mar 1s 6. A percentage of two values (numbers
not timeseries) 1s their ratio multiplied by 100. For example,
the percentage of 4 and 5 1s 80%.

Take for example rule 23 of FIG. 6.
Rule name: Trend and percent of Severity 2 defects

Precondition: trend(sev2pct, LAST_THREE_QTRS)
I=DECREASING OR

pct(sum(sev2, LAST_QTR), sum(tvol, LAST_QTR))
>=20)

Classification: Risk=Medium

In English, the rule 23 states: If the trend 1n the percentage
of severity 2 defects over the last 34 of the time periods
supplied 1s not decreasing OR the percentage of the total
number of severity 2 defects 1s >=20, then the risk 1s medium.

Here, sev2pct 1s a time series variable representing the
percentage of severity 2 defects at each period 1n the time-
frame, and sev2 and tvol represent to the time series contain-
ing the number of severity 2 defects and the total number of
defects at each period, respectively. Specifics of the proposed
rule system are provided below.

First, a rule 1s a component with three parts: a rule name, a
precondition, and a risk classification. The name uniquely
identifies the rule in the system. The precondition 1s a Bool-
can expression (an expression whose value 1s either true or
talse) that represents the condition of the input data necessary
for the rule to assert 1ts classification. The risk classification 1s
the assessment of the soltware project risk asserted by the rule
when its precondition 1s satisfied. Typical risk classifications
are: low, medium, or high.

US 7,609,180 B2

7

Second, rules are combined 1nto rule sets for a particular
analysis task. A rule set 1s an aggregation of rules which may
itsell be assigned a risk classification based on the individual
classifications of 1ts constituent rules. The method for sum-
marizing the classifications of individual rules 1nto a rule set
classification 1s called a rule set policy.

Third, the preconditions for rules are given as follows:

a) The precondition of a rule can be any Boolean expres-
ston using logical operators AND, OR, NOT and the
relational operators <, <=, =, >=> =

b) Terms of the language are either literals (like “true™, or
“1.5” or “LAST_PERIOD”), time series variables, func-
tions on simple types (like Integer or Boolean), or T

tions on time series variables.

unc-
¢) The TimeFrame literals are a set of predetermined rela-
tive time frames including: FIRST_HALF, LAST-
_HALF, LAST_THREE_FOURTHS, LAST__1_PE-
RIOD, LAST_2 PERIODS, LAST_ 3 PERIODS,
LAST 4 PERIODS, SECOND2LAST_PERIOD,
THIRD2LAST_PERIOD, FOURTH2LAST_PERIOD,
FIFTH2LAST_PERIO, SIXTH2LAST_PERIOD,
FIRST_FOURTH, FOURTH2, FOURTH3, LAST-
_FOURTH, ALL_PERIODS.

d) Statistical functions allowed 1n the rule include:

1) trend—returns whether a supplied timeseries and a
timelirame over which 1t 1s to be evaluated 1s consid-
ered “increasing”’, “decreasing’” or “unchanged”.

11) sum—returns the sum of the values 1n a timeseries
variable evaluated on a supplied timeframe.

111) pct—returns the percentage of two numbers.

1v) probProportionTest—given a timeseries represent-
ing observed values over a given timeframe, and a
timeseries representing the total values over that time-
frame, returns true only 11 the percentage o the sum of
the observed timeseries to the sum of the totals 1s
above/below a supplied threshold with statistical sig-
nificance.

v) linearTrend Test—given a timeseries and a timeframe
over which to evaluate the timeseries, returns true
only 1f the supplied timeseries linearly extrapolated a
supplied amount of time into the future 1s above/
below a supplied threshold.

Fourth, a typical rule 1n the language expressed textually
might 1s:

Rule name: Trend and percent of severity 2 defects

Precondition: trend(sev2pct, LAST_THREE_QTRS)
I=DECREASING OR pct(sum(sev2, LAST_QTR), sum
(tvol, LAST_QTR))>=20

Risk Classification: Risk=Medium

Returming to FIG. 2, 1n 212 and 214, machine readable rule
sets 216 are generated by a rule set builder 212 and parsed by
a rule set parser 214. The rule set builder 212 can be a Java
component that provides functionality for the construction of
risk evaluation rules. In this embodiment, the rule set builder
212 component supplies an Application Program Interface
(API) that allows other components to programmatically con-
struct risk assessment rules. Each part of a rule 1s constructed
with a different call to the API which returns to the client
component a node representing the requested rule part. The
constructed parts of a rule may be supplied to additional API
calls which create new nodes and link them to the supplied
parts. By performing a sequence of such API calls, a client
may construct a data structure which represents a full risk
assessment rule.

In 220, software project data from database 202 1s prepared
for inclusion into the rule sets of 216 and results 1n the time

series data 222. The software project data preparation com-

10

15

20

25

30

35

40

45

50

55

60

65

8

ponent has varying functions including collecting time-based
data from a variety of sources 1nto memory and filtering the
data for each source individually to remove bad values and
logically unnecessary data for the task being executed. The
soltware project data preparation component further deter-
mines a common periodicity for all the software project data
based on the task being executed and it summarizes the indi-
vidual data sets according to the periodicity computed.

The software project data preparation component further
merges the data sets into one time-based data set for use by the
rule evaluation component. An example is to select all defects
having severity=1 and tabulate these for each week repre-
sented 1n the selected data. For the example rule 23 of FIG. 6,
the data preparation component queries the data found during
test activity Function Test and retrieves the summary infor-
mation, 1.e., percentage of the severity 2 defects over the last
%4 of the time periods available.

The automated rule evaluator, 1n 224, assesses the validity
of each rule 1n 216 and based on the evaluation being true,
assigns risk for each of the rules, resulting in the set of results
226, 2277 and 228. For example, for the analysis task dealing
with Severity vs. Time, FIG. 6 shows ten rules (20-29) being
evaluated. In this case, there are ten evaluations of high,
medium, low or informational (i1.e. of no consequence) val-
ues, resulting 1n a set of results such as 226, 227 and 228.

The automated rule evaluator, 1n 230, assesses each rule
result 226, 227 and 228 and assigns risk for each of the rule
sets, resulting 1n the set of results 232, 234 and 236. FIG. 7 1s
a chart used for assigning rule set evaluation results to analy-
s1s tasks, 1n one embodiment of the present invention. FIG. 7
shows that the column 702 shows a list of focus areas. Col-
umn 704 includes a list of analysis task definitions for each
focus area. Column 706 includes a list of risk evaluations for
cach analysis task defimition. The rule evaluator, 1n 230, pro-
duces the results of all rule set result evaluations within an
analysis task and summarizes them into an overall risk for the
task, as depicted in column 706 of FI1G. 7. For example, for the
Severity vs. Time analysis task, a single risk value of Medium
1s the resulting risk assessment.

Subsequently, the automated risk classifier, 1 238,
assesses each rule set result 232, 234 and 236 for each analy-
s1s task and assigns risk to a corresponding focus area, result-
ing 1n a risk assessment 240 for a focus area. FI1G. 8 1s a chart
used for assigning analysis task evaluation results to focus
areas, 1n one embodiment of the present invention. FIG. 8
shows that the column 802 shows a list of focus areas, column
804 1ncludes a list of analysis task definitions for each focus
area and column 806 i1ncludes a list of risk evaluations for
cach analysis task definition. The risk classifier, 1n 238, pro-
cesses the risk evaluations for each analysis task 1n column
806 and summarizes them into an overall risk for the focus
area, as depicted 1n column 808 of FIG. 8. For example, for
the Product Stability focus area, a single risk value of High 1s
the resulting risk assessment.

Lastly, the rnisk assessments for each focus area are
assessed and a combined risk assessment 1s provided, result-
ing 1n a risk assessment for the overall software development
project. FIG. 9 1s a chart used for assigning focus area evalu-
ation results to the overall software development project, 1n
one embodiment of the present invention. FIG. 9 shows that
the column 902 shows a list of focus areas, column 904
includes a list of analysis task definitions for each focus area,
column 906 includes a list of risk evaluations for each analy-
s1s task definition and column 908 includes a list of risk
assessments for each focus area. The risk assessments for
cach focus area in column 908 are processed and summarized

US 7,609,180 B2

9

into an overall risk for the software development project, as
depicted 1n column 910 of FIG. 9.

It should be noted that the order of evaluation of the rules 1s
not important since the rules are independent of each other.
The summarization step works to normalize inconsistent risk
assessments. The system of the present invention provides
functionality for the summarization of risk assessments tar-
geting specific focus areas. The summarization can be accom-
plished 1n different ways, such as a “worst case’ (most risky)
assessment from any of the constituent assessments, which
may be assigned as the risk assessment of the aggregate.
Another manner of conducting a summarization includes
reading the mode, or most frequently made assessment, from
any of the constituent assessments and assigning 1t as the risk
assessment of the aggregate. Yet another manner of conduct-
ing a summarization includes generating the constituent risk
assessments numerically and computing the risk assessment
of the aggregate as a weighted sum of the individual risk
assessments.

At each level of the risk assessment (analysis task, focus
area, or overall project), the evaluation of the risk 1s accom-
panied by appropriate implications. For example, an evalua-
tion of risk may be accompanied by a report similar to the
tollowing: 1) the volume of severity 1 defects in most recent
time periods indicates that the product does not yet appear to
be stable, although the potential impacts of these defects on
the customer 1s low; 2) consistent surfacing of severity 1
defects indicates potential product instability, 3) the volume,
% or trend of severity 2 defects in most recent time periods
indicates there are still too many high severity defects,
although the potential impact of these defects on the customer
1s low and 4) an increase 1n severity 4 defects relative to
severity 3 defects over time 1s desirable. The report may be
presented to the user in the form of text or through another
modality such as speech synthesis, or graphical depiction.
The report can be output as text with, e.g., color-coding to
highlight different risk categories, or 1ssued 1n the form of a
spoken description of the project risk assessment.

It should also be noted that various types of algorithms may
underlie the rules. One example of an algorithm 1s a comparti-
son of distributions wherein two distributions can be com-

pared by simply computing the difference in the percentage of

variable values falling 1nto each category for the two different
variables, with a difference declared if one or more of these
differences 1s more (or less) than zero or another specified
threshold. Alternatively, the data used for analysis can be
considered as a random sample from an underlying popula-
tion, and statistical techniques used to compare the distribu-
tions. Different formulations of a Chi-squared goodness-oi-
{1t (GOF) test can be used to compare an observed distribution
to a target distribution or to compare one observed distribu-
tion to another observed distribution. The statistically based
comparison allows for observed variations between distribu-
tions that depend on the underlying sample size.

Another example of an algorithm 1s a comparison to a
constant. Comparison to a constant and comparison to a vari-
able algorithms can be accomplished by simply summarizing
relevant data and checking whether the summarized variable
takes values less than (greater than) a specified constant or
another expression. Comparison to a constant can also be
framed 1n a probabilistic context, with statistical techniques
used to determine whether the observed data are consistent
with a hypothesized threshold value. For instance, a binomaial

test of proportion 1s an appropriate way to assess the chance of

obtaining the observed percentage of items, assuming that the

underlying population contains a specified percentage of

these 1items. A t-test could be used to assess whether the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

observed sample average of a variable 1s consistent with a
speciflied average value for the vaniable 1n the population.
Other statistical methods could also be used, depending on
the assumptions imposed on the data.

Another example of an algorithm 1s a comparison to a
variable that allows rules that target changes 1n volumes or
percentages between specified time frames. For instance,
rules that focus on the size of the difference 1n percentage of
defects of a certain type between adjacent periods (e.g. every
week) can be formulated in this framework.

Yet another example of an algorithm 1s a trend analysis
which 1s uniquely suited for analysis deployed 1n managing a
soltware project. The particular challenge of the analysis 1s
the selection of appropriate subset of the data for assessing
trends such as the last two months of a six month project.
Several alternatives exist for trend analysis, depending on
whether 1t 1s desired to test for existence of a positive (nega-
tive) trend or fit a (linear) trend to observed data, and again
depending on data assumptions.

The present mvention can be realized 1n hardware, soft-
ware, or a combination of hardware and software. A system
according to a preferred embodiment of the present invention
can be realized in a centralized fashion 1n one computer
system, or in a distributed fashion where different elements
are spread across several interconnected computer systems.
Any kind of computer system—or other apparatus adapted
for carrying out the methods described herein—is suited. A
typical combination of hardware and software could be a
general-purpose computer system with a computer program
that, when being loaded and executed, controls the computer
system such that it carries out the methods described herein.

An embodiment of the present immvention can also be
embedded 1n a computer program product, which comprises
all the features enabling the implementation of the methods
described herein, and which—when loaded 1n a computer
system—1s able to carry out these methods. Computer pro-
gram means or computer program in the present context mean
any expression, 1 any language, code or notation, of a set of
instructions mtended to cause a system having an information
processing capability to perform a particular function either
directly or after either or both of the following: a) conversion
to another language, code or, notation; and b) reproduction in
a different material form.

A computer system may include, inter alia, one or more
computers and at least a computer readable medium, allowing
a computer system, to read data, 1structions, messages or
message packets, and other computer readable information
from the computer readable medium. The computer readable
medium may include non-volatile memory, such as ROM,
Flash memory, Disk drive memory, CD-ROM, and other per-
manent storage. Additionally, a computer readable medium
may include, for example, volatile storage such as RAM,
butifers, cache memory, and network circuits. Furthermore,
the computer readable medium may comprise computer read-
able information 1n a transitory state medium such as a net-
work link and/or a network interface, including a wired net-
work or a wireless network, that allow a computer system to
read such computer readable information.

FIG. 10 1s a high level block diagram showing an informa-
tion processing system usetul for implementing one embodi-
ment of the present invention. The computer system includes
one or more processors, such as processor 1004. The proces-
sor 1004 1s connected to a communication infrastructure 1002
(e.g., a commumnications bus, cross-over bar, or network).
Various software embodiments are described 1n terms of this
exemplary computer system. After reading this description, 1t
will become apparent to a person of ordinary skill 1n the

US 7,609,180 B2

11

relevant art(s) how to implement the mvention using other
computer systems and/or computer architectures.

The computer system can include a display interface 1008
that forwards graphics, text, and other data from the commu-
nication infrastructure 1002 (or from a frame bufler not
shown) for display on the display unit 1010. The computer
system also includes a main memory 1006, preferably ran-
dom access memory (RAM), and may also include a second-
ary memory 1012. The secondary memory 1012 may include,
for example, a hard disk drive 1014 and/or a removable stor-
age drive 1016, representing a tloppy disk drive, a magnetic
tape drive, an optical disk drive, etc. The removable storage
drive 1016 reads from and/or writes to a removable storage
unit 1018 in a manner well known to those having ordinary
skill 1n the art. Removable storage umt 1018, represents a
floppy disk, a compact disc, magnetic tape, optical disk, etc.
which 1s read by and written to by removable storage drive
1016. As will be appreciated, the removable storage unit 1018
includes a computer readable medium having stored therein
computer software and/or data.

In alternative embodiments, the secondary memory 1012
may 1nclude other similar means for allowing computer pro-
grams or other instructions to be loaded into the computer
system. Such means may include, for example, a removable
storage unit 1022 and an interface 1020. Examples of such
may include a program cartridge and cartridge interface (such
as that found 1n video game devices), a removable memory
chip (such as an EPROM, or PROM) and associated socket,
and other removable storage units 1022 and interfaces 1020
which allow soiftware and data to be transierred from the
removable storage unit 1022 to the computer system.

The computer system may also include a communications
interface 1024. Communications interface 1024 allows soft-
ware and data to be transferred between the computer system
and external devices. Examples of communications interface
1024 may include a modem, a network interface (such as an
Ethernet card), a communications port, a PCMCIA slot and
card, etc. Software and data transterred via communications
interface 1024 are 1n the form of signals which may be, for
example, electronic, electromagnetic, optical, or other signals
capable of being received by communications interface 1024.
These signals are provided to communications interface 1024
via a communications path (1.e., channel) 1026. This channel
1026 carries signals and may be implemented using wire or
cable, fiber optics, a phone line, a cellular phone link, an RF
link, and/or other communications channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium”™ are used to generally refer to media such as main
memory 1006 and secondary memory 1012, removable stor-
age drive 1016, a hard disk installed in hard disk drive 1014,
and signals. These computer program products are means for
providing software to the computer system. The computer
readable medium allows the computer system to read data,
instructions, messages or message packets, and other com-
puter readable information from the computer readable
medium. The computer readable medium, for example, may
include non-volatile memory, such as a floppy disk, ROM,
flash memory, disk drive memory, a CD-ROM, and other
permanent storage. It 1s useful, for example, for transporting
information, such as data and computer instructions, between
computer systems. Furthermore, the computer readable
medium may comprise computer readable information 1n a
transitory state medium such as a network link and/or a net-
work interface, including a wired network or a wireless net-
work, that allow a computer to read such computer readable
information.

10

15

20

25

30

35

40

45

50

55

60

65

12

Computer programs (also called computer control logic)
are stored in main memory 1006 and/or secondary memory
1012. Computer programs may also be recerved via commu-
nications interface 1024. Such computer programs, when
executed, enable the computer system to perform the features
of the present invention as discussed herein. In particular, the
computer programs, when executed, enable the processor
1004 to perform the features of the computer system. Accord-
ingly, such computer programs represent controllers of the
computer system.

Although specific embodiments of the invention have been
disclosed, those having ordinary skill 1n the art will under-
stand that changes can be made to the specific embodiments
without departing from the spirit and scope of the invention.
The scope of the invention 1s not to be restricted, therefore, to
the specific embodiments. Furthermore, it 1s intended that the
appended claims cover any and all such applications, modi-
fications, and embodiments within the scope of the present
invention.

We claim:

1. A computer-implemented method for assessing risk of
performance of a software development project, the method
comprising;

receving soitware project data for assessing risks 1n a

soltware development project, the software project data

comprising:

defect data relating to a defect in the software develop-
ment project,

test case history data comprising data on the type of test
case, definition of a test case, times and dates when the
test case was performed, current status of data on
which the test case was performed, results of the test
case, metadata on the results of the test case, and
development and revisions of the test case, and execu-
tion result data including results of executing rules
designed to capture risk data of the soitware develop-
ment project;

storing the software project data 1n a computer storage

device;

identifying a plurality of focus areas for analysis;

defining a set of analysis tasks for each focus area;

creating one or more rule sets for each analysis task, each
rule set comprising one or more rules including software
project data;

evaluating each rule set against the software project data;

summarizing results of evaluating each rule set corre-

sponding to an analysis task; and

providing a risk assessment value for each analysis task

using the results of the summarizing step.

2. The method of claim 1 further comprising;:

summarizing the risk assessment value for each analysis

task corresponding to a focus area; and

providing a risk assessment value for each focus area using

results of the summarizing the risk assessment value.

3. The method of claim 2 further comprising:

summarizing the risk assessment value for each focus area;

and

providing a risk assessment value for the overall software

development project using results of the summarizing
the risk assessment value for each focus area.

4. The method of claim 3, the method further comprising:
providing a graphical user interface to a user forrecerving any
one of software project data, focus area data, analysis task
data and rules.

5. The method of claim 4, the method further comprising:
storing data recerved from the graphical user interface pro-
vided to the user.

US 7,609,180 B2

13

6. The method of claim 3, the method further comprising:
modifying the software project data for inclusion into the one
or more rule sets.

7. The method of claim 3, the method further comprising:
creating a computer readable file including the one or more
rule sets.

8. An information processing system, comprising;

a memory for storing: soitware project data for assessing
risks 1n a soitware development project, where the soft-
ware project data comprises defect data relating to a
defect 1n the software development project, test case
history data comprising data on type of the test case,
definition of the test case, times and dates when the test
case was performed, current status of data on which the
test case was pertormed, results of the test case, meta-
data on the results of the test case, and development and
revisions of a test case, and execution result data includ-

ing results of executing rules designed to capture risk
data of the software development project;

a plurality of focus areas for analysis;

a set of analysis tasks for each focus area; and

one or more rule sets for each analysis task, each rule set

comprising one or more rules including software project
data, and a processor configured for:

evaluating each rule set against the soitware project data;

summarizing results ol evaluating each rule set corre-

sponding to an analysis task; and

providing a risk assessment value for each analysis task

using the results of the summarizing element.

9. The mformation processing system of claim 8, wherein
the processor 1s further configured for:

summarizing the risk assessment value for each analysis

task corresponding to a focus area; and

providing a risk assessment value for each focus area using

the results of the summarizing the risk assessment value
for each analysis task corresponding to a focus area.

10. The information processing system of claim 9, wherein
the processor 1s further configured for: summarizing the risk
assessment value for each focus area; and providing a risk
assessment value for the overall software development
project using the results of the summarizing the risk assess-
ment value for each focus area.

11. The information processing system of claim 10, further
comprising: a graphical user interface for receiving from a
user any one of software project data, focus area data, analysis
task data and rules.

12. The information processing system of claim 10,
wherein the memory 1s further configured for storing: data
received from the graphical user interface.

13. The information processing system of claim 10, further
comprising: a computer readable file including the one or
more rule sets.

14. The information processing system of claim 10,
wherein the processor comprises an application specific inte-
grated circuit.

15. The information processing system of claim 10, further
comprising a memory for storing instructions for: receiving
soltware project data for assessing risks 1n a software devel-
opment project; i1dentifying a plurality of focus areas for
analysis;

defining a set of analysis tasks for each focus area;

creating one or more rule sets for each analysis task, each

rule set comprising one or more rules including software
project data; evaluating each rule set against the soft-
ware project data; summarizing results of evaluating
cach rule set corresponding to an analysis task; and

10

15

20

25

30

35

40

45

50

55

60

65

14

providing a risk assessment value for each analysis task
using the results of the summarizing element.

16. The imformation processing system ol claim 10,
wherein the memory comprises a read-only memory.

17. The information processing system of claim 10,
wherein the memory comprises a random-access memory.

18. The imformation processing system ol claim 10,
wherein a software project data refers to any one of defect

data, test case history data and execution result data.

19. The imnformation processing system ol claim 18,
wherein defect data refers to a metric associated with a metric
value referring to any one of the following data: severity,
defect removal activity, condition that exposed the defect,
type of defect, impact of defect, data on test cases planned,
test cases executed, test cases successiul, s1ze of product.

20. The information processing system of claim 10,
wherein a focus area refers to any one of design stability, code
stability, test effectiveness, development effectiveness and
support concerns.

21. The mformation processing system of claim 10,
wherein a rule comprises a precondition, input data and a risk
assessment value.

22. The information processing system of claim 21,
wherein a precondition 1s a Boolean expression for evaluation
of input data.

23. The information processing system of claim 21,
wherein a precondition 1s a Boolean expression whose logical
operators include: AND, OR, and NOT and whose non-logi-
cal operators 1include the relational operators: less than, less
than or equal to, equal to, greater than, greater than or equal
to, and 1dentical to.

24. The information processing system of claim 21,
wherein a precondition 1s a Boolean expression whose terms
include statistical functions for evaluation upon 1nput data.

25. The information processing system of claim 21,
wherein evaluation of a rule comprises: evaluating the pre-
condition of the rule; and generating a result equal to the risk
assessment value of the rule.

26. A computer readable storage medium including com-
puter instructions for:

receving soltware project data for assessing risks 1 a
soltware development project; identifying a plurality of
focus areas for analysis, the software project data com-
prising defect data relating to a defect 1n the software
development project, test case history data comprising:
data on type of the test case, definition of the test case,
times and dates when the test case was performed, cur-
rent status of data on which the test case was performed,
results of the test case, metadata on the results of the test
case, and development and revisions of the test case, and
execution result data including results of executing rules
designed to capture risk data of the software develop-
ment project;

defining a set of analysis tasks for each focus area;

creating one or more rule sets for each analysis task, each
rule set comprising one or more rules including software
project data;

evaluating each rule set against the soitware project data;
summarizing results of evaluating each rule set corre-
sponding to an analysis task; and

providing a risk assessment value for each analysis task
using the results of the summarizing nstruction.

27. The computer readable storage medium of claim 26,
further comprising instructions for: summarizing the risk
assessment value for each analysis task corresponding to a

US 7,609,180 B2

15 16
focus area; and providing a risk assessment value for each 29. The computer readable storage medium of claim 28,
focus area using the results of the second summarizing further comprising instructions for: modifying the software
instruction. project data for inclusion into the one or more rule sets.
28. The computer readable storage medium of claim 27, 30. The computer readable storage medium of claim 28,
turther comprising instructions for: summarizing the risk 5 further comprising instructions for: creating a computer read-
assessment value for each focus area; and providing a risk able file including the one or more rule sets.

assessment value for the overall software development
project using the results of the third summarizing instruction. k% %k

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,669,180 B2 Page 1 of 1
APPLICATION NO. : 10/8722%2

DATED . February 23, 2010

INVENTOR(S) . Bassin et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 1650 days.

Signed and Sealed this
Seventh Day of December, 2010

Lot T s ppos

David I. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

