12 United States Patent

Kim et al.

US007664923B2

US 7,664,923 B2
Feb. 16, 2010

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR UPDATING
SOF TWARE

(75) Inventors: Hyung-Hoon Kim, Suwon-si (KR);
Chin-Kyu Kang, Suwon-s1 (KR)

(73) Assignee: Samsung Electronics Co., Ltd (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 474 days.

(21) Appl. No.: 10/819,555

(22) Filed: Apr. 7,2004
(65) Prior Publication Data
US 2005/0060699 Al Mar. 17, 2005
(30) Foreign Application Priority Data
Sep. 17,2003 (KR) ..., 10-2003-0064549
(51) Int.CL
GO6F 12/00 (2006.01)
(52) US.CL ...l 711/162;°707/204; 711/103;
714/6
(58) Field of Classification Search 711/162

See application file for complete search history.

S JOURNALING
== BLOCK NORMAL?

700

NO

YES S SECOND

NORMAL?
YES

COPY DATA STORED IN FIRST
BACKUP JOURNALING AREA INTO |—704

JOURNALING AREA BY REFERENCE
TO LOG DATA IN SECOND

BACKUP JOURNALING AREA

RESUME SUSPENDED UPDATING
PROCESS BY REFERENCE TO LOG
DATA IN JOURNALING AREA

710

BACKUP JOURNALING AREA'

(56) References Cited
U.S. PATENT DOCUMENTS
6,263,399 B1* 7/2001 Hwangc.c...ceoee.e.e. 711/103
6,526,447 B1* 2/2003 Glammaria 709/232
6,604,237 B1* 8/2003 Giammaria 717/174

* cited by examiner

Primary Examiner—Christian P Chace
Assistant Examiner—Matthew Bradley
(74) Attorney, Agent, or Firm—The Farrell Law Firm, LLP

(57) ABSTRACT

A method and a system for updating software stored 1n a flash
memory, which enables a user to resume a suspended updat-
ing process even when log data stored 1n a journaling area 1s
lost. According to the present mnvention, log data indicating
the results of implementation of each step of the updating
process 1s stored 1n a journaling area allocated in a flash
memory to update the software. The data stored 1n the jour-
naling area 1s copied 1nto a first backup journaling area allo-
cated 1n the flash memory whenever each step 1s completed.
Concurrently, log data indicating the copying results 1s stored
in a second backup journaling area.

4 Claims, 7 Drawing Sheets

702

NO

TAKE BACKUP COPIES OF FIRST
AND SECOND BACKUP JOURNALING

AREA FROM THE FLASH MEMORY
WHICH [S NOT SUBJECT TO UPDATE §~—706
TO COPY THE BACKUP COPIES
AGAIN INTO FIRST AND SECOND
BACKUP JOURNALING AREA

COPY DATA STORED IN FIRST
BACKUP JOURNALING AREA INTO
JOURNALING AREA BY REFERENCE §—708
TO LOG DATA IN SECOND
BACKUP JOURNALING AREA

U.S. Patent Feb. 16, 2010 Sheet 1 of 7 US 7,664,923 B2

300T 100

APPLICATION 102

' FONT 104
CONTENT 106

OTA DOWNLOAD PROGRAM 108
UPDATE AGENT PROGRAM 110
DOWNLOAD UPDATE FILE 112

_ BACKUP 114
JOURNALING 110

FIRST BACKUP JOURNALING 118
SECOND BACKUP JOURNALING 120

FIG.1

U.S. Patent Feb. 16, 2010 Sheet 2 of 7 US 7,664,923 B2

202

FLASH |
MEMORY

PROCESSOR k>

204
=K

FI1G.2

U.S. Patent Feb. 16, 2010 Sheet 3 of 7 US 7,664,923 B2

COPY DATA STORED IN A BLOCK TO
BE UPDATED INTO BACKUP AREA 300

STORE LOG DATA INDICATING COPYING
RESULTS IN JOURNALING AREA 302

COPY DATA OF JOURNALING AREA INTO
FIRST BACKUP JOURNALING AREA 304
STORE LOG DATA INDICATING COPYING RESULTS
IN SECOND BACKUP JOURNALING AREA
ERASE BLOCK TO BE UPDATED | 308
STORE LOG DATA INDICATING ERASING
RESULTS IN JOURNALING AREA 310
COPY DATA OF JOURNALING AREA
INTO FIRST BACKUP JOURNALING AREA 312
STORE LOG DATA INDICATING COPYING RESULTS| . ,
IN SECOND BACKUP JOURNALING AREA

STORE UPDATE SOFTWARE

306

CODE IN THE BLOCK TO BE UPDATED 316
STORE LOG DATA INDICATING STORING

RESULTS IN THE JOURNALING AREA 318
COPY DATA OF JOURNALING AREA INTO

FIRST BACKUP JOURNALING AREA |9V

STORE LOG DATA INDICATING COPYING RESULTS| 4o,

IN SECOND BACKUP JOURNALING AREA |
END

FIG.3

U.S. Patent Feb. 16, 2010 Sheet 4 of 7 US 7,664,923 B2

400

1S JOURNALING AREA
NORMAL?

COPY DATA STORED IN FIRST BACKUP
JOURNALING AREA INTO JOURNALING

AREA BY REFERENCE TO LOG DATA 402
IN SECOND BACKUP JOURNALING AREA

RESUME SUSPENDED UPDATING
| PROCESS BY REFERENCE TO LOG 404
DATA IN JOURNALING AREA

FI1G.4

US 7,664,923 B2

Sheet S of 7

AJOWIN |-
ey e

Feb. 16, 2010

305

U.S. Patent

S Old

<____AH0SS300Hd K____A HOSS300Hd K__>
909 00§

1 WNVH
705

s
HSV 14
205

U.S. Patent Feb. 16, 2010 Sheet 6 of 7 US 7,664,923 B2

COPY DATA STORED IN A BLOCK TO 800
Be UPDATED INTO BACKUP AREA |

STORE UPDATE SOFTWARE
STORE LOG DATA SHOWING COPYING - AC%EB‘ENUTP'B%ED 620
RESULTS IN JOURNALING AREA 602 .
STORE LOG DATA SHOWING
COPY DATA OF JOURNALING BLOCK STORING RESULTS IN THE =622
INTO FIRST BACKUP JOURNALING AREA |~ 604 IOURNALING AREA
STORE LOG DATA SHOWING COPY DATA OF JOURNALING
COPYING RESULTS IN SECOND 606 BLOCK INTO FIRST BACKUP 624
BACKUP JOURNALING AREA JOURNALING AREA |

COPY DATA STORED IN FIRST AND STORE LOG DATA SHOWING
SECOND BACKUP JOURNALING COPYING RESULTS IN SECOND J— 626

AREA INTO FLASH MEMORY 608 BACKUP JOURNALING AREA
WHICH IS NOT SUBJECT TO UPDATE |

COPY DATA STORED IN FIRST

AND SECOND BACKUP
ERASE BLOCK TO BE UPDATED 610 JOURNALING AREA INTO THE RI8

FLASH MEMORY WHICH IS NOT
SUBJECT TO UPDATE

STORE LOG DATA SHOWING ERASING
RESULTS IN JOURNALING AREA 612

COPY DATA OF JOURNALING
BLOCK INTO FIRST BACKUP | 614
JOURNALING AREA

STORE LOG DATA SHOWING
COPYING RESULTS IN SECOND

SBACKUP JOURNALING AREA | 010

STORE DATA STORED IN FIRST
AND SECOND BACKUP JOURNALING
AREA INTO THE FLASH MEMORY
WHICH [S NOT SUBJECT TO UPDATE

618

F1G.0

US 7,664,923 B2

Sheet 7 of 7

Feb. 16, 2010

U.S. Patent

80/

90/

v38Y ONITYNGNOPr aXOVY
UNOO3S NI V1IVA D01 01
JONdd3438 A8 Y35V ONFVYNENOP
OLINI'V3aV ONIYNENOr dNMOVE
15813 NI 335018 V1VQ AGOD

v3ay ONINVNGNOT aA0VY
AUNOOJS ANV 1SHI3 OLNI NIVOY
S31d00 dMXOVE JHL AdOD Ol
11VadN 01 193rans LON S| HOIHM
AJOWIW HSV'13 JHL WOHS V3dY
ONIVNENOr dNAOVE ANOVSS ANV
1SHI4 40 S31d00 dNAIVE IHV]

A IG|

ON

v3aV¥ ONITYNHNOP NI V.1VQ
90101 3ON343434 A9 553004Hd
ONILVAdr d3AN3IdSNS JNNS3Y

014

W34V ONNYNENOT dnvova
ONOD3S NI ¥1¥Q 901 0L

JONIYI43Y AG YUY ONNYNYNOP
YO~ OINI ¥34Y ONTYNHNOr dNUOVE

15419 NI 035018 V1v3d AdOO
SIA

| { TYWHON
VY oz_ém_v,_%:mom dNXOVE
ONOD3S S
20/ 534 -
SIVNHON 0018
ONIMYNHNOT S

004

US 7,664,923 B2

1

METHOD AND SYSTEM FOR UPDATING
SOFTWARE

PRIORITY

This application claims priority to an application entitled
“Method and System for Updating Software” filed in the
Korean Intellectual Property Office on Sep. 17, 2003 and
assigned Serial No. 2003-64549, the contents of which are
hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method and a
system for updating software, and more particularly to a
method and a system for updating software stored 1n a flash
memory.

2. Description of the Related Art

With the rapid development of portable devices, such as
mobile communication terminals and PDAs (Personal Digital
Assistants), digital convergence has driven a new trend to
combine a variety of functions and shorten the model replace-
ment cycle. Accordingly, 1t becomes more likely that new
portable devices are supplied on the market with undesired
functional defects that have not been detected during the
development stage. Also, after completion of the develop-
ment of a portable device, an additional function may need to
be released 1n a patch form.

In such cases, the software of already-sold portable devices
must be updated to correct or upgrade the software defects.
Qualified service engineers from the device supplier or after-
sales service centers may directly visit all the users of the
defective portable devices. Alternatively, the users can visit
the after-sales service centers to update the software of their
portable devices.

To eliminate such trouble, an OTA-SD (Over The Air-
Software Download) has been suggested for portable devices
capable of mobile communications. The OTA-SD 1s a down-
load scheme that accesses a predetermined server through the
Internet, and selects an update file to be downloaded and
downloads the update file onto a portable device. It 1s also
possible to primarily download an update file onto a PC
through the Internet and then transfer the same update file
from the PC to a portable device using an USB (Universal
Serial Bus) cable.

After downloading an update file, usually, the user reboots
the portable device being updated. The updating process 1s
implemented by erasing a area storing a software code to be
updated 1n anon-volatile memory where software 1s generally
stored, and storing a downloaded update software code 1n the
area to be updated. Commonly, a flash memory 1s used as a
non-volatile memory that stores software 1n a portable device.
The flash memory stores software, such as boot codes, appli-
cation programs, font binaries, and content binaries.

However, the process of updating a portable device by
downloading update software may be iterrupted by an
abnormal cause, for example, when the portable device 1s
suddenly turned off by the separation of a battery. To prepare
tor the sudden interruption of the updating process, journal-
ing can be implemented. When journaling 1s utilized, a
backup area and a journaling area are allocated in a flash
memory so that data stored in a area to be updated can be
copied into the backup area and log data indicating the results
of implementation of each step of the updating process can be
stored 1n the journaling area. The updating process comprises
the steps of copying the data stored 1n a area to be updated into
the backup area, erasing the area to be updated, and storing an
update software code in the area to be updated. By having a
backup copy of the data stored 1n the area to be updated before

10

15

20

25

30

35

40

45

50

55

60

65

2

erasing it, 1t 1s possible to minimize the chance of losing the
data without being updated, when an unexpected power loss
occurs aiter erasure of the area to be updated. Also, upon
completion of each of the copying, erasing, and storing steps,
log data indicating the results of implementation of each step
1s stored 1n the journaling area. Accordingly, when rebooting
a device after a temporary power loss during the updating

process, the user can refer to the stored log data to resume the
updating process from a proper point.

Either an NOR-type flash memory or an NAND-type flash
memory can be used as a tlash memory storing soitware 1n a
portable device. Unlike the NOR flash memory, the NAND
flash memory often loses all the log data stored in the jour-
naling area when implementing an updating process includ-
ing a journaling step. The NOR flash memory continuously
stores new log data generated during the updating process in
an erased journaling area. In other words, after storing one log
data 1n the journaling area, the NOR flash memory stores
additional log data next to the previous log data 1n the jour-
naling area, without erasing the previous log data. The opera-

tion of storing log data continues until the journaling area 1s
filled with log data.

Unlike the NOR flash memory, the NAND flash memory
has a limitation in the NOP (Number of Program). The
NAND flash memory always executes the erase operation
before attempting to store data. In the NAND flash memory,
the erase operation 1s executed 1n 16-Kbyte blocks, while the
program and read operations are executed 1n 512-byte pages.
The NOP refers to the number of programming and storing
operations, which can be executed without erasing data 1n a
once-erased page. The NOP of the main memory area is
defined differently according to NAND flash memory device
suppliers.

If the programming and storing operations in the NAND
flash memory exceeds the defined NOP, 1t cannot be guaran-
teed to correct bit errors due to the physical properties of the
NAND flash memory. Because the NAND flash memory
operates 1n pages while programming, a high voltage 1s sup-
plied to a bit to be programmed and to the other bits within the
same page. Accordingly, 11 the NAND flash memory 1s pro-
grammed to store additional data next to the previous data 1n
the same page without erasure, the previous data will likely be
overwritten to be replaced by the new additional data. Then,
single bit errors will be repeatedly caused, which may lead to
an incorrectable double or multiple bit errors 1n the NAND
flash memory. Because of the double or multiple bit error, the
NAND flash memory will have incorrect data. Therefore, 1T a
program operation 1s executed to store data in an erased
NAND flash memory area, the NAND flash memory, unlike
the NOR tlash memory, cannot keep storing log data without
erasure until the journaling area 1s filled.

If journaling 1s applied to update soitware of a portable
device because of the physical properties of the NAND flash
memory, 1t will be necessary to first erase the journaling area
and then execute a program operation whenever storing log
data. However, when an unexpected power loss occurs after
crasure of the journaling area, there may be a possibility of
losing all the log data previously stored 1n the journaling area.
Accordingly, log data stored 1n the Journaling area 1s moved
into a RAM (Random Access Memory) before erasing the
journaling area. However, 1f a power loss occurs alter erasing,
the journaling area and before storing new log data from the
RAM 1n addition to the previous log data in the journaling
area, all the log data will likely be lost. Therefore, the jour-
naling step for preventing data loss that may be caused by an
unexpected power loss during an updating process will be
useless 1 the NAND flash memory.

As stated above, the NAND-type flash memory 1s required
to repeat the erase and program operations to store data.

US 7,664,923 B2

3

Therefore, journaling may be useless when updating software
in a portable device that stores software 1n the NAND flash
memory.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been designed to
solve the above—and other problems occurring in the prior
art, and an object of the present invention 1s to provide a
method and a system for updating software stored 1n a flash
memory, which enables a user to resume a suspended updat-
ing process even when log data stored 1n a journaling area 1s
lost.

In order to accomplish the above and other objects of the
present invention, log data indicating the results of implemen-
tation of each step of the updating process 1s stored 1n a
journaling area allocated 1n a flash memory to update soft-
ware. The data stored in the journaling area 1s copied into a
first backup journaling area allocated 1n the flash memory
whenever each step 1s completed. At the same time, log data
indicating the copying results 1s stored 1n a second backup
journaling area.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features, and advantages of
the present invention will be more apparent from the follow-
ing detailed description taken 1n conjunction with the accom-
panying drawings, in which:

FI1G. 1 1llustrates a memory map of a flash memory accord-
ing to the present invention.

FI1G. 2 1llustrates a configuration of a software update sys-
tem according to a first embodiment of the present invention.

FIG. 3 1s a flow chart illustrating an updating process
according to the first embodiment of the present invention.

FIG. 4 1s a flow chart illustrating a process of resuming a
suspended updating process according to the first embodi-
ment of the present invention.

FIG. 5 1llustrates a configuration of a software update sys-
tem according to a second embodiment of the present inven-
tion.

FIG. 6 1s a flow chart illustrating an updating process
according to the second embodiment of the present invention.

FIG. 7 1s a flow chart illustrating a process of resuming a
suspended updating process according to the second embodi-
ment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Preferred embodiments of the present invention will be
described 1n detail herein below with reference to the accom-
panying drawings. In the following description of the present
invention, a detailed description of known functions and con-
figurations incorporated herein will be omitted when 1t may
make the subject matter of the present invention rather
unclear.

FI1G. 1 1llustrates a memory map of a flash memory accord-
ing to the present invention. The flash memory stores a boot
code, an application program, a font binary, and a content
binary for the operation and various functions of a portable
device. The flash memory having the illustrated memory map
can be updated by an update file download using the OTA-SD.
The flash memory mcludes first and second backup journal-
ing areas 118 and 120 allocated according to the present
invention. The boot code, application program, font binary,
and content binary are stored respectively 1n a boot area 100,
an application area 102, a font areca 104, and a content area
106 as 1llustrated in FIG. 1. Although the application area

10

15

20

25

30

35

40

45

50

55

60

65

4

102, font area 104, and content area 106 are generally subject
to update, the boot area 100 can also be updated.

An OTA download program area 108, an update agent
program area 110, a download update file area 112, a backup
arca 114, and a journaling area 116 are arcas required to
perform an updating process including journaling. The OTA
download program area 108 stores an OTA download pro-
gram for executing an update file download according to the
OTA-SD. The download update file area 112 stores a down-
loaded update file. The update agent program area 110 stores
an update agent program for performing the updating process.
Also, the backup area 114 and the journaling areca 116 are
used for journaling performed during the updating process.

The first backup journaling area 118 1s used for a backup of
log data stored 1n the journaling area 116, whereas the second
backup journaling area 120 1s used to store log data indicating

the erase and program state of the first backup journaling area
118.

FIG. 2 illustrates a configuration of a software update sys-
tem according to a first embodiment of the present invention.
A processor 200 1s a main control means of a portable device
adopting the software update system. The processor 200 con-
trols the overall functions of the portable device according to
the software stored 1n a tlash memory 202. The flash memory
202 stores the software for operating the processor 200 and
has a memory map as illustrated in FI1G. 1. A RAM (Random
Access Memory) 204 serves as a working memory according
to the program 1mplementation of the processor 200. Gener-
ally, a SDRAM (Synchronous Dynamic Random Access
Memory) 1s preferred.

FIG. 3 1s a flow chart illustrating an updating process
comprising steps 300 to 322 according to the first embodi-
ment of the present invention. The processor 200 performs the
steps 300 to 322 when the tflash memory 202 in FIG. 2 1s a
NAND-type flash memory having a memory map as 1illus-
trated in FIG. 1. The update agent program for performing the
updating process 1s stored in the update agent program area
110 in FIG. 1.

Upon mmitiating the updating process according to the
update agent program, the processor 200 copies the object
area to be updated 1n the backup area 114 at step 300 to
prepare for an abnormal power loss. The processor 200 erases
the object area to be updated at step 308, and stores an update
soltware code 1n the object area at step 316. Whenever each
step of copy (step 300), erase (step 308), and store (step 316)
1s completed, log data indicating the results of implementa-
tion of each step 1s stored 1n the journaling area 116 at next
steps 302, 310, and 318, respectively. It 1s necessary to erase
the journaling area 116 1n advance to store the log data. At
steps 302, 310, and 318, the processor 200 copies previous log
data stored 1n the journaling area 116 in the RAM 204 before
erasing the journaling area 116, and then stores new log data
in the journaling area 116.

However, there may be an unexpected sudden power loss
when the log data generated at step 302 by copying the data
stored 1n the object area to be updated into the backup area
114 1s stored 1n the journaling area 116, when the log data
generated at step 310 by erasing the object area 1s stored in the
journaling area 116, or when the log data generated at step
318 by storing the update software code 1n the object area 1s
stored in the journaling area 116. To prepare for such a sudden
power loss, the data stored 1n the journaling area 116 1s copied
into the first backup journaling area 118 at steps 304-306,
312-314, and 320-322, respectively. Log data indicating the
copying results 1s stored 1n the second backup journaling area
120. If there has been a previous software update and the
current update 1s a second one, log data according to the
previous update should have been stored in the journaling
area 116. In such a case, steps 304 and 306 maintain the log
data according to the previous update.

US 7,664,923 B2

S

FI1G. 4 1s a flow chart 1llustrating a process of resuming an
updating process that has been suspended by a sudden power
loss according to the first embodiment of the present mven-
tion. When the portable device reboots, the processor 200
performs steps 400 to 404 to resume the suspended updating,
process according to the update agent program stored in the
update agent program area 110 in FIG. 1.

When booting, the processor 200 confirms whether an
updating process has been suspended before. It so, the pro-
cessor 200 confirms whether the journaling area 116 1s nor-
mal according to the update agent program at step 400. If the
journaling area 116 1s normal (that 1s, 1T log data 1s normally
stored in the journaling area 116), the processor 200 waill
proceed with step 404. At step 404, the processor 200 con-
firms to which step the updating process was completed, by
reference to the log data stored 1n the journaling area 116, in
order to resume the updating process from the next step. The
processor 200 resumes the updating process from one of the
steps 1llustrated 1n FIG. 3.

However, i the journaling area 116 1s determined to be
abnormal at step 400 (that 1s, if the journaling area 116 has
been erased), the processor 200 will proceed with step 402 to
copy the data stored 1n the first backup journaling area 118
into the journaling area 116 by reference to the log data of the
second backup journaling area 120, and will then proceed
with step 404. When the updating process 1s suspended by a
sudden power loss with the journaling area 116 erased, the
processor 200 can resume the updating process by reference
to the log data copied into the first backup journaling area
118. Therefore, 1f journaling 1s applied 1n an NAND flash
memory, a suspended updating process can be resumed even
when the log data stored in the journaling area 1s lost.

The second backup journaling area 120 1s also included in
the NAND flash memory. Upon completion of copying the
data stored 1n the journaling area 116 into the first backup
journaling area 118, log data indicating the copying results 1s
stored 1n the second backup journaling area 120 at steps 306,
314, and 322. When the second backup journaling area 120 1s
crased before storing the log data, there may be an abnormal
power loss. In such an event, the updating process 1s sus-
pended with the second backup journaling area 120 erased.
However, because the log data has been normally stored 1n the
journaling area 116, it 1s possible to resume the suspended
updating process by reference to the log data stored in the
journaling area 116.

The present invention 1s applicable to both a portable
device having a single processor and that having two or more
processors. It 1s a current trend to adopt a dual-chip structure
having two processors 1n a mobile communication terminal.
In the dual-chip structure, one processor chip functions as a
modem for executing a communication protocol, while the
other processor chip 1s used for various applications, such as
a Ul (User Interface) and a VOD (Video On Demand). The
dual-chip structure can reduce overload, which may be
caused when a single chip 1s used 1n a portable device. When
the present invention 1s applied 1n a portable device having the
dual-chip structure and using a flash memory, which 1s not
subject to update, data stored 1n the second backup journaling
area 120 can be kept even if an updating process 1s abnormally
suspended with the second backup journaling area 120
erased.

FIG. 5 1llustrates a configuration of a software update sys-
tem according to a second embodiment of the present inven-
tion, which 1s applicable to a portable device having a dual-
chip structure. The software update system has two
processors 500 and 506. A tlash memory 502 and a RAM 504
are provided for one processor 500, while a tflash memory 508
and a RAM 510 are provided for the other processor 506. One
of the two processors 300 and 506 functions as amodem, and
the other 1s used for various applications.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the following description, 1t 1s assumed that the tlash
memory 502 and the processor 500 in FIG. 2 are subject to
update, and that the flash memory 502 storing software for the
operation of the processor 500 has amemory map as shown 1n
FIG. 1 according to the present invention.

FIG. 6 1s a flow chart illustrating an updating process
comprising steps 600 to 628 according to the second embodi-
ment of the present mnvention. The processor 500 performs
steps 600 to 628 when the tlash memory 502 1n FIG. 51s a
NAND-type flash memory having a memory map as 1llus-
trated 1in FIG. 1. An update agent program for performing the
updating process 1s stored in the update agent program area
110 n FIG. 1. Steps 600-606, 610-616, and 620-626 1n FIG.
6 arc the same as steps 300-306, 308-314, and 316-322,
respectively. Therefore, a description of these steps will not
be made again. However, at steps 608, 618, and 628, the
processor 300 copies the data stored in first and second
backup journaling areas 118 and 120 into the flash memory
508, which 1s not subject to update, 1n order to prepare for the
possibility that the updating process 1s suspended by an
abnormal power loss aiter erasure of the second backup jour-
naling area 120. Whenever each step of copy (step 600), erase
(step 610), and store (step 620) 1s completed, log data 1ndi-
cating the results of implementation of each step 1s stored 1n
the journaling area 116. The data stored in the journaling area
116 1s copied into the first backup journaling area 118, and log,
data indicating the copying results 1s stored in the second
backup journaling area 120. Also, all the data stored 1n the
first and second backup journaling areas 118 and 120 are
copied 1nto the tflash memory 508, which 1s not subject to
update. More specifically, the processor 300 transiers the data
stored 1n the first and second backup journaling areas 118 and
120 to the processor 306 to copy the data into the flash
memory 508. In a portable device having the dual-chip struc-
ture as illustrated 1n FI1G. 5, the data copy can be implemented
through a communication between the two processors 500

and 506.

FIG. 7 1s a flow chart illustrating a process of resuming an
updating process that has been suspended by a sudden power
loss according to the second embodiment of the present
invention. When the portable device reboots, the processor
500 pertorms steps 700 to 710 to resume the updating process
according to the update agent program stored 1n the update
agent program area 110 in FIG. 1. When booting, the proces-
sor 500 confirms whether an updating process has been sus-
pended betore. It so, the processor 500 confirms whether the
journaling area 116 1s normal according to the update agent
program at step 700. I the journaling area 116 1s normal, the

processor 500 will proceed with step 710, which 1s the same
as step 404 1n FIG. 4.

At step 710, the processor 500 resumes the updating pro-
cess by reference to the log data stored in the journaling area
116. However, 11 the journaling area 116 1s determined to be
abnormal at step 700, the processor 500 will confirm whether
the second backup journaling area 120 1s normal at step 702.
If the second backup journaling area 120 1s normal, the pro-
cessor 300 will proceed with step 704, which is the same as
step 402 1n FIG. 4, to copy the data stored in the first backup
journaling area 118 into the journaling area 116 by reference
to the log data stored 1n the second backup journaling area
120, and will proceed with next step 710. However, 1t the
second backup journaling area 120 1s abnormal (that 1s, 11 the
second backup journaling area 120 has been erased), the
backup copies of the first and second backup journaling areas
118 and 120, which have been stored 1n the flash memory 508
of the processor 506, will be copied again 1nto the first and
second backup journaling areas 118 and 120.

As was done 1 step 704, the processor 300 copies the data
stored 1n the first backup journaling area 118 1nto the journal-
ing area 116 at step 707 by reference to the log data stored 1n

US 7,664,923 B2

7

the second backup journaling area 120, and then proceeds
with step 710. If the updating process 1s suspended by a
sudden power loss after erasure of the second backup jour-
naling area 120 and the journaling area 116 1s abnormal, the
processor 300 can resume the updating process by reference
to the log data copied into the flash memory 508, which 1s not
subject to update.

As described above, if Journaling 1s applied to update
soltware stored 1n a flash memory, the present invention can
resume a suspended updating process even when the log data
stored 1n the journaling area 1s lost.

While the present invention has been shown and described
with reference to certain preferred embodiments thereof, it
will be understood by those skilled 1n the art that various
changes 1n form and details may be made therein without
departing from the spirit and scope of the invention as defined
by the appended claims. Although only embodiments applied
in a NAND flash memory have been described, the present
invention can also be used in a NOR flash memory. The
present invention 1s applicable to any embedded system that
stores soltware of a processor 1n a flash memory, as well as a
portable device. Therelfore, this mnvention 1s not to be unduly
limited to the embodiments set forth herein, but to be defined
by the appended claims and equivalents thereof.

What 1s claimed 1s:

1. A method forupdating software stored in a flash memory
of a single independent portable device by using an updating
process with plural steps, the method comprising the steps of:

updating the software while storing log data indicating
results of implementation of each step of the updating
process 1n a journaling area allocated in the flash
memory of the portable device;

whenever each step of the updating process 1s completed,
copying the log data stored 1n the journaling area 1nto a
first backup journaling area allocated 1n the flash
memory ol the portable device and storing log data
indicating copying results 1n a second backup journaling
area allocated 1n the flash memory of the portable
device, wherein said tlash memory 1s a NAND-type tlash
memory;

determining whether the journaling area 1s normal when it
1s confirmed during booting that the updating process
has been suspended;

resuming the suspended updating process by referring to
the log data stored 1n the journaling area when the jour-
naling area 1s determined to be normal;

copying the data stored 1n the first backup journaling area
into the journaling area by referring to the log data stored
in the second backup journaling area when the journal-
ing area 1s determined to be abnormal; and

resuming the suspended updating process by referring to
the log data copied into the journaling area.

2. A method for updating software by using an updating
process with plural steps 1n a single independent portable
device including at least two processors and at least two flash
memories for storing software of the respective processors,
said method comprising the steps of:

updating the software while storing log data indicating
results of implementation of each step of the updating
process 1n a journaling area allocated 1n one of the at
least two flash memories of the portable device, which 1s
subject to update;

whenever each step of the updating process 1s completed,
copying data stored in the journaling area into a first
backup journaling area allocated 1n one of the at least
two flash memories and storing log data indicating copy-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing results 1n a second backup journaling area allocated
in one of the at least two flash memories of the portable
device;

copying the data stored in the first and second backup
journaling areas into one of the at least two flash memo-
ries of the portable device, which 1s not subject to
update, wherein said flash memory, which 1s subject to
update, 1s a NAND-type tlash memory;

determining whether the journaling area 1s normal when it
1s determined during booting that the updating process
has been suspended;

resuming the suspended updating process by referring to
the log data stored 1n the journaling area when the jour-
naling area 1s determined to be normal;

determining whether the second backup journaling area 1s
normal when the journaling area 1s determined to be
abnormal;

copying the data stored in the first backup journaling area
into the journaling area by referring to the log data stored
in the second backup journaling area when the second
backup journaling area 1s determined to be normal;

taking backup copies of the first and second backup jour-
naling areas from the other of the at least two flash
memories, which 1s not subject to update, to recopy the
backup copies into the first and second backup journal-
ing areas, and copying the data stored 1n the first backup
journaling area into the journaling area by referring to
the log data 1n the second backup journaling area, when
the second backup journaling area 1s determined to be
abnormal; and

resuming the suspended updating process by reference to
the log data copied 1nto the journaling area.

3. A software update system 1n a single independent por-

table device comprising:

a flash memory 1n the portable device for storing software
and allocating a journaling area, a first backup journal-
ing area, and a second backup journaling area therein;
and

a processor 1n the portable device for updating the software
using a soiftware updating process with plural steps
while storing log data indicating results of implementa-
tion of each step of the software updating process in the
journaling area, copying the log data stored 1n the jour-
naling area into the first backup journaling area when-
ever each step of the software updating process 1s com-
pleted, and storing log data indicating copying results 1n
the second backup journaling area,

wherein said tlash memory 1s a NAND-type flash memory,
and

wherein said processor copies the data stored in the first
backup journaling area 1nto the journaling area by refer-
ring to the log data in the second backup journaling area,
when the journaling area 1s determined to be abnormal,
and resumes the suspended updating process by refer-
ring to the log data copied into the journaling area.

4. A software update system 1n a single independent por-
table device using a software updating process with plural
steps, the system comprising;

at least two processors 1n the portable device for commu-

nicating with each other; and

at least two flash memories 1n the portable device for stor-
ing software of the respective processors,

wherein a first of the at least two flash memories, which 1s
subject to update, allocates a journaling area, a first
backup journaling area, and a second backup journaling
area therein,

US 7,664,923 B2
9 10

wherein a first processor of the at least two processors wherein said first processor, which 1s subject to update,
associated with the first flash memory, which 1s subject takes backup copies of the first and second backup jour-
to update, stores log data indicating results of implemen- naling areas from the second flash memory, which 1s not
tation of each step of the software updating process 1n subject to update, to recopy the backup copies into the
the journaling area to update the software, copies thelog s first and second backup journaling areas, when 1t 1s
data stored 1n the journaling area into the first backup determined during booting that the updating process has
journaling area, and stores log data indicating copying, been suspended and that the journaling area and the
results 1n the second backup journaling area whenever second backup journaling area are abnormal; copies the
cach step of the software updating process 1s completed, data stored 1n the first backup journaling area into the
and copies the data stored in the first and second backup 10 journaling area by referring to the log data copied into
journaling areas nto a second flash memory of the at the second backup journaling area; and resumes the
least two tlash memories, which 1s not subject to update, suspended updating process by reference to the log data
and copied into the journaling area.

wherein said flash memory, which 1s subject to update, 1s a
NAND-type flash memory, and £ % % kK

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,664,923 B2 Page 1 of 1
APPLICATION NO. : 10/819555

DATED . February 16, 2010

INVENTOR(S) . Kim et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 843 days.

Signed and Sealed this
Seventh Day of December, 2010

Lot T s ppos

David I. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

