12 United States Patent

US007664800B2

(10) Patent No.: US 7.664.800 B2

Kwon 45) Date of Patent: Feb. 16, 2010
(54) APPARATUS AND METHOD FOR 6,996,826 B2* 2/2006 Kanamori 719/316
MANAGING RESOURCE ON JAVA 7,069,279 Bl1* 6/2006 Rauetal. ...covevnenennnn.. 707/206
ENVIRONMENT 7,174,354 B2* 2/2007 Andreasson 707/206
7.444.484 B2* 10/2008 Achanta etal. 711/159
75 . _ . 2003/0187888 Al 10/2003 Hayward
(75) " Inventor: Ho-bum Kwon, Suwon-si (KR) 2003/0196061 Al 10/2003 Kawahara et al.
o . 2004/0168028 Al 82004 Cierniak
(73) Assignee: Samsung Electronics Co., Litd.. 2007/0150864 AL* 6/2007 GOR woomooeeoeeosoo T17/113
Suwon-si1 (KR)
OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 229 days.

(21) Appl. No.: 11/655,923
(22) Filed: Jan. 22, 2007

(65) Prior Publication Data
US 2007/0226282 Al Sep. 27, 2007

(30) Foreign Application Priority Data
Feb. 24,2006 (KR) ...oooiiiiiinnnnnns. 10-2006-0018281
(51) Int.CL
GO6F 17/30 (2006.01)
(52) US.CL .., 707/206; 719/316
(58) Field of Classification Search 707/206;
719/316
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,848,423 A 12/1998 Ebrahaim et al.
6,070,173 A * 5/2000 Huberetal. 707/206
6,671,707 B1 12/2003 Hudson et al.
6,874,074 B1* 3/2005 Burtonetal. 711/170

6,928,460 B2 8/2005 Nagarajan et al.
6,978,285 B2 12/2005 Li

21 22

FINALIZABLE | | /

Leal, Marcus Amorim et al. “The Weak-Reference Interface” Aug. 4,
2004, 15 pages.

IBM, “Developer Kit and Runtime Environment, Java 2 Technology
Edition, Version 1.4.17 pp. 18-19, Apr. 2004. XP002527598.
Pawlan, Monica “Reference Objects and Garbage Collection” Aug.

1, 1998, pp. 1-10.
* cited by examiner

Primary Examiner—Debbie M Le
(74) Attorney, Agent, or Firm—Sughrue Mion, PLLC

(57) ABSTRACT

Provided are an apparatus for managing resources 1n a Java
environment and a method of managing the same, in which in
confirming finalized states of a plurality of reference objects
and finalizable objects classified according to accessibility
from a program to be currently executed, an order confirming
whether the respective objects are finalized 1s changed. The
apparatus includes an accessibility confirming unit confirm-
ing whether an object to which a memory resource 1s allo-
cated 1s accessible through a route set, an access path con-
firming unit confirming access paths to the object according
to the confirmed result by the accessibility confirming unit, a
control unit determining an order of the access paths, and a
resource releasing unit releasing the memory resource allo-
cated to the object according to the order of the access paths.

10 Claims, 7 Drawing Sheets

23 24

>

U.S. Patent Feb. 16, 2010 Sheet 1 of 7 US 7,664,800 B2

10

JAVA VIRTUAL
MACHINE

INTERPRETER 11

GARBAGE COLLECTOR 12

CLASS LOADER 13

RUN-TIME SYSTEM 14

U.S. Patent Feb. 16, 2010 Sheet 2 of 7 US 7,664,800 B2

FIG. 2
21 22 23 24
SESECHe
F1G. 3

360

FIRST MEMORY SECOND MEMORY
350
RESOURCE
ACCESSIBILITY NFORMATION RESOURCE
CONFIRMING UNIT UPBATING UNIT CONTROL UNIT RELEASING UNIT

ACTIVE BIT
UPDATING
SECTION
CONFIRMING UNIT
QUEUE UPDATING
341 SECTION

370
342

U.S. Patent Feb. 16, 2010 Sheet 3 of 7 US 7,664,800 B2

FI1G. 4

310 320

FIRST MEMCRY SECOND MEMORY

410

QUEUE OF SOFT REFERENCE
OBJECT

QUEUE OF WEAK REFERENCE
OBJECT

QUEUE OF PHANTOM REFERENCE
OBJECT

QUEUE OF FINALIZABLE OBJECT

420

430

QUEUE UPDATING

SECTION

342

U.S. Patent Feb. 16, 2010 Sheet 4 of 7 US 7,664,800 B2

FIG. SA

010

SOFT REFERENCE

OBJECT

920 000 540

.., - :_.,...—-.._-i-ldr pw, g e l..--_--rd- gy =i mra— --:rl- e -!--.-:_- - -.-'_] -11--‘ "h.‘
- - f - - lr
-t -] R T

WEAK REFERENGE
OBJECT

030

W, " . M - . : L - - Y
o T e e P T PO Ol S S o LU PR =) S S PP Et N S

PHANTOM
REFERENCE

OBJECT

U.S. Patent Feb. 16, 2010 Sheet 5 of 7 US 7,664,800 B2

010

.y a my :‘q-.‘-i:.-r:‘_n:--— L - IURE N b L LT] e

" SOFT REFERENCE :

OBJECT

b . ! a . --. k & ;_'_',.P
‘-L._..', L B ._.__.11._.-_."_';._'_:3..-..".1--_...-_.- 2—:‘.—'—.‘-*}-#-:-— -

WEAK REFERENCGE
OBJECT

FINALIZABLE OBJECT

030

PHANTOM
REFERENCE

OBJECT

FIG. 5C

10

SOFT REFERENCE

OBJECT

520 o00 040

- el B s o iy vl o el Y g g Lt oal o -y e)
a5 -|_.'! :':ﬁ?.: ‘&*W gt f:q" L i) v """'Tr".'-u D 7 ."l-!"l T FI"!_'llh
> . w .
ll‘ll-'I:'IE P et '._."; 'I“ - h'_I‘ |
Boaiar gy ARG K -
? T e
3 o e .
P ClacH
P ow ! . -
- i -
'
] -

L LA .L-"‘ R P =g vaprd ™% L |
g UBIE B L B -‘:'l',"'{-ﬁ - i
P e W vt) 'l'r T s b - '1'1'-1_"." et oy - e ra Irc, 51-"" -
e - LI - 2 o= ot T il .;- h.'_-r.!-—ﬁ ':l"_ T .-I}E
e, g FUTED e et TN e T P At
! L ' l.; 1 . L - . b = ! - Fhe ey
; . e e b]
W T - - .
'y ol . ' va e g
e ; , . - rY
Y R I S P P
¥OEL UL TR L
i':"'. . =TT _..: 4 - . - :._'- on g 1 iy
-"i'|'1 T L W - 'm . . "'i_i
;-n"' P F,-..‘ 1 ' I . KL B . . %
o _:. - - T Y oA L- ety " Ta . L -
4 L] o, [l = -
LR T s a4 M- [] I A x T o T o=
% L] - - n at! Y . L ! ' - . ". ¢ - =
U o L IR - -a 1 + ' . e
.q.'.. o> Ll P . i -’ - - ¥
Tl L Y . - - = B e om
d . r= . - "=

L |
-

o
r
'.Id

g

FINALIZABLE OBJECT

- %
[T
- l.-' : i .-_'

-+ - - -~ - =t R
- L. L o P = i aF

PHANTOM

REFERENCE
OBJECT

U.S. Patent Feb. 16, 2010 Sheet 6 of 7 US 7,664,800 B2

FI1G. SD

010

SOFT REFERENCE
OBJECT

500 540

WEAK REFERENCE
OBJECT

FINALIZABLE OBJECT

-""a'-l T’-—h-l ?-.1 ,.q... iy,

SPHANTOM
HEFEHENCE 3
COBJECT

Ill-lil"- -"'-——ﬂ-ll-l-—""'hl -H!—I-l-l'l- —nl--l-ll-l l-l-l--ri-l-l-l-i—-lup. l-l-'-"

FI1G. SE

510

SOFT REFERENCE
OBJECT
500 540

WEAK REFERENCE

OBJECT FINALIZABLE OBJECT

PHANTOM
REFERENGE
OBJECT

U.S. Patent Feb. 16, 2010 Sheet 7 of 7 US 7,664,800 B2

S610
— S620
S631
N vy _
UPDATE ACTIVE BIT AND QUEUE UPDATE ACTIVE BIT AND QUEUE | —
_ v
CONFIRM ACCESS PATH TO |
OBJECT S640
s m— —-—————————-— — —— .
DETERMINE ORDER OF ACCESS |
PATH S650
S660
I « S
RELEASE MEMORY RESOURCE OF
OBJECT CORRESPONDING TO | S670

US 7,664,800 B2

1

APPARATUS AND METHOD FOR
MANAGING RESOURCE ON JAVA
ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority from Korean Patent Appli-
cation No. 10-2006-0018281 filed on Feb. 24, 2006, 1n the

Korean Intellectual Property Office, the disclosure of which 1s
incorporated herein by reference 1n 1ts entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Apparatuses and methods consistent with the present
application relate to managing resources 1n a Java environ-
ment. More particularly, apparatuses and methods consistent
with the present invention relate to managing resources in a
Java environment, 1n which in confirming finalized states of a
plurality of reference objects and finalizable objects classified
according to accessibility from a program to be currently
executed, an order confirming whether the respective objects
are finalized 1s changed, such that resources allocated to
objects accessible through the reference objects are eflfec-
tively used.

2. Description of the Related Art

Java 1s an object-oriented programming language that runs
written code 1n a platform independent manner. Here, the
platform means hardware on which a program executes, or a
soltware environment, such as an operating system. The code
written 1n Java 1s compiled into a Java byte code by a Java
compiler. The Java byte code 1s executed by a Java virtual
machine that 1s ported to a varniety of hardware-based plat-
forms.

FIG. 1 1s a diagram illustrating a Java virtual machine
according to the related art. A Java virtual machine 10
includes an interpreter 11, a garbage collector 12, a class
loader 13, and a run-time system 14.

An nstance for a class 1s referred to as an object. When one
object 1s created, a portion of a heap region of a memory 1s
allocated to the created object. In addition, when the corre-
sponding object disappears, the garbage collector 12 releases
the resource allocation of the corresponding memory region,
such that another program or object can freely use the
resource.

Atthe time of releasing the resource allocation, the garbage
collector 12 confirms whether all objects to which memory
resources of the heap regions have been allocated are final-
1zed, and then releases the resources allocated to all of the
finalized objects. In this case, the garbage collector 12 con-
firms whether access 1s possible from a program currently
being executed so as to confirm whether the corresponding,
object 1s finalized. That 1s, the garbage collector 12 deter-
mines that accessible objects through a root set of a thread are
not finalized, and determines that inaccessible objects
through the root set of the thread are finalized.

There are objects that are accessible from the root set
through an instance of a class (heremafter, referred to as
“reference object”) to which a reference class 1s inherited.
These objects are classified into objects that are mnaccessible
from the root set, and the resource allocation for the corre-
sponding memory region 1s released by the garbage collector

12.

In this case, the reference objects are classified 1nto a soft
reference object, a weak reference object, and a phantom
reference object, and access to the objects may be classified

10

15

20

25

30

35

40

45

50

55

60

65

2

into four types according to the access methods from the root
set. That 1s, access to the objects are classified into access
from the other objects excluding the reference object, access
from the soit reference object, access from the weak reference
object, and access from the phantom reference object.

FIG. 2 1s a diagram 1llustrating a state 1n which objects are
finalized according to the related art. The state includes a
finalizable state 21, a finalizing state 22, a finalized state 23,
and a returned state 24. The object in which a state change can
be made 1s referred to as a finalizable object.

The finalizable state 21 means a state 1n which the object s
created and being executed, the finalizing state 22 means a
state 1n which the object 1s finalizing as a finalize function 1s
executed, the finalized state 23 means a state 1n which the
resource allocated to the corresponding object can be released
by the garbage collector 12 as the execution of the finalize
function 1s finalized, and the returned state 24 means a state in
which the resources allocated to the corresponding object are
released from the memory region.

In order to confirm whether the object to which the memory
resource of the heap region 1s allocated 1s finalized, the gar-
bage collector 12 sets all of the bits indicating whether the
object 1s active (hereinafter, referred to as active bit) to false,
and then starts to confirm all objects that are accessible from
the route set. Then, 1 the object to be a confirm target 1s
accessible from the route set, the garbage collector 12 sets the
active bit of the corresponding object to true, and removes 1t
from the resource releasing target.

A queue for each reference object may exist depending on
whether a Java virtual machine 1s implemented. When the
object to be the confirm target 1s accessible through the ret-
erence object, the garbage collector 12 mputs the address of
the corresponding object to the queue corresponding to the
type of the reference object. At this time, since the object
accessible through the reference object 1s not a strongly
accessible object, the active bit of the corresponding object 1s
maintained as false.

When 1t 1s confirmed that the object 1s finalized, the gar-
bage collector 12 inputs the address of the object, which 1s not
strongly accessible, to the queue of the finalizable object.

In addition, the garbage collector 12 performs a resource
releasing job for the objects corresponding to the collected
addresses 1n the order of the queue of the soft reference object,
the queue of the weak reference object, the queue of the
finalizable object, and the queue of the phantom reference
object. That 1s, the garbage collector 12 extracts the addresses
input to the queue ol the softreference object, the queue of the
weak reference object, and the queue of the phantom refer-
ence object, then sets the objects corresponding to the respec-
tive addresses to NULL, and sets active bits of the object
corresponding to the address input to the queue of the final-
1zable object and all objects to be accessible from the objectto
true. This 1s because the objects finalized by the finalize
function, that1s, a finalizable object and the objects accessible
by the finalizable object should be 1n an active state.

Meanwhile, when a certain object 1s a strongly accessible
object and 1s an object accessible through the reference object
(hereinafter, common object), the garbage collector 12 sets
the common objects corresponding to the addresses extracted
from the queue of the soft reference object and the queue of
the weak reference object to NULL, and sets the active bit of
the common object of the address extracted from the queue of
the finalizable object to true. That 1s, after the same object
(common object) 15 set to NULL, the active bit of the same
object 1s set to true, and the memory resource allocated to the
same object exists 1 a heap region. This state 1s maintained
until the state of the object 1s a finalized state 23. Therefore,

US 7,664,800 B2

3

the memory resources that are not accessible through the
reference object exist 1n the heap region resulting 1n wasted
resources.

U.S. Pat. No. 6,070,173 discloses a method in which an
actual object heap and a virtual object heap larger than the
actual object heap are formed, a Java application object 1s
allocated to the virtual object heap, and the garbage collection
1s performed 1n the virtual object heap.

However, according to the method disclosed in U.S. Pat.
No. 6,070,173, since the heap region 1s virtually extended,
there 1s no disclosure of a method preventing the generation
of memory resources that are not accessible through the ret-
erence object.

Accordingly, a method has been strongly required where
memory resources, which are not released 1n the resource
releasing process by the garbage collector 12 and are not
accessible, are prevented from being generated.

SUMMARY OF THE INVENTION

The present 1invention provides an apparatus and method
for managing resources in a Java environment, in which the
order of confirming finalized states of a plurality of reference
objects and finalizable objects classified according to acces-
sibility from a program to be currently executed i1s changed,
the order confirming whether the respective objects are final-
1zed 1s changed, such that access to objects accessible through
the reference objects 1s easier and the finalizable objects are
elfectively used.

According to an aspect of the invention, provided 1s an
apparatus for managing resources in a Java environment, the
apparatus including an accessibility confirming unit confirm-
ing whether an object to which a memory resource 1s allo-
cated 1s accessible through a route set, an access path con-
firming unit confirming access paths to the object according
to the confirmed result by the accessibility confirming unit, a
control unit determining an order of the access paths, and a
resource releasing unit releasing the memory resource allo-
cated to the object according to the order of the access paths.

According to another aspect of the invention, there 1s pro-
vided a method of managing resources 1n a Java environment,
the method includes confirming whether an object to which a
memory resource 1s allocated 1s accessible through a route
set, confirming access paths to the object according to the
confirmed result, determining an order of the access paths,
and releasing the memory resource allocated to the object
according to the order of the access paths.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects of the invention will become
more apparent by describing 1n detail exemplary embodi-
ments thereol with reference to the attached drawings, in

which:

FIG. 1 1s a diagram illustrating a Java virtual machine
according to the related art;

FI1G. 2 1s a diagram 1llustrating a state in which objects are
finalized according to the related art;

FIG. 3 1s a block diagram illustrating an apparatus for
managing resources in a Java environment according to an
exemplary embodiment of the invention;

FIG. 4 1s a diagram 1llustrating a queue according to an
exemplary embodiment of the invention;

FIGS. SA to SE are conceptual diagrams 1llustrating a case
that resources are released 1n an order according to an exem-
plary embodiment of the invention; and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 1s a flowchart illustrating a process of managing,
resources 1n a Java environment according to an exemplary
embodiment of the invention.

[T

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS OF THE
PRESENT INVENTION

Aspects of the invention and methods of accomplishing the
same may be understood more readily by reference to the
following detailed description of exemplary embodiments
and the accompanying drawings. The mvention may, how-
ever, be embodied 1n many different forms and should not be
construed as being limited to the exemplary embodiments set
forth herein. Rather, these exemplary embodiments are pro-
vided so that this disclosure will be thorough and complete
and will fully convey the concept of the invention to those
skilled 1n the art, and the invention will only be defined by the
appended claims. Like reference numerals refer to like ele-
ments throughout the specification.

FIG. 3 1s a block diagram illustrating an apparatus for
managing resources 1n a Java environment according to an
exemplary embodiment of the invention. An apparatus for
managing resources 1n a Java environment 300 (hereinaftter,
referred to as resource managing apparatus) icludes a first
memory 310, a second memory 320, an accessibility confirm-
ing unit 330, a resource information updating unit 340, a
control unit 350, a resource releasing unit 360, and an access
path confirming unit 370.

Hereinaftter, 1t 1s assumed that an operation of the resource
managing apparatus 300 1s implemented by a Java program.
However, 1t 1s only exemplary, and the resource managing
apparatus 300 may be implemented by other programs.

The first memory 310 provides memory resources so as to
be allocated to a created object. A memory region of the first
memory 310 includes a code region, a data region, a heap
region, and a stack region.

The code region 1s a memory region that constructs codes,
a region where application program commands are located,
and a memory region that 1s controlled by a machine lan-
guage.

Data 1s stored in the data region. For example, a global
variable, a static variable, and various mitialized arrays and
structure materials are stored 1n the data region.

The heap region refers to a memory region that 1s allocated
by a programmer. For example, a memory region allocated by
using a function for allocating a memory corresponds to the
heap region. When an object 1s created, the heap region of the
memory regions of the first memory 310 1s allocated to the
created object.

The stack region corresponds to a temporary memory
region that 1s automatically used by an application program.

That 1s, the stack region 1s used when automatic variables are
stored or a factor 1s transmaitted to a function, or when a return

address 1s stored.

In the memory region allocated to one object, bits indicat-
ing whether the object 1s active or not (hereimnaftter, referred to
as active bit) may be included. The active bitmay have a value
of true or false according to whether the object 1s active or not.
That 1s, 1f the object 1s active, the active bit has a value of true,
and 11 the object 1s mactive, the active bit has a value of false.
An object having a value of true 1s excluded from resource
releasing targets, and resource release 1s performed only on
objects having a value of false.

The second memory 320 stores an address of an object.
When the operation of the resource managing apparatus 300
1s implemented by a Java program, the objects include objects

US 7,664,800 B2

S

(hereinafter, referred to as first object) accessible through
finalizable objects and objects (hereinaiter, referred to as
second object) accessible through reference objects.

Here, the reference objects are instances of classes to
which reference classes are inherited. The reference objects
are classified 1nto soft reference objects, weak reference
objects, and phantom reference objects according to access
methods of a specific object.

The first object refers to an object that 1s accessible through
objects other than the reference object, and an object that 1s
not strongly accessible from a route set according to execu-
tion of a finalize function.

According to whether a Java virtual machine 1s 1mple-
mented, queues for each reference object and each finalizable
object may exist. This queue 1s located 1n the second memory
320 such that addresses of the first object and the second
object may be stored.

FI1G. 3 shows a structure 1n which the first memory 310 and
the second memory 320 are separately provided, but 1t is only
one example. That 1s, one storage unit may perform functions
of the first memory 310 and the second memory 320, and a
portion or all of the data stored 1n the respective memories
may be managed by a separate storage unit connected through
a network.

The accessibility confirming unit 330 confirms whether
objects having allocated memory resources are accessible
through a route set. In this case, the route set includes a
collection of all objects accessible through the reference.

The memory regions that are allocated to the objects exist
in the heap region of the first memory 310, and the accessi-
bility confirming unit 330 confirms whether the objects are
accessible through the route set.

The resource information updating unit 340 updates the
active bits that are stored in the first memory 310, and the
queue that 1s stored in the second memory 320. In order to
perform this function, the resource information updating unit
340 may include an active bit updating section 341 and a
queue updating section 342. When the accessibility confirm-
ing unit 330 starts to confirm the accessibility of the objects,
the active bit updating section 341 sets all of the active bits
stored 1n the first memory 310 to false. Then, when the object
confirmed by the accessibility confirming unit 330 1s acces-
sible from the route set, the active bit updating section 341
resets the active bits to true, and when the object confirmed by
the accessibility confirming unit 330 1s not accessible from
the route set, the active bit updating section 341 maintains the
active bits as false.

When the corresponding object 1s accessible through the
reference object, the queue updating section 342 inputs an
address of the corresponding object to a queue corresponding
to a type of the reference object, and inputs an address of an
object that 1s not strongly accessible from the route set to a
queue of the finalizable object.

The access path confirming umt 370 confirms an access
path to the object according to the confirmed result by the
accessibility confirming unit 330. That 1s, when it 1s con-
firmed that access to the object 1s possible, the access path
confirming unit 370 confirms the access path to the corre-
sponding object.

In this case, the access path includes a path access to the
corresponding object through the reference object which 1s an
instance of a class to which the reference class 1s inherited or
a finalizable object. That 1s, the access path includes paths
through a soft reference object, a weak reference object, a
phantom reference object, and the finalizable object.

The control unit 350 determines an order of access paths.
Here, when determining the order of the access path, the

10

15

20

25

30

35

40

45

50

55

60

65

6

control unit 350 may determine the order of the access paths
such that the access path through the finalizable object has a
higher priority order than the access path through the refer-
ence object. For example, the control unit 350 can determine
the order of the access paths 1n the order of the finalizable
object, the soft reference object, the weak reference object,
and the phantom reference object. Therefore, when the same
object 1s accessible through the reference object and the final-
izable object, it 1s possible to prevent the allocation of the
corresponding resources, which are generated by performing
a resource releasing process of the first object after a resource
releasing process of the second object, from existing on the
memory.

That 1s, in a method according to the related art, in the
process ol releasing the resource of the second object, the
second object 1s set to NULL, and 1n the process of releasing
the resource of the first object, the active bit of the first object
1s set to true according to the execution of a finalize function.
Since the first object 1s the same as the second object, the
access from the reference object 1s not possible, but a state 1n
which a portion of the heap region 1s allocated to the corre-
sponding object 1s maintained.

According to the order of the access paths determined by
the control unit 350, in the process of releasing the resource of
the first object, the active bit of the first object 1s set to true
according to the execution of the finalize function, and when
a 10b of the finalize function 1s finalized, the resource allo-
cated to the first object 1s released. In addition, since the
second object 1s set to NULL 1n the process of releasing the
resource of the second object, the problems according to the
related art are not generated.

When the accessibility conforming unit confirms accessi-
bility of all of the objects to which the resources of the first
memory 310 are allocated, the control unit 350 extracts the
addresses mput to the queue of the reference object and the
queue of the finalizable object from the second memory 320,
and transmits them to the resource releasing unit 360.

Then, the resource releasing unit 360 releases the memory
resources that are allocated to the objects corresponding to
the transmitted addresses. That 1s, the resource releasing unit
360 may set the second object to NULL so as to release the
resource or returns the right to use a memory region allocated
to the first object to the operating system so as to release the
resource.

When the process of releasing the resource of the second
object has a higher priority than the process of releasing the
resource of the first object, the memory resources may be
wasted, as 1n the related art. However, the resource releasing
unit 360 performs resource release according to the order of
the resource release determined by the control unit 350. The
process of releasing the resource of the first object has a
higher priority than the process of releasing the resource of
the second object. Therefore, the memory resources are not
wasted.

FIG. 4 1s a diagram 1illustrating a queue according to an
exemplary embodiment of the invention, which 1llustrates
memory regions of the objects stored 1n the first memory 310,
and queues 410, 420, 430, and 440 stored in the second
memory 320.

The queue refers to a material structure 1n which data 1s
processed 1n a First-In First-Out (FIFO) manner where the
data 1s removed 1n an 1nput order.

When the object 400 confirmed by the accessibility con-
firming unit 330 1s not strongly accessible from the route set,
that 1s, when the object 400 1s accessible through the finaliz-
able object or the reference object, the accessibility confirm-
ing unit 330 transmits the address of the corresponding object

US 7,664,800 B2

7

400 to the queue updating section 342, and the queue updat-
ing section 342 mputs the addresses of the corresponding
objects 400 to the queues 410, 420, 430, and 440 included 1n
the second memory 320.

The queues 410, 420, 430, and 440 of the second memory
320 may be classified mto four queues according to access
types of the object 400. That 1s, the queues of the second
memory 320 may be classified into a queue of a soit reference
object 410, a queue of a weak reference object 420, a queue of
a phantom reference object 430, and a queue of a finalizable
object 440.

Therefore, the queue updating section 342 inputs the
address of the corresponding object 400 to each of the queues
that are classified according to the access type. That 1s, when
the corresponding object 400 1s accessible through the soft
reference object, the queue updating section 342 1nputs the
address of the corresponding object to the queue of the soft
reference object 410. When the corresponding object 400 1s
accessible through the weak reference object, the queue
updating section 342 inputs the address of the corresponding
object to the queue of the weak reference object 420. When
the corresponding object 400 1s accessible through the phan-
tom reference object, the queue updating section 342 mputs
the address of the corresponding object to the queue of the
phantom reference object 430. When the corresponding
object 400 1s accessible through the finalizable object, the
queue updating section 342 mputs the address of the corre-
sponding object to the queue of the finalizable object 440.

The addresses of the objects input to the queues are
extracted by the control unit 350. The control unit 350 may
extract the addresses of the objects 400 according to the order
determined by the control unit 350 regardless of the order of
the queues to which the addresses of the objects 400 are input.
For example, even 1 the addresses of the objects 400 are input
in the order of the queue of the soit reference object 410, the
queue of the weak reference object 420, the queue of the
finalizable object 430, and the queue of the phantom refer-
ence object 440, the control unit 350 may extract the
addresses of the objects 400 1n the order of the queue of the
finalizable object 440, the queue of the soit reference object
410, the queue of the weak reference object 420, and the
queue of the phantom reference object 430.

FIGS. 5A to 5E are conceptual diagrams illustrating a case
in which resources are released according to the order accord-
ing to the exemplary embodiment of the invention. FIG. 5A 1s
a diagram 1illustrating a case in which a resource releasing job
(heremaftter, referred to as first resource release) of the object
accessible through the finalizable object 540 1s performed on
one object 500 accessible through the finalizable object 540,
the soit reference object 510, the weak reference object 520,
and the phantom reference object 530.

When the first resource release 1s performed, the finalize
tfunction included in the object 500 1s executed, and the active
bit of the object 500 1s set to true according to the execution of
the finalize function. That 1s, the object 500 becomes an
object that 1s strongly accessible from the route set. In addi-
tion, the state of the object 500 becomes a finalized state via
a finalizable state and a finalizing state. As the state of the
object 500 becomes a finalized state, the active bit 1s set to
false, and the address of the object 500 1s input to the queue of
the finalizable object 440.

Then, the address of the object 500 that 1s input to the queue
of the finalizable object 440 1s extracted by the control unit
350 and then transmitted to the resource releasing unit 360,
and the resource releasing unit 360 returns the memory region
of the corresponding address to the operating system so as to
release the resource. As a result, the object 500 does not

10

15

20

25

30

35

40

45

50

55

60

65

8

become accessible from the finalizable object 540, and as
shown 1n FIG. 5B, the object 500 1s accessible through the
soit reference object 510, the weak reference object 520, and
the phantom reference object 530.

FIG. 5B 1s a diagram illustrating a case 1n which a resource
releasing job (hereimaftter, referred to as second resource
release) of an object accessible through the soit reference
object 510 1s performed.

When the second resource release 1s performed, the active
bit of the object 500 1s maintained as false, and the address of
the object 500 1s input to the queue of the soit retference object
410. As described above, when the accessibility confirming
unmt 330 starts to perform an accessibility confirming job of
the object, the active bit updating section 341 sets all of active
bits stored 1n the second memory 320 to false. Therefore, the
active bit updating section 341 does not need to update the
active bit of the object 500, when the second resource release
1s performed.

Then, the address of the object 500 that 1s input to the queue
ol the soft reference object 410 1s extracted by the control unit
350 and then transmitted to the resource releasing unit 360,
and the resource releasing unit 360 sets the object 500 to
NULL. As aresult, the object 500 does not become accessible
from the soft reference object 510, and as shown in FIG. 5C,
the object 500 1s accessible through the weak reference object
520 and the phantom reference object 330.

FIG. 5C 1s a diagram 1illustrating a case 1n which a resource
releasing job (hereinafter, referred to as third resource
release) of an object accessible through the weak reference
object 520 1s performed.

When the third resource release 1s performed, the active bit
ol the object 500 1s maintained as false, and the address of the

object 500 1s 1input to the queue of the weak reference object
420.

Then, the address of the object 500 that 1s input to the queue
of the weak reference object 420 1s extracted by the control
unit 350 and then transmitted to the resource releasing unit
360, and the resource releasing unit 360 sets the object 500 to
NULL. As aresult, the object 500 does not become accessible
from the weak reference object 520, and as shown in FI1G. 5D,

the object 500 1s accessible through the phantom reference
object 530.

FIG. 5D 1s a diagram 1llustrating a case 1n which a resource
releasing job (hereinafter, referred to as fourth resource
release) ol an object accessible through the phantom refer-
ence object 530 1s performed.

When the fourth resource release 1s performed, the active
bit of the object 500 1s maintained as false, and the address of

the object 500 1s mput to the queue of the phantom reference
object 430.

Then, the address of the object 500 that 1s input to the queue
of the phantom reference object 430 15 extracted by the con-
trol unit 350 and then transmitted to the resource releasing
unit 360, and the resource releasing unit 360 sets the object
500 to NULL. As a result, the object 300 does not become
accessible from the phantom reference object 530, and as
shown 1n FI1G. 5E, all of the access paths to the object 500 are
removed, and the resource releasing job of the memory
resource that 1s allocated to the object 500 1s finalized.

FIG. 6 1s a flowchart illustrating a process of managing,
resources 1n a Java environment according to the exemplary
embodiment of the invention.

In order to manage the resources 1n the Java environment,
the active bitupdating section 341 of the resource information
updating unit 340 firstly sets all of active bits stored 1n the first
memory 310 to false (operation S610).

US 7,664,800 B2

9

Then, the accessibility confirming unit 330 of the resource
managing apparatus 300 confirms whether the object to
which the memory resource 1s allocated 1s accessible through
the route set (operation S620).

The information of the confirmed object 1s transmitted to
the resource information updating unit 340, and the resource
information updating unit 340 updates the active bits of the
objects stored 1n the first memory 310 and the queues stored
in the second memory 320 (operations S631 and S632). In
this case, when the corresponding object 1s accessible through
the reference object, the queue updating section 342 of the
resource information updating unit 340 inputs the address of
the corresponding object to a queue corresponding to atype of
the reference object, and inputs the address of the object that
1s not strongly accessible from the route set to the queue of the
finalizable object 440.

Then, the access path confirming unit 370 confirms the
access path to the object according to the confirmed result by
the accessibility confirming unit 330 (operation S640). That
1s, when 1t 1s confirmed that access to the object 1s possible,
the access path confirming unit 370 confirms the access path
to the corresponding object.

Here, the access path includes paths that access the corre-
sponding object through the soft reference object, the weak
reference object, the phantom reference object, and the final-
1zable object.

Then, the control unit 350 determines the order of the
access paths (operation S650). That 1s, the control unit 350
determines the order of the access paths according to the types
of the access paths as the order for releasing the memory
resources. At this time, the control unit 350 may determine the
order of the access paths such that the access path through the
finalizable object has a higher priority than the access path
through the reference object. That 1s, the control unit deter-
mines the order of the access paths such that the resource
releasing job of the first object has a higher priority than the
resource releasing job of the second object. For example, the
control umit 350 may determine the order of the access paths
in the order of the finalizable object, the soft reference object,
the weak reference object, and the phantom reference object.
Also, the order of the access paths that 1s determined by the
control unit 350 may be mput in advance by a user.

Then, the control unit 350 extracts the addresses of the
objects from the queues stored in the second memory 320
according to the determined order (operation S660). That 1s,
the control unit 350 firstly extracts the address of the object
that 1s stored 1n the queue of the finalizable object 440, and
then extracts the addresses of the objects in the order of the
queue of the soit reference object 410, the queue of the weak
reference object 420, and the queue of the phantom reference
object 430.

The extracted addresses are transmitted to the resource
releasing unit 360, and the resource releasing unit 360
releases the memory resources allocated to the objects
according to the transmitted order (operation S670). That 1s,
the right to use the memory region allocated to the first object
1s returned to the operating system so as to perform the
resource release, and then the second object1s setto NULL so
as to perform the resource release. Since the resource release
has been described 1n detail with reference to FIGS. 5A and
5E, the repetitive description 1s omitted.

It 1s to be understood that blocks 1n the accompanying
block diagrams of FIG. 3 and compositions of steps 1n a flow
chart of FIG. 6 can be performed by computer program
instructions. These computer program instructions can be
provided to processors of, for example, general-purpose com-
puters, special-purpose computers, and programmable data

10

15

20

25

30

35

40

45

50

55

60

65

10

processing apparatuses. Therefore, the instructions per-
formed by the computer or the processors of the program-
mable data processing apparatus generate means for execut-
ing functions described 1n the blocks 1n block diagrams or the
steps 1n the flow charts. The computer program instructions
can be stored in a computer available memory or a computer
readable memory of the computer or a programmable data
processing apparatus in order to realize the functions 1n a
specific manner. Therefore, the instructions stored in the
computer available memory or the computer readable
memory can manufacture products including the mstruction
means for performing the functions described 1n the blocks in
the block diagrams or the steps in the tlow charts. Also, the
computer program instructions can be loaded onto the com-
puter or the computer programmable data processing appa-
ratus. Therefore, a series of operational steps 1s performed 1n
the computer or the programmable data processing apparatus
to generate a process executed by the computer, which makes
it possible for the mstructions driving the computer or the
programmable data processing apparatus to provide steps of
executing the functions described 1n the blocks of the block
diagrams or the steps of the flow charts.

Each block or each step may indicate a portion of a module,
a segment or a code including one or more executable mstruc-
tions for performing a specific logical function (or functions).
It should be noted that, in some modifications of the inven-
tion, the functions described 1n the blocks or the steps may be
generated out of order. For example, two blocks or steps
continuously shown can be actually performed at the same
time, or they can be performed sometimes in reverse order
according to the corresponding functions.

Although the invention has been described 1n connection
with the exemplary embodiments of the mnvention, it will be
apparent to those skilled 1n the art that various modifications
and changes may be made thereto without departing from the
scope and spirit of the ivention. Therefore, 1t should be
understood that the above exemplary embodiments are not
limitative, but 1llustrative 1n all aspects.

According to the apparatus for managing resources 1n a
Java environment and the method of managing the same, the
following can be achieved.

According to one aspect of the invention, the order is
changed 1n which the finalized states of the reference object
and the finalizable object are confirmed so as to 1mprove
accessibility to the objects accessible through the reference
object and the finalizable object. Therefore, it 1s possible to
reduce the waste of memory resources.

According to another aspect of the invention, by providing
improved accessibility to the objects accessible through the
reference object and the finalizable object, 1t 1s possible to
reduce an erroneous operation occurring due to a state where
the access to the corresponding memory resources 1s not
possible.

What 1s claimed 1s:

1. An apparatus for managing resources 1n a Java environ-
ment, the apparatus comprising:

a Processor comprising:

an accessibility confirming unit which confirms acces-
sibility of an object, to which a memory resource 1s
allocated, through a route set;

an access path confirming unit which confirms access
paths to the object according to a result of the confir-
mation by the accessibility confirming unit;

a control unit which determines an order of the access
paths; and

US 7,664,800 B2

11

a resource releasing unit which releases the memory
resource allocated to the object according to the order
of the access paths,

wherein the route set comprises a collection of objects
accessible as reference objects, and

wherein one of the access paths accesses a correspond-
ing object through one of a reference object, which 1s
an instance of a class to which a reference class 1s
inherited, and a finalizable object.

2. The apparatus of claim 1, wherein the reference object
comprises at least one of a soit reference object, a weak
reference object, and a phantom reference object.

3. The apparatus of claim 1, wherein the order of the access
paths 1s constructed wherein a first access path through the
finalizable object has a priority which 1s higher than a priority
ol a second access path through the reference object.

4. The apparatus of claim 1, wherein the resource releasing
unit sets an object accessible through the reference object to
NULL to release the resource.

5. The apparatus of claim 1, wherein the resource releasing
unit returns a right to use a memory region allocated to an
object accessible through the finalizable object 1n order to
perform the resource release.

6. A method of managing resources 1n a Java environment,
the method comprising:

confirming by a processor whether an object to which a

memory resource 1s allocated 1s accessible through a

route set;

10

15

20

25

12

confirming access paths to the object according to a result
of the confirming whether the object 1s accessible;

determining an order of the access paths; and

releasing the memory resource allocated to the object
according to the order of the access paths,

wherein the route set comprises a collection of objects
accessible as reference objects, and

wherein one of the access paths accesses a corresponding
object through one of a reference object, which 1s an
instance of a class to which a reference class 1s inherited,
and a finalizable object.

7. The method of claim 6, wherein the reference object
comprises at least one of a soft reference object, a weak
reference object, and a phantom reference object.

8. The method of claim 6, wherein the order of the access
paths 1s constructed wherein a first access path through the
finalizable object has a priority which 1s higher than a priority
ol a second access path through the reference object.

9. The method of claim 6, wherein the releasing of the

resource comprises setting an object accessible through the
reference object to NULL.

10. The method of claim 6, wherein the releasing of the
resource comprises returning a right to use a memory region
allocated to an object accessible through the finalizable
object.

	Front Page
	Drawings
	Specification
	Claims

