US007664023B2

12 United States Patent

Levin et al.

US 7,664,023 B2
Feb. 16, 2010

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC PROTOCOL CONSTRUCTION 5,845,081 A 12/1998 Rangarajan et al.
_ _ _ 5,894,557 A 4/1999 Bade et al.
(75) Inventors: gagl‘;l Pi““a Regm‘zgdﬂ gi (%ISS)) Erik 5041047 A 8/1999 Brown et al,
. Christensen, Seattle, : .
Saurab Nog, Sammamish, WA (US): 5,987,517 A_ 11/1999 Firth et al.
Dﬂnald F. BOX,, E;:'el1(:“,:,“'/71]’6:j WA (IJS)j 6,243,759 Bl 6/2001 Boden et al.
Christopher G. Kaler, Sammamish, WA 6,338,117 Bl 1/2002 Challenger et al.
(US); Giovanni M. Della-Libera, 6,430,576 Bl 82002 Gates et al.
Seattle, WA (US); Alfred Lee, 1V, 6,519,636 B2 2/2003 Engel et al.
Seattle, WA (LS): David Wortendyke, 6,519,764 Bl 2/2003 Atkinson et al.
Seattle, WA (US) 6,545,599 B2 4/2003 Derbyshire et al.
(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 OTHER PURIICATIONS
U.S.C. 154(b) by 341 days.
Ypertext Transter Protocol—HTTP/1.1; World Wide Web Consor-
(21) Appl. No.: 11/754,865 tium (W3C); http;//www.w3.org/Protocols/ric2626/rfc2616-secl2.
html; Chapter 12, pp. 46-47.
(22) Filed: May 29, 2007
(Continued)
(65) Prior Publication Data _
Primary Examiner—Chi1 H Pham
US 2007/0226356 Al Sep. 27, 2007 Assistant Examiner—Robert Lopata
74) Att Agent, or Firm—Lee & H PLLC
Related U.S. Application Data (74) Attorney, Agent, or Firm—Lee W
(62) Davision of application No. 10/783,751, filed on Feb. (57) ABSTRACT
20, 2004, now Pat. No. 7,243,157.
(51) Inmt. CI. A method includes advertising a policy characterizing com-
HO4L 1/00 (2006.01) munication properties supported by a node. The policy may
(52) US.CL .o, 370/230; 370/236 be distributed to another node 1n response to a request for the
(58) Field of Classification Search 370/230, policy. Policy expressions in the policy include one or more
o 3_70/ 252, 389 assertions that may be grouped and related to each other 1n a
See application file for complete search history. plurality of ways. A system includes a policy generator for
(56) References Cited generating at least one policy characterizing properties of a

node. A policy retriever retrieves a policy from another node
and a message generator generates a message to the other
node, wherein the message conforms to the policy from the

U.S. PATENT DOCUMENTS

5,224,098 A * 6/1993 Budetal. 709/233 h P
5,425,028 A 6/1995 Britton et al. other node.
5,530,832 A 6/1996 So et al.
5,764,887 A 6/1998 Kells et al. 26 Claims, 5 Drawing Sheets
Node A 102)
00—~y A Input Policy A Output Policy
iy | | [lomtent
116 Asoartion A2 120) azgertion AD
108 — | RREAMION Ad :::.E:ﬂ |~ 110
e ﬂ:ﬁ:ﬁ 122 m::
N xﬁ__ﬂ,f —~
‘ Genelrcayhr ” H:tﬂrl::'er H g:a:i:r |

Node B 104

FPolicy Policy Meesage
Eenerainr I-'-tetnever Gener‘atur

B Input Polley B Output Pallcy

[Armartian B1
Allnrl'.lm Bz
Anrlm B3 AH rian BO

Aﬂrﬂm B4
[Annertion B10

 Asmartion B3
126 [scarton BE | |130| Amserton 812
»

4 fﬂm B1d
. —_—
x_}l/’, et :

A.HrhnnB'."
28 | Assardon BB

US 7,664,023 B2

Page 2
U.S. PATENT DOCUMENTS 2004/0215824 Al1* 10/2004 Payritsccceeeevevnvnnnen. 709/245
2004/0267865 Al* 12/2004 CUEIVO ..veeevveeeeennee. 709/200
6,598,121 B2~ 7/2003 Challenger et al. 2005/0004887 Al* 1/2005 Igakuraetal. 707/1
6,043,684 Bl 11/2003 Malkin et al. 2005/0053007 Al 3/2005 Bernhardt et al.
6,662,235 Bl 12/2003 Callis et al. 2005/0080914 Al 4/2005 Lerner et al.
6,694,368 Bl1* 2/2004 Anetal.cceneeenn..... 709/227 2005/0198206 Al 9/2005 Miller ef al
6,795,404 B2* 9/2004 Slemmeretal. 370/270 7007/01972827 Al R/2007 Maxted et al.
6,968,399 B2* 11/2005 Nodaetal.coouvee..... 710/5 2007/0234417 Al 10/2007 Blakley, III et al.
7,000,006 B1* 2/2006 Chenccovvuveeeenn..... 709/218 2008/0056500 Al 3/2008 Bradley et al.
7,020,645 B2 3/2006 Bisbee et al.
7,054,332 B2 5/2006 Favichia et al. OTHER PUBLICATIONS
7080313 B2 8/2006 Lee et al. . .
7,181,537 B2* 212007 Costa-Requenaetal. ... 700246 W0 St ab *A Cienevatand Flexible Access-Control System lor the
7,185,364 B2* 2/2007 Knouse etal. 7268 L g 1?53_’9‘%2002, - gages ’ ’
2003/0149781 Al* 82003 Yaredetal. 709/229 e T | o
| Verma et al.; Policy-Based Management of Content Distribution
2004/0015421 Al* 1/2004 Erfurtetal. 705/32 NTEtworks.
2004/0117494 Al 6/2004 Mitchell et al.
2004/0167984 Al 8/2004 Herrmann * cited by examiner

U.S. Patent

100\

Feb. 16, 2010 Sheet 1 of 5
Node A 102
A Input Policy A Output Policy
- ' Assertion A7
Assertion A1 -
110 | Assertion A2 120 ﬁ:zgz ig
Assertion A3 Assertion A10
108 A - —
- Assert!on A4 Assertion A11
118 | Assertion A5 122 | Assertion A12
Assertion AG Assertion A13
® o &
® @
e *
Policy Message
Generator (Generator
132 136
100
Node B 104
Policy Policy Message
Generator Retriever GGenerator
138 140 142
B Input Policy B Output Policy
Assertion B1 Tﬂ\ssert'on B7
124 Assertion B2 128 | Assertion B8
Assertion B3 Assertion B9
112 Assertion B4 —
.):E\ fon BE Assertion B10
Ssertion Assertion B11
126 Assertion B6 130 | Assertion B12

Assertion B13

US 7,664,023 B2

110

114

U.S. Patent Feb. 16, 2010 Sheet 2 of 5 US 7,664,023 B2

<wsp:Policy xmlns:wsse="..." xmlns:wssx="...">
<wsp:ExactlyOne>—— 202

<wsp:All wsp:Usage="wsp:Required" wsp:Preference="1OO">JF_208
<wsgse:SecurityToken>
<wsse:TokenType>wsse:KerberosvbhTGT</wsse: TokenType>

204

</wsse:SecurityToken>

<wssx:Privacy />
</wsp:hll>—— 208
<wsp:BAll wsp:Preference="1" wsp:Usage="wsp:Required">——210
- <wgge:SecurityToken>
<wsse:TokenTyperwsse:UsernameToken</wsse:TokenType>
</wsse:SecuritvyToken>

<wsse:Integrity>

200

<wsse:Algorithm Type="wsse:AlgEncryption”
URI="http://www.w3.0rg/2001/04/xmlenc#3des-cbc"™ />
</wsse:Integrity>
<wgsx:Audit />
210

</wsp:ExactlyOne>—— 202

</wsp:All>

</wsp:Policy>

U.S. Patent Feb. 16, 2010 Sheet 3 of 5 US 7,664,023 B2

300
\

302 Fetch remote service policy

304 Create local policy

308 Determine compatible local assertions
and service policy assertions

F1g.

U.S. Patent Feb. 16, 2010 Sheet 4 of 5 US 7,664,023 B2

400
4\

Advertise policy 402

Recelve message, including remote

Input policy 404
4006
Valid policy
alternative used In
message
?
410 408

Construct channel that implements Notify client of invalid policy
the selected local policy alternative alternative

Select policy alternative from

412

remote input policy

Generate message according to 419
remote input policy

Fig. 4

US 7,664,023 B2

Sheet 5 of 5

Feb. 16, 2010

U.S. Patent

‘‘
F
[
‘_‘
[

¥3LNdNOD
g¢—/ | ILOWIY

P

086G
L

SWVHO0dd
NOILVOIddV

AHMOMLIN
VY J0IM

\095

VLVQ mﬂ@%ﬁ SWVHOONd | WILSAS
AVHOONd NOLLYOITddY |ONILYY3dO
MIHLO
S \pes Nzog \oog \ggg -~

NHOMLAN
v3dY VOO

G ‘b

dOLINON

cLS

= pd
3ovauaiN | | 3ovauan | | FPVAEEN Savagan
JOVAMALNI JANA
O LN 140d JANA s JANA
VIN3S WOUAO ||) ey || #S10 QHVH
y8G6| o6 T oSS T qye6 i eysE o
Z [SNEWILSAS | |
oS 1l iy
¥31dvay LINN
i 03aIA ONISSIDONd
76| 266 |
pes

-~

S41NJON
NVHO0/™d
d3H10

SWVHO0dd
NOILVOIllddY

W3LSAS
ONILVHIdO

L_soe |
gcs (NOY)

US 7,664,023 B2

1
DYNAMIC PROTOCOL CONSTRUCTION

RELATED APPLICATIONS

This 1s a divisional of and claims priority to U.S. patent
application Ser. No. 10/783,751 filed on Feb. 20, 2004
entitled “Dynamic Protocol Construction” by inventors
Alfred Lee, David Levin, Erik B. Christensen, David Wor-
tendyke, Saurab Nog, Donald F. Box, Christopher G. Kaler,
and Giovanni M. Della-Libera.

This patent application 1s related to co-owned U.S. patent
application Ser. No. 10/783,776, enfitled “Invalid Policy
Detection,” and U.S. patent application Ser. No. 10/783,554,
entitled “Policy Application Across Multiple Nodes,” both of

which are hereby mcorporated by reference for all that they
disclose.

TECHNICAL FIELD

The described subject matter relates to electronic comput-
ing, and more particularly to systems and methods for
dynamic protocol construction.

BACKGROUND

Communication between various computing devices (e.g.,
personal computers, server computers, mobile devices) 1s
increasingly commonplace in a number of network environ-
ments, such as, e.g., the Internet and corporate intranets to
name only a few examples. Often, these computing devices
are configured for communication in accordance with pre-
terred or even required protocols. Traditionally when a com-
puting device attempts to engage in communication with
another computing device using an unrecognized protocol, an
error message 1s sent to the first device, and further commu-
nication typically cannot proceed.

As an 1llustration, a commercial web site may require a
user’s computer to comply with a particular protocol or data
format before the user 1s granted access to the payment web
pages. For example, the commercial website may require that
incoming messages be encoded according to a particular
encryption scheme for security purposes, or that ncoming
messages be formatted using a particular compression
scheme to facilitate eflicient transaction processing. If the
user’s computer 1s not equipped to abide by the specified
protocol or data format, the user’s computer generally
recerves an error notification, such as a “400” error code
defined 1n the Hypertext Transport Protocol (HTTP). Typi-
cally, such error notifications are not very informative or
helptul for a user to remedy the error, 1f possible, and continue
communicating with the commercial website.

In addition, over time, as new protocols and data format-
ting techniques emerge, not all computing devices will nec-
essarily have adopted the latest protocols and data formatting

techniques. Thus, there will typically always be some differ-
ences between the protocols and/or data formats used by
some computing devices and the protocols and/or data for-
mats used by other computing devices. However, although
some computing devices may not be able to apply the newest
protocols or data formats, they typically can communicate
using some other protocols or data formats. Unfortunately, a
traditional computing device does not typically have the abil-
ity to identily the different protocols and/or data formats used

10

15

20

25

30

35

40

45

50

55

60

65

2

by another computing device, and adapt, 1f possible, to the
different protocols and/or data formats.

SUMMARY

Implementations are described and claimed herein to
dynamically construct a protocol to facilitate communication
between nodes. Implementations utilize policies associated
with nodes to specily protocol properties of the nodes. A
policy expression 1n a policy related to a node can be selected
by another node to construct a protocol between the two
nodes.

In some implementations, articles of manufacture are pro-
vided as computer program products. One implementation of
a computer program product provides a computer program
storage medium readable by a computer system and encoding,
a computer program for dynamic protocol construction.
Another implementation of a computer program product may
be provided 1n a computer data signal embodied 1n a carrier
wave by a computing system and encoding the computer
program for dynamic protocol construction.

The computer program product encodes a computer pro-
gram for executing on a computer system a computer process
that generates a message conforming to a group of assertions,
the group of assertions characterizing capabilities or require-
ments of a first node. The process may further include sending
a request to the first node for a policy including the group of
assertions. Alternatively, the process may further include
retrieving the group of assertions from a second node. The
process may further include determining whether the group
of assertions related to the first node 1s compatible with a
group of assertions related to a second node.

In another implementation, a method includes advertising,
a policy having assertions characterizing communication
properties of a destination node, each assertion specifying a
communication property supported by the destination node.
Advertising can include generating a message including the
policy inresponse to a request for the policy. Advertising may
also include incrementally distributing the policy.

In yet another implementation, a system 1s provided
including a policy generator for generating at least one policy
having assertions characterizing properties of a node. The
system may include a policy retriever retrieving a policy from
another node and a message generator generating a message
to the other node, wherein the message conforms to a group of
assertions 1n the policy from the other node.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary operating environment 1n
which dynamic protocol construction can be carried out;

FIG. 2 illustrates an exemplary policy including assertions
that may be used to construct a protocol for communication
between two nodes:;

FIGS. 3-4 are tlowcharts 1llustrating exemplary operations
to implement dynamic protocol construction; and

FIG. 5 1s a schematic 1llustration of an exemplary comput-
ing device that can be utilized to implement dynamic protocol
construction.

DETAILED DESCRIPTION

Overview

Briefly, dynamic protocol construction may be imple-
mented to facilitate communication between two nodes.
Because data communication protocols and formats can

US 7,664,023 B2

3

change, communication between two nodes can be seriously
hampered by mismatches in the protocols and formats

employed by each of the nodes. The dynamic protocol con-
struction scheme described herein allows a node to generate a
policy having statements (referred to as assertions) that char-
acterize properties of the node. The properties can relate to,
for example, capabilities and/or requirements of the node.
Another node that attempts to communicate with the first
node can retrieve the policy and generate messages that con-
form to the assertions given therein and thereby successiully
communicate with the node.

Exemplary System

FIG. 1 illustrates an exemplary operating environment 100
in which dynamic protocol construction can be carried out.
Two nodes, node A 102 and node B 104, communicate with
cach other via a network 106. Node A 102 and node B 104
may be arranged 1n any number of configurations. Typical
confligurations are a client/server configuration or a peer-to-
peer configuration. The network 106 may include other inter-
mediate nodes (not shown), through which data pass during,
communication between node A 102 and node B. As such,
exemplary communication configurations can include 1 to N
(1.e., single node to multiple node) and N to N (1.e., multiple
node to multiple node) arrangements.

In general, a node 1s a processing location in a computer
network. More particularly, 1n accordance with the various
implementations described herein, a node 1s a process or
device that 1s uniquely addressable via a network. By way of
example, and not limitation, individually addressable com-
puting devices, groups or clusters of computing devices that
have a common addressable controller, addressable peripher-
als, such as addressable printers, and addressable switches
and routers, as well as processes executing on such devices,
are all examples of nodes.

The operating environment 100 supports many communi-
cation scenarios that are frequently carried out over a net-
work. Exemplary scenarios include, but are not limited to,
node A 102 accessing a resource from node B 104, or node A
102 providing a service to node B 104. For example, a user of
node B 104 may access a commercial Web site at node A 102
to buy books from the Web site.

In the exemplary operating environment 100, data commu-
nication between node A 102 and node B 104 1s carried out by
exchanging messages between node A 102 and node B 104.
When in a message exchange, node A 102 and node B 104 are
designed to receive and/or transmit messages according to
certain data formats and/or follow certain protocols. Node A
102 and node B 104 each have policies that may be used to
express the data formats and protocols that can or should be
used during message exchange.

More generally, a policy 1s an informal abstraction express-
ing properties of a node. In the implementation of FIG. 1, a
policy expression includes one or more policy assertions (also
referred to as ‘assertions’). An assertion represents an indi-
vidual preference, requirement, capability, or other property
that anode (e.g., Node A 102) may, or 1n some circumstances,

must comply with 1n order to communicate with another node
(c.g., Node B 104).

For example, node A 102 includes an A input policy 108
and an A output policy 110. The A mput policy 108 expresses
one or more assertions related to messages that are recerved
by, or input to, node A. The A output policy 110 expresses one
or more assertions related to messages that are transmitted, or
output by, node A. Similarly, node B 104 includes B 1nput
policy 112 and B output policy 114.

10

15

20

25

30

35

40

45

50

55

60

65

4

As shown 1n FIG. 1, the policies are 1llustrated as being
implemented 1n one or more documents; however, policies
need not be stored 1n documents, but rather, can be 1mple-
mented 1n other forms, such as, stored 1n memory, dynami-
cally created or retrieved from another node, or otherwise. A
policy may be expressed 1n a markup language, such as, but
not limited to, Hypertext Markup Language (HIML) and
Extensible Markup Language (XML). In addition, an 1mnput
policy and an output policy may be combined into a single
policy.

To further 1llustrate the concept of a policy, a policy can
specily message encoding formats, security algorithms,
tokens, transport addresses, transaction semantics, routing
requirements, and other properties related to message trans-
mission or reception. Implementations of policies described
herein specily one or more assertions, which can aid two
nodes 1n a message exchange 1 determining if their require-
ments and capabilities are compatible. The assertions may be
grouped and related to each other 1n some way. A group of one
or more assertions may be referred to as a policy expression.

Accordingly, A mput policy 108 includes a number of
groups ol input assertions, including a first policy expression
116 and a second policy expression 118. Similarly, A output
policy 110 includes a number of groups of output assertions,
including a first policy expression 120 and a second policy
expression 122. Likewise, B input policy 112 includes a num-
ber of groups of mput assertions, including a first policy
expression 124 and a second policy expression 126; and B
output policy 114 includes a number of groups of output
assertions, including a first policy expression 128 and a sec-
ond policy expression 130.

Expression (1) shown below illustrates how the assertions
in A mput policy 108 can be related 1n a Boolean manner:

AlnputPolicy:(A1(x) A2(x)A3)B(A4(x)A5(x) A6) (1).

Expression (1) indicates that in order to comply with the A
input policy 108, a node attempting to send a message to node
A can satisiy eirther assertion Al, assertion A2, and assertion
A3 together, or assertion A4, assertion A5, and assertion A6
together, but typically not both groups of assertions. The
manner 1n which a node, such as node B 104, may use the A
input policy 108 to communicate with node A 102 1s dis-
cussed further below. Other, non-Boolean, expressions can be
used to express relationships among assertions.

The number of assertions shown 1n policy expressions 116,
118,120,122, 124,126, 128, and 120 1s purely exemplary for
illustrative purposes only. The numbers assigned to the asser-
tions shown1n FIG. 1 (e.g., A1, A2, ..., B13)are notintended
to 1imply that the various assertions shown are different or the
same. Indeed, frequently during operation, some assertions at
node A 102 will match some assertions of node B 104, and
some assertions at node A 102 will be different from some
assertions at node B 104. A particular example of assertions 1s
shown 1n FIG. 2, and 1s discussed further below.

Node A 102 includes a policy generator 132, a policy
retriever 134, and a message generator 136. The policy gen-
erator 132 generates the A input policy 108 and the A output
policy 110. The policy generator 132 can send either or both
of the A mput policy 108 and/or the A output policy 110 to
node B 104 or other intermediate nodes 1n the network 106.
One particular implementation of the policy generator 132
advertises the A mput policy 108 and/or the A output policy
110, for example, by making A input policy 108 and/or the A
output policy 110 publicly available either on node A 102 or
some other node on the network 106.

The policy retriever 134 retrieves policies from other
nodes, such as node B 104 or intermediate nodes on the

US 7,664,023 B2

S

network 106. The policy retriever 134 can request a policy
from another node, receive the policy, and may cache a
received policy in memory for later use. The policy retriever
134 can also retrieve a policy that was previously stored 1n
local memory on node A 102. The policy retriever 134 per-
forms functions related to determining whether a retrieved
policy 1s compatible with a local policy and/or selecting a
compatible policy expression in a retrieved policy.

The message generator 136 at node A 102 generates mes-
sages that conform to one or more assertions 1n the B input
policy 112 of node B 104. For example, the message genera-
tor 136 may encrypt, format, or encode amessage as specified
by 1put assertions in the B mput policy 112. As another
example, the message generator 136 may transmit the mes-
sage according to a compliant protocol (e.g., SOAP 1.1)
specified 1n the B mput policy 112. As yet another example,
the message generator 136 may apply a user signature or
password to the message in accordance with the B input
policy 112. The output of the message generator 136 1s a
policy-compliant message complying with the B input policy
112.

Similarly, node B 104 includes a policy generator 138, a
policy retriever 140, and a message generator 142. The policy
generator 138 has functionality similar to that of the policy
generator 132 1n node A 102. Thus, if node A’s 102 policy
retriever 134 requests a policy fromnode B 104, node B’s 104
policy generator 138 can responsively transmit one or more of
the B mput policy 114 and the B output policy 116 to the
policy retriever 134 at node A 102.

The policy retriever 140 at node B 104 has functionality
similar to the functionality described above with respect to
policy retriever 134 at node A 102. The message generator
142 at node B 104 formats and transmits messages to node A
102 1n accordance with one or more assertions 1n the input

policy 108 of node A 102.

Node A 102 can retrieve and use a policy of node B 104 to
construct a protocol with which to communicate to node B
104, and vice versa. This may ivolve a selection process
where a node selects one group of assertions from the policy
of the other node. For example, node B 104 retrieves (via the
retriever 138) and analyzes the A mput policy 108 to deter-
mine 1f node B can comply with at least one of the policy
expressions, the first policy expression 116, the second policy
expression 118, etc., in the A mput policy 108. The determi-
nation may mnvolve solving a relational equation such as
expression (1) above. Other exemplary methods for determin-
ing whether node B 104 can comply 1s discussed below with
respect to operations shown in FIG. 3.

Another implementation of the operating environment 100
includes a third party service or tool that compares policies of
two or more nodes to determine whether they are compatible.
Such a service or tool may operate on node A 102, node B 104,
or an 1ntermediate node on the network 106. Thus, a service
may read B output policy 114 and read A input policy 108 and
determine 1 the policies are compatible. For example, the
service may determine that the policy expression 116 1s com-
patible with the policy expression 128. The service can notify
node A 102 and node B 104 as to the results of the compat-
ibility determination.

FI1G. 2 illustrates an exemplary policy 200 that may be used
by a node to dynamically construct a protocol to facilitate
communication with one or more other nodes. The exemplary
policy 200 1s 1n Extensible Markup Language (XML). As
such, the exemplary policy 200 includes a number of tags,
starting with an open bracket (<) and ending with a close

bracket (/>).

5

10

15

20

25

30

35

40

45

50

55

60

65

6

As discussed above, a policy 1includes one or more asser-
tions that can be grouped 1nto one or more policy expressions.
Grouping assertions can involve applying a relationship
operator to the group. A relationship operator specifies a
relationship between or among assertions in a group. Various
other attributes, assertion types, and operators can be applied
to an assertion. The exemplary policy 200 1llustrates just a few
exemplary attributes, assertion types, and operators. Other
exemplary attributes, assertion types, and operators are dis-
cussed further below.

The exemplary policy 200 includes two policy expressions
bounded by a <wsp:ExactlyOne> operator 202. A first policy
expression 204 expresses a security profile (1.e., <wsse:Secu-
rity Token>) consisting of security specific policy assertions.
As shown 1n FIG. 2, the first policy expression 204 specifies
“Kerberos Authentication” (1.e., <wsse:TokenType>wsse:
Kerberosv3TGT </wsse:TokenType>) and “Privacy” (i.e.,
<wssx:Privacy />).

A second policy expression 206 specifies password
authentication (<wsse:TokenType>wsse:UsernameToken</
wsse: TokenType>),an integrity algorithm (1.e., <wsse: Algo-
rithm Type="wsse: AlgEncryption”URI="http://
www.w3.0rg/2001/04/xmlenc#3des-cbc”/>), and an audit
trail (1.e., <wssx: Audit/>). The integrity algorithm specifies a
particular encryption algorithm along with a Uniform
Resource Identifier (URI) indicating a network location from
which the encryption algorithm can be obtained.

The <wsp:ExactlyOne> operator 202 bounding the first
policy expression 204 and the second policy expression 206
indicates that one and only one of the groups of assertions can
be selected; 1.e., the first policy expression 204 and the second
policy expression 206 are alternatives.

Bounding the first policy expression 204 1s an “All” opera-
tor 208. The All operator 208 indicates that all of the asser-
tions 1n policy expression 204 must be practiced by a node 1t
the policy expression 204 is selected. Similarly, the second
policy expression 206 1s bounded by another “All” operator
210, which indicates that all of the assertions 1n the second
group 206 must be practiced 11 the second policy expression
206 1s selected.

Each assertion may be associated with a usage type or
attribute. The usage attribute stipulates how the assertion
should be interpreted in relation to the overall policy. To
illustrate, a privacy assertion could, for example, specily that
privacy guarantees will be provided for information
exchanged between two Web services, while an encryption
assertion could specily a requirement for encryption. The
privacy assertion and the encryption assertion differ, in that
the privacy assertion has no externally visible manifestation,
while the encryption assertion 1s externally manifested (1.e.,
the encryption assertion indicates a requirement on messages
being sent to and from the Web services). The privacy asser-
tion 1s simply a declaration that the Web services will guar-
antee some level of privacy to the sender, while the encryption
assertion requires cooperation between the two Web services.
Because usage can differ between assertions, a usage attribute
can be used to characterize the difference. Various exemplary
usage attributes are discussed below.

Accordingly, within the All operator 208 tag, and the All
operator 210 tag, usage attributes indicate that the bounded
assertions are “required”. In an alternative implementation,
cach assertion tag bounded by the All operator 208, and the
All operator 210, could individually specily the usage
attribute.

Also 1n the All operator 208 tag, and the All operator 210
tag, preference values are shown that indicate a level of pret-
erence of the corresponding groups. In the exemplary policy

US 7,664,023 B2

7

200, the preference value of the first policy expression 204 1s
“100”, while the preference value for the second policy
expression 206 1s <17, meamng that the first policy expression
204 1s preferred over the second policy expression 206.

To capture the nature of differences among various asser-
tions, five exemplary usage attributes are used 1n one particu-
lar implementation of a policy: Required, Optional, Rejected,
Observed and Ignored. These exemplary usage attributes are
shown and described below 1n Table 1:

TABLE 1
Exemplary Usage Attributes

Attribute Meaning

Required The assertion must be applied to the subject. If the subject
does not meet the criteria expressed in the assertion a fault
or error will occur.

Rejected The assertion is explicitly not supported and if present will
cause failure.

Optional The assertion may be made of the subject but it is not
required to be applied.

Observed The assertion will be applied to all subjects and requesters of
the service are informed that the policy will be applied.

Ignored The assertion 1s processed, but 1gnored. That 1s, it can be

specified, but no action will be taken as a result of it being
specified. Subjects and requesters are informed that the
policy will be 1gnored.

With regard to Table 1, a policy subject 1s a node to which
a policy can be bound. Other exemplary operators and con-
tainers, 1n addition to the “All” operator and the “Exactly-
One” operator, are shown and described below 1n Table 2:

TABL

(L]

2

Exemplary Assertion Operators/Containers

Operator/

Container Meaning

Policy A policy expression that 1s the top level container for
the set of policy operators and assertions.

ExactlyOne An ExactlyOne operator may contain one or more
policy assertions, references, or operators. The
ExactlyOne operator requires that exactly one of the
bounded operands be satisfied.

All The All operator may contain one or more policy
assertions, references, or operators. The All operator
requires that every one of the bounded operands be
satisfied.

OneOrMore The OneOrMore operator may contain one or more

policy assertions, references, or operators. The
OneOrMore operator requires that at least one of the
bounded operands be satisfied.

The exemplary attributes, operators, and containers
described 1n Table 1 and Table 2 are 1n no way intended to
limit a particular policy implementation to the attributes,
operators, and containers shown. Those skilled 1n the art may
readily recognize and develop other attributes, operators, and
containers that are useful 1 a particular implementation,
which are within the scope of the present application.

Some examples of assertions that may be made related to
protocols are Simple Object Access Protocol (SOAP) 1.1,
SOAP 1.0, HyperText Transport Protocol (HTTP) 1.1, HTTP
over Secure Sockets Layer (SSL) (HTTPS), Pipelined HT'TP
(PHTTP), TCP/IP, FTP, just to name a few.

While an assertion often expresses one particular capabil-
ity (e.g., encoding a message in UTF-8), assertions are not
limited to expressing only one specific capability. Assertions
that specily more than one capability or requirement are

10

15

20

25

30

35

40

45

50

55

60

65

8

referred to as aggregate assertions. An aggregate assertion
captures what would otherwise be stated as a set of specific
assertions, potentially with preference and choice. For
example, a service advertising the WS-1 BP 1.0 aggregate
assertion could accept messages sent over HI'TP or HTTPS,
and authenticated with username/password or a client X309
certificate. This 1s equivalent to a policy containing separate
assertions for each of these capabilities.

Groups that exchange messages can define aggregate
policy assertions that are shorthand for sets of assertions the
groups commonly use. The implementer of the code to pro-
cess these aggregate assertions may either explicitly expand
the shorthand into the more specific assertions, or write code
that implements all requirements and capabilities of the
aggregate assertion directly. A policy can contain either one
aggregate assertion or a plurality of assertions, where the
assertions can be either specific assertions or aggregate asser-
tions.

It will be appreciated that by using a policy, such as policy
200, a node can specily capabilities, requirements, the num-
ber of messages and their form, security measures, reliable
messaging, transactions, routing, and other parameters rel-
evant to a message exchange. In addition, policies are exten-
sible, whereby a policy can be extended to include, for
example, newly available policy expressions.

Policies are composable, which means that policy expres-
sions having one or more assertions can be inserted into or
removed from a policy. Thus, for example, the SOAP header
model and Web Services Specifications (WS-specs) outline a
composable model, thereby making SOAP headers and WS-
specs suitable technologies for implementing a policy
scheme outlined herein. In addition, the policy schemes
described herein enable nodes to specily a flexible set of
protocols at runtime using elements from web services, such
as those described by WS-specs.

Exemplary Operations

Described herein are exemplary methods for implementing,
dynamic protocol instruction 1n a network environment. The
methods described herein may be embodied as logic mnstruc-
tions on one or more computer-readable medium. When
executed on a processor, the logic instructions cause a general
purpose computing device to be programmed as a special-
purpose machine that implements the described methods. In
the following exemplary operations, the components and
connections depicted 1n the figures may be used to implement
dynamic protocol construction 1n a network environment.

FIG. 3 1llustrates a dynamic protocol construction opera-
tion flow or algorithm 300 that would be performed by a
source node that initiates a message exchange with a destina-
tion node. For example, a client accessing a server may
execute the operations shown in the operation flow 300. As
another example, a first peer attempting to contact a second
peer 1 a peer-to-peer environment may execute the opera-
tions shown in FI1G. 3 to establish a protocol for communica-
tion.

The exemplary operations shown and discussed with
respect to the dynamic protocol construction operation flow
300 are with respect to a client/server environment, but 1t 1s to
be understood that the operation flow 300 1s generally appli-
cable to any computing device that 1s mitiating a message
exchange. In the following description of the operation flow
300, a local policy refers to a policy related to the client and a
remote service policy refers to a policy related to a service
executing at the server.

In a fetching operation 302, the client fetches the remote
service policy characterizing capabilities and/or require-

US 7,664,023 B2

9

ments of the server. The fetching operation 302 generally
involves retrieving the remote service policy and may include
caching the retrieved service policy at the client for later use.
In one implementation of the fetching operation 302, the
client sends a request to the server requesting the remote
service policy. The client may recerve 1n response an input
service policy or an output service policy, or both.

Another implementation of the fetching operation 302
receives the policy or policies incrementally from the server.
For example, the client may receive a {first set of assertions
from the server, followed by a second set, and so on. The
client may receive logically related groups of the policy asser-
tions incrementally.

In yet another implementation of the fetching operation
302 the client does not fetch the remote service policy from
the server related to the remote service policy, but rather the
client recerves the remote service policy from an advertising
server. In this implementation, the remote server advertises
the remote server policy onthe advertlsmg server, from which
the client can access the remote service policy. The client may
receive the remote service policy incrementally or all at once.

In yet another implementation of the fetching operation
302, the client checks a cache memory on the client for a
cached copy of the remote service policy. If the client finds the
remote service policy in the client cache, the client may or
may not request the remote service policy from the remote
server. In this 1mplementat10n the client may check the age of
the cached remote service policy (e.g. by comparing a date on
the cached remote service policy to a predetermined date) and
if the age 1s greater than a target date, the client may request
a new remote service policy from the remote server.

The act of fetching policy may itself be subject to protocol
construction. This may mvolve an 1nitial “bootstrap” proto-
col, which 1s agreed to by endpoints based on out of band
mechanisms. All implementers that wish to fetch policy waill
need to agree to use some common protocol or protocols to
exchange policy documents. This 1s the “fetch policy” policy.
For example, they may agree to the “fetch policy” policy
defined 1n a paper specification, email each other the “fetch
policy” policy for each service, post the “fetch policy” policy
on a website for downloading, or advertise the “fetch policy”™
policy as part of the mechanism used to advertise the service
itself. As an example of the later, when a service 1s advertised
in a universal description, discovery, and integration (UDDI)
repository, the “fetch policy” policy for the service could be
stored with the service address and other capabilities.

A creating operation 304 creates a local (1.e., client) policy.
As discussed above, the local policy can include a number of
assertions related to input and output capabilities and require-
ments of the client. As such, one implementation of the cre-
ating operation 304 creates one or more policies based on
local hardware and software capabilities, and configuration
decisions made by the client implementer and administrator
deploying the client. The creating operation 304 preferably
creates a local input policy and a local output policy related to
the client.

A determinming operation 306 determines whether the
remote service policy includes at least one set of assertions
that are compatible with client capabilities. In one implemen-
tation of the determining operation 306, the client identifies
one or more groups of assertions 1n the remote mput service
policy that intersect with the local (1.e., client) output policy.
An intersection between two policies occurs when a group of
assertions 1n the remote mput service policy matches or 1s a
subset of a group of assertions 1n the local output policy.

A selecting operation 308 selects one group of assertions
from the groups of assertions i1dentified 1n the determining

10

15

20

25

30

35

40

45

50

55

60

65

10

operation 306, 1f more than one group of compatible asser-
tions was 1dentified. The selecting operation 308 can consider
“preference” values in either the local policy or the remote
service policy, or both, to determine 1f one group of assertions
1s preferred over another group, and select the preferred
group.

An implementation of the selecting operation 308 includes
configuring software to enable the software to send and
receive messages that conform to the selected policy. Config-
uring the soitware may involve calling various software mod-
ules and/or accessing data stores to obtain security tokens or
other data related to the selected policy. The implementation-
specific details related to implementing a particular assertion
are defined by the specification for the assertion.

An applying operation 310 applies the selected assertions
from the selecting operation 308. In one implementation, the
applying operation 310 sends a request message to the server.
The request message includes an underlying message that the
client 1s sending to the server. For example, 11 the client 1s
attempting to order books from the server, the request mes-
sage 1s a book order message, having service-recognizable
syntax and semantics corresponding to a book order.

The applying operation 310 appends a header having the
selected remote service mput policy assertions and the local
input policy assertions to the underlying message. By
appending the remote service input policy assertions, the
client conveys to the remote server the protocols and data
formats or other properties that will be used by the client to
communicate with the server. By appending the local input
policy assertions to the underlying message, the client con-
veys to the server the properties of the client by which the
server can communicate with the client.

A receiving operation 312 recerves a response from the
server. The response from the server 1s a combination of the
underlying response to the client’s previous underlying
request message and a selected group of assertions from the
local 1input policy. The client 1s thereby notified about which
of the client’s communication properties the server will be
using to communicate with the client.

An enforcing operation 314 enforces the policy selected by
the server. An implementation of the enforcing operation 314
ensures that messages recerved from the server conform to the
input assertions that the server selected previously. Thus, for
example, if one of the selected mput assertions requires a
particular type of encryption, the client will check to see that
messages recerved from the server are encrypted accordingly.

FIG. 4 illustrates another dynamic protocol construction
operation flow or algorithm 400, which 1s applicable to a
server 1n a client/server environment. As with the operation
flow 300 discussed above, the dynamic protocol construction
operation tlow 400 of FIG. 4 1s not limited to a client/server
environment. Rather, the dynamic protocol construction
operation flow 400 1s applicable to any environment 1n which
a node 1s the recipient of a request to enter into a message
exchange.

The dynamic protocol construction operation flow 400 1s
described from the perspective of the server. As such, the local
policy 1s the policy related to a service executing at the server
and the remote policy 1s the policy related to the client.

An advertising operation 402 advertises the local policy of
the server. Advertising the local policy involves making the
local policy known to at least one other node, and in this
particular case, the client. One implementation of the adver-
t1sing operation generates the local policy and transmuts all of
the local policy to the client in response to a client request for
the local policy.

US 7,664,023 B2

11

Another implementation of the advertising operation 402
generates the local policy and incrementally transmits the
local policy to the client. In this implementation, the server
may receive a request from the client for each incremental
portion of the local policy, and responsively transmit the
requested portion.

Yet another implementation of the advertising operation
402 generates the local policy and stores the local policy on an
advertising server, from which the client can retrieve the local
policy.

In yet another implementation of the advertising operation
402, a copy of the local policy 1s delivered to a third party
service that reads the local policy and the client policy to
determine 11 the two policies are compatible.

A receiving operation 404 receives a message from the
client. The message includes an underlying message and a
header indicating a group of assertions from the local policy
that the client will be using to communicate with the server.
The header also provides a remote mnput policy indicating the
client’s capabilities and requirements related to receiving
messages.

A determining operation 406 determines whether the mes-
sage recerved 1n the recerving operation 404 used a valid
policy expression. The determining operation 406 checks that
the message conforms to the selected group of assertions in
the local policy. Thus, for example, the determining operation
406 may determine whether the message was encrypted
according to an encryption format specified in the local
policy. If the message does not conform to the selected group
ol assertions, then the operation 400 branches “NO” to a
notilfying operation 408, 1n which the client 1s notified that the
message does not conform to a valid policy expression.

If, on the other hand, the determining operation 406 does
determine that a valid policy expression was applied to the
message, the operation 400 branches “YES™ to a constructing,
operation 410. The constructing operation 410 constructs a
receive channel that implements the selected policy expres-
S1011.

A selecting operation 412 selects a policy expression from
the remote client’s input policy. As indicated above, the selec-
tion of a policy expression can be based on the service’s
capabilities or preferences specified 1n the input policy and
other factors. After the selecting operation 412 selects a
policy expression, a generating operation 414 generates a
reply message to the client based on the selected policy
expression. The reply message typically includes an under-
lying response message and an indication of the client input
policy expression that the service selected for communication
with the client.

Exemplary Computing Device

FI1G. 5 15 a schematic illustration of an exemplary comput-
ing device 500 that can be utilized to implement a host.
Computing device 500 includes one or more processors or
processing units 532, a system memory 534, and a bus 536
that couples various system components including the system
memory 534 to processors 532. The bus 536 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel-
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. The system memory 534
includes read only memory (ROM) 538 and random access
memory (RAM) 540. A basic mput/output system (BIOS)
542, containing the basic routines that help to transfer infor-
mation between elements within computing device 500, such
as during start-up, 1s stored in ROM 338.

10

15

20

25

30

35

40

45

50

55

60

65

12

Computing device 500 further includes a hard disk drive
544 for reading from and writing to a hard disk (not shown),
and may include a magnetic disk drive 546 for reading from
and writing to a removable magnetic disk 348, and an optical
disk drive 550 for reading from or writing to a removable
optical disk 552 such as a CD ROM or other optical media.
The hard disk drive 5344, magnetic disk drive 546, and optical
disk drive 550 are connected to the bus 536 by appropnate
interfaces 554a, 55456, and 554¢. The drives and their associ-
ated computer-readable media provide nonvolatile storage of
computer-readable 1nstructions, data structures, program
modules and other data for computing device 500. Although
the exemplary environment described herein employs a hard
disk, a removable magnetic disk 548 and a removable optical
disk 552, other types of computer-readable media such as
magnetic cassettes, flash memory cards, digital video disks,
random access memories (RAMs), read only memories
(ROMs), and the like, may also be used 1in the exemplary
operating environment.

A number of program modules may be stored on the hard
disk 544, magnetic disk 548, optical disk 552, ROM 538, or
RAM 540, including an operating system 558, one or more
application programs 560, other program modules 562, and
program data 564. A user may enter commands and informa-
tion 1nto computing device 500 through input devices such as
a keyboard 566 and a pointing device 568. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are connected to the processing unit 532 through an
interface 556 that 1s coupled to the bus 536. A monitor 572 or
other type of display device 1s also connected to the bus 536
via an 1nterface, such as a video adapter 574.

Generally, the data processors of computing device 500 are
programmed by means of instructions stored at different
times 1n the various computer-readable storage media of the
computer. Programs and operating systems may be distrib-
uted, for example, on tloppy disks, CD-ROMs, or electroni-
cally, and are 1nstalled or loaded 1nto the secondary memory
of the computing device 500. At execution, the programs are
loaded at least partially into the computing device’s 500
primary electronic memory.

Computing device 500 may operate 1n a networked envi-
ronment using logical connections to one or more remote
computers, such as a remote computer 576. The remote com-
puter 576 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to computing device 500. The logical connec-
tions depicted 1n FIG. 5 include a LAN 380 and a WAN 582.
The logical connections may be wired, wireless, or any com-
bination thereof.

The WAN 382 can include a number of networks and
subnetworks through which data can be routed from the com-
puting device 500 and the remote computer 576, and vice
versa. The WAN 582 can include any number of nodes (e.g.,
DNS servers, routers, etc.) by which messages are directed to
the proper destination node.

When used 1n a LAN networking environment, computing,
device 500 1s connected to the local network 580 through a
network interface or adapter 584. When used 1n a WAN net-
working environment, computing device 300 typically
includes a modem 586 or other means for establishing com-
munications over the wide area network 582, such as the
Internet. The modem 386, which may be internal or external,
1s connected to the bus 5336 via a serial port interface 356.

In a networked environment, program modules depicted
relative to the computing device 500, or portions thereof, may

US 7,664,023 B2

13

be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

The computing device 500 may be implemented as a server
computer that 1s dedicated to server applications or that also
runs other applications. Alternatively, the computing device
500 may be embodied 1n, by way of illustration, a stand-alone
personal desktop or laptop computer (PCs), workstation, per-
sonal digital assistant (PDA), or electronic appliance, to name
only a few.

Various modules and techniques may be described herein
in the general context of computer-executable 1nstructions,
such as program modules, executed by one or more comput-
ers or other devices. Generally, program modules 1nclude
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program mod-
ules may be combined or distributed as desired in various
embodiments.

An implementation of these modules and techniques may
be stored on or transmitted across some form ol computer-
readable media. Computer-readable media can be any avail-
able media that can be accessed by a computer. By way of
example, and not limitation, computer-readable media may
comprise “‘computer storage media” and “communications
media.”

“Computer storage media” includes volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer-readable 1instructions, data structures, program
modules, or other data. Computer storage media includes, but
1s not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computer.

“Communication media” typically embodies computer-
readable instructions, data structures, program modules, or
other data 1n a modulated data signal, such as carrier wave or
other transport mechanism. Communication media also
includes any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of 1ts
characteristics set or changed 1n such a manner as to encode
information 1n the signal. By way of example, and not limi-
tation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer-readable media.

In addition to the specific implementations explicitly set
torth herein, other aspects and implementations will be appar-
ent to those skilled 1n the art from consideration of the speci-
fication disclosed herein. It 1s intended that the specification
and 1llustrated implementations be considered as examples
only, with a true scope and spirit of the following claims.

What 1s claimed 1s:

1. A method implemented on a computing device by a
processor configured to execute instructions that, when
executed by the processor, direct the computing device to
perform acts comprising:

retrieving a dynamic destination node policy having a plu-

rality of policy assertions generated by a policy genera-
tor component, wherein the plurality of policy assertions
characterizes communication properties supported by a

10

15

20

25

30

35

40

45

50

55

60

65

14

destination node, each policy assertion specifies a com-
munication property supported by the destination node;

selecting a dynamic source node policy generated by a
source node policy generator component, wherein the
dynamic source node policy conforms with the dynamic
destination node policy to construct a communication
protocol for communication with the destination node;
and

generating a message that conforms to the dynamic desti-
nation node policy.

2. A method as recited 1n claim 1, further comprising
selecting one of the plurality of policy assertions to be applied
during communication with the destination node.

3. A method as recited 1n claim 1, further comprising deter-
mining whether one of the plurality of policy assertions 1s
compatible with the dynamic source node policy having a
plurality of policy assertions characterizing communication
properties supported by a source node.

4. A method as recited in claim 1, wherein the generating
operation comprises generating the message including the
dynamic source node policy having a plurality of policy asser-
tions characterizing communication properties supported by
a source node.

5. A method as recited in claim 1, wherein the retrieving
operation comprises retrieving the dynamic destination node
policy from a node other than the destination node.

6. A method as recited 1n claim 1, wherein the retrieving
operation comprises recerving the dynamic destination node
policy incrementally.

7. A method as recited in claim 1, further comprising:

determining whether a recerved message conforms to at
least one of the policy assertions 1n the dynamic source
node policy.

8. A computing device comprising:

a policy retriever component that retrieves a dynamic des-
tination node policy having one or more assertions char-
acterizing communication properties related to a desti-
nation node, wheremn each assertion specifies a
communication property that 1s supported by the desti-
nation node;

a policy generator component that selects a dynamic
source node policy, wherein the dynamic source node
policy conforms with the dynamic destination node
policy to construct a communication protocol for com-
munication with the destination node; and

a message generator component generating a message that
conforms to the dynamic destination node policy.

9. The computing device of claim 8, wherein the dynamic
destination node policy specifies an aggregate assertion rep-
resenting a plurality of other assertions.

10. The computing device of claim 8, wherein the dynamic
destination node policy specifies a Boolean relationship
between at least two of the one or more of assertions.

11. The computing device of claim 8, wherein the dynamic
destination node policy specifies a preference value related to
a group ol at least one of the one or more assertions.

12. The computing device of claim 8, wherein the dynamic
destination node policy comprises an input policy having one
or more assertions characterizing input communication prop-
erties, and an output policy having one or more assertions
characterizing output communication properties.

13. The computing device of claim 8, wherein the dynamic
destination node policy are advertised to other nodes other
than a source node.

14. The computing device of claim 8, wherein the one or
more assertions are associated with at least one or more usage

type.

US 7,664,023 B2

15

15. The computing device of claim 8, wherein the dynamic
destination node policy comprises a uniform resource 1den-
tifier related to one of the one or more assertions in the
dynamic destination node policy.

16. The computing device of claim 8, wherein at least one
of the one or more assertions specifies:

an 1ntegrity algorithm;

a privacy parameter;

a communication protocol;

an audit trail; or

a message routing path.

17. A computer readable storage media encoding a com-
puter program for executing on a computer system a com-
puter process, the computer process comprising:

generating a dynamic policy specitying a plurality of asser-

tions characterizing properties of a destination node,
wherein each assertion specifies a communication prop-
erty supported by the destination node and selectable by

a source node to construct a communication protocol for
communication with the destination node; and

receiving a message conforming to one or more of the
plurality of assertions.

18. A computer readable storage media as recited 1n claim
17, wherein the generating operation comprises generating an
aggregate assertion representing the plurality of assertions.

19. A computer readable storage media as recited 1n claim
17, turther comprising advertising the dynamic policy at an
advertising node.

20. A computer readable storage media as recited 1n claim
17, further comprising distributing the dynamic policy 1n
response to a request for the dynamic policy.

10

15

20

25

30

16

21. A computer readable storage media as recited 1n claim
17, wherein the generating operation comprises:

creating a group of two or more of the plurality of asser-

tions;

specilying a relationship between two or more assertions in

the group.

22. A computer readable storage media as recited 1n claim
17, wherein the generating operation comprises speciiying a
preference for at least one of the plurality of assertions over at
least one other of the plurality of assertions.

23. A computer readable storage media as recited 1n claim
17, wherein the generating operation comprises:

creating a group ol two or more of the plurality of asser-

tions;

specifving a first relationship between the two or more

assertions 1n the group;

specifying a second relationship between the group of

assertions and at least one other assertion not in the
group ol assertions.

24. A computer readable storage media as recited in recited
in claim 17 wherein the generating operation comprises gen-
erating an input policy having one or more assertions charac-
terizing mmput communication properties, and an output
policy having one or more assertions characterizing output
communication properties.

25. A computer readable storage media as recited 1n claim
17, wherein the generating operation comprises generating a
mark-up language document.

26. A computer readable storage media as recited 1n claim
17, further comprising determining whether the message con-
forms to at least one of the plurality of assertions.

¥ o # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,664,023 B2 Page 1 of 1
APPLICATION NO. . 11/754865

DATED : February 16, 2010

INVENTOR(S) : David Levin et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 16, line 20, m Claim 24, after “as recited” delete “in recited”.

Signed and Sealed this
Ei1ghth Day of February, 2011

.......

- - .
% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

