12 United States Patent

US007660440B2

(10) Patent No.: US 7,660,440 B2

Bourg, Jr. et al. 45) Date of Patent: Feb. 9, 2010
(54) METHOD FOR ON-LINE MACHINE VISION (38) Field of Classification Search ................. 382/110,
MEASUREMENT, MONITORING AND 382/170, 190-208, 141-143, 155-160
CONTROL OF ORGANOLEPTIC See application file for complete search history.
PROPERTIES OF PRODUCTS FOR ON-LINE (56) References Cited
MANUFACTURING PROCESSES
U.S. PATENT DOCUMENTS
(75) Inventors: Wilfred Marcellien Bourg, Jr., Melissa, 4741.042 A 4/1988 Throop et al.
TX (US); Steven Andrew Bresnahan, 5.305.894 A 4/1994 McGarvey
Plano, TX (US); Paul Allan Martin, 5311,131 A 5/1994 Smith
Celina, TX (US); John F. MacGregor, _
Dundas (CA); Honglu Yu, Fort Erie (Continued)
Egi;j Mark-John Bruwer, Hamilton OTHER PURI ICATIONS
Honglu Yu and John F. MacGregor, Digital Imaging for Online Moni-
(73) Assignee: Frito-Lay North America, Inc., Plano toring and Control of Industrial Snack Food Processes, Ind. Eng.
TX (US) ’ " " Chem. Res., 2003, 42, 3036-3044, American Chemical Society, Pub-
lished on Web May 20, 2003,
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1040 days. Primary Ikxaminer—Aaron W Carter
(74) Attorney, Agent, or Firm—Chad E. Walter; James R.
(21) Appl. No.: 10/832,676 Gourley; Carstens & Cahoon, LLP
(22) Filed: Apr. 27, 2004 (57) ABSTRACT
(65) Prior Publication Data A method for extracting feature information from product
images using multivariate image analysis (MIA) to develop
US 2004/0197012 Al Oct. 7, 2004 predictive models for organoleptic and other feature content
o and distribution on the imaged product. The imaging system
Related U.S. Application Data 1s used to monitor product quality variables in an on-line
(63) Continuation-in-part of application No. 10/289,592, manufacturing environment. The method may also be inte-
filed on Nov. 7, 2002, now Pat. No. 7,068.817. grated 1nto a closed-loop feedback control system 1n auto-
mated systems.
(51) Int.CL.
GOk 9/00 (2006.01) 64 Claims, 39 Drawing Sheets
(52) US.CL ..o, 382/110; 382/170; 382/190 (15 of 39 Drawing Sheet(s) Filed in Color)

24UU\Q MULTIVARIATE IMAGES
2401

N

SCORE PLOT SPACE

2403 l
N

2402
/

DEFINE MASKS
(FROBLEM
DEPENDENT)

BACKGROUND/
—  FOREGROUND
SEGMENTATION

2404 l
FEATURE <

EXTRACTION DISTRIBUTION

OF PIXELS FALLING IN
THE MASKS

FEATURE (HISTOGRAM)
BY COUNTING NUMBER

L

FEATURE VECTOR

2405

|

2406~ PLS

|

MODEL PREDICT PROPERTIES

|_~

BUILDING N
| 2207

PROPERTIES
DISTRIBUTION

1 2:08

¥

¥
FEEDBACK (
2400 /‘(CGNTHGL MONITORING )\ 2410




US 7,660,440 B2

Page 2

U.S. PATENT DOCUMENTS 2003/0185436 Al* 10/2003 Smith ......ccovvivnnnnnenen. 382/159
5,335,293 A * 8/1994 Vannellietal. ............. 382/110
5,398,818 A 3/1995 McGarvey OTHER PUBLICATIONS
5,409,119 A 4/1995 Rao Datari Honglu Yu and John F. MacGregor, Multivariate Image Analysis and
5,659,624 A * 8/1997 Fazzarietal. ............... 382/110 Regression for Prediction of Coatings Content and Distribution in the
3,960,098 A 971999 Tao Production of Snack Food, Chemometrics and Intelligent Laboratory
6,081,740 A 6/2000 Gombrich et al. Systems, 67 (2003) 125-144, McMaster University, Hamilton, ON.,
6,317,700 B1  11/2001 Bagne Canada.
6,341,257 Bl 1/2002 Haaland Honglu Yu, Development of Vision-Based Inferential Sensors for
6,410,872 B2 6/2002 Campbell et al. Process Monitoring and Control, Thesis, Apr. 2003, McMaster Uni-
6,415,233 Bl 7/2002 Haaland versity, Canada.

6,629,010 B2 9/2003 Lieber et al.
2002/0164070 Al* 11/2002 Kuhner et al. ............... 382/159 * cited by examiner



U.S. Patent Feb. 9, 2010 Sheet 1 of 39 US 7,660,440 B2

22
24
=== 20
COMPUTER .
14 . Fpg frpvh 16
FIG. 1 CONVEYER BELT
SN S| | L
UNSEASONED T e ~
PRODUCT TUMBLER 7S, LS 7S I
12 T

| 18
o

SEASONING
IMAGE FEATURES CONCENTRATION

§ X1 Y1
REGRESS

FIG. 2 |.k % X.k <,_£(> 7?(




U.S. Patent Feb. 9, 2010 Sheet 2 of 39 US 7,660,440 B2

FIG. 3a

250 '
| + CHANNEL RED |
X {HANNEL GREEN

O CHANNEL BLUE

200

150 R

AVERAGE N I R 330
COLOR R TR
100
78 @
0
SEASONING CONCENTRATION
0.9
0.8
K
0.7
HiH-T
FRsT 0P -
PRINCIPAL (5 + CHANNEL RED
COMPONENT X CHANNEL GREEN
LOADING 0.4 O CHANNEL BLUE
VECTOR . 6

SEASONING CONCENTRATION



US 7,660,440 B2

I....l....l”.-.r”. A A A

L ke Tt T T Ty Tl ¥

remnEmaies. o f a2 IS

Sheet 3 of 39

Feb. 9, 2010

U.S. Patent




U.S. Patent Feb. 9, 2010 Sheet 4 of 39 US 7,660,440 B2

NON-SEASONED
IMAGE

LOW-SEASONED

l

_ HIGH-SEASONED

PERCENTAGE o
OF PIXELS IMAGE
NON-SEASONED
IMAGE
LOW-SEASONED
IMAGE
CUMULATIVE HIGH-SEASONED
PERCENTAGE IMAGE
OF PIXELS

BIN NUMBER



) ".-.... .... 2
e
P

A r
& ar r X ¥
N .:u.r_v.. !

US 7,660,440 B2

war w T T,
o a T
S N N Ay
Al )

-
.
-

X

X
"

X

X

)

X

X

a»

4

X

e I S e e
' " E.__—.....__.....__.-..__....h.....__.._..__.._..__........

1102

GE

"l?‘.h”li ¥

A
HHHHEHHHI

R

S

.l!H Hxﬂ.x

oy
.I l.:l
"".ﬁ.%

A

V

Sheet 5 of 39
[

Co

-
...1..__.-__-
s a0
e
T
o e
o
Pl S
T
AT
e
Plat T
.__.r....-..-_
[
i, »
X
)
x e
. -
X » s
* b, N
] - dr
X
o

.l. L
-* .
*
-* . - - - - - - -
i rm.ﬂ!m-.....quq.q..
_ r I
hd - T
* - e
- I AL
™ >
. .- H....“
2 4 =
, .
- K iy
X » 'y i
” . ___.”... LA BE
.
g 'Y " .-“.
..__... " .
g e - .
" L o
) . v . ¥
: ; i
® . L wa'
» 1 '
- " ....._.
b I .-.....
. - .._....
i g .....:.
i) g .._.....
. g ........
. K oy
* 2 "'
.l.-. .H l.l.
' 2 .....:.
i -u .....-.
. 4 .r.-.
X ", .._..-.
X , .
- ........
.-_.l i ........
. &1
'}L
H F ]
X
¥
& oa
* Y
.
e
.
'.'L
uts

-
[

O~

i . " n i dr i W
D S : ) RSN

U.S. Patent



US 7,660,440 B2

Sheet 6 of 39

Feb. 9, 2010

U.S. Patent

F

o



U.S. Patent Feb. 9, 2010 Sheet 7 of 39 US 7,660,440 B2

FIG. [3a

NON-SEASONED
IMAGE

LOW-SEASONED
IMAGE

HIGH-SEASONED
IMAGE

1302

Pt

FRAGTION
OF PIXELS

1300

FIG. 136

s — FR g g S T da% l rau Ban B das -
F ot Wl W T S Al — = el G N f . g b ) A oA i W
P Lol F R A N N bl N .

NON-SEASONED
MAGE

LOW-SEASONED

T —

MAGE
HIGH-SEASONED

CUMULATIVE
FRACTION
OF PIXELS

IMAGE

BIN NUMBER



U.S. Patent Feb. 9, 2010 Sheet 8 of 39 US 7,660,440 B2

FiG. 14

= = = Moy A Mot T oM W R ToWWOW W ToWw - - T s e

T T ——

|| O TRAINING SET

X TEST SET

L}
F
k
F
F
L]
r
.
:
I
:
.
IIl -
[
[
[ .
[
T
[
i
5
A"
=IJ'|.
.'ll-.'l
e
e
i
[ T
v AN NI NI N A Y
K

. x.!.".._
r | H s
: o seaners
r A A
r M_E M
F
- . . . . ._".- ] - 'i - - 1_'1
. : a1 S
-l S . . L]
! - iu .
- .'.m. -\: . r: #' -r. -
. . .d-‘q'- i! Sy r‘- 'l,
l # - !
a Fa . r
' 0 I
- rl 1
1. e ‘ T Al o,

: . i
II n _ n
n : -
-
» -

J' : L]
-+
-
-
W
|F .!‘ .

1502




US 7,660,440 B2

fnu_ [k - L
; = B =
i —F . . 3

5 = _ E
_ = _ =

H o | OO

NOILYHINIONOS) L NOIYYINIONGD
SOMILYOD . SONIYOD

Sheet 9 of 39

e
F
i

r &
b b & L.J..TJ..

Feb. 9, 2010
BIN NUMBER

FIG. 16a

I N

[ S S Tt I T

NOELYHEINAIND O
SUNILYOD

U.S. Patent

1700




U.S. Patent

CUMULATIVE
FRACTION
OF PIXELS

FHRAGTION
OF PIXELS

Feb. 9, 2010

Sheet 10 of 39

US 7,660,440 B2

FIG. [8a

 NON-SEASOMED
IMAGE
LOW-SEASONED
IMAGE

HIGH-SEASONED
IMAGE

=

SEASONING CONCENTRATION

800

Ak

nnnnnn

. =t

=

FIG. 18b
_ NON-SEASONED

= IM AGE _
LOW-SEASONED
MAGE

o HIGH-SEASONED

{ COATING
| LEVEL




U.S. Patent Feb. 9, 2010 Sheet 11 of 39 US 7,660,440 B2

- r1G. 20

—&— NON-SEASONED IMAGE
&— L OW-SEASONED IMAGE
—E— HIGH-SEASONED IMAGE

FIG, 2ic

.
.
.'l
. . T m
.
- - - T
' . --- - .I.
" . = L} .
L] -'|. - '-
- L]
- W o=a
TN
. a .
e Ry
I.'- L} L] L] '1'| I.|
\ _'_ _ |-- L] II
o a1 = o . -
e, e - Ve
LA, RN ’ s . - .-'1 :.:-: ) "-.:-.
e e
! el
L] h . : .I -I
. - ..
- e
e =
- - &
b - - &
- - b T .
.
-
- - h -I .1.
* B
.I

e _ T e S

- I. I.:'i.-l- . . i “d _ - q-;q-}.‘l;l..;} - ) P . LT LT, A . o

ENCSlE N o o ol ey . . . T .
T R e
- - o

a
T o
r-'rﬂr-'r*
L

T T

L
[ ]

- |
il
i

LN 5

L]
r
r

SEASONING CONCEMTRATIO



U.S. Patent Feb. 9, 2010 Sheet 12 of 39 US 7,660,440 B2

2400~ MULTIVARIATE IMAGES )
2401 | e

243 2402

DEFINE MASKS BAGKGROUND/
(FROBLERM = FOREGROUND =
DEFENDENT) = | SEGMENTATION _

2404

FEATURE |

EATRALTION | DISTRIBUTION

| FEATURE {HISTOGRAM)
| BY COUNTING MUMBER | |
OF PIXELS FALLING IN |
THEMASKS |

hhhhhhhhhhhhh

FEATURE VECTOR ~ D405

2406~

MODEL

| PREDICT PROPERTIES |
BlHLDING e eeeeeeeee

| 2407

PROPERTIES |
DISTRIBUTION |

" FEEDBAGK

controL_j | MOMTORNS

2409 M-2410

FIG. 24



L¢-CC

US 7,660,440 B2
|

_ G0SC
q$C OIA

l¢-CC

Sheet 13 of 39

Feb. 9, 2010

e0G¢

U.S. Patent

JALL
AN A4 QG Le eV L¢
TVYNSIS DNITIHdd H4dd0H
7067
JINIL
A A 86 LC cv-1e
1
| |
L0GC ,
: e
Tikl A _5 _
el I
+, ;,
00GZ
DST DI

6C- ¢

VIVA SISAIVNY 8Vi O

v1ivQa d3191dd44 1400

GL-LC

440
NO

GL-1¢




U.S. Patent Feb. 9, 2010 Sheet 14 of 39 US 7,660,440 B2

FIG. 26a
2601 MODEL PREDICTED DATA
O LAB ANALYSIS DATA

il
T
{

M I I.II | [ll
‘ | |

16:38 16:92 17:06 17:21 17:35 1750 18:.04 1818  18:33
TIME

FIG. 26b

2602

16:38 16:52 17:06 17:21 17:35 17:50 18:04 18:18 18:33
TIME



|

w JNIL

h | 00:00:2¢ 00:00:12 00:00:0¢ 00:00:61 00:00
=3 _ - _

= s
o 440 .
7

= c0/.¢

A f

e,

s |

-

\r,

y—

2

i

7).

—

y—

—

g |

o

=

P

o

TYNDIS N3d0 41VY JNNQ ——
1HIIAM 19NA0dd AINOSVISNN —
(033dS 440434 SONILVOJ] ===

13A31 SONILVOJ d410id348d

U.S. Patent



US 7,660,440 B2

Sheet 16 of 39

Feb. 9, 2010

U.S. Patent

JAILL AY130 JNIL
0G-81 P8l 9c-8L 3¢-81 LC-81 VL8l L0-81

l..\?\ﬂf

£082

A
LA AN axt._.tt\:rl:...\tt- PRCA VA

_ 2082V LY

R r_.(\.p_ b._..\‘\..__.__.c.r..r\ VLY, WV S G e

~_ %’L‘It{{)\- .l.\-__

h
[
ﬂ _ |
08¢+ | o __ |
i | 1 | | I i
Y } | | | I TR R | _ . | il
| TR _: | 1 _ | ___ | H | I IV byl TIRL : Vo 1 Cod | | | B [l o _
oot { | ) ) | e Tl I, By ey hl AHAN MRS MO S Ph _ t Nt )
_ Wy M by | (TR _ I _ v g g B WU HRTHI TR LS MY bl oo L)ty 14
y _“___ R T TR i fyh gt By | R T e vk Iy I N O A A R P A T
T T R L R e A TR R AT LI i Dyl 1900 Dt I T | et T I b T O et L e T L e b W T T TR L e TR T I R L T W LRt L T B T T L Py T P VR
! ____ ALY R RIRT __ WU THHH l *_ | I _:_ I 1) Ipr TN 1} o) |\ _ _ i Iy __ il HTHINT! __ il Y NIt __ _____ W T RN M e L 1 ! Il /| __: _ ___ 1 __ I ando _______ I R LA T (Lt h, 11
it 3 i i, , ot S i ) A i A 1
_______________ e T N T T R T T T s O e T T T I et e e T T T e ettt 1T T e T R e T A T B Tt T Tt T P e T W e TR e NP LR T Tl 1 e L T R KT LT (e LT |
TR LR T R T B e TR e K P e A e R T T T e T et T R T LT (L KT e e T B L 1T T i T T T e e 1 o T T o R L B P I P R T R LR T T T L T R A MR eTTRY
_____:__ N CLTIT (A R T N P T T L I A L T IR T T P e A et P T LT LT T I L [ et T T T LI T I Pt W T L T L N LT [N T i 1 R T o IR PN e T e R TR TN TN T T RN LR B MTTNTRUNT]
TN R TR ML T R R I P T  Te T G T T L T L TR T [Tt LR AT ! B LT L O T T LTI KA | e L At T et L Y L L B T BN L L Ll b LT (LT TR L T o [ | R P L M T A L R et 'R
Ml _______:_______ N I T R I N e L L e i e LR B ) R TLLH (IR RETL | b B LR T | M TN I L e T e LT T L M T L N B T e L W T Y e Lot L e T R T T W T e T LR PN T R ML
_ T T B M R L R R E T L AR I L L R I I P L S TSR LR TTU TH | (KT LR T ettt T N [ T O L LT LTt LT o N 0 M T T T R L TR R L Lt N W T TR L Tht ] R S R LT W Lol INPRLe TR
JU il | b 1) U AT ML L [T T I 1l IRRTINTUIT N N | Tkl il I, 1) T uTL I I BeTRREL | e 1l | NI
"_“““__ “_ ______h“_ __:“__#_“_“: “_“_ .___ “_: “ _“_:_“ __““"__ ﬂ_ “_“_.“______ [l ______"“____“ 1y ____““____“__“"_____ :_“_ ____ﬂ.“__ | :“ __.““ _ __x___: _““__ __ __““_ _:__ _"“_______“ .“"_“. E“ “____“_“_ ;_““__ | “__“ I “_“_ _:_“__" “_“ :“_"__ ____ _“ ________ H_“ __“ __"““ _“__“_:__“__. _“__ 1Ml _“__.H ﬁ n
TR B e T R R R T R S S A A A T U A T
HIt ! T et B LU PR . ! _ _ L _ _ _ _ ' _ (]
i __ __::___ TRl ' __ { I _“" __ ____ Y _ _ if _ ; —- _:.._____ 7 "_ {hi Iy 1! _ ____ | | __ L) "“:_ _ I __ #_ _ ““_ ‘ i f
] _ I

_ )
g [N

Iy

o
[ N

008¢

_
by

_ | :_ :
Dl
WA i LA

JONVIHVA NOILNGIYLSIa SONILVOD d4101d14d —— §C DIA
J1VH AHHN1S SONILVOD -----

LH9IIM 13NA0Hd AINOSYISNN -----

13A31 SONILVOD d3101d3dd




US 7,660,440 B2

Sheet 17 of 39

Feb. 9, 2010

U.S. Patent

FiG. 29d

FiG. 29c

(7. 29D

Fi

FIG, 29a

FIG. 29n

2907

;& :
YN - %
o ™~
=
a

2900

N
B

_T.F;

. 2%¢

FIG

2905

2904

FiG. 30

Bk o= o kom o komom o

AT AT TR R R AR TR R AR T ETA T R s R,

A

000

PV W Y

.||.i.

SEALUNIMNG CONTENT

ST T o T M wow = o w T T




US 7,660,440 B2

Sheet 18 of 39

Feb. 9, 2010

U.S. Patent

JAIL
et-91l 8c-Cl ¢¢-80 LL-v0 ¢ +-00 90-0¢ 10-91
i N
FOLE
ﬁﬁ __,__%f Ay _.%. _ u..,__ A .__.,#.;_%?f "
mSmL ..ﬁh it _

:&
G
. ] =
Fu
— -
w
r

oo_mL

10LE
Svig 13A31 SONILYOD (d33dS 430334 SONILVOD ----- 14Ad1 SONILVOQ d3101d34a
1HIIAM 10N00dd INOSVISNN ==——- INIOd 13S 13A371 SONILVOD —

[£ DIA



U.S. Patent Feb. 9, 2010 Sheet 19 of 39 US 7,660,440 B2

STEAM
3205
- ANALOG FIG. 32
CARD
C )
WATER —=|
BOILER
LIQUE) FUEL = J 3206
3201 . .J
NATURAL AIR =
MONITOR
3202 GAS COMPUTER
FIG. 33a
14000 S
12000 pH0R 3300 a7
100004 A R / C
LIQUID FUEL  ggqg S
FLOW-RATE 6000 L T
(Ko/HR) 4000 B
2000
0 T — e S S o
10441 1055 11:09 11:24 11:38  11:53 12:07 12:21
TIME

STEAM
FIL OW-RATE
(Kp/HR)

100+——7— T T T T T
10:41 10:55  11:.09 1124  11:38  11:83 12:07 12:21

TIME



US 7,660,440 B2

Sheet 20 of 39

Feb. 9, 2010

U.S. Patent

9L-vi

dNILL

o0- | ¢0-vi GG.El BY-El Ov-El ge-tl 9¢-€1 bL-El A"
N B 1 | N R 0G|

9L-v1

qr& ODJjH
001 -
021 -
ov L
091
QUAISY) gy
MOT4 SYD
Tvanwyn ¢
022
ove
. 092
DY I+
& 082

0L}

06k

LL] ¢}

01LZ
¢ 401722

L

0EC

— — L oge

JNIL

60-vL 20V ¢geL  8kEL  OveL €e€L  92El  6LEL  CLEL
I S |

-
L

.

0001
000¢
000t
000%
0006
0009

0004
0008

SY9 IVHNLYN-—-
(8) 713n4 AINDN—

.Ll.l

00vE

B — NG =0

(1u/d3%) MO
AV3LS

(Ju/ay)
MOT4 73N
ainoIT



US 7,660,440 B2

Sheet 21 of 39

Feb. 9, 2010

U.S. Patent

3504

OMNSTRUGT

HE

l:::l-lal A

. .
- - H & Hi “i H.._ .l.l.__ .l.;.... ”.r.__ x H....E.r....r.__ 1
N aam k. .....r......_. N ._...._ ....__.....-..._.._..h
W e e T N
RTINS NN N S AL NN

a r & r r a

e S S oy e S o e S Sl I It

™ [
1

n ek oa w wa o kon ko k Ak oaom o boa b d dr e dpdp dr i b dp e i &
e i 1.r.r.1|.r....._.r.r....... ......_.r........r....r.r....-........-..r...l.?.-_.-.l.......-..-_.-_.-..

R b b N N b e Je e s e e e e e e
o P, - - - - x x

a e W e e e R e R e e dp e R e dp e g A e e T e U Oy dp e e e dr oy e e e e iy
.........r..H....q.................r...................rﬂ....q...r....t._..._.....q...._.............r....._....____.-.._..__...........4....4.........1..........r................qt...............r.....__..._.....4........._.._.............4....H...4....4.........__..._....H.._..__....................4-......4...................444...-_.......-.._-. L
e e e e e e e e W e e e U e A e e e e e e e e e e e A e e e e e e e e e e e e A R

Eataa L) .._........._........4._...4.._........4....4H.__.“.4H...”.rH.4H.4H.__.”.._.H.4“...”.._H...H...“...H.._.q....._.......qn....q.q......... H.._H...”...”}H...”...“.___H.......-._-_ Pl
i AN N B MM A Ll

ey de ke ke

» -

-
r
Ly
¥
i
Ly
¥
¥
X
¥
F3
Ly
L
"
X
IS
F3
X
IS
i
Ly
i
i
X
¥
i
»
¥
i
Ly
¥
F3
Fy
¥
i
X
IS
F3

&

¥
4
5

| .l."“ﬂl"lﬂl e’ m_A x

¥ ERE
i, all"l"n"nunua“u” x
n XN R A X
ERRE x EERR XN
u“aul"a“al:la a"__."..la" __."..“a“n
. T n“l"aaa“n“n"u"a“n“a" "n“una“n “a"uun"
i L xR
ERZIEXRXIEXTIRAREXAREARERERE XR XK X E XX 2N o L
RARXRERZXKENEXKENEREEEERREREXAZRERZ X R XXX XR i | i
N N N i X A x
F I T I N g AN
XXX XAARRERERLR XXX AR XA A KN KN A A N A X iy i)
e A ) A g
X RN AN A AN XN K o o A A N iy
aru_.Hu_.rxxxrrxxnxxxraxxnjrxr“nux ) “ x_v”nnvﬂv_”nwxu_mn:”xrx”rv.xm. .umnnx”x“x. x”
K o AN X > . X,




US 7,660,440 B2

Sheet 22 of 39

Feb. 9, 2010

U.S. Patent

AR R R R R A A X R R M M X AN KX T X R R N XX
A XEXXEXREEREAERXNEXEREENEK XXX

; ,_H,”,,”,E K o T M A
U i i i i i i i e i i
S e e i
XA XENELEAREAEARLEELERE XX XEREELREERENEN LN X X
N i N
L i e i iy i

A AR N N AN R R R KN AN AR KN N

L A e e i i

i i i i i

Ll i i

n
x
e e o e A e e R R A e A A e A
Ha”xﬂx”un”uax Y unn e e e x“u“x”x”nuxnunu“x”x
PR e e e e
PR A e e R e e
R R oot et e e e e
o o e o o e o o o e e o o oo e e e e e o o
[ A e e e e o
o AL e e e R e e A R A T e e o e e
T T T
A I A T AR e e e A R e Ao o AR e
e A e e o e o e e A e e e
Ay T o O e e
o o e e e e R et o o e KR e

- J AL e oA o e e
o e e e o e e e e
Vg 7 A
e e g g g oo o o oo e o o e e

W A e
% F A
e o o R e A R e e
] P AT Al o o

r.au. i
* nxrx._.xxnannaxxnxxnxvaarxrxrxrxxrxnnxr i
o

x.ru._ ... Y nawn"r“rrxnr“r”rﬂux " xr“nnrn HHH

Tate T P, O O,

it . AR g

ar“xun”n“nu

A KR

2R

. A

. i AN K

oo N E

- S

. NN

. e e e L

S ) MO AN .

. i

) ] e PO

) P e R R R

. ' ..”...._..h_ T

"t - 2 ul__ﬁn I e e T A R

’ . R

O - O x x__.nul"liiaxnxrxxxrnnxxnnnrxrxxx
.nrnxxxrxnxnxxnxxxx P ay . e (e A R R e R e R
N A N W W e A A
R e e M I oA R AT e AR R e e
N A K, x rnrnuunnxnuunnununn
o e A e e e e A O, O
2R A AR R A R R e A A T A A A e
e e T N e e ot et e e o e e
A A O A A B O B
A O N i
Ll U A N U 0, I
N O, A 0 N 0 0
X R e e T TR R A R A R A P A A AR R T
RN I I N
A A A A O 0 0 0 O O O O
I A R R R e R R AR R e R R e e e
A A o N
L, A
LI A
MR T T T A R T R e e
A 0 0 N
il N i
o A N U I N R
N N N N N N
A e R I i
e R R e L e R e e R e e e e e e e
O A 0 0 A A O
R i e
o A I 0
L A O o
i O A O A
N N R

1




U.S. Patent Feb. 9, 2010 Sheet 23 of 39 US 7,660,440 B2

10000
9000
8000
7000
6000
5000
4000

3000
10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33

TIME

FIG. 40a

i —~4001

7000
6500
6000
5500
5000
4500
4000
3500

3000

2500 _
10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33

TIME

0.22 ———
0.21 l FIG. 40c
0.20 l

0.19
0.18
0.17
0.16 ‘

FIG. 406

|
l

il

il
L

Jrll '
THE e
0.15 H
0.14
0.13
10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33
TIME




U.S. Patent Feb. 9, 2010 Sheet 24 of 39

0.18 ¥

0.16 4

0.14 — T T~ | B E—

10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33
TIME

120

110

100 i

90 '

80

70

{

60 | T 1

I
10:41 10:57 11:13 11:29 11:45 12:.01 12:17 12:33

TIME

130
125
120 |
1154l
110 il

l

gy

I

105
Ul H”” N ‘j '.ll' il
100 | _’l‘l,hlll,.! H .
95
90 I —

10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33

TIME

D

US 7,660,440 B2

FIG. 40d

FIG. 40e

FIG. 40f



U.S. Patent Feb. 9, 2010

230

220

210

200 {0

190

180 ‘

170

10:41 10:57 11:13 11:29 11:45 12:.01 12:17 12:33
TIME

190

180

170

160 {[i[l

; I

150 Lty

140

. l

130

120

TIME

th el Vivits
,1!

Sheet 25 of 39

fHH
|
| 1

o

"‘l it f

,
lll

10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33

US 7,660,440 B2

FIG. 40¢g




U.S. Patent Feb. 9, 2010 Sheet 26 of 39 US 7,660,440 B2

4000
FIG. 401

3500 ( l k

3000 -l
il

2500 i ' il
slt“i wll d“I”JMJﬁ

_ :" |
2000 ] Wl ”'I[Lﬂhww ““'!
| 1‘[] .

1L
i

v
s |

1000

L

|
10:41 10:57 11:13 11:29 11:45 12:01 12:17 12:33
TIME

9000

2000 FIG. 4]1a

7000
6000 ”I

|

T I It Ml 'JFFW
4000 1l I ]I [M;Hijlwe

2000

11
IUI[ th |

3000

2000 ——1
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME



U.S. Patent Feb. 9, 2010 Sheet 27 of 39 US 7,660,440 B2

7000
FlG. 41b

6000

5000 {|il

4000 il

3000

2000
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME

0.22
0.20
0.18
0.16 h
0.14 | . e L T ,l*‘l i
0.12 ’
0.10 '
0.08 '

0.06
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME

i FIG. 41c




U.S. Patent Feb. 9, 2010 Sheet 28 of 39 US 7,660,440 B2

0.50
0.45 ‘

0.40

0.35

-,“|l*]] :
it |

|

0.30

il ||1
[ el
LY AT ARLAATTET T T

0.25

0.20

13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16
TIME

140

FIG. 41e
130

120

110

100

90

80
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME



U.S. Patent Feb. 9, 2010 Sheet 29 of 39 US 7,660,440 B2

120

10 ‘ FIG. 41f

100 i”rl ,i‘lilnl ih'l “'l { l l
W!]" (T ’l1“"1‘-' Uik -

-||ITTT‘1 11l|l 11 'IlliL'u [].L'l “ll . l

I | | ll

90

» ' l' i Jhl I

70 '

60

50
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME

230
FIG. 41g

220

210

200 -

190

180

170 AN B B
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME



U.S. Patent Feb. 9, 2010 Sheet 30 of 39 US 7,660,440 B2

FIG. 41h

80

60
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME

3900

2000 FIG. 411

2500 i)

2000 r' i LT

T r””!l |

1500

1000

500 f SEE— |
13:20 13:28 13:36 13:44 13:52 14:00 14:08 14:16

TIME



US 7,660,440 B2

Sheet 31 of 39

Feb. 9, 2010

U.S. Patent

-
-

EMMMMMMMHVV_ V2 2 27

% IIIIs

O
O

=
-

1,

(L L

AL Ll

L8

_I‘\\\\\\\\h

FIG. 45

CIIHIIIIITA
VIIIIIIV
VL 22277)

PITTIIIEED

(222222777
277777]

| l?fffdﬂﬂ. 7777 A

N
-

N
-

N
-

_ SN\ || s

_VV%E
NANNNNNANANNANASNNNN [ Zrserss

S| P77 77777
S| E 7777

|\~~~

| CSSSsS) 77777772
SO\ SN NSNS S SSSNV S )
N SO RS | 222274

FiG. 44

Qe 9 =

. N O
— - - - - -

\ L L L LD

N (AL

WIP SIS

VDI IS T,

L L Ll
L L
VLl L

VPP IIIIED,

S
-

j|

N
S <



US 7,660,440 B2

Sheet 32 of 39

Feb. 9, 2010

U.S. Patent

RO SVO TYHALYN
S Mo (@) Tan

R T T 38NN SHO10D 3T 67

AN 30V 14 40 21 NYIN -84
| 34 40+ NV 22

R T 39wt 40 21 N3 39

UMM IV 0 1L NYIW 67
T ) ALISNALNI TIVA

|
| ALINHOSIND NV EA
|

RIIIITITITTIN SSINLHOIME JAY T <2A
RO TTTTITNY vaty 3wy :1a

_
A -

FIG. 46

O ~ N <
- - - -

le oVZ2

Vv

FIG. 47
vie

0.5

0.4

ov3

0.3
0.2

FUEL (B) FLOW &

v4

“ NATURAL GAS

0.1
p2 0.0

-0.1

-0.2

-0.3

0.4

-0.5

~-0.1 0.1 0.3 0.5

-0.3

-0.5



U.S. Patent Feb. 9, 2010 Sheet 33 of 39 US 7,660,440 B2

FI1G. 48

- PREDICTION 200

X TEST SET
O TRAINING SET

150 160 170 180 190 200 210 220 230 240 250
OBSERVATION



U.S. Patent Feb. 9, 2010 Sheet 34 of 39 US 7,660,440 B2
FIG. 50a
250
240 — ——PREDICTED VALUE
230 —— MEASURED VALUE
220
STEAM 210 | |
FLOW RATE 200 W 2000~ 4, A5
(Ke/hn) 19 S
180 (&
170
160 v
150
10:41 1102 11:24 11:45 12:07 12:29
TIME
FIG. 506
250
240
230
r'\
220 5002 )"
STEAM 210 "'\/ 5003
(Kp/hr) 190 \/
180
170 - —-PREDICTED VALUE
160 - — MEASURED VALUE
150
13:20 13:41 14-:03

TIME



US 7,660,440 B2

Sheet 35 of 39

Feb. 9, 2010

U.S. Patent

..
x7x Ty
ol rd - ol r
e

& & ok b ok iy -...........................l-..t o

b oa kW A ¥ oA

N N N )

SRR R I R

e e de W O dr Aoy A g

e e T L
ERE R

LR )
.__t._.*“ﬂ._,.....q“..ﬂ.... ._.h PO
ERECNC A RN N o

l....t.r.................t.__.....__.. -k §

PN O

¥ F kow i & &N

Al Ak kN A a koM A K ra s bk

N AL N T e

i I i b i b ]
A ...t.r.r........._..-.l...i...-.r

] Illu
....u-.t...t A

I

FiG. 51c

614

3103

FIG. 51

HiG. Jle

5108

2t/

5106

' J|'1r:1r :_b:#‘a-
P

L ]

b, ]

FIG. 51

FiG. 51n

R
B
L

PN

P Tt

L g ]

i X
L)

™
L] i H_HH'h . :’-l"-:‘_#.k L 4
. & &
-%_ w
L | o
W

d":

FE_ &

AN A

i |
i)

S
B
A
S
|




U.S. Patent Feb. 9, 2010 Sheet 36 of 39 US 7,660,440 B2

- |
F
‘.'*'l:‘
b L L N
.‘# ..h; ;I'I
%

o P i

-
L AN

%

L]
L
L)
e
= rrc X
T n gy
r dr'lr'-l'_ lr_"
._lr'q'_‘lr*rq_l"

L

LAE N
-
P )

LI ]
r

i

I
e
‘rl'-l'*l'

L 3
i

-
-
L)

-

p'f*‘.f;:

|
M ‘x..

o
L
o R
o

Ty o
e

]
e ]

‘l.
R A,

X
g

xl“"d'ﬂ X x X

a_N_N
X

Ha X N M

R

. G, 54b




US 7,660,440 B2

Sheet 37 of 39

Feb. 9, 2010

U.S. Patent

'I

FY

o

L

[ ]
&
L]

X
5

L
llrI'erl
[ o

wr r‘. 1

L

FIG. 55d




U.S. Patent Feb. 9, 2010 Sheet 38 of 39 US 7,660,440 B2

P i e

LS I )

L]
LS
S
L]
.
L3
5
N

T u T e

A g 4 gy = r oy oy ayw gy yyr ey

FIG. 56e FIG. 56f



U.S. Patent Feb. 9, 2010 Sheet 39 of 39 US 7,660,440 B2

5700 _
\ FlG. 57a 20—
6 — |
5 2.5
- 4_ % 20_
= —
O 3- s 15-
™ =
& 2- . a 1.0
. TEST DATA 05 O TEST DATA
A TRAINING DATA | A TRAINING DATA
0 - | T 0.0 E— | |
0 1 2 3 4 9 6 D0 05 1.0 15 20 25 30
OBSERVATION OBSERVATION
5703
5.0 FIG. 57d
404 |
= ]
g SD_
9- _I
0 I
a 20'_
an
_ _ B
1.0- TEST DATA O TEST DATA
N TRAINING DATA A TRAINING DATA
0.0 1 | T 300 ] T |

i I
00 1.0 20 30 40 5.0 300 400 500 600 700 800 900 1000
OBSERVATION OBSERVATION (gf)



US 7,660,440 B2

1

METHOD FOR ON-LINE MACHINE VISION
MEASUREMENT, MONITORING AND
CONTROL OF ORGANOLEPTIC
PROPERTIES OF PRODUCTS FOR ON-LINE
MANUFACTURING PROCESSES

CROSS-REFERENCE TO RELATED
APPLICATION-

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 10/289,592 filed on Nov. 7, 2002, now
U.S. Pat. No. 7,068,817, the technical disclosure of which 1s

hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in part to a method for ascer-
taining the quantity or characteristic of a product attribute in
process manufacturing, and more specifically, to determining
the quality or a characteristic of a food product 1n the food
manufacturing industry. The mventive method disclosed
herein utilizes on-line machine vision technology to image a
foodstull coating and through statistical analysis predicts the
coating coverage based on the imaged coating concentration
of the foodstuil. The methodology could be applied to the
on-line measurement ol any product attribute through any
imaging or sensing medium where a single or multiple cor-
relating signals can be derived.

2. Description of Related Art

The availability of inexpensive and reliable sensors for
detecting product attributes while a product 1s moving along
an assembly line or conveyor 1s a very important factor for
successiul monmitoring and control 1n process manufacturing
environments. For example, the petrochemical industry has
made innovative advances 1n process manufacturing using,
multivariable modeling, 1n conjunction with predictive con-
trols, due to readily available, inexpensive sensor equipment
such as pressure transducers, thermocouples, and flowmeters
which are easily applied to the product streams of the petro-
chemical industry that mainly consist of gases and liquids
during the production phase.

In the past, the solids manufacturing industry encountered
greater difficulty in implementing reliable sensor technology
during the manufacturing phase. In its most basic form, the
solids manufacturing industry used human observers to
manually collate, count and determine defective products as
they moved along the assembly line. Using human observers
was quite expensive, prone to human error and somewhat
unrclhiable. With the advent of digital imaging technology or
“machine vision™ systems, the solids manufacturing industry
now has a reliable, relatively inexpensive, sensor system for
monitoring and predicting selected characteristics during the
production phase.

In the snack foodstull industry, the problems of process
control and quality control are of paramount importance.
Although physical observation techniques have proven some-
what effective, the problem of controlling the amount of
coating applied to a foodstuil still exists 1n the industry. The
term coatings, as used herein, may include but 1s not limited
to, seasoning, product ingredients, or other components
which are applied to the foodstull during the manufacturing,
process. Product coatings may also be applied to the foodstuil
in other phases of production, transportation, or distribution.

For example, topical coatings are applied to snack foods to
enhance or influence their taste, colour, size, texture and
nutritional content. Topical coatings are primarily applied to
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2

the foodstull by several mechanical methods, including dust-
ing, dry coating, spraying o1l on baked goods and then dusting
a coating on same thereafter. It 1s known in the art of coating
application that the consistency of the flow of coating mate-
rial to the applicator and the degree of coating adhesion to the
foodstull profoundly afifect the consistency of the coatings
applied to the foodstuil.

The most common prior art method of quality control 1s to
periodically sample the product and analyze the concentra-
tion of coating 1n a laboratory. Unfortunately, there 1s usually
a large time delay between taking the sample and obtaining
the concentration results. Likewise, the sample analysis pro-
cedure tends to be slow and destroys the sample 1tself. More-
over, the coating concentration 1s often not obtained directly,
but determined by measuring the salt concentration of the
sample operating on the assumption that the coating concen-
tration and salt concentration remain constant, which 1s not
always the case.

As such, a need 1n the art exists for a method of comparing
product coatings to a desired product characteristic template
and reliably predicting the characteristics of the actual prod-
uct during the production phase 1n real-time or near real-time.
A need also exists for a reliable and 1nexpensive method for
assuring quality control of products manufactured on-line as
the product moves from one phase of assembly to another that
provides almost instantaneous monitoring and feedback con-
trol 1n an on-line manufacturing environment.

The qualities of texture, taste and sight of a snack food are
known 1n the art as organoleptic properties because they are
ordinarily measured by either human perception or mechani-
cal device. These two methods of measurement are normally
not usetul 1n on-line feedback control 1n high-speed produc-
tion because the time necessary to analyze a sample 1s too
great to provide timely feedback to control the process. Fur-
ther, the costs of manpower make it cost-prohibitive to use
human perception as a feedback control mechanism 1n most
production environments. Ani1mage-based soit sensor system
predicting organoleptic properties would be 1deal 1n the pro-
duction of food products. In the prior art, there 1s virtually no
known mechanical method to predict organoleptic qualities.

There are several specific organoleptic properties of iter-
est 1n the snack food industry including blister level, toast
points, taste, texture, crispness, crunchiness, and peak break
force. Properties such as blister level, toast points, taste, tex-
ture, crispness, and crunchiness are ordinarily measured by
human sensory response; the peak break force by mechanical
equipment. Toast points are small, black grill marks left by
the oven belt on the surface of the chips. Blister level 1s a
measure of the degree of the blistering on the surface of a
snack food. A taste property (unrelated to coating level) can
be measured by having a human taste a sample product and
compare 1t with a product to be measured. Taste, texture,
crispness and crunchiness are all similar attributes and relate
to mouth feel of the product. For example, a human first eats
a reference product and subsequently eats the product to be
evaluated. Peak break force 1s a mechanical measure of the
firmness of the product. The value of peak break force is
related to the break strength and hence the required force to
bite and/or chew the product. For example, the peak break
force 1s an important factor for snack chips.

Unfortunately, measuring the human sensory response has
several drawbacks. First, human measurement 1s subjective.
A large number of human testers would decrease error report-
ing due to subjectivity, but would 1ncrease the cost of obtain-
Ing more accurate measurements ol organoleptic properties
such as taste. Second, it 1s difficult to implement an on-line
teedback control based upon human measurement. There 1s
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an 1mpractical lag time between human measurement and
teedback to the process, especially 1n high-speed production
environments.

Consequently, a need 1n the art exists for a method to
objectively measure and predict organoleptic properties 1n
products, especially food products. Further, a need exists for
a method and apparatus that can use the numeric values of
organoleptic properties to provide on-line feedback control in
high-speed production.

SUMMARY OF THE INVENTION

In accordance with one aspect of the mvention there 1s
provided a method of monitoring a process producing a char-
acterizing product such as a snack food. The method includes
the steps of sequentially capturing multivariate images of the
characterizing product, each image consisting of an 1image
array ol pixel elements of measured intensity values 1n at least
three wavelength ranges defining the dimensions for the
image array. Conveniently, the wavelengths are 1n the visible
spectrum and the pixel elements of the image array have
varying intensities of the colours red, green and blue. A fea-
ture vector 1s created from the image array using a variety of
statistical techniques according to the nature of the process
and the variables affecting the operating conditions of the
process. An organoleptic feature vector 1s a feature vector
containing 1information about an organoleptic property of a
tood product. A regression method 1s performed on the fea-
ture vector to correlate the feature vector with a characteriz-
ing feature of the product, such as an organoleptic property.
The characterizing feature 1s displayed for continuous moni-
toring of the process and may define an output for feedback
control of the process.

Most preferably, a multivaniate statistical projection
method 1s applied to the image array to reduce the dimensions
of the array to a low dimensional score 1image defined by a
small number of score vectors and the feature vector 1s cre-
ated from the low dimensional score space image. The nature
of the multivariate statistical projection used i1s process
dependent.

In a preferred embodiment, a multivariate statistical pro-
jection method 1s applied to an 1mage array for a control
process to reduce the dimensions to a low dimensional score
space having a significant loading vector. The dimensions of
the score space image data may also be reduced by appropri-
ate masking of the data to exclude contributions to a score plot
from background data in the 1mages of the products of the
process.

Another preferred embodiment of the present invention
comprises a method for extracting specific product attribute
information from a foodstutt, then predicting the quantity or
characteristic of the foodstull either directly or indirectly
through additional correlation factors in an on-line environ-
ment. Such embodiment includes pre-processing the food-
stufll 1mage by removing background and manufacturing
apparatus features from the digital image; predicting the coat-
ing concentration of the imaged foodstull utilizing advanced
statistical regression models that relate the images to a desired
product characteristic; and using the same model locally to
construct a histogram of coating concentrations, a graphical
image related directly to coating coverage, and to provide an
estimate of the spatial variance of the coating concentration.

The present ivention extends to using the constructed
model and real-time 1mage data to predict the quantity, char-
acteristic, and variance of the measured food product attribute
and to generate a measurement signal; using the measurement
signal to adjust the manufacturing process and control the
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4

process to deliver the desired product quality consistently;
and furthermore, using the measurement signal 1n conjunc-
tion with other process measurements to predict additional
product attribute characteristics not measured directly by a
sensor. A Tood product attribute may include any organoleptic
property of the food product.

The above, as well as additional features and advantages of
the invention will become apparent 1n the following written
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing,
executed 1n colour. Copies of this patent or patent application
pubhcatlon with colour drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The novel features believed characteristic of the invention
are set forth i the appended claims. The ivention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereot, will be best understood by reference
to the following detailed description of illustrative embodi-
ments when read in conjunction with the accompanying
drawings, wherein:

FIG. 1 1s a schematic diagram depicting a preferred
embodiment of the present invention integrated 1nto an on-
line food manufacturing environment according to one
embodiment of the inventive method disclosed herein;

FIG. 2 1s a schematic diagram, which depicts the funda-
mental model for imaging a food product, extracting image
teatures, and performing a statistical regression to determine
the coating concentration according to one embodiment of
the inventive method disclosed herein;

FIGS. 3a and 35 are graphical depictions of the relation
between product seasoning concentration versus average
colour of the product and the first principal component load-
ing vector, respectively;

FIGS. 4a, 4b and 4¢ are image score plots for three separate
1mages of a non-coated, low-coated, and high-coated food-
stull according to one embodiment of the inventive method
disclosed herein;

FIG. 5 represents a one dimensional histogram constructed
by taking an image score plot and dividing 1t 1nto 32x32
blocks for use 1n developing a feature vector for each 1image
according to one embodiment of the mventive method dis-
closed herein;

FIGS. 6 and 7 1llustrate an alternative approach to divide an
image score plot by creating a cumulative histogram based on
vector projection according to one embodiment of the inven-
tive method disclosed herein;

FIGS. 8a and 85 are graphical representations of the one-
dimensional histogram and cumulative histogram points,
respectively, obtained for each analyzed non-seasoned
image, low-seasoned image and high-seasoned 1mage
according to one embodiment of the inventive method dis-
closed herein;

FIG. 9 represents the score plots of the imaged data stacked
in order to determine the covariance according to one
embodiment of the inventive method disclosed herein;

FIGS. 10a and 1054 represent two colour coded graphical
covariance plots obtained from the sample 1mage training
datasets and corresponding lab coating concentrations
according to one embodiment of the mventive method dis-
closed herein;

FIG. 11 1s a graphical colour coded angle plot with 32 bins
based on angle values which 1s used in the construction of a
cumulative histogram based on the correlation of property
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segmentation in the imaged product according to one
embodiment of the inventive method disclosed herein;

FIGS. 12a, 125 and 12¢ depict image score plots on top of
a colour coded angle plot divided mto 32 bins and for non-
seasoned, low-seasoned and high-seasoned products, respec-
tively, according to one embodiment of the inventive method
disclosed herein;

FIGS. 13q and 135 depict the resulting histogram and
cumulative histogram, respectively, for the three product
sample images score plots shown in FIGS. 12a, 125 and 12¢
according to one embodiment of the mventive method dis-
closed herein;

FI1G. 14 1s a graphical representation of the model predicted
coating concentration versus laboratory analysis of the coat-
ing concentration on the food product traiming dataset and test
dataset sampled and modeled according to one embodiment
of the inventive method disclosed herein;

FIGS. 15a and 156 depict the background and foreign
object pixels representing the conveyor belt and operator
fingers, which are removed during the segmentation, step
according to one embodiment of the mventive method dis-
closed herein:

FIGS. 16a through 16d are graphical depictions of the
estimated coating concentration for each histogram bin cal-
culated according to methods 3, 4, 5 and 6 according to one
embodiment of the inventive method disclosed herein;

FIGS. 17a and 175 are graphical images depicting the
calculated product masks according to one embodiment of
the inventive method disclosed herein;

FIGS. 18a and 186 are graphical representations of the
re-sampled and smoothed cumulative seasoning concentra-
tions, respectively, for non-seasoned, low-seasoned, and
high-seasoned products obtained by utilization of method 6
according to one embodiment of the mventive method dis-
closed herein:

FIG. 19 15 a colour-coded graphic display of the showing
the calculated seasoning concentration on food products
according to one embodiment of the mventive method dis-
closed herein:

FIG. 20 1s a graphical representation of the resulting coat-
ing distribution for the three sample images of product C
using the small window strategy according to one embodi-
ment of the inventive method disclosed herein;

FIGS. 21a, 215, and 21 ¢ represent the different divisions of
product images in colour for a 10x10, 20x20 and 32x32 small
window size calculation according to one embodiment of the
inventive method disclosed herein;

FI1G. 22 1s a graphical representation of the coating distri-
bution obtained by using the 10x10, 20x20 and 32x32 small
window sizes according to one embodiment of the inventive
method disclosed herein:

FI1G. 23 15 a colour-coded product image demonstrating the
coated and non-coated seasoning portions on the food prod-
uct according to one embodiment of the mventive method
disclosed herein;

FI1G. 24 1s a flow chart depiction of the implementation of
the product feature determination method disclosed herein;

FIGS. 25a and 255 are graphical depictions of seasoning,
concentration level versus time compared with the detection
of the seasoning hopper refill signal according to one embodi-
ment of the inventive method disclosed herein;

FIGS. 26a and 265 are depictions of the open-loop
response of the seasoming level caused by changing seasoning,
level bias according to one embodiment of the mventive
method disclosed herein:

FI1G. 27 represents a graphical depiction of the predicted
seasoning level, observed unseasoned product weight, the
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seasoning feeder speed and signal of the dump gate to divert
inferior product for product A according to one embodiment
of the inventive method disclosed herein;

FIG. 28 1s a graphical depiction of the predicted seasoning,
level, observed unseasoned product weight, the seasoning
slurry feed rate, and the predicted seasoning distribution vari-
ance for product B according to one embodiment of the inven-
tive method disclosed herein;

FIGS. 29a through 29/ represent colour images of product
with various seasoning coatings, which correspond with the
numerals placed on FIG. 28 according to one embodiment of
the inventive method disclosed herein;

FIG. 30 1s a seasoning distribution plot of 1image five 1n
FIG. 29 according to one embodiment of the inventive
method disclosed herein;

FIG. 31 1s a graphical depiction of the seasoning level set
point, the predicted seasoning level, the unseasoned product
weilght and seasoning feeder speed according to one embodi-
ment of the inventive method disclosed herein;

FIG. 32 1s a schematic diagram depicting a flame analysis
embodiment of the invention integrated into a steam boiler
according to the inventive method disclosed herein;

FIGS. 334 and 335 graphically depict the tlow rate of liquad
fuel (A) and steam tlow rate over time for case I;

FIGS. 34a and 34b are graphical depictions of the tlow rate
of liquid tuel(B) and steam tlow rate over time for case 11I;

FIG. 35 15 a series of flame 1images showing the transfor-
mation of an original flame 1mage to a reconstructed 1mage
using principal score images;

FIG. 36 depicts a colour plane image for at, -t, score plot of
the reconstructed flame 1mages shown 1n FIG. 35;

FIGS. 37a and 37¢ show sample flame images, and FIG.
37b shows the corresponding t,-t, score plot including an
applied mask shown as a green triangular region on FI1G. 375;

FIGS. 38a and 386 show an averaged image (over 60
consecutive 1mages) and the corresponding score plot,
respectively;

FIG. 391s an averaged score plot of the flame 1mage in FI1G.
38a 1n a t, -t, score space;

FIG. 40a-40i show a series of plots of feature variables for
case I with light lines representing filtered values and the dark
regions representing raw data values;

FIG. 41a-41i show a series of plots of feature variables for
case II with light lines representing filtered values and dark
regions representing raw data values;

FI1G. 42 1s a bar graph showing the prediction power of the
PCA model for case I;

FIG. 43 1s a loading plot of the first component of the PCA
model for case I;

FIG. 44 1s a bar graph showing the prediction power of the
PCA model for the first half of the data for case II;

FIG. 45 1s a loading plot of the first component of the PCA
model for the first half of the data for case II;

FIG. 46 1s a bar graph showing the prediction power of the
PCA model all the data for case II:

FIG. 47 15 a loading plot of the first component of the PCA
model for all the data for case II;

FIG. 48 1s at, t, score plot of the PCA model for both cases
I and II;

FI1G. 49 1s a graphical depiction of the predicted steam tlow
rate versus measured steam flow rate;

FIGS. 50aq and 505 show a comparison of steam flow rates
over time for predicted values and measured values, for case
I and case II, respectively;

FIGS. 51a through 51i represent colour 1images of three
different food products with various levels of seasoning coat-
Ings:;
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FIG. 52 1s a colour image showing blisters and toast points
on the surface of a snack product (chips) according to one
embodiment of the invention disclosed herein;

FIGS. 53a through 334 depict images of a snack product
(chips) with two different levels of seasoning coating and
with two different levels of blisters and toast points (organo-
leptic properties);

FIGS. 54a through 544 depict images of a snack product
(chips) with two different levels of seasoming coating and
with two different levels of blisters and toast points (organo-
leptic properties) where the coating information has been
removed;

FIG. 55a through 35/ depict sets of colour images of a
flame of a steam boiler as an embodiment of the invention
according to the mnventive method disclosed herein at various
conditions corresponding to those conditions associated with
FIGS. 33a and 3354, and FIGS. 344 and 3454; and

FIGS. 56a through 56/ depict sets of colour score plots for
the sample 1mages depicted in FIG. 55.

FIGS. 57a through 57d are plots of the prediction vs. obser-
vation; one plot representing blister level, toast point level,
taste property, and peak break force, respectively.

Where used in the various figures of the drawing, the same
numerals designate the same or similar parts. Furthermore,
when the terms “top,” “bottom,” “first,” “second,” “upper,”
“lower,” “height.” “width,” “length,” “end,” “side,” “horizon-
tal,” “vertical,” and similar terms are used herein, 1t should be
understood that these terms have reference only to the struc-
ture shown 1n the drawing and are utilized only to facilitate
describing the invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiment of Food Coating Analysis

One embodiment of the mmventive method disclosed herein
consists of utilizing known digital imaging technology to
capture and process digital images of coatings on foodstuiis,
as the foodstulls are moving on-line, to extract desired fea-
tures from the image, and then to construct a model that
predicts the characteristic level on the imaged product by
relating the pre-processed product images to a desired prod-
uct characteristic via Multivaniate Image Analysis (MIA) or
other statistical regression regimes, and locally constructing a
histogram that depicts the correlation of coating concentra-
tion to coating coverage. In a preferred embodiment, the
inventive method disclosed herein 1s applied to control pro-
cesses 1n the food manufacturing industry and, more specifi-
cally, to determine the seasoning coating applied to snack
foods 1n the food processing industry. A characterizing prod-
uct 1s a product with a characteristic attribute or feature mea-
surable through the process disclosed 1n this invention.

Traditional 1mage analysis methods are known 1n the art
with respect to a variety of applications in the food industry,
such as fruit and vegetable sorting, automatic partitioning,
inspection for foreign matter or objects, and general packag-
ing applications. However, digital imaging applications per-
taining to coating on food items are virtually nonexistent.
With regard to the digital imaging component of the inventive
method disclosed herein, much of the literature on digital
imaging processing involves methods for altering the visual
image 1n some way to make the image more visually appeal-
ing or to extract mnformation on the shapes, boundaries or
location of various observable features. In this vein, tradi-
tional 1mage processes serve as automated, machine vision
systems performing operations many times faster and far
more precisely than human observers or operators.
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Most foods typically are produced by coating the base
product with tlavored coatings. Coatings plays an important
role 1n both the tflavor and the appearance of a food or snack,
and greatly influences their acceptability. Coatings may influ-
ence the organoleptic properties of a food. The usual proce-
dure of taking infrequent samples and analyzing for the coat-
ings concentration 1 the laboratory vields very little
information, except long-term trends and with no information
on the food coating distribution. Furthermore, laboratory
analysis 1s a time-consuming and expensive procedure.
Clearly there 1s a tremendous opportunity for an on-line
imaging system.

A typical setup for using imaging technology 1n a food-
manufacturing environment 1s shown in FIG. 1. Coatings 10,
in this example “seasoning,” and unseasoned food product 12
are mixed 1n a tumbler 14 and then the coated food product 16
1s conveyed via a moving belt 18 to subsequent operations
such as packaging or baking. An electromagnetic radiation
source, 1n this example a visible spectrum lighting system 20,
and RGB camera system 22 are mounted above the moving
belt 18 and 1images of the products 16 are sent to a computer
24 for analysis by the methods disclosed herein. The electro-
magnetic radiation source 20 could also be configured to emit
radiation from the various bands of the electromagnetic spec-
trum, including but not limited to, the infrared spectrum and
ultraviolet spectrum and be configured to emit single and
multiple wavelengths of electromagnetic radiation 1n the
desired spectrum. The choice of sampling 1nterval depends

upon the objectives for each process. The time required for
processing one 1image of product 16 1s less than one second.

The mventive method disclosed herein could also find
application 1n determining other foodstull qualities such as
the number of toast points located on the product, the texture
of the product, and/or the number of blisters on the product.
Likewise, 1t will be appreciated that the mventive method
disclosed herein will find applications in various other indus-
tries as will be exemplified. Another embodiment applying
the 1inventive principles ol multivariate image analysis with
application toward flame study 1s also discussed herein. Thus,
the specification, claims and drawings set forth herein are to
be construed as acknowledging and non-exclusionary as to
these other applications and embodiments.

The RGB (red-green-blue) space 1s the most commonly
used colour space 1n electronic cameras. The colour of each
pixel 1 this space 1s characterized by numerical values (nor-
mally integers from 0 to 255) of 1ts R, G and B channels. A
colour image can be expressed as a 3-way matrix. Two dimen-
sions represent the x-y spatial coordinates and the third
dimension 1s the colour channel. Without considering the
spatial coordinates of pixels, the 1mage matrix can be
unfolded and expressed as a 2-way matrix.

Cl,r Cl,g Clp C1
unfold
IN}’GW}{NﬂD.{:’{?) > Iyx3 = | Cir Cig  Cip | =] G
CNyyr CN.g CNB Cn

I 1s three-way 1mage matrix with image size N, xN__,. I 1s

the unfolded two-way 1image matrix. N 1s the number of pixels
in the image, N=N,  xN_...C, ,C, ., C,, (=1, ... N)are the

row col* ~i,p ~i.gy i

intensity values of the R, G and B channels for pixel 1. c,
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(1=1, . . . ,N) 1s the 1-th row vector of I, which represents the
colour values of pixel 1. In the following text, the two-way
matrix I represents an image.

Several factors may influence the colour of a pixel-size
seasoned foodstutl. The colour of a pixel would be decided by
the colour of the non-seasoned part, the colour of the coatings
particles, the concentration of coatings and the lighting con-
dition of this piece of product. If these factors, other than
coating concentration, are lumped together into one factor ¢,
referred to as the imaging condition, the colour of one pixel c,
can be expressed as a function of the local imaging condition
¢, and local coatings concentration v,.

C=F(:9;) (1)

FI1G. 2 represents the schematic model depicting the deter-
mination of coating on a foodstuil via regression analysis. For
example, consider a data set of K colour images I, and their
corresponding laboratory analyzed average coatings concen-
tration y, (k=1, . .. ,K). A model to predict coatings concen-
tration can be obtained by regressing the coatings concentra-
tions against the features extracted from one or more 1mages.
Feature extraction converts the image into a feature vector
that contains information most related to coatings concentra-
tion, and 1s therefore, a critical step to achieve desired pre-
diction results. An organoleptic feature vector 1s a feature
vector containing information about an organoleptic property
of a food product. After feature extraction, a model 1s devel-
oped by regressing feature variables and coatings concentra-
tion. Different regression methods may be used including
Principal Component Regression (PCR), Multivariate Linear
Regression (MLR), and Artificial Neural Networks (ANN).
In the preferred embodiment, Partial Least Squares (PLS)
regression1s employed because of the high correlation among,
the feature variables.

Multi-way Principal Component Analysis (IMPCA)

A colour 1image 1s a multivariate image composed of three
variables (R, G and B channels). The inventive method herein
1s developed using Multivariate Image Analysis (MIA) tech-
niques, which are based on multi-way Principle Component
Analysis (PCA). Multi-way PCA 1s equivalent to performing,
PCA on the unfolded 1image matrix I.

where A 1s the number of principal components, the t ’s are
score vectors and the corresponding p_’s are loading vectors.

Since the row dimension of the I matrix 1s very large (equal
to 307,200 for a 480*640 1mage space) and the column
dimension 1s much smaller (equal to 3 for an RGB colour
image), a kernel algorithm 1s used to compute the loading and
score vectors. In this algorithm, the kernel matrix (I']) is first
tformed (for a set of images, the kernel matrix 1s calculated as

Z fgfk]-,-

k

and then singular value decomposition (SVD) 1s performed
on this very low dimension matrix (3*3 for colour image) to
obtain loading vectors p_(a=1, . . . A).

After obtaining loading vectors, the corresponding score
vectors t, are then computed via t =Ip_. Since the first two
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components normally explain most of the variance, instead of
working 1n original 3-dimensional RGB space, working in the
2-dimensional orthogonal t, -t, score space allows the images
to be more easily interpreted.

Datasets for Models

When building the model of the embodiment discussed
below, the first step 1s to collect an adequate set of datasets. A
successiul model requires a set of sample 1mages including
both non-seasoned and seasoned product samples with varied
coatings levels. For each seasoned product image, the corre-
sponding average coating 1s obtained by laboratory analysis.
All the images are collected from the on-line camera system.
Grab samples (manually-obtained samples) of the food prod-
uct corresponding to those 1mages are taken to the lab for
analysis. The images are all 480x640 RGB colour images,
with 256 intensity levels 1n each channel. Table 1 shows
details about the training and test datasets for each product.
The datasets include both non-seasoned and seasoned prod-
uct samples (coatings levels are varied) which are initially
imaged by digital 1imaging equipment. For each seasoned
product image, the corresponding average coating 1s obtained
by laboratory analysis.

To 1llustrate a preferred embodiment of the method dis-
closed herein, three types of snack product were collected,
imaged and their seasoning concentrations obtained in labo-
ratory analysis. All images of samples were taken with digital
imaging equipment and were 480x640 RGB colour images,
with 256 intensity levels 1n each channel. Half of the samples
were used as the training set and the other half as a test set.
These three types of product are referred to as type A, B, and
C, respectively. Three different levels of seasoning were
applied to these three types of product. FIG. 51a, FIG. 51d
and FIG. 51g correspond to product A; FIG. 515, FIG. 3le
and FIG. 51/ correspond to product B; and FIG. 51¢, FI1G. 51f
and FIG. 517 correspond to product C. Samples of product A
in FIGS. 51athrough 51¢ (5100, 5101 and 5102) were col-

lected oif of the manufacturing line (ofl-line); samples of
product B in FIGS. 514 through 517 (5103, 5104 and 5105)

and samples of product C 1n FIGS. 51¢g through 351: (5106,
5107 and 5108) were collected while located on the manu-
facturing line (on-line).

The product samples 5100, 5103 and 5106 have no season-
ing; the product samples 5101, 5104, and 5107 have moderate

seasoning; and the product samples 5102, 5105, and 5108
have a relatively high amount of seasoning.

Product A (5100, 5101, and 5102) was sampled ofi-line,
and 83 samples were taken where 40 were used for training
and 43 were used for testing. Product B (5103, 5104, and
5105) was sampled on-line, and 180 samples were taken
where 90 were used for training and 90 were used for testing.
Product C (5106, 5107, and 5108) was sampled on-line, and
110 samples were taken where 55 were used for training and
55 were used for testing.

Feature Extraction Methods

Table 1 outlines six methods used to extract image features
as part ol the inventive method disclosed herein. These meth-
ods can be further classified into two categories: overall fea-
ture methods and distribution feature methods. In the follow-
ing explanation, product C 1s used as the example to 1llustrate
the six feature extraction methods.
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TABL.

L1l

1

Methods of Extracting Image Features

Method # Feature variables

Overall 1 Average colour
Feature 2 Loading vector of first principle component
Methods
Distribution 3 Two-dimensional histogram in t,-t, score space
Feature 4 Histogram based on linear projection in
Methods t,-t> space
5 Cumulative histogram based on linear
projection in t,-t, space
6 Cumulative histogram based on correlation
property segmentation

Overall Feature Methods

In these types of methods, information from all pixels 1s
used to obtain some overall colour feature. Two methods are
presented: method 1 (average colour) and method 2 (first
loading vector from PCA). In both methods, the dimension of
the feature vector 1s three, one element for each of the three
colour channels. Since colour 1s a function of coatings con-
centration, the overall colour features will be correlated with
the average coatings concentration. Models can be further
built based on this correlation relationship.

Method 1: Average Colour

Average colour 1s a straightforward way to extract features.
In this method, the feature variables are just the average
values for each channel taken over the whole 1mage.

Method 2: Loading Vector of First Principal Component

When performing a PCA (without mean-centering) on an
image, the first loading vector represents the direction of
greatest variability of the pixel intensities 1n the RGB colour
space. As can be verified in the examples, the first principal
component of PCA (without mean-center) explains most of
the variance (over 97%). Therefore, 1t 1s also a good overall
descriptor of the 1image colour and can be used as a feature
variable.

FIG. 3 demonstrates the relation between average colour,
first principal component loading vector and the seasoning
coating concentration features. Green channel data points 31,
red channel data points 32, and blue channel data points 33 are
shown 1n the FIG. 3-a plotted as seasoning concentration
versus average colour. Green channel data points 34, red
channel data points 35, and blue channel data points 36 are
shown 1n FIG. 3-b plotted as seasoning—concentration ver-
sus first principal loading component (PC) loading vector.
Regression models using these features may then be devel-
oped based on feature versus concentration data.

As shown 1n equation (1), the colour of a pixel 1s a function
of both the local coating concentration and other imaging
conditions. Although pixels containing the same amount of
coating concentration may exhibit variations in colours, it 1s
reasonable to assume that pixels having the same colour con-
tain the same amount of coating. For an image, the number of
pixels, whose colour 1s [r g b] where r, g and b are integers
from O to 255, can be counted as n, , ... If the coatings
concentration for each of these pixels 1s y, . ,;, then the
average coatings concentration for the whole 1mage can be
calculated as:
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(2)

r,g.b=0,1,...,255

V= 71 S: ;: Yirg.b] n[};j’b]
b

4

Notice that equation (2) has a linear model structure. For each
image, n, . /N, which 1s a 256x256x256 three-dimensional
relative histogram, can be used as feature variable. Estimation
olyy, . can be obtained through a linear regression between
the observed values ot n, , ,/N from the images and average
coating concentration from laboratory analysis. However,
this model 1s neither robust nor practical because to obtain
such a 3-D histogram for each image 1s time consuming and
even 1f the three-dimensional histogram 1s computed, the
large number (256°=16,777,216) of feature variables are
extremely highly correlated and generally have a very low
signal-to-noise ratio. This leads to a very 1ll-conditioned and
poor model for predicting the average coatings level.

To reduce the number of feature variables, the colour space
can be divided 1nto L classes, such that pixels falling in a class
contain a stmilar amount of coatings. In this form, each class
becomes a new histogram bin and the average coatings con-

centration for an 1mage can be obtained by:

R 3)
V= .Z;yjﬁ
=

where n; and y; are the pixels and average coating concentra-
tion belonging to class j. The model structure remains linear
as long as the assumption that pixels 1n the same class repre-
sent a stmilar amount of coating 1s not flagrantly violated.

There 1s a strong relationship between the average colour
and the first loading vector of MPCA as used 1n the overall
method 1 and 2 respectively. In method 2, a non-mean-cen-
tered PCA 1s performed on each image and first principal
component explains most of the varnation. In this situation,
the direction of average colour ¢ is approximately equal to the
direction of first loading vector p;, .

I4

I<l

_ _ T
c-pr=|cl=p =

Theretore, the first loading vector 1s approximately equal to
normalized average colour and 1nstead of first loading vector
or MPCA, the normalized average colour could be used as
feature variables and should give a similar performance as
method 2.

Lighting vanations will have an influence on overall fea-
ture methods. Lighting variation comes from a non-uniformly
distributed light source, a non-tlat orientation of the product,
or overlapping among the pieces of product. Suppose that the
lighting condition and colour has the following linear rela-
tionship for each pixel location:

CI:LIRIJ Il:l, . e ,N

in which, ¢, L,, R, are colour, local lighting condition and
colour, respectively, under an 1deal reference lighting condi-
tion for pixel 1. Assume the light source and the 1mage scene
are mndependent. The average colour of an 1mage 1s equal to

c=L*R
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Any variation 1n lighting will directly influence the value of
average colour.

Since the first loading vector 1s approximately the normal-
1zed colour, then

c
T
PlL = 57 =
el

L-R
L

Rl

E‘ =

Therefore, this lighting eflect 1s canceled when using the first
loading vector or normalized average colour. When evaluat-
ing the results from method 1 and method 2, test set images
have similar overall lighting conditions as the training set
images, and so both method 1 and method 2 generate good
prediction results. But when using small image windows as
test images, lighting conditions vary from window to window.
Since method 2 1s less sensitive to lighting variation, method
2 will generally have a smaller prediction error than method 1.
However, this deduction 1s based on a linear effect of lighting,
which may not always exist in practice. Therefore, method 2
1s still mnfluenced by lighting condition variation and shows
increasing prediction error when window number 1ncreases.

Distribution Methods

Models based on distribution features have an advantage over
the overall feature models, 1n that information from every
class 1s taken into account rather than using only a global
description of the image. Distribution feature models are
pixel-level models, meaning that in distribution feature mod-
els, regression coelficients are the estimates of the coatings
concentration for each bin.

Y=VBin ¥ 1YVBinyV2F - -« TVBinghB

For one pixel with colour value c, 11 1t 1s determined that this
pixel is falling into i” bin, the coating concentration for this
pixel can be estimated as y . . Therefore, distribution feature
models can be seen as pixel-lével models because the coating
concentration for each pixel can be estimated.

Three different methods are now presented to divide the
colour space pursuant to the distribution models discussed
below. In each method, MPCA 1s first performed to reduce the
dimension and all the operations are then carried out 1n the
t, -t, score space. As discussed 1n further detail below, method
3 uses a simple 32x32 two-dimensional histogram 1n t,-t,
score space. Methods 4 and 5 are based on a one-dimensional
histogram and a cumulative histogram, respectively, obtained
by a further linear projection 1n t,-t, score space. Method 6
begins with a fine 256x256 two-dimensional histogram in
t,-t, space, then combines the histogram bins having similar
coatings based on covariance properties and a new one-di-
mensional cumulative histogram 1s eventually used as the
feature vector.

Method 3: Two-Dimensional Histogram 1n t,-t, Score Space

One effective way to reduce the number of histogram bins
1s to perform MPCA on training 1images and find a t,-t, plane
that contains most of the information. The 1mages are cor-
rected by subtracting the average colour of non-seasoned
product images 1n order to obtain a plane that captures most of
the difference between coated and non-coated product. Three
scatter score plots (t, vs. t,) ol three sample images of product
C are illustrated 1n FIGS. 4-a, 4-b, and 4-c¢. Since similar
colours 1n the original image will yield almostidentical (t,, t,)
score combinations, many points overlap in this scatter plot.
Following Geladi, et al. (“Multivariate Image Analysis”

1996, Wiley, New York, 1996), the score plots (t; vs. t,) are
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constructed as two-dimensional histograms with a grid of
256x256 bins. This two-dimensional histogram 1s then
colour-coded depending upon the number of pixels in each
bin using a colour scheme ranging from dark colours 40 (e.g.
black) representing bins with a low number of pixels to light
colours 41 (e.g. white) representing bins having the highest
pixel density. From these plots, 1t 1s observed that the position
of pixels in the score space strongly correlates with coating
concentration.

In the t,-t, space, 1f each score variable 1s divided 1nto only
32 bins, the number of final bins would be reduced to 32°=1,
024. Though 1t 1s still a large number, 1t 1s much less than 1n
three-dimensional space (32°=32,768) or directly using the
score plot (256°=65,536). The number of bins can be further
reduced by simply dividing the score variables into fewer bins
and enlarging the bin size; however, at some point, the preci-
sion may begin to degrade. The 32x32 two-dimensional his-
togram can be unfolded into a row vector and used as feature
vector for each image. This method 1s equivalent to dividing
t,-t, score plots into 32x32 blocks and summing the intensity
values within each block as illustrated in FIG. 5 and FI1G. 16a.
The white pixels 50 indicate the location of pixels for all the
training 1images.

Method 4 and 5: One-Dimensional Histogram/Cumulative
Histogram Based on a Linear Projection in t, -t, Plane

The (32x32) two-dimensional histograms still have many
bins, which may lead to an 1ll-conditioned regression. Fur-
thermore, not all shifts of the histogram in the t,-t, space will
be related to coating concentration changes.

The dimension can be reduced to one by finding a projec-
tion direction in the t, -t, space, along which mainly 1imaging
condition changes, not the coating concentration changes,
cause the variation of colour. One approach to find such a
direction 1s to perform another PCA on only non-coated prod-
uct 1mages (1.e. a control process) in the t,-t, space. In non-
coated product images, all the colours represent equivalent
coating concentration and the first component of this PCA
would indicate the direction that has the most variation
caused by changing imaging conditions and changing base
product colour. The first component is therefore the signifi-
cant loading vector t_. Projection of all the histogram bins
along this direction will cancel out most of the influential
imaging condition varniations if the PCA model has been built
on a training set of non-coated product images which 1s rep-
resentative of the varnations one normally would encounter.
After projection, a one-dimensional histogram can be
obtained (Method 4). A cumulative histogram can also be
used as feature variables to describe the distribution that will
normally have a better signal to noise ratio than the one-
dimensional histogram alone (Method 5). FIGS. 4-a, 4-b and
4-c are examples of score plot one-dimensional histograms
based on a linear projection 1n the t,-t, plane acquired from
three sample images of product C. FIG. 5 depicts the division
of the score plot into 32x32 histogram bins 51. FIGS. 6 and 7
illustrate this projection approach.

To find the parallel line direction for the bins 51, another
PCA (mean-centered) 1s performed on the t,-t, score data of
the non-coated product images 60 as shown in FIG. 6. In FIG.
7, contrary to method 3 previously discussed, the t, -t, space1s
divided 1nto long parallel bins 70. The first component direc-
tion 1n this space (t,-t; line 61 1n FIG. 6) indicates the direc-
tion of largest variance, which 1s due mainly to 1maging
condition changes. For each training image, the pixels are first
projected onto the t,-t, plane using the MPCA model for the
training 1mages. Then the scores are projected along the first
component direction obtained from the PCA performed on
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the non-coated 1mage score plot. In this way, the original
three-dimensional RGB space 1s simplified to only one
dimension. The one-dimensional histogram for non-seasoned
images 80, low seasoned images 81, and high seasoned
images 82 (according to method 4) and cumulative histogram 5
for non seasoned images 83, low seasoned 1mages 84 and high
seasoned images 83 (according to method 5) can be computed
and plotted as shown in FIGS. 8-a and 85 where 32 bins are
used. The 32 histogram and cumulative histogram points
obtained for each 1mage are then used as features to regress
against the average coating content for these images.

10

Method 6: Cumulative Histogram Based on Correlation
Property Segmentation In method 4 and method 5, a linear
projection 1s used to convert the two-dimensional histogram
into a more robust one-dimensional histogram. However, lin-
ear projection may not achieve very reliable results because
imaging conditions oiten have a nonlinear influence on pixel
colour.

In method 6, a 256x256 histogram 1n t, -t, space 1s created,
as 1s done 1n method 4 and method 3, and then histogram bins
are combined that are expected to contain similar amount of
coating concentration into a class by calculating the covari-
ance properties between the histogram elements and coating
concentration.

For image I, its relative histogram i1s expressed as:

Pr=[P[B>) PAB5) ... P{B;,)]

15

20

25

M 1s the total number of histogram bins. For a 256x256
histogram in t,-t, space M equals to 256°=65,536. P(B,) is 1
the pixel counts for bin B, divided by the total number of
image pixels, which 1s an estimation of probability of pixels
falling into the i’ bin.

A matrix I' can be constructed by stacking relative histo-
grams for all the traiming 1mages together:

- Pr, P (B1) Py (B2) - Pr(Bu) ]
P, P,(B1) P (B2) - Pp(Bu)
=1 . |= . . . = [P(By) P(By) -+ P(By)]
P | | Pig(B1) P (B2) - Pr.(Bu)

P(B,) is the i’ column vector of matrix I" for each bin B,. >

The 256x256 histogram 1n t,-t, space 1s preterred, which
equates each histogram bin as representing pixels with simi-
lar colour and similar coating content. To combine histogram
bins with similar coating content together, a common prop-
erty among them must be acquired as set forth below.

50

From equation (1), 1t 1s known that colour 1s a function of
coating level and imaging condition and that these two factors
are independent. Considering two histogram bins having
similar coating content y, which are denoted as B, and B, for
image I 1t 1s calculated by:

55

PyB _;'):P AP I(q)j): PrB)=F(y)P )

that ¢, and ¢, are the local average imaging conditions. For all 00

the training 1mages collected over a short period of time, often
the only factor changing from 1mage to 1image 1s the coating,
concentration distribution while overall imaging conditions
(such as lighting distribution) remain the same. Therefore,

65

Pfl(q)j)zpfz(q)j): .. :Pfk(q)j):%: Pfl(q)k):

£ Iz(q)k): =P I;C(q)k):*gk (3)
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in which s; and s, are two scalars. So,
P(B,)=Py)s; PB)=P(y)s;

Theretore, for two histogram bins B; and B,, which corre-
spond to the same amount of local coatings concentration v,
P(B,) and P(B;) will have the same direction but ditferent
magnitude. The covariance between P(B;) and any other K-el-
ement vectors z,, Z, 1s computed by:

cov=cov|P(B)),z, [=cov[P(»)z,]s;,
covy=cov| P(B)).z5 [=cov[P(y),z5]s;

The scalar can be canceled by computing the phase angle of
the observed point 1n the space of cov, vs. cov,.

arg(cov,;cov,)=0(y)

I1 0(y) and y have a one-to-one mapping relationship, 0 can be
segmented into several bins and each bin should represent a
different coating concentration.

The choice for z, and z, 1s not umique. Setting z, as the
average coating level 1s a natural choice. z, 1s chosen as a
function of average coating level, but in such a way that 0(y)
and y can achieve a one-to-one mapping relationship. z, and
7., are chosen as following:

Y Vi, =Y
Y s Y L max(®) + min(y)
Z1 = 2 =la -yl = _ A 5
Yig _ ‘?,K -y

For each column of the matrix I, the covariance computation
1s applied.

cov=[cov (B )cov(B5)...cov (D], where cov,
(By)=cov[P(5;).z)]

covo,=[cov,(B)cov,(B5) ... covy(D,,)], where cov,
(B;)=cov[P(5;),25]

An angle vector can be then computed:

O=[arg{cov (B,), cov,(B)} ... arg{cov (B,,), covs
(Bap) )]

The histogram bins that have similar angle values can be
combined 1nto one class. Notice that the two covariance vec-
tors and the angle vector all have the same dimension as the
histogram, therefore they can be further shown as 256x256
images or plots as shown 1n the following examples.

Method 6 1s 1llustrated with FIGS. 9,10 and 11. In FIG. 10,

two covariance plots 100 and 101 are obtained by stacking up
the 256x256 t, -t,, score plots 90 of the training set and com-
puting the covariance of the number of pixels at each t, -t, bin
with the corresponding laboratory coating concentration as
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shown 1n FIG. 9. In the covarniance plots of z, and z,, FIG.
10-a and 10-b, respectively, warm colours (e.g. red, orange,
yellow) 102 indicate positive covariance values and cold
colours (e.g. green, blue, violet) 103 indicate negative cova-
riance values. Darker shades 104 indicate large absolute
covariance values as shown 1n FIG. 10-g and 10-5. From the
two covariance plots (100, 101), an angle plot can be calcu-
lated as explained above.

FIG. 11 depicts the colour-coded angle plot 1100 divided
into 32 bins 1102 based on angle values. The score plot for
any 1mage can be superimposed on top of this plot and the
number ol pixels falling into each of these 32 angle bins
recorded to form a one-dimensional histogram, as illustrated
in FIG. 12-a, 12-b and 12-c for non-seasoned product 1200,
low-seasoned product 1201 and high-seasoned product 1202,

respectively. Resulting histogram and cumulative histogram
tor three sample images 1200, 1201, 1202 are shown 1n FIGS.

13-a and 13-5, respectively. Non-seasoned image 1302, low-
seasoned 1mage 1303, and high-seasoned image 1304, are
shown plotted-as the bin number versus fraction of pixels 1n
FIG. 13- and bin number versus cumulative fraction of pix-
els 1n FIG. 13-54. It 1s noted that when building the regression
model, only the cumulative histogram 1s used as the feature
vector.

Foreground/Background Segmentation

Segmentation 1s one important step that must be performed
before doing feature extraction. Segmentation 1s the removal
of pixels associated with background 1n the imaged product
1500. In the manufacturing of foodstuil, background arises
from exposed areas of the table or pan on which the product

1s placed (off-line) or from exposed conveyor belt (on-line).
FIG. 15-a depicts dark pixels 1501 that that represent the
conveyor belt on which products 1500 are transported, while
FIG. 15-b shows a technicians fingers 1502 resting on the
conveyor belt along with product.

One approach based on spectral feature difference between
the food product and the background uses product C above as
the example. Since visual interpretation is not straightforward
in three-dimensional colour space, a PCA 1s first performed to
reduce the dimension. In this approach, PCA (without mean-
center) loading vectors are computed using all the training
images and a pure belt image or control process. As 1n tradi-
tional MIA techniques (Gelad: et. al.), masks are chosen in
the t,-t, score space to separate different features. However,
there are two reasons why masks cannot be chosen by tradi-
tional trial-and-error processes in MIA. First, in some images,
belt pixels can easily be overlooked because of dark lighting
conditions and misclassified as snack product pixels. Second,
there are multiple images to be studied and manual trial-and-
error approaches on each 1image are too time consuming. To
solve these two problems, a new procedure for segmentation
of the undesired 1mage background is presented below.

After at,-t, plane 1s obtained by PCA, t,-t, score plots are
stacked together for all training 1images; then two covariance

plots COV, and COV, (with z, and z,) can be computed as
shown 1n method 6 discussed above. Since the background 1s
independent of coatings concentration, histogram counts of a
background colour should have low values 1n both covariance
plots. Therelore, the absolute values of these two covariance
plots are added together which, 1n turn, locates the pixels that
have low total covariance values. Such a summation of the
covariance plots 1s shown 1n FIG. 17-a where cold colours
1700 denote small covariance values and warm colours 1701
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denote large covariance values. Moreover, the projection of

the belt image 1nto this t,-t, space can also help to locate belt

pixels (shown as medium gray pixels in FIG. 17-5). Then a
product mask 1702, the area within outlined polygon in FIG.
17-56, can be created based on the covariance information and
location of the belt image. For the new 1mages, score pixels
falling outside the product mask 1702 are considered as
belonging to undesired background. The advantages of this

method are manifested when calculating covariance plots that
were considered 1n collecting information from all the train-

ing 1images. As such, this approach is not influenced by dark
lighting conditions that could influence human visual judg-
ment. It 1s mteresting to note that this technique 1s able to
remove not only the expected background (e.g. conveyor belt
1501 1n FIG. 15-a) but also the unexpected background (e.g.
human fingers 1502 1n FIG. 15-b).

Prediction of Coating Concentration

Once feature variables have been obtained by any of the six
methods, one can build inferential models by regressing these

feature variables with the observed laboratory coatings con-
centration for the traiming set. In the preferred embodiment of
the invention, PLS regression 1s desired to perform the regres-

sion analysis. In all PLS models, the feature variables are
mean-centered and scaled to unit-variance. Transformations
are used for the overall features (methods 1 and 2) to correct
the nonlinearity. For the average colour features, a logarith-
mic transformation 1s used:

x/=log(x;), (=R,G,B

Since the loading values have the range between O and 1, a

logistic transformation 1s used for the first loading vector
teatures (method 2):

Xi

X ZIDg(l—x,g)’l:R’ G. B

The performance of the PLS models 1s depicted 1n FIG. 14
and Table 2.

FIG. 14 plots the predicted average coating level versus
laboratory analysis data for example product C using method
6 with training dataset data points 1401 and test dataset data
points 1402. Similar plots can be obtained by using other
methods or for other products. One can see that both the fit of
the traiming dataset and the prediction of the test dataset are
excellent.

Test results using all 6 feature extraction methods for Prod-
ucts A, B and C for both the traiming and testing image sets are
shown 1n Tables 2-a, b, ¢ below. In these tables, the original
number of feature variables, the number of components used
in PLS regression, the sum of square prediction error (SSE)
and R-square statistic (the ratio of the regression sum of
squares to the total sum of squares) are given. From the
results, 1t 1s clear that each method works well and all have
almost the same performance 1n all the cases. Moreover, 1t
seems that the simple overall feature variable methods (meth-
ods 1 and 2) perform as well as the more complex distribution
teature models (methods 3.,4,5, and 6).
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TABLE 2

Model Prediction Results

Feature Latent Variance Analysis

variable # wvariable# SS; R°=1-SS./SS;

(a) Product A; SS=377.44(Traming set); SS= 385.13(Test set)

Model 1 Training set 3 2 1.13 0.997
Test set 1.60 0.996
Model 2 Training set 3 2 2.25 0.994
Test set 1.59 0.996
Model 3 Training set 424 3 1.59 0.996
Test set 3.60 0.991
Model 4 Training set 32 3 0.95 0.997
Test set 1.83 0.995
Model 5 Training set 25 3 1.34 0.996
Test set 1.1% 0.997
Model 6 Training set 19 2 0.74 0.998
Test set 0.89 0.998

(b) Product B; SS = 869.83 (Training set); SS = 845.41(Test set)

Model 1 Traming set 3 2 7.96 0.991
Test set 8.64 0.990
Model 2 Tramning set 3 2 4.58 0.995
Test set 5472 0.994
Model 3 Training set 329 5 2.21 0.997
Test set 5.13 0.994
Model 4 Training set 32 3 3.58 0.996
Test set 7.14 0.992
Model 5 Training set 24 2 5.11 0.994
Test set 8.72 0.990
Model 6 Training set 1% 2 5.82 0.993
Test set 5.83 0.993

(¢c) Product C; SS,+=817.19 (Tramning set); SS=751.63(Test set)

Model 1 Training set 3 3 19.81 0.976
Test set 13.12 0.983
Model 2 Training set 3 2 20.09 0.975
Test set 14.50 0.9%81
Model 3 Training set 427 3 12.67 0.984
Test set 18.56 0.975
Model 4 Training set 32 3 17.75 0.978
Test set 17.49 0.977
Model 5 Training set 15 3 16.29 0.980
Test set 13.66 0.9%82
Model 6 Tramning set 19 2 20.56 0.975
Test set 13.87 0.9%82

An estimation of the coating concentration can now be
obtained directly, in this example by using method 6, by
combining the cumulative angle histogram shown in FIG.
13- and the estimated coating concentration for each bin
shown 1 FIGS. 16-b, 16-¢ and 16-d. The resulting 32 bin
cumulative coating distribution 1s then equally resampled and
smoothed by a central moving-average smoother as shown 1n
FIG. 18-a for the three sample images of product C, non-
seasoned product 1800, low-seasoned product 1801 and high-

seasoned product 1803 as referenced in Table 1. From these

operations, the coating distribution 1s obtained as shown 1n
FIG. 18-b.

Since method 6 can predict the coating concentration for
cach pixel, a colour-coded 1mage can be generated on the
coating concentration ol each pixel for graphical display.
FIG. 19 shows the colour-coded sample images for the prod-
uct C samples. Image 1900 represents under-seasoned prod-
uct, image 1901 represents moderately seasoned product and
image 1902 represents highly seasoned product. These
graphical display images are excellent for a quality control
observer to visually monitor and control the manufacturing
processes. FIG. 20 1s a graph representation depicting the
resulting seasoning concentrations for imaged product in
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FIG. 19 for non-seasoned product 1900, low-seasoned prod-
uct 1901 and high seasoned product 1902.

Small Window Strategy

An alternative method of estimating the coating coverage
distribution can be obtained by using larger areas of the
imaged product, which is referred to as “small window” strat-
egy. In this regime, each 1mage 1s divided into many small
windows and the coating concentration can be obtained by
calculating average coating concentration for each window.
Method 6 1s preferred for small window prediction as it 1s the
only method disclosed herein which 1s not image-size sensi-
tive. In small window strategy, 1t 1s important to choose a
proper window size. If this window size 1s too large, the
spatial distribution information may be lost. On the other
hand, 1t the window size 1s too small, the computation time
may 1ncrease and the variance of the estimates will increase.
An example of the small window procedure 1s discussed
below.

An 1mage with two mixed products (non-seasoned and
high-seasoned products) 1s used to demonstrate the effect of

different image window sizes. The product image 1s divided
into 10x10, 20x20 and 32x32 windows (2100, 2101, and

2102, respectively) as shown 1n FIGS. 21a, 215, and 21c,
respectively. The estimated local coating concentration 1s
shown by colour-coded images (the same colour map 1s used
as in F1G. 19). The resulting coating distribution estimates are

shown 1n FIG. 22 where 2200, 2201, and 2202 correspond to
2100, 2101, and 2102, respectively. When using 10x10 win-
dows 2100, the two maxima are not as clear as the maxima

found 1n using 20x20 windows 2101 and 32x32 windows
2102. The difference between the 20x20 and 32x32 samples

2101, 2102 1s small. Since a 20x20 window 2101 can capture
an adequate amount of coating distribution features, i1t can be
chosen as a minimal practical window size for the application
of the small window strategy. FIG. 23 1s a pixel-by-pixel
representation of a colour-coded 1image from using of small
window strategy. Referring to the images mn FIG. 19, the
image in FIG. 23, generated by using the small window
strategy, more clearly identifies the location and shape of
non-coated product 2300.

Turming now to FI1G. 24, a flow chart depicting one embodi-
ment of the method disclosed herein 1s shown as utilized in
the quality monitoring and control of foodstull manufactur-
ing. The method may be mitially divided into two phases for
identification purposes: (1) the feature extraction phase and
(2) the model-building phase. In the preferred embodiment,
the feature extraction phase occurs initially with the acquisi-
tion ol multivaniate 1mages acquired by digital imaging
equipment placed in an appropriate position in the on-line
manufacturing environment (Step 2400). Next, a score plot
space 1s acquired and an appropriate mask definition 1s devel-
oped (Step 2401) during background/foreground segmenta-
tion (Step 2402). After the appropriate mask 1s calculated
(Step 2403), a histogram 1s created for the desired product
feature (e.g. seasoning concentration) by implementing the
feature extraction by method 6 discussed herein (Step 2404)
and the feature vector 1s calculated (Step 2405).

i

I'he model building phase then begins with the implemen-
tation of a PLS regression applied to the calculated feature
variables, the ones described by the feature vector, and the
quality or control variables as defined by the training set test
samples analyzed in the laboratory (Step 2406). The extracted
feature, 1n this example the seasoning concentration on the

foodstull, 1s then predicted (Step 2407) and a property distri-
bution may be constructed showing the predicted seasoning
distribution on the on-line sample (Step 2408) or presenting




US 7,660,440 B2

21

an estimate of the spatial variance of the coating concentra-
tion. The calculated coating concentration 1s then supplied to
a Teedback control device (Step 2409) and/or a monitoring
array (Step 2410) which control the operation of the on-line
environment and can be instructed to take appropriate action
in the event a process or control function 1s required. In an
alternative embodiment, the distribution step (Step 2406)
may be omitted to streamline the submission of acceptable
data to monitor and control operations.

Sample results which were observed 1n utilizing the meth-
ods discussed 1n the example above are set forth in the fol-
lowing discussion and referenced figures for snack food coat-
ing concentration and coverage i an on-line environment.
FIG. 25a and FIG. 2556 depict mitial data collected from the
imaging system. Light gray lines 2500 show the raw coatings
predictions. In this example, frequent grab samples were
taken every 5 minutes from the conveyor and analyzed there-
alter 1n the laboratory. The analytical results of the grab
samples are shown as black circles 2501 1n FIG. 254. For each
laboratory measurement, a X-error bar 2502 and a Y-error bar
2503 are also depicted. The Y-error bar 2503 indicates the
approximate laboratory measurement error; the value 1is
+10.5 1n FIG. 25a. The X-error bar 2502 indicates the pos-
sible sample time mismatch between taking the digital
images of product moving on the conveyor line and manually
grabbing the product samples for laboratory analysis. In this
example, the error 1s estimated as £1 minute.

One can see that the predicted coatings concentrations
from the images match up well with the laboratory analysis.
However, the image predictions reveal a clear saw-tooth
behavior in the concentration that 1s not evident only from the
lab data even during this fast sampling program. The coatings
hopper refilling operations 1n the process explained this unex-
pected result. The lower plot 2504 1n FIG. 255 depicts the
signal 2503 of the hopper motor of the tumbler refilling sys-
tem over a specified time interval. As the level of the coatings
powder 1n the feed tumbler falls to a certain level, the motor 1s
activated to refill the tumbler. The level of food coating inside
the tumbler then increases rapidly. Clearly, FIG. 25aq and FIG.
25b reveal that the discharge rate of food coating from the
hopper to the coating tumbler 1s a strong function of the
coatings level in the hopper.

Open Loop Results for Product A

In FIG. 264 and FI1G. 265, the open-loop response of food
product coating level caused by changing the coating level
bias (manipulated variable) 1s shown. The prediction 2600
and laboratory analysis 2601 coating levels are shown 1n the
upper plot FIG. 26a and, in the lower plot FIG. 265, the
coating level bias signal 2602 1s shown. Again, 1t 1s observed
that the predictions from the 1image analysis and the labora-
tory measurements are consistent. The predicted data shows a
clear quick response to each coating level bias change.

On-Line Monitoring Sample Results for Products A and B
FIG. 27 depicts a single, four-hour on-line monitoring
period for product A. Line 2700 indicates the predicted coat-
ings level, line 2701 represents the unseasoned product
weight, line 2702 indicates the coating feeder speed and line
2703 indicates the signal of the coating dump gate. During the
time period, at about time 19:35, the feed rate of the non-
seasoned product to the tumbler suddenly increased and as
the result of ratio control, the coating feeder speed also
increased. However, the coating feeder speed was limited by
its maximum capacity and could not feed coatings fast
enough to keep the desired ratio to the unseasoned product.
Theretfore, the coating level on product was observed to
decrease from the desired value. Another concern was 1den-
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tified at time period starting at about time 20:40 where the
coating level suddenly started to continuously decrease. This
occurred because the coating hopper was not set to automatic
refill mode and was therefore being depleted of coating. The
result was that eventually no coating was being fed to the
tumbler and the product dump gate had to open to remove the
unseasoned products from the belt. It should be pointed out

that by looking only at process data (non-seasoned product
welght and coatings feeder speed) this fault was not detect-

able.

FIG. 28 shows one example of on-line monitoring for
product B. In FIG. 28, line 2800 represents the predicted
coating level, line 2801 represents the unseasoned product
weight, line 2802 represents the coatings slurry feed rate and
line 2803 in the lower portion of the graph represents the
predicted coatings distribution variance. The variance of the
coatings distribution was calculated from the histogram of the
coatings concentrations obtained by applying the small win-
dow strategy outlined previously herein.

During this approximate I hour period of time, there was no
large variation 1n the feed-rate of unseasoned product. How-
ever, 1t was observed that between time 18:19 and 18:23, the
coating slurry feed-rate suddenly dropped to zero. The effect
of this disturbance on the seasoned product appeared after
about 8 minutes of time delay. At roughly 18:27, both the
predicted coatings level and the coatings distribution variance
began to show large variation.

To understand turther what happened 1n the process during,
that time period, FIGS. 29a through 29/ show eight product
images (2900 through 2907), corresponding to the eight
points 1-8 1n FI1G. 28. Because the coating slurry rate dropped
to zero, unseasoned product was fed to the system during this
period. This unseasoned product was mixed with seasoned
product 1n the tumbler leading to a mixture of products as
shown 1n the images 1n FIGS. 29q through 29/. The variance
of the coatings distribution first decreased, visible as unsea-
soned product 1 one 1mage 2901 in FIG. 295, and then
increased when there was a mixture of the two products, as
shown 1n subsequent 1mages 2902 and 2903 1in FIGS. 29¢ and
294, respectively. The coating distribution plot, consisting of
data points 3000 1n FIG. 30 corresponding to image 2904 1n
FIG. 29e¢, 1s estimated from the small window strategy and
shows a bimodal distribution as expected.

Closed Loop Control Results

Finally, operating data under closed-loop control covering,
a period of 24 hours 1s shown 1n FIG. 31 for product A. Line
3100 represents the predicted coating level. Line 3101 repre-
sents the coating level set point. Line 3104 and line 3103
represent the unseasoned product weight and coatings feeder
speed respectively. Line 3102 indicates coatings level bias
change, which 1s used as the manipulated variable. It 1s
observed that the coating level successiully tracked the set
point. Another point to note 1s that the saw-tooth effect of the
coating feeder system that was apparent in FIGS. 23a, 255,
26a, 266 and 27 1s no longer as noticeable. This 1s due to an
operational change itroduced to eliminate this effect.

In particular, 1t will be understood that the source data may
be an 1mage captured in a range of predetermined wave-
lengths which 1s not limited to the visible spectrum. The
images of the snack food could, for example, be captured 1n
the near inira-red spectrum. For convenience, the current
work 1s most easily carried out 1n the visible spectrum using
three colour channels, red, blue and green. Using the visible
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spectrum may not be desirable or appropriate 1n other appli-
cations. In the preferred embodiment described above, the

[

food 1s 1lluminated with visible light to obtain the 1image of a
product of the process. In other processes, 1t may not be
necessary to illuminate the object.

As described above, lighting variations may influence the
overall feature variable values. Under 1deal conditions, the
product under mspection would remain at a fixed distance
from the light-emitting source so as to provide a consistent
light retlective surface with a consistent density of light over
the surface area of the product. As the distance between the
measured product and the light emitting sources changes, the
density of light reflecting from the product changes. As the
density of the reflected light changes, the feature variable
values change. By moving the product to different distances
from the light and camera and measuring the resultant change
in the predicted feature values, then performing a regression
method to correlate the feature value to distance between
product and sensor, a model can be developed to predict
changes 1n product feature values for changes in product bed
depth when the camera and light source are stationary. Con-
versely, changes 1n feature values can be used to predict the
bed depth of the product or change 1n distance of the product
from the stationary sensor when all other process variables
are held constant.

In a similar manner, the specific density or bulk density of
a product can also have an effect on the measurement of a
product feature that is dependent on these variables. The
measurement of the amount by weight of coating on a product
will be affected 11 the surface area does not change by the
same amount as the weight of the product. Therefore, 1n
measurement of surface area product teatures, the density of
the product can be taken into account and modeled so that a
prediction of feature concentration by weight or volume can
be made. In addition, the specific density or bulk density of
the product can be predicted using the measured surface
feature coverage values, surface feature application rate, and
weight of the base product.

Embodiment of Prediction of Organoleptic Properties

Along with predicting coatings concentrations (described
above), the present invention, 1n one embodiment, provides a
method and apparatus for objectively predicting organoleptic
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properties (e.g. texture, taste and sight) of food products. This
invention 1s the first to successtully predict organoleptic prop-
erties using 1mages.

Examples of an organoleptic property of a snack food (e.g.
chips) are the following: blister level, number of toast points,
taste, texture, crispness, crunchiness and peak break force.
Each property has 1ts own scale of measurement. Blisters on
chips are graded on a scale from O to 6 by comparing the chips
with reference 1images or drawings. Level O represents chips
with no blisters; level 6 represents chips contaiming a very
large number of blisters. Level 3 1s considered to be the
optimal amount of blisters. Toast point level 1s graded on a
scale from O to 4 by comparing chips with reference drawings
or images. Level 0 represents no toast points on the chip and
level 4 indicates a burnt chip. Level 2 1s considered to be
optimal. FIG. 52 illustrates toast points 5200 and blisters
5201.

Taste, as an organoleptic property (unrelated to coating
level), 1s also measured by comparing a sample with reference
chips. The taste of each sample chip 1s graded from O to 5.
Level O indicates a dense chip and level 5 1s a light, blistery
chip. The 1deal value of this taste property is 3. This measure-
ment 1s obtained by having a person eat a reference chip and
subsequently eat the sampled chip. Crispness, crunchiness
and texture may be measured 1n a similar way.

To gather one dataset of organoleptic properties, humans
sampled thirteen cells of food product; the data derived from
the human testers were compared against the collected image
data. The data are shown 1n Table 3. Each cell corresponds to
a certain operation condition. Fifteen RGB colour images
were also collected from each cell. These 1images are used as
predictors 1n the model. Four sample images 5300-5303 are
found 1n FIGS. 53a through 33d. Thirty chips, randomly
selected from each cell, are used to measure the blister level
and the toast point level. Another, randomly selected, ten and
fifteen chips from each cell are used to measure the taste
property and the peak break force, respectively. Average val-
ues of blister level, toast points, taste and peak break force for
cach cell are used as the response matrix Y as seen 1n Table 3.
Table 3 reveals a high correlation between the Y varniables.
The chips having high levels of blisters and toast points, such
as those 1n cell 6 A 1n Table 3, also generally have high taste
level and a large peak break force.

TABL

(L]

3

Average Organﬂlegtic PmEerties

Y
Coating Level Blister Toast Peak
(1 = coated, Level Points Taste Force (g)

0 =uncoated) Mean Std Mean Std Mean Std Mean Std
0 0.87 0.57 097 052 15 071 — —
0 1.3 0.53 098 069 25 097 — —
1 1.07 0.65 045 051 2.1 057 — —
1 1.27 043 142 0.63 24 052 4809 112.6
0 — — — — — — 4513 103.2
0 1.63 0.85 138 0.64 2.1 074 35309 105.8
0 1.52 052 165 044 19 0.74 6067 142.7
1 1.62 054 1.68 0.70 24 046 54277 121.8
1 2.15 087 1.72 0.67 255 0.69 6554 176.1
0 473 144 180 034 3.1 1.10 786.1 150.6
0 3.64 140 1.80 0.85 2.7 1.27 7093 98.5
1 422 158 250 063 33 1.16 7208 166.6
1 443 1.69 2.17 082 377 1.06 668.2 158.7
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Image Analysis

In order to detect organoleptic properties using the teach-
ings of the present invention, it 1s necessary to remove the
elfect of any coating on the food product because any colour
variation caused by a coating may influence the texture infor-
mation. Here the interest 1s 1n the coating level of the snack
food. A procedure based on PCA can be used to cancel the
elfect of the coating.

A mean-centered PCA technique 1s performed on several
uncoated product images; background pixels are removed. In
this embodiment, the first two components, t, and t,, explain
about 87.0% and 11.3% of the vaniation, respectively. There-
fore, this t,-t, lane captures most of the vanation caused by
changes 1n the 1imaging condition and 1s not influenced by the
variation caused by the coating level. By projecting the pixels
of the coated 1images onto this t,-t, plane, the coating infor-
mation 1s largely cancelled. FIG. 54 shows the reconstructed
images (from the first two principal components, blister level
and toast point level) for the 4 sample images shown 1n FIG.

33.

Organoleptic Information Extraction from Images

A series ol nine Laplacian of Gaussian (LoG) spatial filters
with different window sizes are applied to the first two score
images to extract texture features. Laplacian filters are deriva-
tive filters used to find areas of rapid change or the edges in
images. Since dertvative filters are very sensitive to noise, 1t 1s
common to smooth the image (e.g., using a Gaussian filter)
betore applying the Laplacian. This two-step process 1s called
the Laplacian of Gaussian (LoG) operation. The 2D LoG
function centered on zero with Gaussian standard deviation o
has the form:

x2+y?

X%+ yz ]
2a

-
L =-—1-
oG(x, v) o | 2 _iE

The Gaussian standard deviation 1s chosen as 0.5. The
window sizes of the filters are chosen from four to twenty
(even numbers). These parameters are chosen by trial-and-
error. For each filtered image, a simple average value 1s com-
puted. Therefore, a total of e1ighteen feature variables for each
RGB image are generated, including the mine average filtered
values for the first score 1image and the nine average filtered
values for the second score image.

The organoleptic values of the samples can be predicted.
Four PLS models are built to predict these organoleptic val-
ues, one for every organoleptic or Y property. An average
teature vector 1s computed for each cell. This averaged fea-
ture vector, along with a dummy varnable indicating whether
the product 1n the 1image 1s coated, 1s used as a predictor. The
dummy variable could be replaced with the predicted coating
concentration in other embodiments.

Among the thirteen observations, each one corresponding
to one of the thirteen cells, ten observations are used for
training the models. FIGS. 57a through 574 shows the pre-
diction vs. observation plots for each one of the Y variables:
blister level, toast point level, taste property, and peak break
force, respectively.

The root mean square errors for prediction (RMSEP) and
the estimated standard deviation ol measurement error {from
the test set are listed 1n Table 4 for the four Y variables. The
RMSEP 1s estimated by assuming that the global texture
property for each cell 1s constant and all the samples 1n each
cell are treated as replicate points. Analysis error considered
here involves both sampling errors and nstrument measure-
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ment errors. To estimate these analysis errors, several groups
of data points are used. Each group contains samples taken
within a short period of time whose properties can be assumed
to be constant within that period of time. Therefore, points
within one group can be considered as replicate points. Con-
sider K groups of data points and for a group k, the number of
datapomtsis N, (k=1,2,,K). vy, 1s the property of the 1-th point
in group k and y, is the average property of group k. Then the
lab analysis error, one standard deviation, 1s estimated as
follows:

K Ny .
2. 2o (ki —}’;{)
k=1i=1
err =
K
\ > Ny — K
f=1

Relative errors for blister level are used because the stan-
dard deviation value for each cell increases as the average
values of the blister level increases (see Table 3). The number
of latent variables (LV) used 1s also shown in Table 4.

TABL.

L1l

4

Comparison of Prediction Errors of the Inferential Model
and Analysis Measurement Error

Estimated Std Deviation
of Measurement

Number of RMSEP for Error for Taking 1
[V’s Test Set Piece of Food Product
Blister Level* 5 0.36 0.44
Toast Point Level 5 0.34 0.64
laste Property 3 0.29 0.87
Peak Break Force 4 45.35 138.91

*For blister level, relative RMSEP and relative measurement error are com-
puted.

Table 4 shows that the measurement error 1s larger than
model prediction error for all 4 vanables 1f only one piece
of food product 1s measured. Taking more samples within a
short time and using the average of the measurements of these
samples can easily reduce the measurement error. However,
since organoleptic properties of a food product are measured
manually (a human has to grade the product by looking at 1t,
eating 1t or taking 1t to the mechanical machine), the number
of samples used for measuring the properties 1s proportional
to the time and manpower required. Therefore, to set up a
monitoring system for organoleptic properties at a moderate
sampling time requires substantial manpower. On the other
hand, by using an 1imaging system, once an imaging model
has been trained, the predictions can be obtained very quickly
with almost no extra cost, and the sampling rate can be
increased as desired.

Using other physical process or product measurements
may enhance the measurement of organoleptic properties.
Physical process properties or measurements are not organo-
leptic properties. Product temperature, process temperature
(e.g. fryer o1l temperature), chip moisture content, chip oil
content, chip weight per ten (the total weight of a sample of
ten food products), tumbler speed, cooling air velocity, and
dough moisture are just a few examples of physical process
measurements that can be taken. These measurements can be
combined with the mnformation found in the images taken
with the machine vision system described above resulting in
amore accurate measurement or prediction of an organoleptic
property. One or more physical process measurements may
be so combined with the machine vision measurement.
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The vision measurement system may also be used to pre-
dict other food product properties other than organoleptic
properties. For example, the machine vision measurements
may be used to measure physical product properties such as
product moisture content, product o1l content, chip weight per
ten, dough moisture, and other product properties.

In addition to combining physical process measurements
with the machine vision 1image data, acoustic measurements
may be combined to enhance measurement of organoleptic
properties. Acoustic data may be obtained from products by
subjecting the products to an acoustic energy signal and sub-
sequently capturing or measuring the resulting signal. Acous-
tic data from such a signal may be taken and regressed to
correlate with one or more organoleptic properties. By com-
bining acoustic measurements, physical process measure-
ments and machine vision measurements, a novel system 1s
provided to accurately measure and predict organoleptic
properties. These measurement combinations for the first
time {11l a strong need in the processed food industry to

measure product attributes 1n an on-line production environ-
ment.

Embodiment of Flame Analysis

Another exemplary alternative embodiment of the inven-
tion disclosed herein 1s described below with reference to a
process in which a flame product characterizes the underlying,
process. Because the flame 1s luminous, no external source of
lighting 1s required. It will also be understood that the radia-
tion emanating from a flame will cover a wide range of
wavelengths which are not limited to the visible spectrum.

In many industrial furnace and boiler systems, television
systems have been 1nstalled. However, they are used mainly
for live displays of the flames. Most of the time the only
information the flame 1mages provide 1s whether the flames
are burning. Because combustion processes are highly turbu-
lent, the flames appear 1n constant movement, and even the
most experienced operator often finds 1t hard to determine the
performance of the combustion.

In this situation, a momtoring system based on image
analysis can become very helptul. In this alternative embodi-
ment of the invention disclosed herein, an industrial steam
boiler 1s observed. The fuels used for this boiler may be a
waste liquid stream from other processes or may be natural
gas. Therefore, the composition of the fuel 1s often variable.
An analog colour camera 1s installed and the flames behavior
1s recorded onto several videotapes. A video card 1s used to
convert the analog signals into digital images. Alternatively, a
flame grabber may be used for on-line analog-digital conver-
sation.

To analyze the colour images, a Multivariate Image Analy-
s1s (MIA) technique 1s used. Nine features are extracted from
score plot space for each 1mage. Moreover, multivariate sta-
tistical methods, such as Principal Component Analysis
(PCA) and Partial Least Squares (PLS) may also be per-
formed on the 1mage features and the process measurements
to help understand the relationship between the feature vari-
ables and the process variables.

System Setup

A schematic diagram of one embodiment of a flame moni-
toring system 1s shown 1n FI1G. 32. The steam boiler 3200 uses
both the waste liquid streams 3201 from other processes and
natural gas 3202 as fuels. Therefore, the compositions of the
tuels often change dramatically. 20 An analog colour camera
3203 has been mstalled in the boiler 3200 and 1s connected to
a monitor 3204 for displaying the live images. In this embodi-
ment, the analog signals are recorded and converted into
digital images by video card 3205 which are then analyzed by
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computer 3206 according to the methods disclosed herein.
The resulting images are RGB colour images with a 120x160
pixel size. Considering the processing time, the 1maging
sample time 1s set as 1 frame per second.

Two case studies are presented to exemplity the application
of the invention. Case I 1s a 114 minute boiler process. In this
period of time, a liquid fuel (A) 1s used. In the first half of this

period of time, liquid fuel consumed 1n the flame decreases
from 12,000 kilo pounds per hour (kp/hr) to 6,000 kp/hr; 1n
the second half of the time period, liquid tuel increases back
to 12,000 kp/hr. A data point line 3300 1n FIG. 33a depicts this
variable. The steam generated by the boiler followed the same

trend as the fuel tlow as shown by a data point line 3301 in
FIG. 335.

Case II 1s a 56-minute boiler process where liquid fuel 1s
gradually shut off. In this case, both a liquid fuel (B) and
natural gas are used. During this period of time the flow rate
of liquid fuel represented by the data point line 3400 1n FIG.
34 1s gradually reduced from 7000 kp/hr to O kp/hr and, at the
same time, the flow rate of natural gas represented by a data
point line 3401 1s increased from 203 ksct/hr to 253 ksci/hr to
keep the steam generated at a constant level. The changes in
the flow rates of the two fuels are trended 1n FI1G. 34-g and the
consequential change in the steam tlow rate 1s represented by
a data point line 3402 1n FIG. 34-5. In both cases, the air/fuel
ratio of the boiler 1s automatically modulated based on a
pre-set control scheme. Therefore, only flow rates of the fuels
are considered.

For Cases I and II, 6,840 and 3,360 image frames were
recorded, respectively. In FIG. 35, sample images 5500-5505
are shown corresponding to the points marked A through F 1n
FIG. 33 and FIG. 34. For each point A through F, two con-
secutive 1mages with a one second time difference are shown.
It 1s reasonable to assume that during this one second, the
global combustion condition 1s kept constant. It can be
observed that the flames 1n the boiler appear highly turbulent,
which brings about the difficulty of extracting stable and
reliable information about the combustion process. It should
be noted that the camera positions are not exactly the same for
Case I and Case II. However, the outcome of these studies
shows that this difference 1n location of the camera 1s not a
significant intluence.

Table 5 contains information corresponding to the sample

images 5500-5505 found 1n FIG. 55 and also corresponding
to the points marked A through F in FIG. 33 and FIG. 34.

TABLE 5
Information from Sample Images of Cases [ and II
Point in FIGS. Identifier 1n
Case 33 and 34 Combustion Conditions FIG. 55
I A Fuel (A): 12100 Kp/hr 5500
Steam: 206.4 Kp/hr
B Fuel (A): 6000 Kp/hr 5501
Steam: 163.7 Kp/hr
C Fuel (A): 12000 Kp/hr 5502
Steam: 205.9 Kp/hr
11 D Fuel (B): 7320 Kp/hr 5503
Natural Gas: 204 Ksci/hr
Steam: 237 Kp/hr
E Fuel (B): 1780 Kp/hr 5504
Natural Gas: 203 Ksct/hr
Steam: 191 Kp/hr
F Fuel (B): O Kp/hr 5505
Natural Gas: 253 Kp/hr

Steam: 217 Kp/hr
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Each tlame 1image captured 1s an RGB colour image. The
colour image 1s expressed as a 3-way matrix. Two dimensions
represent the x-y spatial coordinates and the third dimension
1s the colour channel. Therefore, 1t 1s a multivariate 1mage
composed of three vanables (R, G and B channels). In this
embodiment, the feature variables extracted are obtained
using Multivariate Image Analysis (MIA) techniques, which
are based on multi-way Principle Component Analysis
(PCA).

Without considering the spatial coordinates of pixels, the

image matrix can be unfolded and expressed as a 2-way
matrix.

unfold
iwame!x:} >Inxs = | Cir Cig Cib | =| ¢
CNr CNg CNB Cn |

I 1s the three-way 1mage matrix with image size N, xN_ .. 1
1s the unfolded two-way 1image matrix. N 1s the number of
pixels intheimage, N=N, , xN__,.¢c, ,c, .c, ,(1=1,...,N)are
the intensity values of the R, G and B channels for pixel 1. c,
(=1, . .. ,N) 1s the 1-th row vector of I, which represents the
colour values of pixel 1. Multi-way PCA 1s equivalent to
performing PCA on the unfolded image matrix I.

where K 1s the number of principal components, the t,’s are
score vectors and the corresponding p,’s are loading vectors.
For an RGB colour image, the maximum number of principal
components 1s three.

Since the row dimension of the I matrix 1s very large (equal
to 19,200 for a 120*160 1mage space) and the column dimen-
s10n 1s much smaller (equal to 3 for an RGB colour 1mage), a
kernel algorithm 1s used to compute the loading and score
vectors. In this algorithm the kernel matrix (I71) is first formed
(for a set of 1mages, the kernel matrix 1s calculated as

>0,
j

and then singular value decomposition (SVD) 1s performed
on this very low dimension matrix (3x3 for an RGB colour
image) to obtain loading vectors p_, (a=1, ... A).

After obtaining loading vectors, the corresponding score
vectors t, are then computed viat,=I-p,-t, 1s a long vector with
length N. After proper scaling and rounding off, it can be
refolded into the original 1image size and displayed as an
1mage.

Ik i — I min

Sk,;:Rﬂund( ><255],.i:1, oo N

Ik,max — I IR
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-continued
refold

(St Jvx1 > (1) Nrows Neol

T, 1s the score 1image of component k. The values of T, are
integers from 0 to 235, It should be pointed out that when
many images are studied, a common scaling range (t; ,,, and
t7 max) Should be used tor all the 1mages.

One hundred 1mages are used 1n this example to compute
the loading matrix and score scaling range. The first two
components explained 99% of the total variance. In FI1G. 35,
three score images 3501, 3502, 3503 arec shown for a sample
image 3500. A reconstructed image 3504 from the first two
components 3501, 3502 1s also shown. It 1s observed that the
T, score 1image 3503 contains very little information, which is
mainly noise. The reconstructed image 3504 from the first
two components 3501, 3502 1s almost the same as the original
image 3500. Since the first two components 3501, 3502
explain most of the variance, instead of working 1n the origi-
nal 3-dimensional RGB space, working 1n the 2-dimensional
orthogonal t,-t, score space allows us to interpret the 1mages
3501, 3502 more easily.

Inspection of the t, -t, score plot 1s a common tool 1n gen-
eral PCA analysis to give an overview of the whole system
and/or detect clusters or outliers. However, when studied
objects are 1mages there are a large number of pixelsnat, -t,
score plot, and many pixels overlap each other. A 256x256
histogram 1s used to describe the t,-t, score plot space in this
situation and a colour coding scheme may be used to indicate
the intensity of the pixel locations in the score plot. This
two-dimensional histogram, denoted as TT, can be obtained
from rounded and scaled T, and T, score images. TT 1s a
256x256 matrix and 1s computed as follows:

TT}J:ZI!VU{!‘ D, Ty =i—-1&Ty;=j-1
il

i=1,...256,k=1,...,120,1=1,...,160

FIG. 56 shows colour score plots for the sample 1mages
shown in FIG. 55. In a colour plot, 1n the colour scheme of the
score plots, a darker colour indicates a lower intensity (black
indicates no pixel falling at the particular location) and a
brighter colour indicates a higher intensity. Higher intensity
in these plots indicates higher amounts of overlapping of
pixels. FIG. 56 shows that for the same combustion condition,
the locations of pixels in the score plots are similar. As the
combustion condition changes, the locations of pixels also
change.

Each location 1n a T,-T, score plot represents a certain
colour (1gnoring the varniation in ty). The colour for each
location may be computed by the following formula:

[R G 5.)]1;;':.31(1')'}7’11"”2(]')'}92{ =1, .
II(I):(I_1).(Il?mﬂ_rl;ﬂin)+rl?mfn:
(IE,}H&I_IE,PHI'H)+IE,}HI'H

. . 256 where
H()=G-1);
(6)
A colour plane 1s then computed for each score plot as
shown 1 FIG. 36. The relation between the position 1n the
score plot and the colour 1s observed. Because under different
combustion conditions the colours of the flames are different,
there 15 movement between successive plots 1 score plot
space.

Score plots contain important information about the flame;
however, directly monitoring the process based on score plots
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1s not practical. This 1s due mainly to the difficulty for a person
to monitor a process over time by observing the changes 1n a
two-dimensional matrix. Even for a person who 1s able to
detect some change occurring 1n a score plot, 1t 1s still ditficult
to correlate such changes with the changes in the process
variables. Therefore, 1t 1s desirable to extract features that

have more physical meaning to the observer and further relate
those features with the process measurements to help one gain
a greater understanding of flames and the combustion pro-
Cess.

The features discussed 1n this alternative embodiment can
be divided into two categories. The first category 1s called
luminous features, including flame luminous region area,
flame brightness, flame intensity uniformity and the furnace
wall intensity. The second category 1s called colour features,
including average colour of the whole image, average colour
of the flame luminous region and the number of colours
appeared 1n the flame region.

The flame luminous region is selected by choosing a flame
mask 1n the score plot space. The mask 1s a 256x256 binary
matrix, denoted by M. A pixel value 1s equal to 1 11 the colour
of this location 1s a flame colour; otherwise the pixel value 1s
equal to 0. The dimension of the mask 1s made by trial and
error. The final mask for the flame 1s shown i FIG. 37.
Specifically, in F1G. 37-a, a sample image 3701 1s shown. The
corresponding score plot 3702 1s shown 1n FIG. 37-b. The
mask of flame region 1s shown as the triangular area 3703. IT
all pixels falling outside this mask are depicted as gray colour
3704, the image shown 1n FIG. 37-¢ 1s obtained.

It 1s then observed that the flame region 3705 1s separated
from the other parts of the image.

Luminous Region Area

The luminous region area 1s the area of the flame region
defined above. It can be easily computed by counting the
number of the pixels falling 1inside the flame mask.

A=ZTT5J,V(E, DM =10 j=1, ...256
W

Flame Brightness

Flame brightness can be obtained by integrating the Iumi-
nous intensity level contributed from all pixels falling inside
the luminous region. The luminous intensity level for any
location 1nside the score plot 1s computed by converting the
colour plane obtained by equation (6) to a gray scale plane as
follows

$0.299
0.587
0.114

Lij=[RGBI; ;- (ip=1, ...,256

in which L,; 1s the luminous intensity level for location (1,)) in
the score plot. Therefore, the flame brightness 1s calculated
as:

B=) TT ;L. ¥ G j), My ;=1
L
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Flame Luminous Uniformity
Flame luminous uniformity 1s defined as the standard
deviation of luminous intensity of the flame region:

Y TT; ;- L =3 TT; ;- L
LA i f

\ 21T

f
2
STT; ;- L} - B
.7

-\ .

{/ =

1,

(i, ), M =1

Average Brightness of the Boiler Wall

By observing the sample images shown i FIG. 35, the
installed camera 1s facing the flame, which means the camera
blocks the ability to see the length of the flame. Moreover, the
flame 1mage 1s a two-dimensional projection of a three-di-
mensional field and only part of the flame 1s captured 1n the
image. The brightness of the boiler wall yields information of
the flame length and/or the volume of the flames. The average
brightness of the boiler wall 1s computed by:

ZTT;J-L,-J
b

Wo

(L ), M ;=0
21T /
Ly

Average Colour of the Whole Flame Image
The average colour of the whole flame 1mage 1s expressed
as the average location of pixels in the score plot.

D Thj-(-1) D> TT;-(j—1)
_ Ty = —

, 256
N N

Tlm ,f,j=1,2,...

in which N 1is the total number of pixels 1n the 1mage.

Average Colour of the Flame Region
The average colour of the flame region 1s defined as the
average location of the pixels belonging to the flame region.

D TT;-(i-1)
"

ZTTL_,:"U_ 1)
: L
Tlf:

A

,Thp = Y )M =1

A

Number of Colours Appearing 1n the Flame Region
The number of the different colours appearing in the flame
region 1s the area of flame region in the score plot space.

Ne= ) 1Y (i, j). TT, ;- M; j #0
)

Because of the high turbulence in the combustive process, the
feature variables express large variations making 1t difficult to
see the trend of the process. An effective way to reduce these
variations 1s to filter the raw data.

There are several possible filtering techniques that can be
used at different stages of the calculation. The first one 1s to
perform the filtering operation in the image space. This tech-
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nique 1s the most commonly used method of preprocessing
flame studies 1n the literature. However, 1n the highly turbu-
lent flame circumstance, as shown 1n the example averaged
image 3800 in FIG. 38-q, averaging 1in the 1image space could
lead to a loss of flame characteristics. In the score plot space
3801, the shape of the averaged image (see FI1G. 38-b) has
been ‘distorted” compared to the single frame image (the
score plots of point A 1n Table 5).

The second filtering technique 1s to perform a filter on the
score plot space. FIG. 39 shows an averaged 1T score plot
3900. Compared to FI1G. 38-b, this averaged score plot 3900
keeps the basic shape of the score plot of the individual image
3801. The feature variables extracted from the averaged score
plot 3900 are expected to summarize the characteristics of the
flame during the short period of time. However, the values of
the features extracted from the filtered score plots may have
different numerical amounts from the features extracted from
the raw 1mages because the calculation of feature extraction 1s
not linear.

The thard filter approach 1s to apply a filter on the extracted
teature variables of the individual frame. This approach has
several advantages compared to the other two filtering tech-
niques discussed herein. First, 1t 1s much easier to handle the
time series data such that at each time point, the data 1s a
vector rather than a matrix. Second, the filtered data points
have integrity with the raw feature variables. In this embodi-
ment, the function “filtfilt” in Matlab Signal Processing Tool-
box filters the raw feature variables. This function performs
zero-phase digital filtering by processing the mnput data 1n
both the forward and reverse directions. After filtering in the
forward direction, it reverses the filtered sequence and runs 1t
back through the filter. The resulting sequence has precisely
zero-phase distortion. In addition to the forward-reverse {il-
tering, 1t also attempts to minimize startup and ending tran-
sients by adjusting 1nitial conditions. The filter weights used
in this example are an averaging filter with window length of
60. In fact, filtered features obtained by these three filters 1n
most cases show similar trends. However, since the third filter
1s the simplest one and yields the smoothest results, 1t 1s the
filter used 1n the following computation example. FIGS. 40qa
through 40i and FIGS. 41a through 41 are depictions of the
feature variables for the following pair of case examples
which include flame area (FIG. 40a and FIG. 41a), flame
brightness (FIG. 406 and FIG. 415), flame uniformity (FIG.
40c and FIG. 41¢), average intensity of the boiler wall (FIG.
40d and FI1G. 41d), average T, value of image (FIG. 40e and
FIG. 41e), average T, value of image (FIG. 40fand FIG. 41f),
average T, value of flame (F1G. 40gand FI1G. 41¢g), average T,
value of tlame(FIG. 40/ and FIG. 41/), and the total colour
number of the tlame region (FIG. 40i and FI1G. 417).

In Case I, the darker areas of the graphed data points 4000
represent raw data values, while a line 4001 represents the
filtered values. The tlow rate of the liqud fuel (A) tlow rate
first decreases and then increases back to the original value.
FIGS. 40q through 40; show that all the feature variables
follow the same trend or the mverse trend as the liquid tuel
flow rate changes. Likewise, in Case II the darker areas of the
graphed data points 4100, represent raw data values, while a
line 4101 represents the filtered values. In Case 11, both the
liquid fuel (B) and natural gas flow rate were variable. There-
fore, 1n Case Il the trends of the feature variables are different.
Compared to F1G. 34, it1s observed that some of the trends are
similar to the changes 1n liquid fuel flow rate, such as the
average T, value of the whole 1image; some of the trends are
similar to the changes in natural gas tlow rate, such as average
T, value of the flame region. To have a better understanding of
the relation between image feature variables and process
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measurements, multivariate statistical methods, such as Prin-
cipal Component Analysis (PCA) and Partial Least Squares
(PLS), are used to obtain more qualitative and quantitative
information about the process changes.

Next, three PCA models are obtained for the Case I data,
the first halt of Case II data and the whole Case II data,
respectively. The purpose 1s to reveal the relationship between
the changes of the fuels and the flame properties. The vari-
ables 1included 1n the PCA models constitute filtered flame
feature variables and fuel(s) tlow rate.

Model 1: Case I Data

In the PCA model for case I, the first principal component
explained 88.4% of the total variance. This 1s reasonable
since only one factor (flow rate of liquid fuel) 1s changing 1n
this case. FIG. 42 shows the prediction power for the vari-
ables. v, (wall intensity) and v8 (mean T, of flame) have low
prediction power, which indicates that these two variables
contain relatively little dependency on the other process vari-
ables. From FIGS. 404 and 404, 1t 1s observed that v, and v,
have a very flat trend, which 1s consistent with the conclusion
trom the prediction power plot. Therefore, 1n the loading plot
shown 1n FIG. 43, the values of these two variables were not
considered and are indicated by the unfilled circles 4300 and
4301. All vaniables have a positive correlation as shown 1n the
loading plot depicted 1n FIG. 43, with the exception of v,
which has a negative correlation.

Model 2: First Halt of Case II Data

In the first half period time of Case 11, only the flow rate of
liquid fuel (B) decreased and flow rate of natural gas almost
kept constant. The first principal component explained 76.7%
of the total vaniance. It 1s 1nteresting to see from the predict
power plot (FIG. 44) and loading plot (FIG. 45) that almost
the same relationship between tlame 1mage feature variables
and liquid fuel flow rate exists, although the compositions of
the two liquid fuels 1n these two cases were different.

Model 3: Whole Case II Data

In the PCA model for whole Case II the first component
explained 52.3% and the second component explained 42.6%
of the total variance. In the prediction power plot (see FIG.
46), only v, (flame uniformity) has low prediction power.
Thus, Model 3 1s different from Model 1 and Model 2. The
difference 1s probably explained by noting that the variation
in natural gas has little influence on v,, v, and v8. Variations
in natural gas, which had low prediction power in Model 1
and Model 2, now have high prediction power. This observa-
tion indicates that these two variables have close relationships
with natural gas flow rate. From the scatter p,-p, loading plot
(FIG. 47) 1t 1s observed that v, has high positive correlation
and v, has negative correlation with natural gas. A PCA
model 1s then performed on both datasets using flame 1mage
feature variables. In total, only two principal components are
significant, explaining 97.4% of the variance.

The flame analysis process may be monitored by observing,
the t, -t, score plotdepicted in FIG. 48. From this score, it may
be observed how the process develops as the combustion
conditions change. It 1s interesting to note that both points
belonging to Case I 4800 and the points belonging to the first
half of Case 11 4801 show that as the liquid fuel decreased, the
points moved toward the left-bottom corner of the plot. As the
flow rate of natural gas increased, the points moved mainly
toward the t, direction. By studying and correlating properties
of a flame, i1t 1s expected that predictions may be made to
control the process including reducing noxious emissions
generated from the process and increasing burning etficiency.
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A PLS model may then be constructed to obtain more
quantitative information about flame combustion. In this
embodiment of the invention, feature variables from flame
images can be used to predict flow rate of the generated steam.
S1x latent variables are used 1n constructing the PLS model.
Thirty-three observations are used as a training dataset and
133 observations are used as a test dataset. The root mean
square error (RMSE) for training set 1s 3.85 and for test set 1s
3.93, respectively. The prediction versus observation plot 1s
shown 1n FIG. 49. FIGS. 50a and 505 are the time series plots
for the two cases, respectively. For Case 1 depicted 1n FIG.
50a, data point line 5000 represents the predicted value of the
steam flow rate and data point line 5001 represents the actual
measured value of the steam tlow rate. For Case 11 shown in
FIG. 505, data point line 5002 represents the predicted value
ol the steam flow rate and data point line 5003 represents the
actual measured value of the steam flow rate. It 1s observed
that the predicted data points are consistent with the measured
data. It 1s also expected that by combining the image feature
variables and other relevant process variables, predictions
may be made to control and reduce the noxious emissions
generated from the process and increase the burning eifi-
ciency of the fuel.

While the invention has been particularly shown and
described with reference to several embodiments, 1t will be
understood by those skilled 1n the art that various other
approaches and applications to industry may be made without
departing from the spirit and scope of the invention disclosed
herein.

We claim:

1. A method of monitoring an organoleptic property of a
characterizing product during production of said product,
wherein a sequence of more than one multivariate image of
the characterizing product has been captured, each image
consisting of an 1mage array of pixel elements of measured
intensity values 1n at least three wavelength ranges defining
the dimensions for the image array; wherein said method
consists of the steps of:

identifying an organoleptic property of the characterizing

product;

creating an organoleptic feature vector;

correlating the organoleptic feature vector with the orga-

noleptic property by a regression method; and

creating an output of the organoleptic feature vector.

2. A method according to claim 1 wherein the multivariate
image of the characterizing product 1s captured 1n the visible
spectrum.

3. A method according to claim 2 wherein the pixel ele-
ments of the image array have varying intensities of colours,
wherein said colors comprise at least one of red, green, and
blue.

4. A method according to claim 1 wherein the multivariate
image ol the characterizing product 1s captured 1n the near
infrared spectrum.

5. A method according to claim 1 wherein the organoleptic
teature vector consists of average values for each of the said
at least three wavelength ranges.

6. A method according to claim 1 wheremn one or more
other physical process measurements are combined with
information contained in the organoleptic feature vector to
correlate the physical process measurements with the orga-
noleptic property.

7. A method according to claim 6 wherein said physical
process measurement 1s one selected from the group consist-
ing of: chip moisture content, chip o1l content, chip weight per
ten, dough moisture.
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8. A method according to claim 1 wherein one or more
acoustic measurements of a characterizing product are com-
bined with information contained 1n the organoleptic feature
vector to correlate the acoustic measurements with the orga-
noleptic property.

9. A method according to claim 1 wherein one or more
acoustic measurements of a characterizing product and one or
more other physical process measurements are combined
with information contained 1n the organoleptic feature vector
to correlate said acoustic measurements and said physical
process measurements with the organoleptic property.

10. A method according to claim 6 wherein a regression
method 1s performed on the physical process measurements
betfore creating the output of the organoleptic feature vector.

11. A method according to claim 8 wherein a regression
method 1s performed on the acoustic measurements before
creating the output of the organoleptic feature vector.

12. A method according to claim 1 wherein the organolep-
tic property of the characterizing product 1s selected from the
group consisting of: blister level, toast points, taste, texture,
crispness, crunchiness, peak break force.

13. A method according to claim 1 wherein a multivariate
statistical projection method 1s applied to the image array to
reduce the dimensions to a low dimensional score space
defined by a small number of score vectors and said organo-
leptic feature vector 1s created from said low dimensional
score space 1image data.

14. A method according to claim 13 wherein the multivari-
ate statistical projection method 1s selected from the group
consisting of: multi-way principal component analysis
(PCA), multi-way partial least squares (PLS), projection pur-
suit, independent component analysis.

15. A method according claim 13 wherein the multivariate
statistical projection method applied to the image array
reduces the dimensions of the image array to a t,-t, score
space.

16. A method according claim 15 wherein the feature vec-
tor 1s a first loading vector t,.

17. A method according to claim 15 wherein the feature
vector 1s obtained by dividing said t,-t, score space into a
plurality of blocks and summing the intensity values within
cach block.

18. A method according to claim 15 wherein the organo-
leptic feature vector 1s created consisting of the steps of:

applying a multivariate statistical projection method to an

image array for a control process to reduce the dimen-
s1ons to a low dimensional score space having a signifi-

cant loading vector;

projecting the t, -t, score space along a direction defined by
said significant loading vector to create a projection
vector; and

creating a histogram from said projection vector to define
the organoleptic feature vector.

19. A method according to claim 15 wherein the organo-

leptic feature vector 1s created consisting of the steps of:

applying a multivariate statistical projection method to an
image array for a control process to reduce the dimen-
stons to a low dimensional score space having a signifi-
cant loading vector;

projecting the t, -t, score space along a direction defined by
said significant loading vector to create a projection
vector; and

creating a cumulative histogram from said projection vec-
tor to define the organoleptic feature vector.

20. A method according to claim 15 wherein said organo-
leptic feature vector 1s created consisting of the steps of:
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calculating covariance matrices COV, and COV, between
histogram elements from thet, -t, score space image data
for two respective features 7, and Z.,;

calculating an angle matrix from said covariance matrices
COV, and COV,; 5

superimposing the t,-t, score space 1mage data on said
angle matrix; and

calculating a cumulative histogram to define the feature
vector.

21. A method according to claim 15 wherein said organo- 19

leptic feature vector 1s created consisting of the steps of:

calculating covariance matrices COV; and COV , between
histogram elements from a t,-t, score space 1image data
for two respective features 7, and Z, in a control pro-
Cess; 15

adding covariance matrices COV; and COV , and display-
ing the sum as a colour coded image sum display 1n a first
t,-t, score space;

selecting a mask to iscribe an area 1n said sum display 1n
said first t, -t, space corresponding to a product region;

projecting the multivariate 1mages to said first t,-t, score
space and removing pixels which lie outside said area to
create pure product images;

applying a multivanate statistical projection method to the
pure product images to reduce the dimensions of the
pure product 1mages to a second t, -t, score space;

calculating covariance matrices COV . and COV  between
histogram elements from the second t, -t, score space for
said two respective features 7, and Z.,;

calculating an angle matrix from said covariance matrices
COV. and COV;

superimposing the second t, -t, score space 1image data on

said angle matrix; and

calculating a cumulative histogram to define the organo-

leptic feature vector.

22. A method according to claim 1 1n which the regression
method 1s selected from the group consisting of: principal
component regression (PCR); partial least squares (PLS);
multivariate linear regression (MLR); artificial neural net-
works (ANN).

23. A method according to claim 1 wherein the output 1s
displayed as a colour coded image for visual monitoring of
operating conditions of the process.

24. A method of monitoring a food product process under 45
changing operating conditions, wherein a food product has
been exposed to an electromagnetic radiation source; wherein
turther a sequence of more than one multivariate image in the
clectromagnetic spectrum has been captured, each image
consisting of an 1mage array having a plurality of pixel ele- 5,
ments, each pixel element having intensity values of at least
one wavelength 1n the electromagnetic spectrum defining at
least three dimensions for the 1mage array; wherein further a
multi-way principal component analysis has been applied to
the image array to reduce the dimensions of the image array to 55
a t,-t, score space; wherein said method consists of the steps
of:

creating an organoleptic feature vector from said t, -t, score

space;

performing a regression method to correlate the organolep- 60

tic feature vector with an organoleptic property of the
food product; and

creating an output of the organoleptic property for continu-

ous monitoring and feed back control of operating con-
ditions of the process. 65

25. A method according to claim 24 wherein one or more

other physical process measurements are combined with
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information contained 1n the organoleptic feature vector to
correlate the physical process measurements with the orga-
noleptic property.
26. A method according to claim 25 wherein a regression
method 1s performed on the physical process measurements
betfore creating the output of the organoleptic property.
27. A method according to claim 25 wherein said physical
process measurement 1s one selected from the group consist-
ing of: chip moisture content, chip o1l content, chip weight per
ten, dough moisture.
28. A method according to claim 24 wherein one or more
acoustic measurements of a characterizing product are com-
bined with information contained in the organoleptic feature
vector to correlate the acoustic measurements with the orga-
noleptic property.
29. A method according to claim 28 wherein a regression
method 1s performed on the acoustic measurements before
creating the output of the organoleptic property.
30. A method according to claim 24 wherein one or more
acoustic measurements of a characterizing product and one or
more other physical process measurements are combined
with information contained in the organoleptic feature vector
to correlate said acoustic measurements and said physical
process measurements with the organoleptic property.
31. A method according to claim 24 wherein the organo-
leptic property of the food product is selected from the group
consisting of: blister level, toast points, taste, texture, crisp-
ness, crunchiness, peak break force.
32. A method of monitoring a food product process under
changing operating conditions, wherein a food product has
been exposed to an electromagnetic radiation source; wherein
further a sequence of more than one multivariate image of the
food product has been captured 1n the visible spectrum, each
image consisting of an 1mage array having a plurality of pixel
clements, each pixel element having intensity values gener-
ally of the colours red, green, and blue defining three dimen-
sions for the image array; wherein further a multi-way prin-
cipal component analysis has been applied to the image array
to reduce the dimensions of the image array to a first t,-t,
score space; wherein further an area 1n said first t,-t, score
space has been masked which excludes background from the
image array; wherein further the multivaniate images have
been projected to said first t,-t, score space and pixels which
lie outside said area have been removed to create pure product
images; wherein further a multi-way principal component
analysis has been applied to the pure product images to reduce
the dimensions of the pure product images to a second t, -t,
score space; wherein said method consists of the steps of:
creating an organoleptic feature vector from said second
t,-t, score space;

performing a regression method to correlate the organolep-
tic feature vector with an organoleptic property of the
food product; and

creating an output of the organoleptic property for continu-

ous monitoring and feed back control of the operating
conditions of the process.

33. A method according to claim 32 wherein one or more
other physical process measurements are combined with
information contained in the organoleptic feature vector to
correlate the physical process measurements with the orga-
noleptic property.

34. A method according to claim 33 wherein said physical
process measurement 1s one selected from the group consist-
ing of: chip moisture content, chip o1l content, chip weight per
ten, dough moisture.

35. A method according to claim 32 wherein one or more
acoustic measurements of a characterizing product are com-
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bined with information contained in the organoleptic feature
vector to correlate the acoustic measurements with the orga-
noleptic property.

36. A method according to claim 32 wherein one or more
acoustic measurements of a characterizing product and one or
more other physical process measurements arc combined
with information contained in the organoleptic feature vector
to correlate said acoustic measurements and said physical
process measurements with the organoleptic property.

37. A method according to claim 33 wherein a regression
method 1s performed on the physical process measurements
before creating the output of the organoleptic property.

38. A method according to claim 35 wherein a regression
method 1s performed on the acoustic measurements before
creating the output of the organoleptic property.

39. A method according to claim 32 wherein the organo-
leptic property of the food product is selected from the group
consisting of: blister level, toast points, taste, texture, crisp-
ness, crunchiness, peak break force.

40. A method for product organoleptic property monitoring,
in an on-line environment wherein a food product 1s exposed
to an electromagnetic radiation source; wherein said method
consists of the steps of:

imaging a product with at least one organoleptic property;

extracting background features from the image;

extracting any coating features of the product from the
image;

creating an image score plot of the at least one organoleptic

property,

correlating the product organoleptic property to a trainming,

sample score plot by statistical regression; and
predicting the occurrence of the organoleptic property 1n
the imaged product.

41. The method of claim 40 wherein the product organo-
leptic property 1s the occurrence, quantity, variance, charac-
teristic, level, or degree of the product organoleptic property
in the imaged product.

42. The method of claim 40 wherein said predicting further
comprises predicting the occurrence, concentration, or level
ol the organoleptic property on the imaged product by calcu-
lating within subsections of the whole 1image.

43. The method of claim 40 wherein the occurrence pre-
diction 1s for the presence or absence of the organoleptic
property.

44. The method of claim 40 wherein the organoleptic prop-
erty 1s imaged by at least one of the group consisting of: visual
light spectrum 1imaging, infrared spectrum 1maging, ultravio-
let spectrum 1maging, audible sound wave detection, 1nau-
dible sound wave detection, mass spectroscopy and chroma-
tography.

45. The method of claim 40 wherein an 1image acquisition
apparatus, a computer processor and computer program for
image processing are utilized to reduce the methodology to
on-line practice for a product manufacturing process.

46. The method of claim 40 further consisting of automati-
cally adjusting an on-line manufacturing process with closed
loop control.

47. The method of claim 40 further consisting of providing,
quality control images with visualization software for a prod-
uct manufacturing process thereby providing one or more of
the group consisting of: process monitoring, process control,
process alarms or defective product aborting.

48. The method of claim 40 wherein the food product 1s
either bedded or not bedded.

49. The method of claim 48 wherein a predicted specific
bed depth 1s used to augment the measurement of other prod-
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uct features which are affected by variable bed depth and
distance from the imaging device.

50. The method of claim 40 wherein a specific bed depth
model 1s used to predict a bed depth of the product.

51. A method according to claim 40 wherein one or more
other physical process measurements are combined with
information contained 1n an organoleptic feature vector to
correlate the physical process measurements with the orga-
noleptic property.

52. A method according to claim 51 wherein a regression
method 1s performed on the physical process measurements
before creating an output of the organoleptic property.

53. A method according to claim 51 wherein said physical
process measurement 1s one selected from the group consist-
ing of: chip moisture content, chip o1l content, chip weight per
ten, dough moisture.

54. A method according to claim 40 wherein one or more
acoustic measurements ol a characterizing product are com-
bined with information contained 1n an organoleptic feature
vector to correlate the acoustic measurements with the orga-
noleptic property.

55. A method according to claim 54 wherein a regression
method 1s performed on the acoustic measurements before
creating an output of the organoleptic property.

56. A method according to claim 40 wherein one or more
acoustic measurements of a characterizing product and one or
more other physical process measurements are combined
with information contained 1n an organoleptic feature vector
to correlate said acoustic measurements and said physical
process measurements with the organoleptic property.

57. A method according to claim 40 wherein the organo-
leptic property of the food product is selected from the group
consisting of: blister level, toast points, taste, texture, crisp-
ness, crunchiness, peak break force.

58. A method of monitoring a food product process under
changing operating conditions, wherein a food product has
been exposed to an electromagnetic radiation source; wherein
turther a sequence of more than one multivariate image in the
clectromagnetic spectrum has been captured, each image
consisting of an 1image array having a plurality of pixel ele-
ments, each pixel element having intensity values of at least
one wavelength 1n the electromagnetic spectrum defining at
least three dimensions for the 1mage array; wherein further a
multi-way principal component analysis has been applied to
the image array to reduce the dimensions of the image array to
a t,-t, score space; wherein said method consists of the steps

of:

creating a feature vector from said t, -t, score space;

performing a regression method to correlate the feature
vector with a property of the food product; and

creating an output of the properly for continuous monitor-
ing and feed back control of operating conditions of the
pProcess;

wherein one or more other physical process measurements
are combined with information contained in the feature
vector to correlate the physical process measurements
with the property.
59. A method according to claim 58 wherein a regression
method 1s performed on the physical process measurements
betore creating the output of the property.

60. A method according to claim 58 wherein said physical
process measurement 1s one selected from the group consist-
ing of: chip moisture content, chip o1l content, chip weight per
ten, dough moisture.

61. A method according to claim 58 wherein one or more
acoustic measurements of a characterizing product are com-
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bined with information contained in the feature vector to
correlate the acoustic measurements with the property.

62. A method according to claim 61 wherein a regression
method 1s performed on the acoustic measurements before
creating the output of the property.

63. A method according to claim 58 wherein one or more
acoustic measurements of a characterizing product and one or
more other physical process measurements are combined

42

with information contained in the feature vector to correlate
said acoustic measurements and said physical process mea-
surements with the property.

64. A method according to claim 58 wherein the property
of the food product 1s selected from the group consisting of:

blister level, toast points, taste, texture, crispness, crunchi-
ness, peak break force.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

