12 United States Patent

US007647583B2

(10) Patent No.: US 7,647,583 B2

Zeidman et al. 45) Date of Patent: Jan. 12, 2010

(54) METHOD AND APPARATUS FOR 6,658,633 B2* 12/2003 Devinsetal. .................. 716/5

EMULATING A HARDWARE/SOFTWARE 6,971,046 B1* 11/2005 Johnsonetal. ............... 714/35

SYSTEM USING A COMPUTER 2004/0205755 Al* 10/2004 Lescouetetal. ............ 718/100
OTHER PUBLICATIONS

(76) Inventors: Robert M Zeidman, 7599 Squirewood
Way, Cupertino, CA (US) 95014-5014;
Daniel R Hafeman, 198 Donner Ct.,
Sunnyvale, CA (US) 94086

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 790 days.

(21) Appl. No.: 10/249,938
(22) Filed: May 20, 2003

(65) Prior Publication Data
US 2004/0237062 Al Nov. 25, 2004

(51) Imt. CL.

GO6F 9/44 (2006.01)

GO6F 9/45 (2006.01)

GO6F 9/46 (2006.01)
(52) US.CL ... 717/121; 717/138; 719/327
(58) Field of Classification Search ................. 717/136,

717/138; 703/28
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

“Analysis of hardware and software approaches to embedded in-
circuit emulation of microprocessors”, Chen et al., Jan. 2002, pp.
127-133. Online retrieved at <http://delivery.acm.org/10.1145/
570000/563948/pl127-chen.pdi>.*

“The A to Z of SoCs”, Bergamaschi et al., Nov. 2002, pp. 790-798.
Online retrieved at <http://delivery.acm.org/10.1145/780000/
774689/p79 1-bergamaschi.pdf>.*

“A bypass scheme for core-based system fault testing”, Nourani etal.,
Feb. 1998, pp. 979-980. Online retrieved at <http://delivery.acm.org/
10.1145/370000/368562/p979-nourani.pdf>.*

* cited by examiner

Primary Examiner— 1uan Q Dam
Assistant Examiner—Thuy Dao

(57) ABSTRACT

A platform for running embedded software using an mnexpen-
stve standard personal computer 1s disclosed. A particular
embodiment includes a compiler assist component and a runt-
ime component. The compiler assist component operates 1n
conjunction with a standard personal computer compiler to
compile an embedded system application to run on a conven-
tional personal computer. The runtime component executes
on the personal computer and operates 1n conjunction with
the standard operating system drivers to allow an emulated
system to communicate with real hardware connected to the
personal computer or to virtual hardware that 1s simulated on
the personal computer.

12 Claims, 9 Drawing Sheets

PC

Runtime

component
1006

6,188,975 B1* 2/2001 Gay ....cccoviviiiiiiiinnnn.n. 703/22
6,427,224 B1* 7/2002 Devinsetal. .................. 716/4
6,615,167 B1* 9/2003 Devinsetal. ................. 703/28
1000
1001
Real-Time
1002 Application
RTOS
1003
OS
(e.g., Windows or
| Linux)

I

1007
hardware Peripheral 1
driver 1
. 1009
. 1010
hardware Peripheral n
driver n




U.S. Patent Jan. 12, 2010 Sheet 1 of 9

100 101 102
Real-Time Applicatio l

RTOS

Figure 1

200 201 202

Real-Time Applicatio .
RTOS ‘

0S
(e.g., Windows or Linux)

Figure 2

103

203

L Ly
r
1 1' ]

b
el
'A%

b T

.,

T 4
3
4 -

. -l . .

A
'ﬁ"'l ., v
Tz
“m

p Tl
e
W
gy

i .

------
PP
hhhhh
' T -

US 7,647,583 B2

104
105

Peripheral 1
106 107
Peripheral n

204

205
Peripheral 1

206 207

Peripheral n



U.S. Patent Jan. 12, 2010 Sheet 2 of 9 US 7,647,583 B2

300 301 302 303 304

Modified
embedded
system
source

ompilea
embedded
system

object code

Compiler
Assist

Component

Compiler

Figure 3

400

,__l 4011 ,___l 402

I:river routine File name
Serial port serlial.cC
Ethernet ether.c
Keyboard kevboard.cC
Monilor montlor. o
spcaker spcaker.cC

Figure 4



U.S. Patent Jan. 12, 2010 Sheet 3 of 9 US 7,647,583 B2

500

501 502

Runtime component APIs File name

Serial portl PCserlal.c
Lbthernet ’Cether.cC
Keyboard PCkeyboard.C
Monitor PCmonitor.c
Speaker PCspeaker.c

Figure 5



U.S. Patent Jan. 12, 2010 Sheet 4 of 9 US 7,647,583 B2

601

START

Set driver list pointer to beginning
of driver list

| 602

611
603

End of YES DONE

driver list?

NO | 604

y [/

l Read driver
description inthe |
driver list

l /_l 605
| Set_AP\ list pointer to beginqing pf
l runtime component AP| routine list ~
Lﬁ 612
~ Increment YES >

driver list |« (no substitution End of API
pointer | routine list?

T A

Read PC driver |

description in the
APl routine list

| Gos | 609
/ | 610 613
Copy API Rename
source code driver file to [YES Increment
file to driver temporary APl list
file name name pointer

Figure 6



U.S. Patent Jan. 12, 2010 Sheet 5 of 9 US 7,647,583 B2

700
%% This is the normal header comments for the routine kXX
1% % _ K 2 701
kA % _ TELY
3k o | otk ok /
/¥** The [ollowing information is required for the present invention TREX]
/*** Driver information: 702
Name:* Fthernet driver
Version: 1.01
Hardware: AMD Am79C976
Other:
EtherDriver(ml, m2, 3, out); 703
t
// body of codc
3
1

Figure 7



U.S. Patent Jan. 12, 2010 Sheet 6 of 9 US 7,647,583 B2

START 801

802

Get first file of all
311
source code files
Get next file of all
source code files

803

Read file unti! driver tound
or end of file reached

I

Found a NO
driver?

YES

More

SOUrce
code files?

YES | 805
Set API list pointer to NO 813
beginning of API routine list
DONE
806

End of API

(no substitution) ~~Joutine list?

RO7

Read APl routine
description in the AP
routine hist

314
08
Increment
Driver NO AP list
match? pointer
310 YES 809

Comment out driver

routine from source
file

Insert APl routine
into source file

Figure 8



U.S. Patent Jan. 12, 2010 Sheet 7 of 9 US 7,647,583 B2

G01 902 903 903 904

OS (e.qg., Windows or Linux) Runtime component
Standard hardware drivers

Figure S
1000
1001 PC
Real-Time 1004
1002 Application I N\
‘ Runtime I
RTOS component 006
1003 A 1007
|‘7 hardware Peripheral 1
0S | drl--Yer 1 —
(e.g., Windows or | :
| . 1010

Linux)

o hardware

| I driver n

Figure 10

Peripheral n




U.S. Patent Jan. 12, 2010 Sheet 8 of 9 US 7,647,583 B2

Application program 1Ol

Operating system 1102

Upper-level class filter 1103
: driver I
r : '
| Upper-leve! device filter . 1104
i driver :
Device drivers 1105
:. 1
i Lower-levell class filter 1106
: driver i
. Lower-level device filter . 1107
driver
Bus drivers T e fltar A W '
Bus filter driver 1108

1 Bus driver : ‘ 1109

Figure 11




U.S. Patent Jan. 12, 2010 Sheet 9 of 9 US 7,647,583 B2

Application program
1201

Operating system Runtime component

120

1202

1203

v Upper-level filter drivers

1204

1205

1206 FJ{ ___________________________ !

Bus driver

1207

Figure 12



US 7,647,583 B2

1

METHOD AND APPARATUS FOR
EMULATING A HARDWARE/SOFTWARE
SYSTEM USING A COMPUTER

BACKGROUND OF INVENTION

The present invention relates to tools for software devel-
opment. In particular, the present invention relates to a tool
for developing embedded systems.

Microprocessors are showing up in almost every imagin-
able piece of hardware, from computer monitors to network
routers to automobiles to intelligent household appliances.
This proliferation means that more software must be devel-
oped by more programmers. This software 1s closely tied to
the system hardware.

Because of this, software development 1s usually delayed
until the system hardware 1s available. Software developers
would like to write, test, and debug soitware 1n parallel with
hardware development.

Several methods are currently available to allow software
to be run and debugged before the hardware system 1s avail-
able. The programmer can use a demo board, a hardware
emulator, a re-targeting compiler, an instruction level simu-
lator, or software models.

A demo board 1s typically provided by a processor manu-
facturer for the purpose of debugging software before hard-
ware 1s available. A demo board includes the same processor
as the target system hardware. A demo board also includes
memory and a number of standard hardware interfaces. Soft-
ware can be loaded 1into memory and run by the processor on
the demo board. A demo board can be connected to other
systems through 1ts standard interfaces.

A major drawback of a demo board 1s that 1t can only
support specific, standard interfaces. If interfaces on the hard-
ware system being developed are not identical to those on the
demo board, the system interfaces cannot be tested. If the
hardware on the demo board is not 1dentical to the hardware
in the system begin developed, the system software will need
to be modified 1 order to use 1t on the demo board. As larger
numbers of modifications are required for the software to run
on the demo board, a developer will spend more time later
debugging the real system solftware on the real target system
hardware, making the demo board a less effective tool.

A hardware emulator 1s a special purpose computer that
simulates hardware. Companies such as Mentor Graphics,
Quickturn Design Systems, and Axis Systems sell hardware
emulators. To use a hardware emulator, a developer first cre-
ates a hardware design using a hardware description language
such as Verilog or VHDL. Typically, the design describes
system hardware at a register transfer level (RTL) or at a gate
level, though 1t 1s also possible to describe the system hard-
ware at a behavioral level. The description 1s compiled and
downloaded 1nto the hardware emulator. The hardware emu-
lator then executes the functionality of the hardware. The
hardware emulator can emulate a chip, a board, or an entire
system. The hardware emulator has input and output connec-
tors, allowing 1t to emulate simple interfaces to other hard-
ware and other systems. The hardware emulator can also plug
into a target board or target system and control the hardware
interfaces of the target board or system. Software can be
loaded 1nto memory on the target board or system and the
hardware emulator will run the software just as the real sys-
tem hardware will.

There are several drawbacks to using a hardware emulator
for software development. First, a hardware emulator runs
one or two orders of magnitude slower than the real system
hardware. Real-time embedded systems have timing require-

10

15

20

25

30

35

40

45

50

55

60

65

2

ments and responses to specific events must occur within a set
time limit. A hardware emulator cannot test this important
timing function o the software. Also, external hardware often
includes timeouts that cause the hardware to give up and
assume that there 1s a problem with the system 11 a device does
not respond to an event within a certain time. In many cases,
a hardware emulator cannot respond in time and therefore
cannot be connected to an external system. Because of the
slow speed of hardware emulators, only a limited number of
instruction cycles can be executed. Also, acomplete hardware
design must be loaded 1nto the emulator, so a hardware emu-
lator can only be used after the hardware design 1s nearly
complete. Thus, software debugging must still wait until an
advanced stage of the hardware design. Hardware emulators
also tend to be very expensive.

A re-targeting compiler 1s software that runs on a host
computer with a particular processor. A re-targeting compiler
takes high-level code written 1n a language like C, C++, or
Pascal and compiles it into low-level machine code for a
different processor on the target system hardware. For
example, with a re-targeting compiler, high-level code writ-
ten for an ARM processor can be compiled for a Pentium
processor, allowing the code to run on a conventional per-
sonal computer (PC).

A real-time operating system (RTOS) 1s defined as an
operating system designed specifically for use in real-time
systems. A real-time system 1s defined as any computer sys-
tem, embedded or otherwise, that has timeliness require-
ments. The following question can be used to distinguish
real-time systems from the other types of systems: “Is a late
answer as bad, or even worse, than a wrong answer?”” In other
words, what happens 11 the computation doesn’t finish in
time? If nothing bad happens, 1t 1s not a real-time system. IT
someone dies or the mission fails, 1t 1s generally considered
“hard” real-time, which 1s meant to imply that the system has
hard deadlines. Everything in between 1s a “soit” real-time
system.

The main disadvantage of using a re-targeting compiler to
debug software for a real-time system 1s that it cannot be used
for testing hardware interfaces. The compiled code must be
run and debugged on a host hardware system that 1s different
from that of the target system hardware. Even i1 the interfaces
were similar on both systems, the driver soitware required to
access the interfaces differs substantially on each system.
Controlling interface hardware requires long sequences of
code. A re-targeting compiler works at too low a level to
convert a hardware device driver used by one system to one
that will work on another system.

An 1nstruction set simulator 1s software that runs on a
computer and interprets low-level instructions for another
computer, allowing software written for one system to be
executed on a different system that 1s easily available. For
example, with an mstruction level simulator, software can be
written for an embedded system that uses an ARM processor.
There are currently no general-purpose computers based on
ARM processors. An 1astruction set simulator running on a
PC that uses an Intel Pentium processor reads each low-level
ARM instruction and executes one or more low-level Pentium
instructions to perform the same action as the ARM processor
would.

An 1nstruction set simulator 1s useful for debugging code.
However, like a re-targeting compiler, 1t 1s not useful for
testing hardware intertaces. The hardware of the computer on
which an instruction set simulator 1s running often 1s substan-
tially different from that of the system hardware. Even if the
interfaces are similar, the driver software required to access
the interfaces on the computer running the instruction set




US 7,647,583 B2

3

simulator will be different from the driver software required
to access the interfaces on the actual target system. Driver
soltware requires long sequences of code to control interface
hardware. An 1nstruction set simulator works at too low a
level to convert a hardware device driver used by one system
to a hardware device driver that will work on another system.

An 1nstruction set simulator 1s still much slower than the
real target system because each instruction must be read and
emulated 1n software. As stated earlier, real-time embedded
systems have timing requirements, and responses to specific
events must occur within a set time limit. A hardware emula-
tor cannot test this important timing function of the software.
Also, external hardware often has timeouts that cause the
hardware to give up and assume. that there 1s a problem with
the system 11 a device does not respond to an event within a
certain time. In many cases, an istruction set simulator can-
not respond 1n time and therefore cannot communicate with
an external system.

Soltware models of hardware can also be used to debug
software. These models run in a simulator on a general-
purpose computer. Software models act as virtual hardware
with virtual interfaces. Software can be loaded into the
memory of these models and the model of the processor will
run the code in the model of the memory. The processor
model can access models of interface devices, which can
communicate with models of real world systems. Software
models can model very large systems. Software can be run on
these models and the effects of the software on very large
systems can be observed.

One disadvantage of soitware models 1s that models are
much slower than real hardware. Critical timing cannot be
examined using software models. Also, models must be writ-
ten for each piece of hardware that needs to be tested, includ-
ing the processor, memory, and all hardware interfaces. Mod-
cls must be written to simulate real-world data coming into
the soitware models. Finally, the accuracy of the models 1s
open to question. It 1s very difficult to create a high-level
software model that 1s even close to 100% accurate.

SUMMARY OF INVENTION

The present mvention consists of an apparatus and a
method that turns an inexpensive, conventional personal
computer (PC) into a platform for running embedded sofit-
ware 1n real time. In one embodiment, the present invention
consists of two software components. The first component 1s
the compiler assist software. This component works with a
standard PC compiler to compile an embedded system appli-
cation 1nto executable code that will run on a conventional
PC. The second component 1s the runtime software. This
component runs on a PC and works with conventional oper-
ating system (OS) hardware driver software to allow an emu-
lated system to communicate with real hardware that 1s con-
nected to the PC or to virtual hardware that1s simulated on the
PC.

For example, 11 the embedded system soitware that 1s being,
emulated needs to communicate to the real world via a senal
port, the compiler assist component replaces the embedded
system software’s serial port driver with a new driver when
the embedded system software 1s compiled. During execu-
tion, the runtime component handles commumnication
between the PC serial port, driver and the new driver without
letting the PC operating system interfere. From the viewpoint
of the embedded system software, when 1t needs to send or
receive data, 1t calls 1ts serial port driver. From the viewpoint
of any external device, serial data 1s transmitted and recerved
from the embedded system being emulated by the PC, as

10

15

20

25

30

35

40

45

50

55

60

65

4

expected. From the viewpoint of the PC operating system,
there 1s no activity on the serial port. In this way, all of the
hardware 1nterfaces of the PC are available to the embedded
system soltware.

Similarly, the embedded system software can communi-
cate over virtual interfaces. For example, a Fibre Channel
interface can be modeled on the PC. During compilation, the
compiler assist component replaces the embedded system
software’s Fibre Channel driver with a new driver. When the
embedded system software needs to send data through 1ts
Fibre Channel drniver during execution, the data is routed
through the runtime component to a model of a Fibre Channel
device running on the PC. Entire systems can be modeled on
the PC and used to test the functionality of the embedded
system soitware.

The present invention provides several unique features that
speed development and debug time of embedded systems.
These features are:

Hardware mimicking: Because the present invention
mampulates the data, 1t can change protocols to allow
one type of hardware peripheral to look like another. For
example, iI a new type of network interface 1s being
developed but 1s not yet available for a PC, the present
ivention can change packet formats on the fly, disas-
sembling and reassembling them, to emulate the new
interface.

Virtual peripherals: The present invention can create vir-
tual devices that exist only in software. Data can be
transmitted to and received from these virtual devices as
if they were actually connected to the real-time system.

Error injection: Error detection and correction can be
tested with the present invention because the present
invention can inject various kinds of errors and incorrect
data into the data stream and record the effect on the
RTOS, the embedded system application software, and
the hardware peripherals.

Data logging: The present invention facilitates debugging
because it can record long data transiers that an engineer
can use to determine where and when errors occur.

Further features and advantages of various embodiments of
the mvention are described 1n the detailed description below,
which 1s given by way of example only.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accompa-
nying drawings of the preferred embodiment of the invention,
which, however, should not be taken to limit the invention to
the specific embodiment but are for explanation and under-
standing only.

FIG. 1 1s a high-level diagram of a real-time embedded
system.

FIG. 2 1s a high-level diagram of a conventional personal
computer (PC) using the present invention to emulate an
embedded system.

FIG. 3 illustrates how the compiler assist component of the
present invention assists the compiler by modifying the
embedded system-software before compilation.

FIG. 4 1s a l1st, maintained by the compiler assist compo-
nent of the present invention, of the driver routines that are
used 1n the embedded code and of the files 1n which the source
code for these routines are stored.

FIG. 5 1s a list, maintained by the compiler assist compo-
nent of the present invention, of the PC API routines that are
available to 1t.




US 7,647,583 B2

S

FIG. 6 1s a flow chart that illustrates execution of one
embodiment of the compiler assist component of the present
ivention.

FIG. 7 1s an illustration of an example of driver routine
source code with headers that allow the compiler assist com-
ponent of the present invention to 1dentify 1t.

FIG. 8 1s a flow chart that illustrates execution of a second
embodiment of the compiler assist component of the present
imvention.

FI1G. 9 1llustrates the software architecture for embedded
soltware being emulated on a conventional PC by the present
invention.

FIG. 10 illustrates how the runtime component of the
present invention redirects accesses to and from standard OS
hardware drivers without affecting the OS.

FIG. 11 illustrates how an application program normally

accesses hardware peripherals through driver software, using
the Windows Driver Model (WDM) implementation of
Microsoit Windows as an example.

FIG. 12 1illustrates how the runtime component of the
present mvention allows the application soitware to bypass
the PC operating system and access the hardware peripherals
while still using the standard PC driver software.

DETAILED DESCRIPTION

The present invention consists of an apparatus and a
method that turns an inexpensive, conventional personal
computer (PC) into a platform that runs embedded software.
FIG. 1 1llustrates a target system that 1s a real-time system 100
consisting of both hardware and software. The software, run-
ning on a processor in the real-time system, has a real-time
operating system (RTOS) 103 that controls a number of inter-
faces, depicted 1n the drawing as 104 and 106, that connect to
a number of hardware peripherals, depicted in the drawing as
105 and 107. The RTOS 102 allocates time and resources to
the real-time application 101. This allows the real-time sys-
tem to communicate with a number of peripherals repre-
sented by 105 and 107, which might be computer monitors,
keyboards, mice, networking devices, serial devices, or other
types of peripherals.

In FIG. 2, a personal computer 200 1s used to emulate a
real-time system. A processor 1n the PC executes real-time
software application 201 on top of an RTOS 202 as it would
in the actual target system. In this emulation, the RTOS 202
runs as an application on top of the PC operating system (OS)
203 that executes on the processor 1in the PC. Normally, the
PC OS 203 would control all input and output of the computer
via a number of I/O interfaces represented by 204 and 206.
This situation would allow the computer to communicate
with a number of peripherals represented by 205 and 207,
which might be computer monitors, keyboards, mice, net-
working devices, serial devices, or other types of peripherals.
The present invention allows the RTOS 202 to communicate
directly with IO interfaces 204 and 206 without requiring the
OS 203 to be involved. In this way, the software acts similarly
to the system runming on the actual target hardware where the
RTOS 202 will have direct control of the hardware peripher-
als.

In one embodiment, the present invention consists of two
software components. The first component, the compiler
assist software, works 1n conjunction with a standard PC
compiler to modily and compile an embedded system appli-
cation to run on a conventional PC. The second component,
the runtime software, runs on a PC that works 1n conjunction
with standard operating system (OS) hardware drivers to

10

15

20

25

30

35

40

45

50

55

60

65

6

allow an emulated system to communicate with real hardware
connected to the PC or to virtual hardware that 1s stmulated on
the PC.

FIG. 3 shows how the compiler assist component 301 of the
present 1nvention works 1n conjunction with a standard PC
compiler 303. The compile assist component 301 1inspects the
embedded system source code 300 and finds the source code
tfor all hardware driver routines. These hardware driver rou-
tines may be 1n the RTOS 202 or in the application software
201. The compiler assist component 301 converts these hard-
ware driver source code routines to source code routines that
perform application program interface (API) calls to the runt-
ime component software of the present invention. The output
of the compiler assist component 301 1s modified source code
302, which contains the substituted hardware driver source
code routines. This modified source code 302 1s then com-
piled using a standard PC compiler 303, which produces
object code 304 that can be executed directly on the PC 200 as
an application running on top of the PC OS 203.

For example, an Ethernet interface driver in the embedded
system source code 300 would be substituted with an API call
to the runtime component, specifying an Ethernet interface,
in the modified source code 302. Also, one interface could be
substituted for another for emulation purposes. For example,
if the embedded system source code 300 specifies a hardware
driver for a Fibre Channel device and no Fibre Channel driver
1s available for the PC, the compiler assist component 301
could substitute an API call to the runtime component speci-
tying a Fibre Channel driver 1in the modified source code 302.
The runtime component of the present invention would then
mampulate Ethernet data from the Ethernet interface to emu-
late a Fibre Channel device. In this way, the system could still
be emulated and connected to a live network for testing, even
though no Fibre Channel device 1s available.

FIG. 4 shows a list 400 that 1s maintained by one embodi-
ment of the present invention. This list contains the driver
routines 401 that are used 1n the embedded code and the files
402 1n which the source code for these routines are stored.
This list may be manually maintained by the programmer or
it may be automatically generated by a software utility pro-
gram. FIG. 5 shows a list 500 that the compiler assist com-
ponent maintains of the runtime component API routines 501
that are available to 1t and of the files 502 1n which the source
code for these API routines are stored. The compiler assist
component reads through the list of driver routines 401 and
substitutes the corresponding runtime component API rou-
tines 501. This substitution may simply be accomplished by
renaming the original driver files 402 to temporary names and
copying the runtime component API files 502 to take their
place as described by the flow chart in FIG. 6.

In this embodiment, the compiler assist component 1s a
program that follows the tflow shown 1n FIG. 6. The program
starts 1n block 601. The program proceeds to block 602 and
sets the driver list pointer to the beginning of the driver list.
The program then proceeds to block 603 to determine
whether the end of the driver list has been reached. I the end
has been reached, the program proceeds to block 611 and
terminates. If the end has not been reached, the program
proceeds to block 604 and reads the next driver description in
the driver list. The program proceeds to block 6035 and sets the
API poter to the beginming of the runtime component API
routine list. The program proceeds to block 606 and tests for
the end of the runtime component API routine list. I the end
has been reached, the program proceeds to block 612 where
the driver list pointer 1s incremented and then returns to block
603 to test for the end of the driver list. In this case the
program does not make a substitution for that particular driver




US 7,647,583 B2

7

in the original code. Optionally, the program can signal to the
user an error or a message that this particular driver cannot be
emulated.

If the end of the runtime component API routine list has not
been reached 1n block 606, the program proceeds to block 607
and reads the description of the next runtime component API
routine description in the runtime component API routine list.
The program proceeds to block 610 where 1t tests whether the
runtime component API routine description matches the
original driver description. If there 1s no match, the program
proceeds to block 613 where 1t increments the API list pointer,
then returns to block 606 and continues to read more runtime
component API routine descriptions, looking for a match.

If there 1s a match 1n block 610, the program proceeds to
block 609 where it renames the file containing the original
driver, giving the file a temporary name. The program pro-
ceeds to block 608 where 1t copies the runtime component
API routine source code file, giving it the name that the
original driver source code file had before 1t was renamed 1n
block 609. The program then proceeds to block 612 where the
driver list pointer 1s incremented and then returns to block 603
to continue reading more driver descriptions from the original
code 1n order to substitute runtime component API routines.

In a second embodiment, the compiler assist component
examines the source code and finds each driver routine by
searching for a specific header that a programmer has written
to describe the task. FIG. 7 shows an example of driver
routine source code. The driver source code 700 contains
three sections. The first section 701 1s the normal header for
the routine. It contains comments that describe such things as
the date the routine was created, the date 1t was modified, the
author of the code, and a brief description of the fTunctionality
of the code. It 1s the header needed for the compiler assist
component ol the present invention. This section 702 contains
specific information that the compiler assist component uses
to determine which hardware this driver source code controls
and which equivalent PC API routine source code can be
substituted. This section 702 may contain information-about
the hardware that the driver 1s controlling, the revision num-
ber of the drniver, and other information that the compiler
assist component can use. The third section 703 1s the driver
source code that performs the necessary functions when com-
piled and executed.

The execution of the compiler assist component program in
this embodiment 1s 1llustrated by the flowchart in FIG. 8. The
program begins in block 801 and proceeds to block 802 where
the program gets the first file from a list of all source code
files. The program proceeds to block 803 where lines of the
file are read until driver source code 1s found or the end of the
file 1s reached. The program then proceeds to block 804 where
it tests whether 1t has found driver source code. If a driver has
not been found, then the end of the file has been reached and
the program proceeds to block 812 which checks for more
source files to be examined. I there are more source files, the
program proceeds to block 811 where the next source file 1s
retrieved and then returns to block 803. From block 812, 1t
there are no more source code files to examine, the program
proceeds to block 813 and terminates.

If a driver has been found 1n the source code file at block
804, the program proceeds to block 805 where the API list
pointer 1s set to the beginning of a list of all PC API routines.
The program proceeds to block 806 where the API list pointer
1s tested to determine whether the end of the list of PC API
routines has been reached. If the end has been reached, the
program returns to block 803. In this case, no driver 1s sub-
stituted for the one found 1n the original source code. Option-
ally, a warning message may be displayed to the user.

10

15

20

25

30

35

40

45

50

55

60

65

8

I1 the end of the PC API routine list has not been reached 1n
block 806, the program proceeds to block 807 and the next PC
API routine description in the list 1s read. The program pro-
ceeds to block 808 where the program tests whether the driver
description from the source code matches the API routine
description read from the PC API routine list. If there 1s no
match, the program proceeds to block 814 where the API list
pointer 1s incremented and then returns to block 806. 11 the
description does match 1n block 808, the program proceeds to
block 809 where the original source code driver routine 1s
commented out. The program then proceeds to block 810
where the selected PC API routine source code 1s placed 1nto

the original source code file. The program then returns to
block 803.

The runtime component software resides on the PC; its job
1s twolold, depending on whether the direction of data 1s to or
from a hardware peripheral. When the RTOS calls the hard-
ware driver to send data, the runtime component 1s the pro-
gram that actually 1njects the data into the driver without the
need for the underlying PC operating system to know about 1t.
Similarly, when the device returns data through the hardware
driver, the runtime component extracts the data and sends 1t to
the RTOS without the knowledge of the underlying PC oper-
ating system. The runtime component allows the present
invention to take advantage of standard, tully tested hardware
drivers 1n the standard PC operating system.

The runtime component also allows data to be buifered 1n
the case where the RTOS, running on the PC, has latencies
that will not occur 1n the real system. Data coming into the
system can be bufiered when the peripheral hardware 1s fast
and the emulated RTOS 1s slow. Data going out of the system
can be bulfered when the hardware peripheral i1s a slow pro-
totype, emulation, or simulation of a device that 1s still being
tested and debugged.

As shown 1 FIG. 9, the application program 901 for a
real-time system runs on top of the RTOS 902. The RTOS
902, 1n turn, runs on top of the PC operating system 903,
which can be Windows, Linux, or any other PC operating
system. At the same time, when the RTOS 902 attempts to
access hardware in the PC, the request goes through the
runtime component software 904, which accesses the hard-
ware drivers 905 of the operating system and bypasses the PC
operating system 903. The application software 901 acts as
though 1t 1s running on the final target hardware system 1t 1s
controlled by the RTOS 902 and 1s able to access the PC

hardware directly.

FIG. 10 shows another representation of the different parts
of a real-time system being emulated on a PC 1000 and how
they interact with the runtime component 1004 of the present
invention. The application program 1001 for a real-time
embedded system runs on top of the RTOS 1002. The RTOS
1002, in turn, runs on top of the PC operating system 1003,
which can be Windows, Linux, or any other PC operating
system. At the same time, when the RTOS 1002 attempts to
access a hardware peripheral 1007 via an I/O interface 1006
on the PC, the request goes through the runtime component
software 1004, which accesses the hardware drivers 1005 and
bypasses the PC operating system 1003. The application soft-
ware 1001 acts as though it 1s running on the final hardware
system 1t 1s controlled by the RTOS 1002 and 1s able to access
the PC hardware peripherals 1007 directly.

FIG. 11 shows how an application program normally
accesses hardware peripherals through driver software.
Application program 1101 makes a call to the hardware driver
software through an API call to the operating system 1102,
which then accesses the hardware driver software.



US 7,647,583 B2

9

FIG. 11 also shows the stack for a standard driver for the
Microsoit Windows 2000 PC operating system. This standard
stack 1s called the Windows Driver Model, or WDM. It con-
sists of bus drivers, function drivers, and filter drivers, which
are defined 1n the following paragraphs.

Bus drivers 1109 drive an I/O bus and provide per-slot
functionality that is device independent. A bus driver services
a bus controller, adapter, or bridge. Bus drivers are required
drivers; there 1s one bus driver for each type of bus on a
machine. Microsoit provides bus drivers for most common
buses.

Function drivers 1105 drive an individual device. A func-
tion driver 1s the main driver for a device. A function driver 1s
typically written by the device vendor and 1s required. It adds
the high level functionality to a device. For example, 1 an
engineer were developing a USB printer, the function driver
would drive the printer but would not be aware of the USB
protocols of the bus driver.

Filter drivers 1103, 1104, 1106, 1107, and 1108 filter I/O

requests for a device, a class of device, or a bus. The specific
filter drivers are described below.

A bus filter driver 1108 typically adds features to a bus and
1s supplied by Microsoit or a system OEM. There can be
any number of bus filter drivers for a bus. For USB, for
example, the bus filter driver adds the necessary func-
tions to read and write the USB controller chip.

Lower-level filter drivers 1106 and 1107 typically modify
the behavior of device hardware. They are optional and
there can be any number of lower-level filter drivers for
a device.

Upper-level filter drivers 1103 and 1104 typically provide
additional features for a device. They are also optional.

FIG. 12 shows how the runtime component of the present

invention allows the application 1201 to bypass the PC oper-
ating system 1202 and access the hardware peripherals while
still making use of the standard PC driver software. The
application program 1201 makes a call to the hardware driver
soltware through an API call to the runtime component 1208
of the present invention rather than through an API call to the
PC operating system 1202. The runtime component 1208 can
insert and extract data at any point in the drniver stack to
retrieve data from a hardware peripheral or to send data to a
hardware peripheral.

The process for creating WDM drnivers 1s described in
detail 1n the book “Writing Windows WDM Device Drivers”

by Chris Cant, published by CMP Books. Writing software to
insert data into a WDM driver and extract data from a WDM
driver can be learned from the concepts explained 1n this
book. Methods for inserting data into other drivers and
extracting data from drivers 1s explained in the following
patent applications by inventor Robert Zeidman: “Apparatus
And Method For Connecting A Hardware Emulator To A
Computer Peripheral,” application Ser. No. 10/158,772 filed
on May 31, 2002, and “Apparatus And Method For Connect-
ing Hardware To A Circuit Stmulation,” application Ser. No.
10/158,648 filed on May 31, 2002.

Various modifications and adaptations of the operations
described here would be apparent to those skilled 1n the art
based on the above disclosure. Many variations and modifi-
cations within the scope of the present invention are therefore
possible. The present invention is set forth by the following
claims.

We claim:
1. A method comprising:

providing a first operating system configured to operate 1n
a first computer system;

10

15

20

25

30

35

40

45

50

55

60

65

10

providing first computer code configured to operate on top
of said first operating system, said first operating system
being configured to control physical nput/output
devices on the first computer system via {first device
drivers 1n the first computer code;

providing a second operating system, different from the
first operating system, configured to operate 1n a second

computer system, said second operating system being
configured to control physical input/output devices on
the second computer system via second device drivers;

providing an executable runtime component configured to
take control of the physical mput/output devices on the
second computer system from the second operating sys-
tem using the second device drivers that are normally
controlled by the second operating system;

moditying said first computer code by replacing the first
device drivers 1n said first computer code with substi-
tuted device drivers, the substituted device drivers being
configured to call said executable runtime component at
runtime;

executing said first operating system and said modified first
computer code on top ol said second operating system 1n
said second computer system; and

using said executable runtime component to bypass said
second operating system and to take control of the physi-
cal imnput/output devices on the second computer system
using the second device drivers that are normally con-
trolled by the second operating system when said modi-
fied first computer code executes said substituted device
drivers.

2. The method of claim 1 wherein replacing the first device

drivers 1n said first computer code includes:

searching said first computer code for device drivers;

searching a list containing names of device drivers and
names of corresponding substitute device drivers;

finding a match between a name of the first device drivers
and a name of corresponding substitute device drivers
from said list; and

replacing the first device drivers with the substitute device
drivers that correspond to said matched substitute device
drivers from said list.

3. The method of claim 1 wherein replacing the first device

drivers 1n said first computer code includes:
searching said first computer code for device drivers;

searching a list containing descriptions of device drivers
and names of corresponding substitute device drivers;

finding a match between a description of the first device
drivers and a name of corresponding substitute device
drivers from said list; and

replacing the first device drivers with the substitute device
drivers that correspond to said matched substitute device
drivers from said list.

4. The method of claim 1, including;:

searching said first computer code for calls to device driv-

ers; and

substituting said calls to device drivers with calls to said

executable runtime component.

5. An article of manufacture comprising at least one
machine readable storage medium having one or more com-
puter programs stored thereon and operable on one or more
computing systems to:

provide a first operating system configured to operate 1n a

first computer system;

provide first computer code configured to operate on top of

said first operating system, said first operating system
being configured to control physical nput/output



US 7,647,583 B2

11

devices on the first computer system via first device
drivers 1n the first computer code;

provide a second operating system, diflerent from the first
operating system, configured to operate in a second
computer system, said second operating system being
configured to control physical input/output devices on
the second computer system via second device drivers;

provide an executable runtime component configured to
take control of the physical input/output devices on the
second computer system from the second operating sys-
tem using the second device drivers that are normally
controlled by the second operating system:;

modily said first computer code by replacing the first
device drivers in said first computer code with substi-
tuted device drivers, the substituted device drivers being
configured to call said executable runtime component at
runtime;

execute said first operating system and said modified first
computer code on top of said second operating system 1n
said second computer system; and

use said executable runtime component to bypass said sec-
ond operating system and to take control of the physical
input/output devices on the second computer system
using the second device drivers that are normally con-
trolled by the second operating system when said modi-
fied first computer code executes said substituted device
drivers.

6. The article of manufacture as claimed 1n claim 5 being
turther configured to:

search said first computer code for device drivers;

search a list containing names of device drivers and names
of corresponding substitute device drivers;

find a match between a name of the first device drivers and
a name of corresponding substitute device drivers from
said list; and

replace the first device drivers with the substitute device
drivers that correspond to said matched substitute device
drivers from said list.

7. The article of manufacture as claimed 1n claim 5 being
turther configured to:

search said first computer code for device drivers;

search a list containing descriptions of device drivers and
names ol corresponding substitute device drivers;

find a match between a description of the first device driv-
ers and a name of corresponding substitute device driv-
ers from said list; and

replace the first device drivers with the substitute device
drivers that corresponds to said matched substitute
device drivers from said list.

8. The article of manufacture as claimed 1n claim 3 being
turther configured to:

search said first computer code for calls to device drivers;
and

substitute said calls to device drivers with calls to said
executable runtime component.

9. A computing apparatus comprising:
a first computer system;
a second computer system;

[

10

15

20

25

30

35

40

45

50

55

12

a first operating system, being executable on the first com-
puter system;

first computer code, being configured to operate on top of
the first operating system, said first operating system
being configured to control physical nput/output
devices on the first computer system via first device
drivers 1n the first computer code;

a second operating system, different from the first operat-
ing system, configured to operate 1n the second com-
puter system, said second operating system being con-
figured to control physical input/output devices on the
second computer system via second device drivers;

an executable runtime component, being configured to take
control of the physical input/output devices on the sec-
ond computer system from the second operating system
using the second device drivers that are normally con-
trolled by the second operating system:;

a code modification component, being configured to
modity said first computer code by replacing the first
device drivers 1n said first computer code with substi-
tuted device drivers, the substituted device drivers being
coniigured to call said executable runtime component at
runtime; and

said executable runtime component being used to bypass
said second operating system and to take control of the
physical mput/output devices on the second computer
system using the second device drivers that are normally
controlled by the second operating system when said
modified first computer code executes said substituted
device drivers.

10. The computing apparatus as claimed 1n claim 9 being

turther configured to:

search said first computer code for device drivers;

search a list containing names of device drivers and names
of corresponding substitute device drivers;

find a match between a name of the first device drivers and
a name of corresponding substitute device drivers from
said list; and

replace the first device drivers with the substitute device
drivers that correspond to said matched substitute device
drivers from said list.

11. The computing apparatus as claimed 1n claim 9 being

further configured to:

search said first computer code for device drivers;

search a list containing descriptions of device drivers and
names of corresponding substitute device drivers;

find a match between a description of the first device driv-
ers and a name of corresponding substitute device driv-
ers from said list; and

replace the first device drivers with the substitute device
drivers that corresponds to said matched substitute
device drivers from said list.

12. The computing apparatus as claimed 1n claim 9 being

turther configured to:

search said first computer code for calls to device drivers;
and

substitute said calls to device drivers with calls to said
executable runtime component.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

