US007620905B2
a2 United States Patent (10) Patent No.: US 7,620,905 B2
Boss et al. 45) Date of Patent: Nov. 17, 2009

(54) SYSTEM AND METHOD OF WINDOWS 6,369.837 Bl 4/2002 Schirmer
MANAGEMENT 6,654,036 B1* 11/2003 JONES wvvveeeerereeererennnn, 715/798

' 6,670,970 B1 12/2003 Bonura et al.

(75) Inventors: Gregory J. Boss, American Fork, UT 6,876,369 B2* 4/2005 Brownetal.o........ 715/768
(US); Rick A. Hamilton, II. 7,159,189 B2* 1/2007 Weingartetal. 715/799
Charlottesville, VA (US); Aroopratan D. 7257777 B1* 872007 Kanevskyetal. 715/794
Pandya, Hopewell Junction, NY (US); 7.418,668 B2* 82008 Lindsay etal. 715/781

Timothy M. Waters, Hiram, GA (US)

7,429,993 9/2008 Huloovvviviiiiiininininnn, 345/629

B2 *
(73) Assignee: International Business Machines 2001/0028368 A-_~ 10/2001 Swartz et al.
Corporation Armonk. NY (US) 2002/0180793 A1 12/2002 Broussard
" " 2002/0186257 Al 12/2002 Cadiz et al.
(*) Notice: Subject to any disclaimer, the term of this 2003/0117440 A 6/2003 Hellyar et al.

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 107 days.

(21) Appl. No.: 11/279,794 (Continued)

(22) Filed: Apr. 14, 2006 FOREIGN PATENT DOCUMENTS

JP 2002-3216% 1/2002

(65) Prior Publication Data

US 2007/0245256 Al Oct. 18, 2007
(51) Int.CL OTHER PUBLICATIONS

GOol’ 3/048 (2006.01) |
(52) U.S.Cl 15/768: 715/766- 715/781- EaseXP, TransWin v.1.0.3, Mar. 8, 2006, www.fileheap.com.*

715/789; 715/790; 7135/792; 715/793; 771155//779515; (Continued)

(58) Field of Classification Search 715/766, Primary Examiner— ladesse Hailu

715/768, 767, 781, 792, 793, 794, 795, 790, Assistant Examiner—Nicholas S Ulrich
715/780 (74) Attorney, Agent, or Firm—Willlam E. Schiesser;

See application file for complete search history. Greenblum & Bernstein
(56) References Cited (57) ABSTRACT
U.S. PATENT DOCUMENTS
5377317 A * 12/1994 Batesetal. 715/789 A system and method of windows management. The system
5,805,163 A * 9/1998 B.‘:lgIIHS 715/768 and me‘[hod Comprises at leas‘[one Window having informa_
5,841,434 A 11/1998 Arda et al. tion displayed thereon and a processor for determining an
0,949.452 A V71999 Gough et al. application type associated with the at least one window and
5,973,688 A * 10/1999 May ...coovvvvviiivinininnnn. 715/709 - - - -
rendering the at least one window at a predetermined opacity
0,072,489 A 6/2000 Gough et al level based on the application type
6,118427 A * 9/2000 Buxtonetal. 345/629 PP type.
6,333,753 B1* 12/2001 Hinckley 715/768
6,342,908 B1* 1/2002 Batesetal. 715/798 38 Claims, 7 Drawing Sheets
310 315
N ;
05— Anplication type | | Detault Opacity | | Default time
Pop up
oo 10% 5 minutes
ol 20% 10 minutes
: .
instant 30% 20 minutes
Message a

{0
Q)
L

4+ 320

Screen
Fosition

US 7,620,905 B2

Page 2
U.S. PATENT DOCUMENTS 2005/0210400 Al 9/2005 Hoe-Richardson
2006/0036962 Al* 2/2006 Jobsetal.ooooeveeen... 715/765

2003/0142132 A1~ 7/2003 Brown et al. 2006/0048067 Al* 3/2006 DeSpain et al. 715/768
2003/0142133 Al 7/2003 Brown et al. 2006/0184891 Al* 82006 Parkeretal. ...ooooon..... 715/767
2003/0189597 Al 10/2003 Anderson et al. 2006/0190838 Al* 82006 Nadamoto 715/781
2004/0090467 Al* 5/2004 Bonuraetal. 345/790 2006/0236255 Al* 10/2006 Lindsay etal. 715/766
2004/0210847 Al 10/2004 Berson et al. 2006/0242602 Al* 10/2006 Schechteretal. 715/838
2004/0212640 Al 10/2004 Mann et al. 2006/0248404 A1* 11/2006 Lindsay et al. 714/38
2004/0255254 Al 12/2004 Weingart et al. 2006/0253791 Al* 11/2006 Kuikenetal. 715/766
2004/0261038 Al 12/2004 Ording et al. 2006/0294475 Al* 12/2006 Holecek etal. 715/781
2005/0010871 Al* 1/2005 Ruthfield et al. 715/712
2005/0102631 Al 5/2005 Andreas et al.
2005/0125739 Al 6/2005 Thompson et al. OTHER PUBLICALIONS
2005/0138569 Al 6/2005 Baxter et al. Miah et al., Vanishing Windows, Jan. 17, 2000, sciencedirect.com.*
2005/0149879 Al 7/2005 Jobs et al.
2005/0166158 Al 7/2005 Blanchard, III et al. * cited by examiner

U.S. Patent Nov. 17, 2009 Sheet 1 of 7 US 7,620,905 B2

14

______ 12
———————————————— -ﬂ-“—-------—.-----[
COMPUTING DEVICE 14 {
FROCESSOR MEMCRY |
o MANAGEMENT SYSTEM |
T :
;
20 :
]
I
- ! |
FOINTERSACE
:
{
25
0 DEVICE STORAGESYSTEM 228
6

W W S AL GALE LEEm S e wewd debl AL BLEE EEEE S AR TER P o
e e e bk U I B T B D TR PP TR Dy maewr e e Sl

I
|
d
i
I
i
t
i
I
i
!i
i
i
!
i
i
i
[
f
i
£
|
i
i
¥
'
]
i
i
|
i
f
i
{
i
i
$
|
!

U.S. Patent Nov. 17, 2009 Sheet 2 of 7 US 7,620,905 B2

Server
115

H 120

FIG. 1b

U.S. Patent Nov. 17, 2009 Sheet 3 of 7 US 7,620,905 B2

229
215

. T wthd ' - |—|-|||-'|-I-.-|--TH|'_||.1.1|.-“_ -
- - |
! It O N S L SR : L {1

[
I:lnl r

r - . :L l.|. = T
Igt ll-y 1]—: 1|- r-ﬁ'rl-h .-l'; L - -

::ir _._'. ." y o1 T ':,.
I

i
1

EFLIEW I N LEpm LI D]
-3

..11,

i ||| :Illl-rld- 't‘ .F'h o

rIF_ :‘_

L2 |

A !1'_1

T %
-..I-r.._j..'l

Ta a0
I _l_-.'.i- --
r -:-_r-
al b
ey
r r " l'li-:h'l:.‘ m-EwgT "o
-l 'll'ul-- '+"..- ":."ll -'_ll"' r;;_-l_ Pi .

1
o
- -l|| .:-l J'- a g -
o L DL T LT T

|
L]
1

oot Rt e T
|-|'I-|+ :

el
1
=i

L r”
ry
[} o

'L
-

LY PRI

ST EL et Ly =
| | 1 'Ill: 'r

= L
_rmicy

':l-‘ﬂ-..l-..'l."r I'I-'I 1%
e IR r

i o '”" i 1;: ST "%‘y wm
ﬁw@aﬁg mmaa A Fﬁ"*ﬁ"ﬂ”ﬁﬁ?w’%
R

s e A i
R L

r_I | B
|. T T -y

» LT, ".I

"*r‘*'i ﬁ "3’“-};3;?1. n -'Et 5_
" e f; =T

rhp sl A"Hﬁl"ﬂ‘:i At

ll-'lFI

y :l.+_.

o
-‘H

]
l: -dwt ¥

I gt
T

|
n
.r

o ey ke b R e T
] 'II -l' 'llzT_l| A:-F |:+ 1?_ ur '1"""- "‘ ' -!'
.,‘ -"rll :_-. h—F] F '- -r -h"'l'hl .II.. lh‘u.h-‘

: "'l_"l'..'- oy phma "':_'
5%];:!5?:,','::'} ,;'~ "'Eh h maniance

.'llh.'-n-; "IF,IH_r..rF"'I'r hord

]
C

e dd A
-':'.":'.".;_f}'l _'.1-

P L
LA |
oy L

-
-
P T

LR L

__'-_' : Y '|-_

L P C@leﬁHTﬂm IEiI'i ﬁt.led#mH'l
EmLE:Ii | DJ-W_QE_'JE_H»! | -11151! d" L 1332743y
E‘Eﬁm SRS B BT T EDUCATIN TS

El'l-hd'!ll!ﬁ ELIRAM S 0AL PY 108 Pebanteadt

205

’_ i . =t i ..::::..- . : o]
.-:}p; “*':T t@fﬁa EAE LY “il.r :rf' ﬂ;%i] i

= = I Py R [den: b A T AL A et Y b TR x -i.- e 1-.:-4:.: ';".".'.-
ﬁﬁ‘lﬁhﬁm_ i .1'-:*",.m T A A m.--?‘&..uﬂ iR D

olmee g I:'I

210

(57 A
e

I
et

1_-
Tl P L

. _J_:.I,.

-3 af
] 1

1 s

-y

-—_ E":.#L-ETI‘“'-'-H- [T
" o .l._l L T .

L AL I - » I
= " om . 'Iﬂ 1
-) - L o—- --1-.r o ._] ' L] :.l i i-._'i - a L |.|_ I'l:_'l"i
1 - . - - N ol
MR Ll ""'T
p=—RL AL, ,.l.lui- e ey Sedad o P ok ll -|l'l"" Ly
- J.-lhl - l‘I' = I-"'"- I_"“'.n. - . afetA
== - " - [A TE
"-l - IL l. T .hl :':J- :|:-'. Il -.l -_: '."' e 1|Ill-‘lI!
!_dll' l-.l - rl- o, H‘l"‘ 'F'-'i- lf - LT =T

I
-
-

FIG. 2

U.S. Patent Nov. 17, 2009

305“ - Application type
add
' Calendaring
'! tool
Instant

; I Message

Sheet 4 of 7 US 7,620,905 B2
310 315
| Default Opacity l Default time !
10% O minutes |
. 20% | | 10 minutes |
30% | 20 minutes

I screen
| Position

L~ 320 l

FIG. 3

US 7,620,905 B2

Sheet S of 7

Nov. 17, 2009

U.S. Patent

bk

5

A

L A ga=Tie

_ L b
F AR

415

0

1

4

405

400

.]
“HE o [LY
m.n--.___¢.mn._. ol

1r— Fpa Aty 0T
i = ”H—-.-Iu1-l.._h
z l.-.__-..-‘_.mw._nuh_ _

FIG. 4

U.S. Patent Nov. 17, 2009 Sheet 6 of 7 US 7,620,905 B2

Woos | 500
hanagime
(Wh) Sarks
Tha VK Servica witan
(308 pogramehe
SOK ey, 6. 009 ey
/ o ey ooen 1§ saonnds
W7
1y o
51€ s FIG. 5

beralivay couals
G WA

03{
535
More s vindow
040 m::mm

stk

U.S. Patent Nov. 17, 2009 Sheet 7 of 7 US 7,620,905 B2

Acfive |___ 800
window
-~ New |__ 605
 window |
1 615

Activity
In active
window

Maintain

position

FiG. 6

Calculate | _ s20
distance

i ___625

; Move

US 7,620,905 B2

1

SYSTEM AND METHOD OF WINDOWS
MANAGEMENT

FIELD OF THE INVENTION

The mvention generally relates to a system and method of
window management and, more particularly, to a system and

method of managing active and imnactive windows in a desktop
environment.

BACKGROUND OF THE INVENTION

Personal computers, laptop computers and other devices
with graphical user interfaces have become ubiquitous in
today’s society. The graphical user interface, e.g., windows or
panes, 1s an important aspect of computing, which allows the
user to elfectively interface with the device to mput com-
mands and data and receive results.

The success of this type of interface 1s evident from the
number of users. However, with many new applications and
products being introduced it 1s becoming evident that there 1s
a need to more effectively manage the desktop environment.
Also, with the advent of pop-up windows, adware, etc. there
1s becoming a demand to add additional functionality and
greater ease ol use from the desktop environment.

Most interfaces use “windows” and “1cons” to help manage
computer information on the desktop. However, much time 1s
wasted managing a windows based desktop. In some
instances, for example, the user might have 20 to 40 windows
open at a time, which 1s difficult to manage. Management of
the desktop becomes even more difficult when pop-up ads and
pop-up based applications, e.g., Instant Messenger, appear
and cause erroneous typing, 1.€., typing text into the wrong
window. In fact it 1s not uncommon that new windows are
often lost when they appear (11 they are preprogrammed such
that immediate focus 1s not desired).

In order to ensure that an end user sees all new windows,
the “always force window on top” option must be set. How-
ever, those familiar with this functionality know that the new
windows typically interfere with the active window and cause
disruption. So, to manage the desktop, many users allow for
selection of a window based upon a textual window name 1n
the taskbar. Also, the user has the capability to use the “Alt-
Tab” key sequence to toggle or scroll through all the windows
1n a “most recently used easier to access” fashion. I the user
has a large number of windows open, this process takes time.

Another function that increases the manageability of the
windows themselves 1s the “Tile Windows,” “Cascade Win-
dows,” and “Minimize All Windows.” These functions simply
clear the desktop of all windows or move windows. For
example,

when “Cascade Windows™ 1s used the title bars of most or
all windows 1s visible; and

when “Tile Windows” 1s used, each window 1s made much
smaller to be able to tile them across the desktop.

In the organization scheme described, it 1s appreciated that
files can be nested within windows and windows can be
nested within other windows, etc., leading to confusion and
lost windows. For example, windows may overlap and par-
tially, or entirely, hide other windows or icons. The result 1s
that particular windows may be hidden behind several layers
of windows and may be difficult to access. This has been
referred to as the “window overlap” problem.

Accordingly, there exists a need in the art to overcome the
deficiencies and limitations described hereinabove.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

In a first aspect of the invention, a computer system com-
prises at least one window having information displayed
thereon and a processor for determining an application type
associated with the at least one window and rendering the at
least one window at a predetermined opacity level based on
the application type.

In another aspect of the invention, a computer system
includes at least one window having information displayed on
a graphical user interface. A processor determines an activity
on the at least one window and adjusts an opacity level of the
at least one window based on the activity. The mactive win-
dows are rendered at a lower opacity than that of an active
window of the at least one window. The processor renders the
active window at a lower opacity level based on a predeter-
mined time period of inactivity and returns the opacity level to
a higher or original level based on an activity occurring in the
window.

In yet another aspect of the invention, a method includes
determining a number of windows open 1n a desktop environ-
ment and iteratively operating on the number of windows to:

determine a time period each of the number of windows has

been open;

determine whether each of the number of windows 1s active

or 1nactive; and

decrease an opacity of one or more windows of the number

of windows, respectively, as each of the one or more
windows 1s found to be inactive, and incrementally
decrease the opacity after a predetermined time of 1nac-
tivity has passed.

In another aspect of the invention, a method for deploying
computing 1infrastructure includes integrating computer-
readable code into a computing system. The code in combi-
nation with the computing system 1s capable of performing a
process of managing windows comprising determining a
number of windows open on a desktop and iteratively oper-
ating on the number of windows. The operating 1ncludes
determining a time period each of the number of windows has
been open and determining whether each of the number of
windows 1s active or 1nactive. The operating further includes
decreasing an opacity of one or more windows of the number
of windows, respectively, as each of the one or more windows
1s found to be inactive, and incrementally decreasing the
opacity after a predetermined time of 1nactivity has passed.

In another aspect of the invention, a computer program
product comprising a computer useable medium having a
computer readable program executes on a computer causing
the computer to perform the method step(s) of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a shows an illustrative environment for managing,
the processes in accordance with the invention;

FIG. 1515 a block diagram of an embodiment of the inven-
tion;

FIG. 2 1s a representation of a graphical user interface
(GUI) implementing an embodiment of the invention;

FIG. 3 1s a representation of a GUI implementing an
embodiment of the invention;

FIG. 4 1s a representation of a GUI implementing an
embodiment of the invention;

FIG. 5 15 a representative tlow diagram of steps for imple-
menting aspects of the mnvention; and

FIG. 6 15 a representative tlow diagram of steps for imple-
menting aspects of the mvention.

US 7,620,905 B2

3

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The 1invention 1s directed to a system and method of man-
aging windows 1n a desktop environment. The invention can
be implemented on a workstation, portable device or any
known device having a graphical user interface. In one imple-
mentation, the system and method can be provided by a
service provider as an added value feature, based on a sub-
scription fee or other type of structure.

In aspects of the mvention, the system and method 1s a
complete and full management tool to manage all applica-
tions on a desktop, 1.¢., active ({ocused) windows and 1nactive
windows, based on different criteria alone or in combination.
These criteria may include, for example, (1) the type of appli-
cation launching the window, (11) a predetermined amount of
time each window 1s on the desktop, (111) the number of
windows on the desktop, (1v) the control preferences of a user,
and (v) an activity occurring within an active window (e.g.,
placement of the cursor), etc. The system and method, in
implementation, will run on any known operating system
such as Unix™ (UNIX is a registered trademark of The Open
Group 1n the United States and other countries), Windows®
(Windows 1s a trademark of Microsoit Corporation in the
United States, other countries, or both), Linux™ (Linux 1s a
trademark of Linus Torvalds in the United States, other coun-
tries, or both), etc.

FIG. 1a shows an illustrative environment 10 for managing,
the processes 1n accordance with the invention. To this extent,
the environment 10 includes a computer infrastructure 12 that
can perform the processes described herein. In particular, the
computer infrastructure 12 i1s shown including a computing
device 14 that comprises a management system 30, which
makes computing device 14 operable to perform the pro-
cesses described herein. The computing device 14 1s shown
including a processor 20, a memory 22A, an input/output
(I/O) 1interface 24, and a bus 26. Further, the computing device
14 1s shown 1n communication with an external I/O device/
resource 28 and a storage system 22B. As 1s known 1n the art,
in general, the processor 20 executes computer program code,
which 1s stored 1n memory 22A and/or storage system 22B.
While executing computer program code, the processor 20
can read and/or write data, such as the business solution 50,
to/from memory 22A, storage system 22B, and/or I/O 1nter-
face 24. The bus 26 provides a communications link between
cach of the components 1n the computing device 14. The I/O
device 28 can comprise any device that enables an individual
to 1nteract with the computing device 14 or any device that
enables the computing device 14 to communicate with one or
more other computing devices using any type ol communi-
cations link.

In any event, the computing device 14 can comprise any
general purpose computing article of manufacture capable of
executing computer program code installed thereon (e.g., a
personal computer, server, handheld device, etc.). However, 1t
1s understood that the computing device 14 1s only represen-
tative of various possible equivalent computing devices that
may perform the processes described herein. To this extent, in
other embodiments, the functionality provided by computing
device 14 can be implemented by a computing article of
manufacture that includes any combination of general and/or
specific purpose hardware and/or computer program code. In
cach embodiment, the program code and hardware can be
created using standard programming and engineering tech-
niques, respectively.

Similarly, the computer infrastructure 12 1s only 1llustra-
tive of various types ol computer infrastructures for imple-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

menting the imvention. For example, in one embodiment, the
computer infrastructure 12 comprises two or more computing
devices (e.g., a server cluster) that communicate over any
type of communications link, such as a network, a shared
memory, or the like, to perform the process described herein.
Further, while performing the process described herein, one
or more computing devices in the computer infrastructure 12
can commumnicate with one or more other computing devices
external to computer infrastructure 12 using any type of com-
munications link. In either case, the communications link can
comprise any combination of various types of wired and/or
wireless links; comprise any combination of one or more
types of networks (e.g., the Internet, a wide area network, a
local area network, a virtual private network, etc.); and/or
utilize any combination of various types of transmission tech-
niques and protocols.

FIG. 15 1s a block diagram of an embodiment of the inven-
tion, generally denoted by reference numeral 100. Similar to
FIG. 1a, the components of FIG. 15 may be used to imple-
ment the processing of the invention, as discussed more fully
below. The mnvention 1ncludes at least one user workstation
105 (1.e., a any type of computer having a graphical user
interface) which typically has a memory (RAM and/or
ROM), a storage device (for example, a hard drive, DVD
drive, or the like), processor (P), a graphical user interface
(GUI), and accompanying components and systems (e.g.,
mouse, trackball, keyboard, etc.), all well known to those of
skill 1n the art. The user workstation 105 may be connected
via a network 110 (e.g., a local area network (LAN), a wide
area network (WAN), wireless network, or the Internet) to one
or more server 115. FIG. 15 further shows at least one service
provider 120, which can provide the service of the system and
method of the invention. The processor can implement the
processes of the invention, as discussed below.

By using the system and method of the mvention, imple-
mented on the workstation or illustrative environment
described above, for example, the user can manage the desk-
top environment to maximize user eificiency and/or maxi-
mize the real estate of the desktop. By way of example, the
system and method provides the following features:

adjust the opacity of the window based on whether the

focus of the window 1s active or non-active;

adjust the positioning of the window based on whether the

focus of the window 1s active or non-active;

adjust the positioning of a pop-up window based on a

position of activity occurring in an active window;
provide a screen representation on the taskbar;

control user preferences of screen placement and opacity

based on application type and/or time preferences, e.g.,
provide weights; and

control all active applications with a single desktop man-

agement tool.

In view of the above features, it should be understood by
those of skill 1n the art that the system and method of the
invention increases the productivity of the user, and provides
for notification that a window 1s present, whether solicited or
unsolicited. Additionally, since the need does not exist to
manage each window as it appears by minimizing or cascad-
ing or tiling, less time 1s spent on managing the windows
themselves.

By way of one illustration, a window may be given a
default opacity, e.g. 50%, when 1t appears on a desktop. 1T the
focus of the window 1s adjusted and becomes the active win-
dow, its opacity may then be adjusted to a 100%. This default
opacity value may be lowered or raised depending on the
specific applications, e.g., providing a weight to certain appli-
cations. Illustratively as one non-limiting example, 11 new

US 7,620,905 B2

S

pop-up windows appear from pop-up based applications and
applets, they may be given a lower opacity value than the
default, e.g. 15%, so as to not interfere with the primary
window. In implementations, even 1f the new window appears
in the middle of the active window, the focus of the new
window will not change and will not interfere with the current
work 1n progress on the active window.

To tfurther describe the above features, FIG. 2 shows a
desktop with windows with different opacity values. In FIG.
2, the desktop 1s represented as reference numeral 200. By
implementing the system and method of the mvention, the
active window 205 will be opaque with the remaining win-
dows 210, 215, 220, 225 having different opacity values, e.g.,
transparencies, depending on the application, the time of
inactivity on the desktop, etc. In the embodiment of FIG. 2,
the opacity levels may be set as a default value or based on
user preferences, depending on any number of variables such
as, for example, (1) the type of application using the window,
(1) a predetermined amount of time each window 1s on the
desktop, (111) the number of windows on the desktop, etc.

As shown in FIG. 2, when a window appears from a user
mitiated application, it 1s given a default opacity, e.g. 80%,
and 1s given active focus. This may be representative of win-
dow 210. If new pop-up windows appear from pop-up based
applications, applets, adware, etc., they may be given a lower
opacity value than the default, e.g. 10%. This may be repre-
sentative of window 215. A non-active focus would be given
a slightly higher focus, e.g. 50%, which may be representative
of windows 220 and 225. The intent 1s to provide for notifi-
cation or reminder that a new window has appeared or already
ex1sts somewhere on the user desktop, without disrupting the
work flow of the user.

In this embodiment, the opacity levels will be decreased
based on the inactivity time of the window. For example, a
counter may be provided to determine the length of non-
activity ol a window. Illustratively 1n one non-limiting
example, a window that 1s 1nactive for five minutes may have
an opacity value of 50%; whereas, the opacity value may be
decreased to 40% at 10 minutes.

In one implementation, once the window becomes active,
¢.g., the user begins working with the specific application, the
window will become opaque, regardless of any counters, etc.
which may be used to determine the 1nactivity of the window.
The window will remain opaque during use; although, 1t
should be understood that the window, when 1nactive for a
certain predetermined time period has elapsed, e.g., five min-
utes, may begin to become transparent, less than that of an
active window. In one embodiment, the system and method of
the mvention may allow one or more windows to remain
completely opaque, depending on the preferences of the user.

In further implementations, as the number of windows
grows, an additional enhancement to the system and method
provides for an mtelligent and periodic placement or reorga-
nization of the non-active windows on the desktop. In this
implementation, the system and method adjusts the place-
ment, size, and opacity of a window based on the order of use
and when 1t was last active. For example, as shown 1n FIG. 2,
the non active windows 210, 215, 220, 225, will be placed
remotely from an active portion of the focused window 205.
Also, some windows, e.g., 215, may be sized smaller than
other windows, e.g., 205, based on 1ts application, time of
iactivity, user preferences, etc. In the example of FIG. 2, as
an 1llustration, window 215 1s an adware which has less
importance than that of the active window 205 and, as such,
the window 2135 1s of a lower opacity and a smaller size. This
ensures that the adware window 2135 does not interfere with
other windows during use, which may disrupt the user.

10

15

20

25

30

35

40

45

50

55

60

65

6

In further embodiments, the system and method may adjust
the windows to treat the pop-ups with a lower or any level of
criticality. This may be done by changing the opacity or the
placement of the window, itself. In the embodiments of the
system and method, the user can adjust the window place-
ment based upon specific application needs. For example, for
more critical applications, e.g., Lotus Notes client, the system
and method may maintain the opacity at 100% with a 100%
s1ze, regardless of any activity or other citeria; whereas, for
less critical applications, e.g., web pages, the service could be
programmed to use 20% opacity, resize to 50%, and move to
the back of the window stack. (See, FI1G. 3.) Thus, using the
system and method of the invention, the default settings can
be configured different for different windows thus providing
an overall management system.

The system and method of the invention also allows for the
ability of more granularity to adjust windows 1n real time
based on not only which window has the focus but also where
the focus 1s within that window. This allows other semi-
transparent windows that are visible within the current
“focus” or active window to be moved depending on where
the mouse or cursor 1s within that “focus” or active window.
For example, 1f the user 1s typing text 1n an email program and
has three instant message windows appear in some level of
transparency within the boundaries of the email window, the
three semi-transparent instant message windows would move
away from the cursor. In this way, these windows would have
less tendency to interfere with the user’s activities of typing
the email, while still providing awareness of the instant mes-
saging windows to the user. This movement, in embodiments,
would happen in real-time so that 11 the user moves the cursor,
ctc. to another portion of the window (to add or edit text, etc.),
the semi-transparent windows would move to another region.

(See FIG. 2.)

FI1G. 3 shows a GUI 1n accordance the invention, 1in order to
set default options. In this example, the GUI 300 includes
several fields such as, for example, application type 305,
default opacity 310 and default time 315. The application type
field 305 may be associated with variables such as Pop up add,
Calendaring tool, Instant Message to a host of other types of
applications. The default opacity field 310 may provide dii-
ferent opacity levels, any of which may be selected for any
application type. The default time field 315 may include
different inactive time periods, any of which may be selected
in order to set a time period for any application with any
opacity level. FIG. 3 also provides an optional field 320,
which allows the user to select specific desktop locations for
different applications. Alternatively, the optional field 320
allows the user to select the option of having any new window
appear remotely from an activity of the active window, thus
ensuring that the user will not be disrupted by any newly
appearing window.

FIG. 4 shows an embodiment of the mvention. In this
embodiment, 1n addition to or separately from the embodi-
ment of FIG. 2, the system and method of the invention
provides an enhancement for the taskbar to make selection of
the windows easier to manage. That 1s, the taskbar feature of
the present invention enhances the manageability of the desk-
top by providing for an immediate change in focus to the
correct window the first time; instead of selecting from the
same general textual description or same icon where selecting
the desired window 1s a trial and error method.

In particular, FI1G. 4 shows miniaturized screen shots (simi-
lar to thumbnails of .jpeg files) of the active focused and
non-focused windows 1n the taskbar; instead of textual and
iconic descriptions. In this implementation, the taskbar 400
may be enlarged to accommodate the screen shots 403, 410,

US 7,620,905 B2

7

415, etc. to enhance readablhty In the representation shown,
the active window 405 1s both shown 1n the taskbar 400 and
the desktop. The remaining 1cons may be placed only on the
taskbar, as shown, or alternatively, may have some degree of
transparency as discussed above. This enhancement equally
applies to the “Alt-Tab” key sequence used to toggle between
windows.

FI1G. 5 shows a flow diagram implementing an aspect of the
invention. FIG. 5 (and other flows described herein) 1s equally
representative of a high level block diagram implementing the
steps of the invention. The tlow diagram(s) may be imple-
mented on computer program code in combination with the
appropriate hardware. This computer program code may be
stored on storage media such as a diskette, hard disk, CD-
ROM, DVD-ROM or tape, as well as a memory storage
device or collection of memory storage devices such as read-
only memory (ROM) or random access memory (RAM), all
of which are represented in FIG. 1, for example.

In this representative flow, the system and method of the
invention 1s activated after start-up, e.g., all windows are
active. However, the process tlow of FIG. 5 may be imple-
mented at start-up and run in the background at periodic
intervals, e.g., every minute, to actively monitor the desktop.

At step 500, the windows management system of the imnven-
tion 1s activated. At step 505, the process (e.g., system and/or
method of the invention) determines the number of windows
that are actively opened on the desktop. At step 510, the
process iteratively operates on windows, 1,2, 3, . . . n. In this
manner, the process will, 1n successive order, determine a
state of each window 1n order to take appropriate action.

It should be appreciated that the processing step o1 510 may
be implemented during the entire or any portion of the run-
time of the process, regardless of when the system was
launched. Additionally, the remaining steps are implemented
for each window and may be the same regardless of when the
system 1s 1nitially launched.

Atstep 515, the process determines how long a window has
been open. Depending on the outcome of step 5135, the pro-
cess may continue to any of the remaining steps. For example,
if the process determines that the window 1s open for five
minutes, the process will continue to step 520. At step 520, the
process determines whether the window 1s active (e.g.,
tocused). If the window 1s active, the process will end at step
525. If the window 1s not active, the process will (1) decrease
the size to a first size, (11) decrease the opacity to a first value,
and (111) move the window to a back of the window stack (tile)
at steps 330, 535 and 540, respectively.

If the process determines that the window 1s open for ten
minutes, the process will continue to step 345. At step 545, the
process determines whether the window 1s active (e.g.,
tocused). If the window 1s active, the process will end at step
550. If the window 1s not active, the process will (1) decrease
the size to a first size, (11) decrease the opacity to a first value,
and (111) move the window to a back of the window stack (tile)
at steps 555, 560 and 565, respectively.

If the process determines that the window 1s open for five
minutes, the process will continue to step 570. At step 370, the
process determines whether the window 1s active (e.g.,
focused). If the window 1s active, the process will end at step
575. If the window 1s not active, the process will (1) decrease
the size to a second size, (11) decrease the opacity to a second
value, and (111) move the window to a back of the window
stack (tile) at steps 580, 585 and 590, respectively.

As shown, the size and opacity of the window 1s decreased
as the time of mactivity of the window increases. Also, this
iterative process may continue for longer time periods or at
different time periods, depending on the user or service pret-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

erences. Also, the example time periods, opacity levels, and
s1zing of the windows, as described above are provided as an
illustration. It should be recognized by those of skill that the
time periods, opacity levels, and sizing of the windows can
vary in accordance with the mvention, depending on many
variable described herein. For example, adware windows
may 1nitially have a smaller size and lower opacity level than
that of a more critical application, e¢.g., Lotus Notes However,
in one implementation, regardless of the application, the
opacity levels and sizing of the windows will decrease over a
period of time, 1n embodiments.

FIG. 6 shows a flow diagram of another implementation of
the invention. The process steps shown 1n FIG. 6 are itera-
tively performed for each window, in one implementation
similar to that described with reference to FIG. 5. At step 600,
the location of an active window 1s 1dentified and at step 605,
the location of a new (or 1nactive) window 1s 1dentified. Steps
600 and 605 may be 1nterchangeable At step 610, the process
determines 1f there 1s any activity in the active window. If
there 1s no activity, at step 6135, the new (or mactive) window
may remain 1n 1ts location.

If there 1s activity 1n the active window, the process, at step
620, will determine the position of the activity. Once this 1s
determined, at step 625, the process will calculate a distance
from the activity such that the new (or imnactive) window will
not interfere or overlap with the activity on the active window.
The process step 625 may take into account the size of the
active window, the size of the mactive window and the place-
ment of the 1nactive window at a remote location. At step 630,
the 1nactive window 1s moved. After steps 615 and 625, the
process may return to step 600.

In embodiments, the process may be implemented and
executed from either a server, 1n a client server relationship, or
they may run on a user workstation with operative informa-
tion conveyed to the user workstation to create the navigation
outlined above. Additionally, the invention can take the form
of an entirely hardware embodiment, an entirely software
embodiment or an embodiment containing both hardware and
soltware elements.

In an embodiment, the invention 1s implemented 1n soft-
ware, which includes but 1s not limited to firmware, resident
software, microcode, etc. Furthermore, the invention can take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
program code for use by or 1n connection with a computer or
any instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium
can be any apparatus that can contain, store, communicate,
propagate, or transport the program for use by or 1n connec-
tion with the instruction execution system, apparatus, or
device. The medium can be an electronic, magnetic, optical,
clectromagnetic, infrared, or semiconductor system (or appa-
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current

examples of optical disks include compact disk—read only
memory (CD-ROM), compact disk—read/write (CD-R/W)

and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
(P) coupled directly or indirectly to memory elements
through a system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide tem-
porary storage of at least some program code in order to

US 7,620,905 B2

9

reduce the number of times code must be retrieved from bulk
storage during execution. Input/output or I/O devices (includ-
ing but not limited to keyboards, displays, pointing devices,
etc.) can be coupled to the system either directly or through
intervening I/O controllers. Network adapters may also be
coupled to the system to enable the data processing system to
become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public networks. Modems, cable modem and Ethernet cards
are just a few of the currently available types of network
adapters.

In another embodiment, the invention provides a business
method that performs the process steps of the invention on a
subscription, advertising, and/or fee basis. That 1s, a service
provider, such as a Solution Integrator, could offer to manage
the window desktop as described herein. In this case, the
service provider can create, maintain, and support, etc., a
computer infrastructure that performs the process steps of the
invention for one or more customers. In return, the service
provider can receive payment from the customer(s) under a
subscription and/or fee agreement and/or the service provider
can receive payment from the sale of advertising content to
one or more third parties.

While the invention has been described 1n terms of embodi-
ments, those skilled in the art will recognize that the invention
can be practiced with modifications and in the spirit and scope
ol the appended claims.

What is claimed 1s:

1. A computer system comprising:

at least one window having information displayed thereon;

and

a processor for determining an application type associated

with the at least one window, rendering the at least one

window at a predetermined opacity level based on the

application type, and for assigning one or more user

defined weights based on the application type of the at

least one windows;

wherein the processor allows a user to manage the at
least one window by assigning the one or more user
defined weights to the at least one window, and lowers
an opacity level of the at least one window based on a
predetermined period of time of mactivity of the at
least one window.

2. The computer system of claim 1, wherein the processor
maintains an opaque state of an active window of the at least
one window.

3. The computer system of claim 1, wherein the processor
determines a position of activity occurring on an active win-
dow of the at least one window, and moves 1nactive windows
away Ifrom the activity.

4. The computer system of claim 1, wherein the processor
iteratively determines a time of mactivity of n number of
windows of the at least one window and sets an opacity level
based on the time of mactivity.

5. The computer system of claim 4, wherein the processor
renders an active window, which was previously iactive, to a
higher opacity level, upon activity occurring in the previous
iactive window.

6. The computer system of claim 5, wherein the processor,
upon determining that the active window has been 1nactive for
a predetermined amount of time lowers the opacity level.

7. The computer system of claim 1, wherein the processor
iteratively operates on n+1 windows to determine a state of
cach window of the at least one window 1n order to adjust an
opacity level of the each window based on a time period of
iactivity.

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The computer system of claim 7, wherein the processor
resizes the n+1 windows to a smaller size based on a prede-
termined amount of time of mnactivity.

9. The computer system of claim 7, wherein the processor
tiles the n+1 windows behind an active window based on a
predetermined amount of time of 1nactivity, whereimn win-
dows which are mactive for a longer time period are tiled
behind windows that have been inactive for a shorter time
period.

10. The computer system of claim 1, wherein the processor
resizes n windows of the at least one window to a smaller size
for each time period of 1nactivity.

11. The computer system of claim 10, wherein the proces-
sor tiles the n windows away from an active window of the at
least one window.

12. The computer system of claim 1, wherein the processor
determines 11 a window of the at least one window 1s 1nactive
and decreases a size and opacity level of the window and
moves the window to a window stack.

13. The computer system of claim 1, wherein user input 1s
interpreted by the processor as operating 1n an active window
and renders the active window 1n a fully opaque state.

14. The computer system of claim 1, wherein the processor
renders a screen representation of the at least one window on
a taskbar.

15. The computer system of claim 1, wherein the applica-
tion type 1s an activity.

16. The computer system of claim 1, further comprising a
user interface providing a user set of default parameters to set

an opacity of a window based on at least one of a time of
iactivity of the window and the application type.

17. A computer system comprising:

at least one window having information displayed on a
graphical user interface; and

d Processor for:

determining an application type associated with the at
least one window and rendering the at least one win-
dow at a predetermined opacity level based on the
application type;

determining an activity on the at least one window and
adjusting the opacity level of the at least one window
based on the activity, such that inactive windows are
rendered at a lower opacity than that of an active
window of the at least one window, the processor
renders the active window at a lower opacity level
based on a predetermined time period of nactivity
and returns the opacity level to a higher or original
level based on an activity occurring 1n the window;
and

assigning one or more user defined weights based on the
application type to the at least one window;

wherein the processor allows a user to manage the at
least one window by assigning the one or more user
defined weights to the at least one window.

18. The computer system of claim 17, wherein the proces-
sor lowers an opacity level of the inactive window based on a
predetermined period of time of mactivity.

19. The computer system of claim 18, wherein the proces-
sor determines a position of the active window, and moves the
iactive windows away from activity occurring within the
active window.

20. The computer system of claim 17, wherein the proces-
sor 1teratively determines a time of 1nactivity of n number of
the 1nactive windows and sets an opacity level based on the
time of 1nactivity.

US 7,620,905 B2

11

21. The computer system of claim 17, wherein the proces-
sor resizes the mactive windows to a smaller size based on a
predetermined amount of time of 1nactivity.

22. The computer system of claim 21, wherein the proces-
sor tiles the inactive windows such that the inactive windows
which are inactive for a longer time period are tiled behind the
inactive windows that have been 1nactive for a shorter time
period.

23. The computer system of claim 17, wherein the proces-
sor determines when an activity occurs in a window and
renders the window with the activity to an opaque state.

24. The computer system of claim 17, wherein the proces-
sor renders a screen representation of the at least one window
on a taskbar.

25. The computer system of claim 17, further comprising,
providing a user interface which includes a set of detault
parameters to set at least one of an opacity and application
type.

26. A method, comprising:

determining a number of windows open 1n a desktop envi-

ronment; and

iteratively operating on the number of windows to:

determine a time period each of the number of windows
has been open;

determine whether each of the number of windows 1s
active or 1nactive;

determine an application type associated with each of
the number of windows and assign one or more user
defined weights to at least one of the number of win-
dows based on the application type;

decrease an opacity ol one or more windows of the
number of windows that are open based on the appli-
cation type of at least one of the number of windows,
respectively, as each of the one or more windows 1s
found to be mactive, and incrementally decrease the
opacity after a predetermined time of nactivity has
passed; and

move the one or more windows that are found to be
inactive away from the activity occurring on an active
window.

277. The method of claim 26, further comprising decreasing,
a size ol the one or more windows as each of the one or more
windows 1s found to be 1nactive, and incrementally decreas-
ing the size after a predetermined time of inactivity has
passed.

28. The method of claim 26, further comprising moving
cach of the one or more windows to a back of a window stack
alter a predetermined time of 1nactivity has passed.

29. The method of claim 26, further comprising providing,
an incremental default value for the opacity of the one or more
windows.

30. The method of claim 26, further comprising having a
service provider charge a fee for providing services imple-
menting steps of claim 26.

31. The method of claim 26, further comprising setting an
opacity level based on an application which launches selec-
tive ones of the number of windows.

32. The method of claim 26, further comprising providing,
screen 1mages of selective ones of the number of windows on
a taskbar.

10

15

20

25

30

35

40

45

50

55

12

33. The method of claim 26, further comprising determin-
ing an activity occurring in a window and rendering the win-
dow with the activity to an opaque state.

34. A method for deploying computing infrastructure,
comprising integrating computer-readable code into a com-
puting system, wherein the code 1n combination with the
computing system 1s capable of performing a process of man-
aging windows comprising:

determining a number of windows open on a desktop; and

iteratively operating on the number of windows to:

determine a time period each of the number of windows
has been open;

determine whether each of the number of windows 1s
active or 1nactive;

determine an application type associated with each of
the number of windows and assign one or more user
defined weights to at least one of the number of win-
dows based on the application type;

decrease an opacity ol one or more windows of the
number of windows that are open based on the appli-
cation type of at least one of the number of windows,
respectively, as each of the one or more windows 1s
found to be inactive, and incrementally decrease the
opacity after a predetermined time of inactivity has
passed; and

move the one or more windows that are found to be
inactive away from the activity occurring on an active
window.

35. The method of claim 34, wherein the deploying 1s
provided by a service provider.

36. A computer program product comprising a computer
useable storage medium having a computer readable pro-
gram, wherein the computer readable program when
executed on a computer causes the computer to:

determine a number of windows open on a desktop;

determine an application type associated with each of the

number of windows;

determine a time period each of the number of windows has

been open;

determine whether each of the number of windows 1s active

or 1nactive;

assign one or more user defined weights based on the

application type to at least one of the number of windows
to allow a user to manage at least one of the number of
windows;

decrease an opacity of one or more windows of the number

of windows that are open, respectively, as each of the one
or more windows 1s found to be 1nactive;

and imcrementally decreasing the opacity after a predeter-

mined time of mactivity has passed.

377. The computer system of claim 1, wherein the computer
system adjusts a placement, a size, and an opacity of the at
least one window based on an order of use and when the at
least one window was last active.

38. The computer system of claim 1, wherein the predeter-
mined opacity level 1s based on a number of the at least one
windows open on a desktop and an amount of time the at least
one window 1s on the desktop.

	Front Page
	Drawings
	Specification
	Claims

