US007620785B1
a2 United States Patent (10) Patent No.: US 7,620,785 B1
Coulter et al. 45) Date of Patent: Nov. 17, 2009
(54) USING ROLL-FORWARD AND 2002/0129047 Al 9/2002 Caneetal. 707/204
ROLL-BACKWARD LOGS TO RESTORE A 2003/0005235 Al 1/2003 Youngceeeeeeevennne 711/141
DATA VOLUME 2003/0115431 Al 6/2003 Hubbard et al. 711/162
2003/0140070 Al1* 7/2003 Kaczmarskietal. 707/204
(75) " Inventors: Timothy R. Coulter, Morgan Hill, CA 2004/0034752 AL* 22004 ORIAN ..vooveerereeeen... 711/161
(US); Raghu Krishnamurthy, Santa 2004/0073831 Al 4/2004 Yanaietal.c.............. 714/7
Clara, CA (US); Par A. Botes, Mountain — 505/0027956 A1~ 2/2005 Tormasov etal. 711/162
View, CA (US)
1ewW,
(73) Assignee: Symantec Operating Corporation,
Cupertino, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 482 days. WO WO 02/059749 Al 8/2002
(21) Appl. No.: 10/881,320
(22) Filed: Jun. 30, 2004 OTHER PUBLICATIONS
(51) Int.Cl. Tanenbaum, Andrew, “Structured Computer Organization,” Prentice
GOGF 12/00 (2006.01) Hall, 1984, pp. 10-12.
gggﬁ ;;jgg (2006'0j“) Primary Examiner—Sheng-Jen Tsai
(2006.01) 14) Attorney, Agent, or Firm—Campbell Stephenson LLP
(52) U.S.Cl 711/161; 711/162 » a8 P P
(58) Field of Classification Search 711/161, (57) ABSTRACT
711/162
See application file for complete search history.
(56) References Cited A roll-back memory can be used to incrementally restore one
or more data volumes 1n reverse chronological order to the
U.S. PATENT DOCUMENTS data state they occupied at some prior point 1n time without

using a backup copy. After the one or more data volumes have

5,487,160 A 1/1996 BEmiS voveveveereereenennn.. 711/114 . .
5535381 A 7/1996 KOPPEL erveverererrrerreeenn. 710/52 ~ Deen restored i reverse chronological order, a roll-forward
5.835.053 A * 11/1998 ONAN w.ooveveveeeereen. 711/162 ~ memory can be used to incrementally restore the one or more
6,158,019 A * 12/2000 SQUIibb eeeveveererrerrnnnn. 714/13 datavolumes in forward chronological order to the data state
6,161,219 A * 12/2000 Ramkumaretal. 717/130 they occupied at some other point in time without using a
6,691,245 B1* 2/2004 DeKoningccceooun... 714/6 backup copy. Incrementally restoring the one or more data
6,732,293 Bl 5/2004 Schneider 714/15 volumes in reverse chronological order may follow an incre-
6,839,819 B2* 1/2005 Martincooveeveeveureen.. 711/162 mental restoration of the one or more data volumes in forward
g’g??’ggg g; . 2; 5882 g/[irti? ettaall* """""""" ; j 5? ggé chronological order and vice versa until the one or more data
) . dDClld € \ eeeesesesrreses

6983352 B2* 1/2006 Keohaneetal. 1162 volumes are in the data state they occupied just prior to, for
7,085,900 B2 82006 Inagakietal. 711162~ Xample, a data corruption event.

7,257,606 B2 82007 Kapooretal. 707/205

2002/0112134 Al* /2002 Ohranetal. ..o............ 711/162 22 Claims, 4 Drawing Sheets

Generate transoction to write new
data to block m of volume V L 47

1

Copy old dota in block m of
volume V to roll-bock log 18 - 44

1

QOverwrite old data in block m of volume ¥
with new data of write tronsaction 4

l

Copy new dala of write transoction
to roll-forward log 20 —~— 43

|

Generote o unique tag T corresponding to
the old date copied to roll-back log 18 in step 44
ond/or its new data copied to roll-forword log 20 in step 48 |~ 49

|
(End)

US 7,620,785 B1
Page 2

U.S. PATENT DOCUMENTS 2006/0174074 Al 8/2006 Banikazemietal. 711/162

2007/0250663 Al* 10/2007 Welshetal. 711/117
2005/0076262 Al 4/2005 Rowanetal. 714/6

2005/0076264 Al 4/2005 Rowanetal. 714/6 * cited by examiner

U.S. Patent Nov. 17, 2009 Sheet 1 of 4 US 7,620,785 B1

10
18 12 20

Roll-Back Log —_*Iﬂ)licution Server -———mﬁ)rwurd Log
-

data to block m of volume V

Generate transaction to write new | I\
47

Copy old data in block m of
volume V to roll-back log 18 44

Overwrite old data in block m of volume V
with new qgtu of wnite transaction 46

Copy new data of write transaction
to roll-forward log 20 48

Generate a unique tag T corresponding to
the old doto copied to roll-back log 18 in step 44
and/or its new data copied to roll-forward log 20 in step 48 ~ 49

riG. 2 cnd

U.S. Patent Nov. 17, 2009 Sheet 2 of 4 US 7,620,785 B1

riG. 3a

Arm 'B1iA1 20

U.S. Patent Nov. 17, 2009 Sheet 3 of 4

Set n=n
lost 50

),

S
time stamp
of tag Tn equal to or

Yes

US 7,620,785 Bl

End

earlier than the roll-back
target time?

NO

Overwrite dato in the volume block identified
in tag Tn with data stored in roll-back
log 18 that corresponds to tag Tn

b

b2

the time stamp

of tag Tn equal to Yes

oA

riG. 4

End

later than the roll-forward
target time?

No

Set n=n+1 54

Overwrite data in the volume block identified
in tag In with data stored in roll~forward
log 20 that corresponds to tag Tn

bb

rlG. 6

U.S. Patent Nov. 17, 2009 Sheet 4 of 4 US 7,620,785 B1

[MlBjelofe] fefafolsfc] [Blalon]s[a
i T | Ty Ts Tl T T TafTs

FIG. 7a

B|A | D | B 81| Ay | D By | Cy
ALk
FIG. 7b

US 7,620,785 Bl

1

USING ROLL-FORWARD AND
ROLL-BACKWARD LOGS TO RESTORE A
DATA VOLUML

BACKGROUND OF THE INVENTION

Businesses or other entities store their operational data
(e.g., customer lists, financial transactions, business docu-
ments, business transactions, etc.) i logical volumes on
memory devices such as hard disks. Unfortunately, the opera-
tional data 1s susceptible to corrupting events such as hard-
ware failure, software failure, or user error. Hardware failures
can range from the failure of a single hard disk to the destruc-
tion of an entire data center containing the hard disk, making,
some or all of the business’s operational data unrecoverable.
Software failures are procedural errors in an application that
corrupt operational data. User errors include errors such as
inadvertent deletion or overwriting of operational data that 1s
later required. Failures and user errors often result in the loss
or corruption of important operational data. The loss or cor-
ruption of operational data i1s particularly devastating to a
business that relies heavily on electronic commerce.

Recognizing the importance of maintaining reliable opera-
tional data, businesses or other entities typically employ
backup and restore systems to protect critical operational data
against corruption. Backup systems create backup copies of
operational data. A backup copy captures an 1mage of the
operational data at an instant 1n time so that if need be,
everything that has happened to the operational data since that
instant can be forgotten, and the state of operations (as
reflected 1n the operational data) can be restored to that
instant.

While 1t 1s a simple and fairly quick procedure to create a
backup copy of an individual data object (1mage file, text file,
etc.) the creation of a backup copy becomes more difficult as
the amount of operational data increases. One method of
creating a backup copy of a large volume of operational data
1s to copy the data from the hard disks that store the volume to
one or more magnetic tapes. Once the backup has completed,
the magnetic tapes are stored either locally or remotely. When
a data corruption 1s detected 1n the operational data volume as
a result of hardware failure, software failure, or user error, the
volume 1s restored to 1ts pre-corrupted data state using the
backup copy.

Backup operations create backup copies that may be either
tull or incremental. A tull backup copy means that all files 1n
the data volume are copied regardless of how recently the files
have been modified or whether a previous backup copy exists.
An mncremental backup means that only files of the volume
that have changed since some previous event (e.g., a prior full
backup or incremental backup) are copied. The backup win-
dow for a tull backup tends to be much larger when compared
to the backup window for an incremental backup. For most
applications, mcremental backups are preferable at backup
times since, 1n most cases, the number of files of the data
volume that change between backups 1s very small compared
to the number of files 1n the entire data volume and since the
backup window 1s small. If backups are done daily or even
more frequently, 1t 1s not uncommon for less than 1% of files
of a volume to change between backups. An incremental
backup 1n this case copies 1% of the data that a full backup
would copy and uses 1% of the mput/output (I10) resources
between the hard disks and the backup magnetic tapes.

Incremental backup appears to be the preferred mode of
protecting data. And so it 1s, until a full restore of all the files
of the data volume 1s needed. A tull restore from incremental
backups requires starting with a restore using the newest full

10

15

20

25

30

35

40

45

50

55

60

65

2

backup copy, followed by restores of all newer incremental
backups. That can require a lot of magnetic tape handling
performed by, for example, an automated robotic handler.

Restore from tull backups 1s genuinely simpler and more
reliable than restores from combinations of full and incre-
mental backups. When recovering from individual user
errors, the situation 1s just the opposite. Users tend to work
with one small set of files for a period of days or weeks and
then work with a different set. Accordingly, there 1s a high
probability that a file erroneously corrupted by a user will
have been used recently and therefore will be copied 1n one of
the incremental backups. Since incremental backups contain
a smaller fraction of data when compared to a tull backup, the
incremental backups can usually be searched much faster for
the target file 1t a restore 1s required. From the individual
user’s standpoint, 1t 1s preferable to create many small 1ncre-
mental backups.

While backup and restore systems are useful, they present
a number of disadvantages. Backups are typically created
during “backup windows.” During backup windows, applica-
tion access to the volume 1s unfortunately denied while the
volume 1s being backed up to one or more magnetic tapes.
Additionally, even if an incremental backup 1s created at the
top of every hour, a data corruption operation that occurs at
12:59 as a result of human error would require the data vol-
ume to be restored to the backup created at 12:00, and all valid

modifications of the data volume entered between 12:00 and
12:59 would be lost.

SUMMARY OF THE INVENTION

A roll-back memory can be used to incrementally restore
one or more data volumes in reverse chronological order to
the data state they occupied at some prior point 1in time with-
out using a backup copy. After the one or more data volumes
have been restored in reverse chronological order, a roll-
forward memory can be used to incrementally restore the one
or more data volumes in forward chronological order to the
data state they occupied at some other point 1n time without
using a backup copy. Incrementally restoring the one or more
data volumes 1n reverse chronological order may follow an
incremental restoration of the one or more data volumes 1n
torward chronological order and vice versa until the one or
more data volumes are in the data state they occupied just
prior to, for example, a data corruption event.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled 1n the art by referencing the accompanying
drawings.

FIG. 1 shows a block diagram of relevant components in a
data processing system employing one embodiment of the
present invention;

FIG. 2 1illustrates relevant aspects of writing data to roll-
back and roll-forward logs of FIG. 1 1n accordance with one
embodiment of the present invention;

FIGS. 3a-3e illustrates the data state of a portion of a data
volume V after repeatedly performing the process shown in
FIG. 2;

FIG. 4 illustrates relevant aspects of incrementally restor-
ing data volume V 1n reverse chronological order to the data
state 1t occupied at some prior point 1 time using the roll-
back log of FIG. 1;

FIGS. 5a-5d illustrates the data state of the data volume V
after repeatedly performing the process shown 1n FIG. 4;

US 7,620,785 Bl

3

FIG. 6 illustrates relevant aspects of incrementally restor-
ing data volume V in forward chronological order to the data

state 1t occupied at some other point in time using the roll-

torward log of FIG. 1;
FIGS. 7a and 756 1llustrates the data state of the data volume

V after repeatedly performing the process shown in FIG. 6.
The use of the same reference symbols 1n different draw-

ings indicates similar or identical 1tems.

DETAILED DESCRIPTION

The present mvention relates to a system or method for
restoring one or more data volumes to a prior data state.
Although the present invention will be described with refer-
ence to restoring data on the volume level, the present mven-
tion may find application in restoring data on the file system
or database level. In one embodiment, the present invention
can be employed without need of traditional backup copies.
For purposes of explanation, the present invention will be
described with reference to restoring one data volume V, 1t
being understood that the present mvention should not be
limited thereto. Indeed, the present invention can be used to
restore several non-temporal volumes to the data states they
occupied at a prior point in time.

FIG. 1 1llustrates relevant components of a system 10
employing one embodiment of the present mvention. The
system 10 shown in FIG. 1 includes a computer system 12
coupled directly or indirectly to a memory system 16 that
stores data volume V. Computer system 12 can be any com-
puter or other data processing device. For example, computer
system 12 can be a conventional personal computer, a server,
a special purpose computer, or the like. For purposes of expla-
nation, computer system 12 takes from 1n a server having one
or more processors for executing instructions of an applica-
tion program. The application program generates transac-
tions to directly or indirectly read data from or write data to
the data volume V. A write data transaction 1s completed by
overwriting existing data D _, , 1n one or more data blocks of
volume V with new data D, . For ease of explanation, 1t will
be presumed that each write transaction, when completed,
overwrites all existing data D _, ;1n a single block of volume V
with new data D, __ . it being understood that the present
invention should not be limited thereto. When a write trans-
action completes, there may be very little difference between
existing data D _, ,and new data D, _ .

Transaction requests to read or write data are transmitted
directly or indirectly to the memory system 16. It 1s noted that
server 12 communicates directly or indirectly with memory
system 16 via communication link 24. Communication link
24 may take form 1n a storage area network (SAN) having one
or more components such as switches, hubs, routers (not
shown), etc. It 1s noted that additional components (e.g., a
database management system, a file system, a volume man-
ager, etc.) may be 1n data communication between server 12
and memory system 16, even though such components are not
shown within FIG. 1.

Memory system 16 may take form in one or more disk
arrays or other storage devices, it being understood that the
term “memory system” should not be limited thereto. For
purposes ol explanation, it will be presumed that memory
system 16 takes form 1n a single disk array that stores logical
data volume V. Volume V consists of n___ data blocks each
storing data. The n___data blocks do not actually store data.
Rather, physical memory blocks of hard disks within the disk
array 16 are allocated to store data of corresponding data
blocks by virtualizing software executing on the disk array
and/or by a volume manager (both of which are not shown).

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 provides a graphical representation of five data blocks
designated 1-5 of Volume V. Data 1n the volume blocks are
accessible directly or indirectly by server 12 via a write or
read data transaction. FIG. 1 shows the state of five memory
blocks at an initial time t,.

FIG. 1 also shows memory devices 18 and 20 coupled to
and accessible by server 12. For purposes of explanation only,
cach of the memory devices 18 and 20 will take form 1n
random access memory (RAM), 1t being understood that the
present invention should not be limited thereto. Memory
devices 18 and 20 may be configured as sequential logs, 1t
being understood that the memory devices 18 and 20 should
not be limited thereto. Data 1s read from sequential logs in the
order in which the data 1s stored therein. Thus, the last data
item stored 1n a sequential log 1s the first to be read out, and the
first data 1tem stored 1n a sequential log 1s the last to be read
out.

Memory device 18 1s designated as roll-back log while
memory device 20 1s designated as roll-forward log. Roll-
back log 18 stores or 1s configured to store existing data D _, |
copied from blocks of volume V belore D_, , 1s overwritten
with new data D, of a write transaction. The roll-forward
log 20 stores or 1s configured to store copies of the new data
D __ . . In one embodiment, the roll-forward log 20 may take
form 1n a storage replication log (SRL). SRLs are typically
used 1n systems for replicating data volumes.

Belore or after existing data D_, , 1s copied to roll-back log
18, 1n one embodiment, existing data D _, ,may be compressed
according to any one of many well-known compression algo-
rithms. Such compression would reduce the amount of stor-
age space within roll-back log 18 needed to store data. Fur-
ther, before or after new data D, 1s copied to roll-forward
log 20, new data D, _ may also be compressed. For purposes
of explanation only, 1t will be presumed that data 1s stored 1n
logs 18 and 20 1n compressed format.

Before existing data D_,, in any block i volume V 1s
overwritten with a new data D, . the existing data D _, ; 1s
copied to roll-back log 18. The new data D, 1s copied to the
roll-forward log 20 either before the existing data D_, , 1s
overwritten or after the existing data 1s overwritten. FIG. 2
describes this process 1n greater detail. The process shown 1n
FIG. 2 can be implemented by server 12 executing instruc-
tions stored 1n memory (not shown). The process starts with
step 42 when server 12 generates a transaction to overwrite
existing dataD_, ,inblockm of volumeV withnew dataD, _ .
In step 44, before the existing data D_, , 1n block m 1s over-
written with the new data D, . the old data D _, ,1s copied to
roll-back log 18. In step 46 existing data D_, ; in block m 1s
overwritten with the new data D, . In step 48 a copy of the
new data D, _ 1s stored in roll-forward log 20. It 1s noted that
steps 46 and 48 may be reversed 1n order. Lastly, a tag Tm 1s
generated that corresponds to the existing data D _, , written to
log 18 and/orthenewdataD,__ writtento roll-forward log 20.
A new tag Tm 1s generated each time data 1s copied to logs 18
and/or 20. The tag number m 1s generated sequentially so that
sequentially generated tags have sequential tag numbers. Tag
Tm may include a time stamp. For purposes of explanation,
the time stamp will be presumed to 1dentify the time when
existing data D _, ,1s overwritten with thenew dataD, . Inthe
alternative, the time stamp may 1dentily the time the write
transaction of step 42 was generated, the time when the old
data D_, ,1s written to roll-back log 18, or some other event 1n
the process of FIG. 2. Tag Tm may also include an 1dentifi-
cation of the data block (1.e., block m) in volume V that 1s the
target of the corresponding write transaction. In the embodi-
ment where more than one data volume 1s restored using the

present invention, the tag may include an 1dentification of the

US 7,620,785 Bl

S

volume that contains the target block of the corresponding
write transaction. In the embodiment where more than one
data block 1s the target of a corresponding write data transac-
tion, the tag may include an identification of the first data
block and a number of consecutive blocks including the first
block where the new data D, _ 1s written. Tag Tm may also
include information (e.g., a tlag set to binary one or zero)
indicating that data has or has not been stored within roll-back
log 18 and/or roll-forward log 20 1n compressed format. The
tag Tm may be stored with the existing data D_, , copied to log
18, the new data D, copied to log 20, or both. In the alter-
native, tag Tm may be stored 1n a separate tag table. Each tag
T, however, 1s associated with a respective block of existing
data D_, , stored 1n roll-back log 18 and/or a respective block
ofnewdataD__ storedinroll-forward log 20. It 1s noted that
other information may be included within the tags. It 1s noted
that the application executing on server 12 may access data in
volume V while existing data within volume V 1s copied to
roll-back log 18 or while new data 1s copied to roll-forward
log 20.

At time t, 1t 1s presumed that a backup copy of the data
Volume V has been stored 1n a memory device (not shown).
The present invention does not require the creation of a
backup copy of data Volume V. The backup copy of the data
Volume V can be generated 1n any desired manner. A backup
copy of data Volume V enables restoration of data volume V
to the state 1t occupied at time t,. More particularly, data
volume V can be restored to 1ts prior state by overwriting the
contents of Volume V with the backup copy.

FIGS. 3a-3d 1llustrate changes to the data contents of Vol-
ume V, roll-back log 18, and roll-forward log 20 after com-
pleting five consecutive write transactions. More particularly,
after time t,, server 12 generates a first write data transaction
to overwrite existing data (designated B) in block 2 of volume
V with new data (designated B,). Before existing data B of
block 2 1s overwritten, data B 1s copied to roll-back log 18 in
accordance with step 44 of FI1G. 2. Data B 1s stored 1n roll-
torward log 18 1n compressed format. The existing data B 1n
block 2 of volume 'V 1s then overwritten with the new data B, .
The new data B, 1s copied to roll-forward log 20 either betore
or after existing data B 1s overwritten. Data B, 1s stored 1n
roll-forward log 20 in compressed format. Lastly, server 12
generates a tag T1 which 1t stores along with new data B1 1n
roll-forward log 20 and/or with existing data B in roll-back
log 18. Tag T1 includes the i1dentification of the target block
(e.g., block 2) of the first write transaction. Additionally, tag
T1 includes time stamp set to time t,, the time when data B
was overwritten 1n volume V. FIG. 3a shows the state of
Volume V, roll-back log 18, and roll-forward log 20 after
completion of the first write transaction and the process steps
shown 1n FIG. 2.

After server 12 generates the first write transaction, server
12 generates a second write transaction to overwrite existing
data (designated A) 1n block 1 of Volume V with new data
(designated A). Belore existing data A of block 1 1s over-
written, data A 1s copied to roll-back log 18. The existing data
A1 block 1 of volume 'V 1s then overwritten with the new data
A, of the second write transaction. The new data A, 1s copied
to roll-forward log 20 either before or after existing data A 1s
overwritten. New data A, and existing data A are stored 1n
compressed format 1n logs 20 and 18, respectively. Lastly,
server 12 generates a tag 12 which 1t stores along with new
data Al 1n roll-forward log 20 and/or with existing data A 1n
roll-back log 18. Tag 12 includes the i1dentification of the
target block (e.g., block 1) of the second write transaction.
Additionally, tag T2 includes time stamp set to time t,, the

time when data A 1s overwritten 1in volume V. FIG. 35 shows

10

15

20

25

30

35

40

45

50

55

60

65

6

the state of Volume V, roll-back log 18, and roll-forward log
20 after completion of the second write transaction and the
process steps shown 1 FIG. 2.

Server 12 continues to generate new write transactions
alter generating the second write transaction. After time t,
server 12 generates a third write transaction to overwrite
existing data (designated D) in block 4 of Volume V with new
data (designated D,). It will be presumed for sake of expla-
nation of the present invention that the third write transaction
was generated in error thereby corrupting data volume V.
Before existing data D of block 4 1s overwritten, data D 1s
copied to roll-back log 18. The existing data D 1n block 2 of
volume V 1s then overwritten with the new data D, of the third
write transaction. The new data D), 1s copied to roll-forward
log 20 either belore or after existing data D 1s overwritten.
New data D, and existing data D are stored 1in compressed
format 1n logs 20 and 18, respectively. Lastly, server 12 gen-
crates a tag 13 which 1t stores along with new data D, 1n
roll-forward log 20 and/or with a copy of existing data D in
roll-back log 18. Tag T3 includes the i1dentification of the
target block (e.g., block 4) of the third write transaction.
Additionally, tag T3 includes time stamp set to time t,, the
time when data D 1s overwritten 1n volume V. FIG. 3¢ shows
the state of Volume V, roll-back log 18, and roll-forward log
20 after completion of the third write transaction and the
process steps shown 1n FIG. 2. Data D, represents corrupted
data.

Server 12 generates a fourth write transaction to overwrite
existing data B, i block 2 of Volume V with new data (des-
ignated B,). Before existing data B, of block 2 1s overwritten,
data B, 1s copied to roll-back log 18. The existing data B, 1n
block 2 of volume V 1s then overwritten with the new data B,
of the fourth write transaction. The new data B, 1s copied to
roll-forward log 20 either before or after existing data B, 1s
overwritten in volume V. New data B, and existing data B, are
stored 1n compressed format 1n logs 20 and 18, respectively.
Lastly, server 12 generates a tag T4 which 1t stores along with
new data B, in roll-forward log 20 and/or with a copy of
existing data B, 1n roll-back log 18. Tag T4 includes the
identification of the target block (e.g., block 2) of the fourth
write transaction. Additionally, tag T4 includes time stamp set
to time t,, the time when data B, 1s overwritten in volume V.
FIG. 3d shows the state of Volume V, roll-back log 18, and
roll-forward log 20 after completion of the fourth write trans-
action and the process steps shown in FIG. 2.

Lastly in the 1llustrated example, server 12 generates a fifth
write transaction to overwrite existing data (designated C) in
block 3 of Volume V with new data (designated C,). Before
existing data C of block 3 1s overwritten, data C 1s copied to
roll-back log 18. Once data C has been copied to roll-back log
18, data within block 3 of Volume V 1s overwritten with the
new data C, 1 accordance with the fifth write transaction. The
new data C, 1s copied to roll-forward log 20 either before or
alter existing data C 1s overwritten. Lastly, server 12 gener-
ates a tag TS5 which 1t stores along with new data C1 1n
roll-forward log 20 and/or with a copy of existing data C in
roll-back log 18. Tag TS includes the identification of the
target block (e.g., block 3) of the fifth write transaction.
Additionally, tag TS includes time stamp set to time t., the
time when data C 1s overwritten 1in volume V. FIG. 3e shows
the state of Volume V, roll-back log 18, and roll-forward log
20 after completion of the fifth write transaction and the
process steps shown 1 FIG. 2.

FIG. 3eillustrates the state of Volume V, rewind log 18, and
torward log 20 after completion of five sequentially generated
write transactions. After t., 1t may be desirable to restore
volume V to the data state 1t occupied at some time prior to

US 7,620,785 Bl

7

time t-. For instance, roll-back log 18 can be used to incre-
mentally restore volume V to the state i1t occupied at time t, .
As will be more fully described below, roll-back log 18 can be
used to incrementally restore volume V to a prior point 1in time
in reverse chronological order without using a backup copy.
After volume V has been restored 1n reverse chronological
order, roll-forward log 20 can be used to incrementally restore
volume V 1n forward chronological order without using a
backup copy. Incrementally restoring volume V in reverse
chronological order may follow an incremental restoration of
volume V 1n forward chronological order and vice versa until
volume V 1s in the data state it occupied just prior to, for
example, a data corruption event. FIG. 4 illustrates opera-
tional aspects of using roll-back log 18 to incrementally
restore data volume V 1n reverse chronological order.

The process shown in FIG. 4 can be implemented by server
12 executing 1instructions stored in memory (not shown).
Betore the process 1s started, a roll-back target time 1s selected
to which the data volume V 1s to be incrementally restored in
reverse chronological order. Once the roll-back target time 1s
selected, the data volume restoration operation in FIG. 4
begins by setting a dummy variable n to n, . where n,__.
represents the tag number of the last tag generated 1n step 49
of FI1G. 2. In the illustrated example, n, . equals 5. In step 52,
server 12 compares the selected roll-back target time with the
time stamp contained in tag Tn. If the time stamp 1s greater
than the roll-back target time, server 12 overwrites the data in
the volume block 1dentified 1n tag Tn with a copy of the data
from roll-back log 18 corresponding to tag Tn. After the
volume block 1s updated with data from roll-back log 18,
server 12 decrements dummy variable n by 1 in step 56. Steps
52-56 are repeated until the time stamp of tag Tn 1s less than
or equal to the roll-back target time 1n step 52. When the
condition 1s met 1n step 52, the process ends.

The process shown 1n FIG. 4 can be used to incrementally
restore volume V 1n reverse chronological order from 1ts data
state as shown 1n FIG. 3e to the data state 1t occupied at, for
example, time t, (see FIG. 3a). With the roll-back target time
set to t,, the data restoration operation begins with server 12
setting dummy variable nto 5, the value ot n, . Accordingly,
server 12 accesses tag TS. Tag T5 indicates that data C was
copied from block 3 of volume V. Data C stored 1n roll-back
log 18 corresponds to tag T5. Server 12 overwrites the exist-
ing data C, in block 3 of volume V with a copy of data C stored
in roll-back log 18 in accordance with step 54 of FIG. 4. Once
block 3 1s overwritten with data C, as shown in FIG. 5a,
volume V has been restored to the data state 1t occupied at
time t,. Server 12 decrements n from 5 to 4, and server 12
accesses the next tag T4 and compares the time stamp t, 1n tag
T4 with the roll-back target time t, . Because t, 1s later 1n time,
volume V has not been restored back to the roll-back target
time. Tag T4 indicates that data B, was copied from block 2 of
volume V. Data B, stored 1n roll-back log 18 corresponds to
tag T4. Server 12 overwrites the existing data B, in block 2 of
volume V with a copy of data B, stored 1n roll-back log 18 in
accordance with step 54 of FIG. 4. Once block 2 1s overwrit-
ten with data B,, volume V has been restored to the data state
it occupied at time t, as shown 1 FIG. 5b. Server 12 decre-
ments n from 4 to 3, and server 12 accesses the next tag T3.
Server 12 then compares the time stamp t; 1in tag T3 with the
roll-back target time t,. Because t, 1s later in time, volume V
has not been restored back to the roll-back target time. Tag T3
indicates that data D was copied from block 4 of volume V.
Data D stored in roll-back log 18 corresponds to tag 13.
Server 12 overwrites the existing data D, in block 4 of volume
V with a copy of data D stored in roll-back log 18 1n accor-
dance with step 54 of FIG. 4. Once block 4 1s overwritten with

10

15

20

25

30

35

40

45

50

55

60

65

8

data D, volume V has been restored to the data state 1t occu-
pied at time t, as shown in FIG. 3c. Server 12 decrements n
from 3 to 2, and server 12 accesses the next tag '12. Server 12
then compares the time stamp t, 1n tag T2 with the roll-back
target time t,. Because t, 1s later in time, volume V has not
been restored back to the roll-back target time. Tag T2 1ndi-
cates that data A was copied from block 1 of volume V. Data
A stored 1n roll-back log 18 corresponds to tag 12. Server 12
overwrites the existing data A, in block 1 of volume V with a
copy of data A stored 1n roll-back log 18 1n accordance with
step 54 of FIG. 4. Once block 1 1s overwritten with data B,
volume V has been restored to the data state 1t occupied at
time t, as shown in FIG. 54. Server 12 decrements n from 2 to
1, and server 12 accesses the next tag T1. Server 12 then
compares the time stamp t, 1n tag T1 with the roll-back target
timet,. Because these two times are equal, volume V has been
restored back to the roll-back target time and the incremental,
reverse chronological restore process ends of FIG. 4 ends, at
least for the moment.

As noted above, the roll-back log 18 can be used to incre-
mentally restore volume V 1n reverse chronological order. It 1s
possible that volume V as been mnadvertently restored to a
point 1 time that 1s much earlier then needed to correct a data
corruption. Volume V can be checked for corruption either by
server 12 or manually. If the volume does not contain cor-
rupted data, then in all probability volume V has been restored
to a point in time earlier than the time when the corruption
occurred. In this case, roll-forward log 20 can be used to
incrementally restore volume V 1n forward chronological
order. For instance, after volume V has been restored to the
data state 1t occupied at time t,, roll-forward log 20 can be
used to incrementally restore volume V to the state it occupied
at, for example, time t,. FIG. 6 1llustrates operational aspects
of using roll-forward log 20 to incrementally restore data
volume V 1n forward chronological order.

The process shown 1n FIG. 6 can be implemented by server
12 executing instructions stored i memory (not shown).
Before the process i1s started, a roll-forward target time 1s
selected to which the data volume V 1s to be incrementally
restored 1n forward chronological order. The processes in
FIGS. 4 and 6 share the same dummy varniable n. Thus, the
value of n in the process of FIG. 6 starts out equal to the value
of n when the process of FIG. 4 ends. In step 62, server 12
compares the selected roll-forward target time with the time
stamp contained 1n tag Tn. If the time stamp 1s earlier 1n time
than the roll-forward target time, server 12 increments n by 1
and then overwrites the data 1n the volume block 1dentified 1n
tag Tn with a copy of the corresponding data from roll-
torward log 20 as shown 1n steps 64 and 66. Steps 62-66 arc
repeated until the time stamp of tag Tn 1s latter than or equal
in time to the roll-forward target time 1n step 62. When the
condition 1s met in step 62, the process ol FIG. 6 ends, at least
for the moment.

The process shown 1n FIG. 6 can be used to incrementally
restore volume V in forward chronological order from the
data state shown 1n FIG. 5d to the data state it occupied at, for
example, time t; (see FIG. 3c¢). In the 1llustrated example, n
equals 1 when the process of FIG. 6 1s first started since n was
equal to 1 when the process shown in FI1G. 6 lastended. Server
12 accesses tag T1 which contains a time stamp equal to t,.
Because roll-forward target time t; 1s later in time than t,,
dummy variable n 1s incremented so that n=2, and server 12
accesses the tag T2. The data A, stored 1n roll-forward log 20
corresponds totag T2. Tag'12 indicates that block 1 of volume
V was overwritten with data A, at time t,. Server 12 over-
writes the existing data A 1n block 1 of volume V with a copy
of data A, stored in roll-forward log 20 in accordance with

US 7,620,785 Bl

9

step 66 of FIG. 6. Once block 1 1s overwritten with data A |,
volume V has been restored to the data state 1t occupied at
time t, as shown 1 FIG. 7a. Server 12 then compares the time
stamp t, in tag T2 with the roll-forward target time t,. Because
t, 1s later in time, volume V has not been restored to the
roll-forward target time. As such, variable n 1s incremented so
that n=3, and server 12 accesses tag T3. Data D, stored 1n
roll-forward log 20 corresponds to tag T3. Tag T3 indicates
that block 4 of volume V was overwritten with data D, at time
t,. Server 12 overwrites the existing data D 1in block 4 of
volume V with a copy of data D, stored in roll-forward log 20
in accordance with step 66 of FIG. 6. Once block 4 1s over-
written with data D,, volume V has been restored to the data
state 1t occupied at time t, as shown in F1G. 7b. Server 12 then
compares the time stamp t; in tag T3 with the roll-forward
target time t,. Because t, equates to the roll-forward target
time, volume V has been restored and the process of FIG. 6
ends.

Using the process of FIG. 4 or a combination of the pro-
cesses of FIGS. 4 and 6, volume V can be restored to the data
state 1t occupied at a prior point in time. For example, volume
V can be restored to the data state 1t occupied at time t,, just
prior to data corruption. As can be understood, when the
number of write transactions to volume V may become large,
and the number of data blocks stored 1n logs 18 and 20 can
increase rapidly. At some point, 1t may be necessary to create
another backup copy of the volume V, and erase or invalidate
the contents of logs 18 and 20. The roll-forward log may be
instrumental 1n creating another full backup of volume V.
More particularly, server 12 or an independent computer sys-
tem dedicated to performing backup operations may use the
roll-forward log 20 to update the current full backup men-
tioned above. When all data of the roll-forward log 20 1s
applied to the current full backup copy 1n the order 1n which
data was received 1n roll-forward log 20, a new full backup
copy of volume V results, and logs 18 and 20 can be emptied
or their contents mvalidated.

Although the present invention has been described 1n con-
nection with several embodiments, the invention 1s not
intended to be limited to the specific forms set forth herein.
On the contrary, 1t 1s intended to cover such alternatives,
modifications, and equivalents as can be reasonably included
within the scope of the invention as defined by the appended
claims.

What 1s claimed 1s:

1. A method comprising:

(a) overwriting old first data 1n a data volume with new {first

data;

(b) storing a copy of the old first data in a roll-back
memory, wherein (b) occurs before (a);

(c) storing a copy of the new first data in a roll-forward
memory;

(d) overwriting old second data 1n the data volume with
new second data, wherein (d) occurs after (a);

(¢) storing a copy of the old second data 1n the roll-back
memory, wherein (e) occurs before (d);

(1) storing a copy of the new second data 1n the roll-forward
memory;

(g) overwriting the new second data in the data volume
with a copy of the old second data from the roll-back
memory, wherein (g) occurs after (d);

(h) overwriting the new first data in the data volume with a
copy of the old first data from the roll-back memory,
wherein (h) occurs after (g);

(1) overwriting the old first data 1n the data volume with a
copy ol the new first data stored in the roll-forward
memory, wherein (1) occurs atfter (h);

10

15

20

25

30

35

40

45

50

55

60

65

10

(1) overwriting the old second data 1n the data volume with
a copy ol the new second data from the roll-forward
memory, wherein (1) occurs aiter (1) and (g).

2. A method comprising;:

(a) overwriting old first data in a first volume with new first
data;

(b) storing a copy of the old first data 1n a roll-back
memory, wherein (b) occurs before (a);

(¢) storing a copy of the new first data 1n a roll-forward
memory;

(d) overwriting old second data 1n a second volume with
new second data, wherein (d) occurs alfter (a);

(¢) storing a copy of the old second data in the roll-back
memory, wherein (e) occurs before (d);

(1) storing a copy of the new second data in the roll-forward
memory, wherein the old first data and old second data
were contained 1n the first data volume and the second
data volume, respectively, before (a);

(g) overwriting the new second data in the second data
volume with a copy of the old second data from the
roll-back memory, wherein (g) occurs aifter (d);

(h) overwriting the new first data in the first data volume
with a copy of the old first data from the roll-back
memory, wherein (h) occurs after (g);

(1) overwriting the old first data 1n the first data volume with
a copy of the new first data stored in the roll-forward
memory, wherein (1) occurs atfter (h);

(1) overwriting the old second data 1n the second data
volume with a copy of the new second data from the
roll-forward memory, wherein (j) occurs after (1) and (g).

3. The method of claim 1 further comprising compressing,
the copy of the old first data stored 1n the roll-back memory.

4. The method of claim 1 further comprising;:

generating a first request to overwrite the old first data with
new first data;

wherein (a) occurs 1n response to the generation of the first
request;

generating a second request to overwrite the old second
data with new second data;

wherein (d) occurs in response to the generation of the
second request;

wherein, after (h) occurs, the data volume 1s restored to the
data state 1t occupied before the first request was gener-
ated.

5. A computer readable memory for storing instructions
executable by a computer system, wherein the computer sys-
tem 1mplements a method 1n response to executing the
istructions, the method comprising:

(a) overwriting old first data 1n a data volume with new first

data;

(b) storing a copy of the old first data 1n a first memory,
wherein (b) occurs before (a);

(¢) storing a copy of the new {irst data 1n a second memory;

(d) overwriting old second data 1n the data volume with
new second data, wherein (d) occurs aiter (a);

() storing a copy of the old second data in the first memory,
wherein (e) occurs betfore (d);

(1) storing a copy of the new second data in the second
memory, wherein the old first data and the old second
data were contained 1n the data volume before (a);

(g) overwriting the new second data in the data volume
with a copy of the old second data from the first memory,
wherein (g) occurs after (d);

(h) overwriting the new {first data 1n the data volume with a
copy of the old first data from the first memory, wherein
(h) occurs after (g);

US 7,620,785 Bl

11

(1) overwriting the old first data 1n the data volume with a
copy ol the new first data stored 1n the second memory,
wherein (1) occurs after (h);

(1) overwriting the old second data 1n the data volume with
a copy of the new second data from the second memory,
wherein (1) occurs after (1) and (g).

6. A computer readable memory for storing instructions
executable by a computer system, wherein the computer sys-
tem 1mplements a method 1n response to executing the
istructions, the method comprising:

(a) overwriting old first data 1n a first volume with new {first

data;

(b) storing a copy of the old first data 1n a first memory,
wherein (b) occurs before (a);

(c) storing a copy of the new {irst data 1n a second memory;

(d) overwriting old second data 1n a second volume with
new second data, wherein (d) occurs aifter (a);

(¢) storing a copy of the old second data 1n the first memory,
wherein (e) occurs betfore (d);

(1) storing a copy of the new second data in the second
memory, wherein

the old first data and old second data were contained 1n the
first data volume and the second data volume, respec-
tively, before (a);

(g) overwriting the new second data 1n the second data
volume with a copy of the old second data from the first
memory, wherein (g) occurs after (d);

(h) overwriting the new first data 1n the first data volume
with a copy of the old first data from the first memory,
wherein (h) occurs after (g);

(1) overwriting the old first data 1n the first data volume with
a copy of the new first data stored 1n the second memory,
wherein (1) occurs atfter (h);

(1) overwrniting the old second data in the second data
volume with a copy of the new second data from the
second memory, wherein (j) occurs after (1) and (g).

7. The computer readable memory of claim 5 wherein the
method further comprises compressing the copy of the old
first data stored in the first memory.

8. The computer readable memory of claim 5 wherein the
method further comprises:

generating a first request to overwrite the old first data with
new first data;

wherein (a) occurs 1n response to generation of the first
request;

generating a second request to overwrite the old second
data with new second data;

wherein (d) occurs 1n response to generation of the second
request;

wherein, after (h) occurs, the data volume 1s restored to the
data state 1t occupied before the first request was gener-
ated.

9. The computer readable memory of claim 5 wherein the
method further comprises associating a first time stamp with
the copy of the old first data stored in the first memory.

10. The computer readable memory of claim 9 wherein the
method further comprises associating the first time stamp
with the copy of the new first data stored in the second
memory.

11. An apparatus comprising:

a computer system coupled to first and second memory

devices;

an 1nstruction memory for storing instructions executable
by the computer system,
wherein the computer system implements a method in

response to executing the instructions the method
comprising;:

10

15

20

25

30

35

40

45

50

55

60

65

12

(a) overwriting old first data 1n a data volume with new
first data;

(b) storing a copy of the old first data in a roll-back
memory, wherein (b) occurs before (a);

(c) storing a copy of the new first data 1n a roll-forward
memory;

(d) overwriting old second data 1n the data volume with
new second data, wherein (d) occurs after (a);

(e) storing a copy of the old second data 1n the roll-back
memory, wherein (€) occurs betfore (d);

(1) storing a copy of the new second data in the roll-
forward memory, wherein
the old first data and the old second data were con-

tained 1n the data volume before (a);

(g) overwriting the new second data 1n the data volume
with a copy of the old second data from the roll-back
memory, wherein (g) occurs aiter (d);

(h) overwriting the new {irst data 1n the data volume with
a copy of the old first data from the roll-back memory,
wherein (h) occurs after (g);

(1) overwriting the old first data 1in the data volume with
a copy of the new first data stored 1n the roll-forward
memory, wherein (1) occurs after (h);

(1) overwriting the old second data in the data volume
with a copy of the new second data from the roll-
forward memory, wherein (1) occurs after (1) and (g).

12. The method of claim 2 further comprising compressing
the copy of the old first data stored 1n the roll-back memory.

13. The method of claim 2 further comprising:
generating a {irst request to overwrite the old first data with
new first data, wherein
(a) occurs 1n response to the generation of the first
request;
generating a second request to overwrite the old second
data with new second data, wherein

(d) occurs 1n response to the generation of the second
request;
wherein, after (h) occurs, the data volume 1s restored to the

data state 1t occupied before the first request was gener-
ated.

14. The computer readable memory of claim 6 wherein the
method further comprises compressing the copy of the old
first data stored in the first memory.

15. The computer readable memory of claim 6 wherein the
method further comprises:

generating a {irst request to overwrite the old first data with
new first data, wherein

(a) occurs 1n response to generation of the first request;

generating a second request to overwrite the old second
data with new second data, wherein

(d) occurs 1n response to generation of the second
request;
wherein, after (h) occurs, the data volume 1s restored to the

data state 1t occupied before the first request was gener-
ated.

16. The computer readable memory of claim 6 wherein the
method further comprises associating a first time stamp with
the copy of the old first data stored in the first memory.

17. The computer readable memory of claim 16 wherein
the method further comprises associating the first time stamp
with the copy of the new first data stored in the second
memory.

18. The method of claim 1 further comprising an act of
associating a first time stamp with the copy of the old first data
stored 1n the roll-back memory.

US 7,620,785 Bl

13 14
19. The method of claim 18 further comprising an act of 22. The method of claim 18 further comprising an act of
associating, ‘the‘ first time stamp with the copy of the new first associating a second time stamp with the copy of the old
data stored 1n the roll-forward memory. second data stored in the roll-back memory, wherein the first
20. The method of claim 19 further comprising an act of

7 , ‘ and second time stamps are different.
associating the first time stamp with the copy of the new first 5

data stored 1n the roll-forward memory.

21. The method of claim 2 further comprising an act of
associating a {irst time stamp with the copy of the old first data
stored 1n the roll-back memory.

	Front Page
	Drawings
	Specification
	Claims

