US007610481B2
a2 United States Patent (10) Patent No.: US 7,610,481 B2
Cool et al. 45) Date of Patent: Oct. 27, 2009
(54) METHOD AND APPARATUS TO SUPPORT 2003/0037178 Al* 2/2003 Vessey etal. 709/319

(75)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

2002/0124040 Al
2002/0156824 Al
2003/0009654 Al

INDEPENDENT SYSTEMS IN PARTTITIONS
OF A PROCESSING SYSTEM

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Lyle Cool, Beaverton, OR (US); Saul
Lewites, Hillsboro, OR (US)

Intel Corporation, Santa Clara, CA

(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 533 days.

11/407,425

Apr. 19, 2006

Prior Publication Data

US 2007/0250691 Al

Int. CI.

GO6F 15/177

GO6F 9/50

Oct. 25, 2007

(2006.01)
(2006.01)

US.CL 713/2; 713/1; 713/100;
712/13;710/38

Field of Classification Search

0,934,833 B2
6,973,517 Bl
6,996,706 Bl

713/1,

713/2, 100; 712/13; 710/38
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8/2005
12/2005
2/2006

7,0890.411 B2* 8/2006
7,441,112 B2* 10/2008

9/2002
10/2002
1/2003

Larvoire
Golden et al.

Madden et al.

Lindemaneeeeenn....

Zimmeretal.ooonnn..... 713/2

Foster et al.

Armstrong et al
Nalawadi et al.

*

20

R

2003/0115443 Al 6/2003 Cepulis et al.
2004/0068645 Al 4/2004 Larvoire
2004/0181647 Al* 9/2004 DeSotaetal. 712/13

(Continued)

FOREIGN PATENT DOCUMENTS
KR 1020010082040 A 8/2001

(Continued)

OTHER PUBLICATIONS

Thomas Schultz—U.S. Appl. No. 11/241,247, filed Sep. 30,

2005—Exposed sequesteredpartition apparatus, systems, and meth-
ods.

(Continued)

Primary Examiner—Thuan N Du
Assistant Examiner—Fahmida Rahman
(74) Attorney, Agent, or Firm—D’ Ann Naylor Rifa1

(57) ABSTRACT

A processing system with multiple processing units may sup-
port separate operating systems (OSs) 1n separate partitions.
During an imitialization process, a preboot manager 1n the
processing system may copy software to a sequestered area of

memory 1n the processing system. The preboot manager may
also configure the processing system to hide the sequestered
area ol memory from a first partition of the processing sys-
tem. Also, the preboot manager may use a first processing unit
in the processing system to boot an OS on the first partition,
and the preboot manager may transmit a boot trigger from the
first processing unit to a second processing unit 1n the pro-

cessing system. The boot trigger may cause the second pro-
cessing unit to use the software in the sequestered area of

memory to boot a second partition of the processing system.
Other embodiments are described and claimed.

14 Claims, 7 Drawing Sheets

12

/

Main Partition 50

Oparating System 80

Seqd. Partition 52

Operating System £2

BIOS 42 BIOS 48
........ 22 84 | 1] .. 11=3 B[] .
80
RAM 28 Mass Data Storage
=0
Main Partition 5Qa
Seqd. Partition 52a o5 R 0S 82
ROM 28
Processor 22 | Firmwara 40
Hub 35
Proc. Unit 21 e Preboot Mgr. B4
~ S0
2 BDS Pgm B&
Proc. Unit 23. BI0S or 88
24
NIC 34 1o 32

. 70

llllllllllllll

US 7,610,481 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0125580 Al
2005/0144434 Al

6/2005 Madukkarumukumana et al.
6/2005 Taylor et al.

2005/0289283 Al 12/2005 Warrnier et al.

2007/0113063 Al™ 5/2007 LewiteS .ovvvvviivnininnnnnnn 713/1
2007/0234031 Al1* 10/2007 Garneycccoeeevevvenenennns 713/2

FOREIGN PATENT DOCUMENTS

WO 9941672 Al 8/1999

OTHER PUBLICATIONS

Saul Lewites—U.S. Appl. No. 11/273,817, filed Nov. 15,
2005—Method and apparatus for maintaining a partition when boot-
ing another partition.

Saul Lewites—U.S. Appl. No. 11/294,839, filed Dec. 35,
2005—Method and apparatus for assigning devices to a partition.

John Gamney—U.S. Appl. No. 11/396,126, filed Mar. 31,
2006)—Methods and apparatus to optimized BIOS for a partioned
platform.

Intel /O Controller Hub 6 (ICH6) Famuly, Datasheet, Jan.
2005—1tp://download.intel.com/design/chipsets/datashts/
30147302 pdf.

Intel Corporation, “Intel® 82573E/V/L Gigabit Ethernet Control-
lers”, Product Briet—Network Connectivity, Intel® PRO, Network
Connections, 2005, whole document.

Bob Bogowitz et al., “Intel® Active Management Technology
Reduces IT Costs with Improved PC Manageability”,
Technology(@Intel Magazine, Sep. 2004, 7 pages.
PCT/US2007/009337, PCT Search Report and Written Opinion
mailed Sep. 19, 2007, Intel Corporation, 10 pages.

Bob Bogowitz et al., “Reducing Costs with Intel Active Management

Technology”, White Paper—Intel Information Technology, IT
(@Intel, Aug. 2005, 16 pages.

* cited by examiner

U.S. Patent Oct. 27, 2009 Sheet 1 of 7 US 7,610,481 B2

12

20

82
Main Partition 50 Seqd. Partition 52
Operating System 60 Operating System 62
BIOS 42 BIOS 46
E
80
I e ————————————————_————————— -
Seqd. Partition 52a I
Processor 22 Firmware 40
Hub 35
Proc. Unit 21 T Preboot Mgr. 84
I] "k 90
BDS Pgm 86
|
Proc. Unit 23 \
T o4 | BIOS Loader 88 |

NIC 34 /10 32

Remote 70
DPS

I

72

FIG. 1

U.S. Patent Oct. 27, 2009 Sheet 2 of 7 US 7,610,481 B2

20

....... .:'_: P
rol P3| Use SATA
o
MCH 36
27

Legend: Sequestered =

FIG. 2

U.S. Patent Oct. 27, 2009 Sheet 3 of 7 US 7,610,481 B2

AP
T
DXE - SIPI
150
144 Idle Loop
Set up SMM Base
SMI & SMI Handler 152
160
BDS = DXE 170
0S BDS l 172
162 SEE
174

FIG. 3

U.S. Patent Oct. 27, 2009 Sheet 4 of 7 US 7,610,481 B2

BSP I AP
110 ~ SEC

DXE SIPI — *
114 Idle Loop 120
Set up SMM Base
SMI & SMI Handler 122
130 -
BDS :I . Embedded OS
OS
134
132

FIG. 4

U.S. Patent Oct. 27, 2009 Sheet 5 of 7 US 7,610,481 B2

180 26

4
194 2

43

50a

U.S. Patent

Oct. 27, 2009

(“oean)

Y

510 écan Buses &
Build Device List 1

Sheet 6 of 7

R

212
"\/'

-Program D-evice
Hide Reqisters

214 —~—

' Scan Buses &
Build Device List 2

I

v

216 ~

S

Reset 6evice
Hide Registers

'

220 - |

Use List 1 and List 2
to Produce List of
Sequestered Devices

Y

222

Start Seqd. Partition
& Pass
List of Seqd. Devices

230

232 —~|

g

Sequestered
Partition Booted?

Yes

Y

No

Program De\;ice Hide
Registers

il bl

v

204 ~|

Boot OS

l

(E%ld >

US 7,610,481 B2

FIG. 6

U.S. Patent Oct. 27, 2009 Sheet 7 of 7 US 7,610,481 B2

310 Receive List of
Sequestered Devices

320
All Devices in List N
Initialized?
UUse List to Locate
Next Device
Yes N
324 ~| [Initialize Located
Device
330 Boot

Sequestered Partition

FIG. 7

US 7,610,481 B2

1

METHOD AND APPARATUS TO SUPPORT
INDEPENDENT SYSTEMS IN PARTITIONS
OF A PROCESSING SYSTEM

FIELD OF THE INVENTION

The present disclosure relates generally to the field of data
processing, and more particularly to methods and related
apparatus to support the loading of separate operating sys-
tems or software environments in different partitions of a
processing system.

BACKGROUND

In a typical legacy data processing system, firmware pro-
vides the machine 1nstructions that control the system when
the system 1s being powered up or has been reset, but before
an operating system (OS) 1s booted. That 1s, the firmware
controls the pre-OS or pre-boot operations. Firmware may
also control certain operations after the OS has been loaded.,
such as operations for handling certain hardware events and/
or system interrupts. The firmware may handle pre-boot and
post-boot operations through a set of routines referred to
collectively as a basic input/output system (BIOS). The BIOS
thus provides the interface between the hardware components
of the system and software components such as the OS.

Some years ago, the extensible firmware interface (EFI)
model was announced. Version 1.10 of the EFI Specification,
dated Dec. 1, 2002, (the “EFI Specification”) may be obtained
from the URL xwwwx.1ntel com/technology/efi/main_speci-
fication. htm, where the characters “www” 1n the URL have
been replaced with the characters “xwwx” to avoid an active
link from within this document. The EFI Specification defines
a set of standard interfaces and structures to be provided by
low-level platform firmware. Those interfaces and structures
may be used for tasks such as loading additional firmware,
running pre-boot applications, booting the OS, and providing,
runtime services after an OS has been booted. The Intel®
Platform Innovation Framework for EFI 1s an example of a
platform framework that 1s based on the EFI model.

There are not expected to be any future versions of the EFI
specification. However, 1n 2006, the Unified EFI Forum
released Version 2.0 of the Unified EFI (UEFI) Specification,
dated Jan. 31, 2006 (the “UEFI Specification™). The UEFI
Specification may be obtained from the URL xwwwx.ue-
f1.org/index.pho?pg=4, where the characters “www” in the
URL have been replaced with the characters “xwwwx™ to
avold an active fink from within this document. The UEFI
specification 1s based on the EFI specification, with correc-
tions and changes managed by the Unified EFI Forum. In the
coming vyears, EFI-based or UEFI-based platform frame-
works may supplant frameworks based on the legacy BIOS
model as the frameworks of choice for designing, building,
and operating data processing systems.

For purposes of this disclosure, the terms “firmware™ and
“BIOS™ refer to software that may execute i a processing
system before the processing system has booted to an OS,
soltware that may provide runtime services that allow the OS
or other components to interact with the processing system
hardware, and similar types of software components. Thus,
the terms “firmware” and “BIOS” include, without limitation,
software based on the UEFI model and software based on the
legacy BIOS model. Traditionally, firmware has typically
been stored in non-volatile memory. In more recent years,
however, processing systems have been developed that store
firmware 1n other types of storage devices or obtain firmware
from remote repositories.

10

15

20

25

30

35

40

45

50

55

60

65

2

For purposes of this disclosure, depending upon the par-
ticular implementation under consideration, the term “pro-
cessing unit” may denote an individual central processing
umt (CPU) within a processing system, a processing core
within a CPU, a logical processing unit such as a hyper-thread
(HT), or any similar processing resource, or any collection of
such resources configured to operate collectively as a unit. In
a system where multiple processing units exist, the OS nor-
mally owns all of the processing units. However, virtualiza-
tion soitware, such as a virtual machine monitor (VMM), may
be used to allocate one processing unit to one virtual machine
(VM), and another processing unit to another VM.

Also, 1n some processing systems, it 1s possible to hide one
or more of the processing units from the OS, for instance by
modifying the advanced configuration and power interface
(ACPI) tables produced by the BIOS. In some systems 1t 1s
also possible to hide one or more portions of random access
memory (RAM) from the OS. Additionally, 1n some systems,
several peripheral and integrated devices can be hidden from
the OS, for example by updating device-hide registers or
other locations in the system’s mput/output (I/0) controller
hub (ICH). These techniques may be used to hide devices for
debugging purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become apparent from the appended claims, the following
detailed description of one or more example embodiments,
and the corresponding figures, in which:

FIG. 1 1s a block diagram depicting a suitable data process-
ing environment 1 which certain aspects of an example
embodiment of the present invention may be implemented;

FIG. 2 1s a block diagram providing additional details
regarding some of the hardware components 1n the processing
system of FIG. 1;

FIGS. 3 and 4 are tlowcharts depicting various aspects of a
process for supporting separate operating systems 1n parti-
tions of a processing system, according to example embodi-
ments of the present mvention;

FIG. 5 1s a block diagram 1llustrating a memory configu-
ration according to an example embodiment of the present
invention, and a memory configuration from an example pro-
cessing system without sequestering; and

FIGS. 6 and 7 are tlowcharts depicting various aspects of a
process for assigning devices to a partition, according to an
example embodiment of the present invention.

DETAILED DESCRIPTION

In addition to conventional uses for debugging purposes,
the techniques described above may also be used to create two
(or more) execution environments within a single computer
or data processing system that has multiple processing units.
Such an execution environment may also be called a partition.
For mstance, a processing system may include a main parti-
tion and a sequestered partition. The main partition may
include a general purpose OS (e.g., one of the various Win-
dows®-based OSs, a Linux®-based OS, etc.) and one or more
user applications (e.g., a web server, a business application,
etc.). The sequestered partition may not be visible to the main
OS, and the sequestered partition may be used for a wide
variety of applications, including, without limitation, I/O ofi-
loading, platform manageability, and/or fault prediction.

One or more embodiments of the present invention pertain
to methods and apparatus for supporting separate operating

systems 1n partitions of a processing system.

US 7,610,481 B2

3

FIG. 1 1s a block diagram depicting a suitable data process-
ing environment 12 1 which certain aspects of an example
embodiment of the present invention may be implemented.
Data processing environment 12 includes a processing sys-
tem 20 that includes various hardware components 80 and
solftware components 82. The hardware components may
include, for example, one or more processors or CPUs 22,
communicatively coupled, directly or indirectly, to various

other components via one or more system buses 24 or other
communication pathways or mediums. In the example
embodiment, processor 22 includes multiple processing
units, such as a first processing core 21 and a second process-
ing core 23. Alternatively, a processing system may 1nclude
multiple processors, each having at least one processing unait.
The processing units may be implemented as processing
cores, as HT resources, or as any other suitable technology for
executing multiple threads simultaneously or substantially
simultaneously. In example embodiments, processing unit 21
may serve as a bootstrap processor (BSP) for processing
system 20, and processing unit 23 may serve as an application
processor (AP).

As used herein, the terms “processing system™ and “data
processing system” are intended to broadly encompass a
single machine, or a system ol commumcatively coupled
machines or devices operating together. Example processing,
systems include, without limitation, distributed computing
systems, supercomputers, high-performance computing sys-
tems, computing clusters, mainframe computers, mini-com-
puters, client-server systems, personal computers (PCs),
workstations, servers, portable computers, laptop computers,
tablet computers, personal digital assistants (PDAs), tele-
phones, handheld devices, entertainment devices such as
audio and/or video devices, and other devices for processing
or transmitting information.

Processing system 20 may be controlled, at least in part, by
input from conventional input devices, such as a keyboard, a
pointing device such as a mouse, etc. Input devices may
communicate with processing system 20 via an 1/0 port 32,
for example. Processing system 20 may also respond to direc-
tives or other types of information recerved from other pro-
cessing systems or other mnput sources or signals. Processing
system 20 may utilize one or more connections to one or more
remote data processing systems 70, for example through a
network intertace controller (NIC) 34, a modem, or other
communication ports or couplings. Processing systems may
be interconnected by way of a physical and/or logical network
72, such as a local area network (LAN), a wide area network
(WAN), an intranet, the Internet, etc. Communications
involving network 72 may utilize various wired and/or wire-
less short range or long range carriers and protocols, includ-
ing radio frequency (RF), satellite, microwave, Institute of
Electrical and Flectronics Engineers (IEEE) 802.11, 802.16,

802.20, Bluetooth, optical, infrared, cable, laser, efc.

Within processing system 20, processor 22 may be com-
municatively coupled to one or more volatile or non-volatile
data storage devices, such as RAM 26, read-only memory
(ROM) 28, and one or more mass storage devices 30. The
mass storage devices 30 may include, for instance, integrated
drive electronics (IDE), small computer system interface
(SCSI), and sernal advanced technology architecture (SATA)
hard drives. The data storage devices may also include other
devices or media, such as tfloppy disks, optical storage, tapes,
flash memory, memory sticks, compact flash (CF) cards, digi-
tal video disks (DVDs), etc. For purposes of this disclosure,
the term “ROM” may be used in general to refer to non-
volatile memory devices such as erasable programmable

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ROM (EPROM), electrically erasable programmable ROM
(EEPROM), flash ROM, flash memory, etc.

Processor 22 may also be commumicatively coupled to
additional components, such as one or more video control-
lers, SCSI controllers, network controllers, universal serial
bus (USB) controllers, I/O ports, mnput devices such as a
camera, etc. Processing system 20 may also include one or
more bridges or hubs 35, such as a memory controller hub
(MCH), an ICH, a peripheral component interconnect (PCI)
root bridge, etc., for communicatively coupling system com-
ponents. As used herein, the term “bus” includes pathways
that may be shared by more than two devices, as well as
point-to-point pathways.

Some components, such as NIC 34, for example, may be
implemented as adapter cards with interfaces (e.g., a PCI
connector) for communicating with a bus. Alternatively, NIC
34 and other devices may be implemented as on-board or
embedded controllers, using components such as program-
mable or non-programmable logic devices or arrays, applica-
tion-specific mtegrated circuits (ASICs), embedded proces-
sors, smart cards, etc.

In the example embodiment, processing system 20 uses
firmware-based partitioning. Specifically, after processing
system 20 has been started or powered on, firmware 40 may
create a main partition 50 and a sequestered partition 52
within processing system 20. Main partition 50 may include
the firmware code (e.g., BIOS 42) and the OS code (e.g., OS
60) running on the BSP. Sequestered partition 52 may include
the firmware code (e.g., BIOS 46) and the OS code (e.g., OS
62) running on the AP. The main partition may also be
referred to as a non-sequestered partition. In alternative
embodiments, partitions may run on other types of processing
units.

In the example embodiment, an ICH 37 (1llustrated 1n FIG.
2) includes configuration constructs such as device hide reg-
isters 90 that allow various components or devices within
processing system 20 to be disabled or hidden. For 1nstance,
the configuration constructs may be used to cause ICH 37 to
block configuration cycles for certain devices. Also, 1n the
example embodiment, ACPI parameters 92 for main partition
50 may be used to hide processing unit 23 and one or more
portions of RAM 26 from OS 60, while ACPI parameters 93
for sequestered partition 52 may be used to hide processing
umt 21 and other portions of RAM 26 from OS 62.

Additional details about device hide registers and related
topics may be obtained from the Intel® 1I/O Controller Hub 6
(ICH6) Family Datasheet, dated Jan. 2004 (the “ICH6
datasheet™). The ICH6 datasheet may be obtained from the
URL xhttpx://www.intel.com/design/chipsets/datashts/
301473 .htm, where the characters “http” 1n the URL have
been replaced by the characters “xhttpx™ to avoid an active
link from within this document. Additional details about
ACPI parameters and related topics may be obtained from
Revision 3.0a of the Advanced Configuration And Power
Interface Specification, dated Dec. 30, 2005 (the “ACPI
specification’). The ACPI specification may be obtained from
the URL xwwwx.acpi.info/spec.htm, where the characters
“www” 1n the URL have been replaced by the characters
“xwwwix” to avoild an active link from within this document.

In alternative embodiments, other data storage constructs
within an ICH and/or within one or more other components
may be used to disable or hide devices within a processing
system, and other techniques may be used to hide processing
units and portions of RAM.

The mvention may be described herein with reference to
data such as instructions, functions, procedures, data struc-
tures, application programs, configuration settings, etc. When

US 7,610,481 B2

S

the data 1s accessed by a machine, the machine may respond
by performing tasks, defining abstract data types or low-level
hardware contexts, and/or performing other operations, as
described 1n greater detail below. The data may be stored 1n
volatile and/or non-volatile data storage. For purposes of this 3
disclosure, the term “program” covers a broad range of sofit-
ware components and constructs, including applications,
drivers, processes, routines, methods, modules, and subpro-
grams. The term “program’ can be used to refer to a complete
compilation umt (1.e., a set of mstructions that can be com- 10
piled independently), a collection of compilation units, or a
portion of a compilation unit. Thus, the term “program’ may
be used to refer to any collection of instructions which, when
executed by a processing system, perform a desired operation
Or operations. 15

For instance, ROM 28, data storage device 30, and/or RAM
26 may include various sets of instructions which, when
executed, perform various operations. Such sets of mstruc-
tions may be referred to 1n general as software.

In the example embodiment, processing system 20 uses 2V
techniques such as those described above to create two dis-
tinct partitions in processing system 20: main partition 50 and
sequestered partition 52. In alternative embodiments, a pro-
cessing system may have more than one main partition and/or
more than one sequestered partition. 23

In one example embodiment, the programs or software
components 82 may include a distinct instance of firmware 40
for each partition. Each partition may also recerve its own OS
and 1ts own applications. For instance, in one example
embodiment, each partition receives some or all of the firm-
ware code 40 from ROM 28. In particular, as 1llustrated in
FIG. 1, processing system 20 loads one 1nstance of firmware
40 (1.e., BIOS 42) into main partition 50, and another instance
(1.e., BIOS 46) into sequestered partition 52. The OS 60 for

main partition 50 may be the same as, or different from, the
OS 62 for sequestered partition 52.

In a second example embodiment, processing system 20
may load firmware, a general purpose OS, and corresponding,
applications into main partition 50, and processing system 20
may load an embedded OS into sequestered partition 52. The
embedded OS may consist of a monolithic package of
instructions that 1s loaded 1nto sequestered partition 52 and
then provides all or substantially all of the services or func-
tions to be performed by sequestered partition 52. For pur-
poses of this disclosure, an embedded OS is software that
provides the kind of services which are typically provided by
a conventional OS (e.g., task scheduling, error handling, I/O
services, etc.), as well as services that are typically provided
by system firmware (e.g., the discovery and initialization of
hardware components, the provision of software interfaces to
those components, etc). An embedded OS may also provide
services that are typically provided by programs or applica-
tions that run on top of an OS.

FIG. 2 1s a block diagram providing additional details

regarding some of the hardware components 1n the processing,
system of FIG. 1. FIG. 2 highlights the partitioning of the

expansion slots and integrated devices 1n an example system.
In particular, FIG. 2 shows dotted fill 1n the blocks for certain
devices, to 1llustrate that those devices, or portions thereof,
will be hidden from OS 60. For instance, in the example
embodiment, the following components will be made avail-
able to sequestered partition 52 and hidden from OS 60:

processing unit 23;

NIC 34;

USB ports 1 and 2; and
PCI slots 1 and 2.

30

35

40

45

50

55

60

65

6

The following components may remain visible to, and avail-
able for use by, OS 60:

processing unit 21;

mass storage device 30;

USB ports 3 and 4;

PCI-Express (PCI-E) slots 1 and 2; and
PCI slots 3 and 4.

Also, mn the example embodiment, most of RAM 26 will
remain visible to OS 60, but a portion 27 will be idden from
OS 60 and made available to sequestered partition 52.

In the example embodiment, the operations for sequester-
ing devices are performed during the pre-boot portion of the
initialization process that takes place when processing system
20 1s turned on or reset. As described 1n greater detail below,
in the example embodiment, BIOS 42 1n main partition 50 has
primary control of the mitialization operations of processing
system 20. For instance, referring again to FIG. 1, those
operations may be controlled by instructions that implement
a preboot manager 84. Preboot manager 84 may include
various modules for handling different aspects of the 1nitial-
1zation process, such as a boot device selection program 86, a
BIOS loader 88, etc. Preboot manager 84 may reside in firm-
ware 40, and some or all of preboot manager 84 may be
copied to main partition 50 to form part of BIOS 42 1n an early
stage of the initialization process. Although preboot manager
84 1n main partition 50 may have primary control of the
initialization process, main partition 50 may pass control to
sequestered partition 52 when appropriate, for istance to
allow BIOS 46 to iitialize or configure memory for seques-
tered partition 52.

FIGS. 3 and 4 are flowcharts depicting various aspects of a
process for supporting separate operating systems 1n parti-
tions of a processing system, according to example embodi-
ments of the present mvention.

In the process of FIG. 3, a processing system uses a boot-
strap processor (BSP) to boot a general purpose OS on a main
partition, and the processing system uses an AP to boot a
sequestered execution environment (SEE) on a sequestered
partition. In one embodiment, the SEE includes a firmware
layer, an OS layer, and a layer for applications. In one
embodiment, processing unit 21 1 processing system 20
serves as the BSP, processing unit 23 serves as the AP, and the
SEE resides in sequestered partition 32. As described 1n
greater detail below, the process of FIG. 3 involves execution
of modules to create driver execution environment (DXFEs) 1n
main partition 50 and sequestered partition 32.

The process of FIG. 3 may start in response to processing,
system 20 being powered on or reset. Then, the BSP may
begin executing preboot manager 84, and preboot manager 84
may cause the BSP to perform various initialization opera-
tions. For example, as shown at block 140, the BSP may
perform certain security (SEC) functions (e.g., validating the
code 1mage for firmware 40). After successiul completion of
the SEC phase, the BSP may execute one or more pre-EF]
initialization (PEI) modules to perform certain PEI functions,
as shown at block 142. For example, the PEI functions may
include mitializing RAM 26 and configuring processing sys-
tem 20 to create two different memory areas: one to serve as
the RAM for main partition 50, and the other to serve as the
RAM for sequestered partition 52. For example, the process-
ing system may use operations like those described below
with regard to FIGS. 6 and 7 to create the main memory area
and the sequestered memory area. In other embodiments, a
processing system may contain more than one main memory
area and/or more than one sequestered memory area. In the
example embodiment, the mechanisms for preventing main

US 7,610,481 B2

7

partition 50 from accessing the memory of sequestered par-
tition 52 are not activated until later 1n the boot process.

FIG. 5 1s a block diagram 1illustrating a memory configu-
ration according to an example embodiment of the present
invention, and a memory configuration from an example pro-
cessing system without sequestering. The column on the right
represents the physical address space of the RAM 26. The two
brackets 50a 1llustrate that portions of that address space have
been configured to serve as the memory for main partition 30,
and brackets 52a 1llustrate that other portions of that address
space have been configured to serve as the memory for
sequestered partition 52. After the boot process 1s finished,
most of the information that constitutes main partition 50 may
reside 1n main partition memory 30a, and most of the infor-
mation that constitutes sequestered partition 52 may reside in
sequestered partition memory 52a. Other pieces of informa-
tion associated with main partition 530 and sequestered parti-
tion 52 may reside 1n other hardware components, such as
registers in an MCH 36, registers in ICH 37, etc. Sequestered
partition memory 52a may correspond to sequestered
memory 27 1in FIG. 2.

As part of the configuration process, the BSP may execute
one or more of the PEI modules twice: once in the memory
space or memory context ol the main partition, and once in the
memory context o the sequestered partition. For instance, the
BSP may call a function such as PEI_mem_init with the
actual starting and ending physical memory addresses of
RAM 26. The PEI_mem_init function may then configure
RAM 26 to have a first BIOS region 46 occupying the highest
one megabyte (MB) of RAM 26. The PEI_mem_ init function
may also load firmware code into BIOS region 46 and prepare
data 1n BIOS region 46 to be passed to a subsequent stage.
Accordingly, functions such as PEI_mem_init may be
referred to as a code loader or BIOS loader 88.

The BSP may then call BIOS loader 88 with the same or a
different starting address, and with a new ending address. In

one embodiment, the ending address 1s just betfore the begin-
ning of BIOS region 46. Thus, the BSP may hide BIOS region

46. BIOS loader 88 may then configure RAM 26 to have a
second BIOS region 42 occupying the highest megabyte
within the specified address range. BIOS loader 88 may also
load firmware code into BIOS region 42 and prepare data 1n
BIOS region 42 to be passed to a subsequent stage. Thus, 1n

such an embodiment, the sequestered BIOS region 46 may
occupy the highest MB of RAM 25, and the main BIOS

region 42 may occupy the next highest MB of RAM 26. BIOS
loader 88 may also configure RAM 26 to have a general
purpose region 48 for the sequestered partition, and a general
purpose region 44 for the main partition.

In other embodiments, distinct address ranges may be used
to create two or more BIOS regions. For instance, for the
second call to BIOS loader 88, an ending address significantly
below the beginning of BIOS region 46 may be used, leaving
enough space above that ending address to accommodate
general purpose memory for the main partition between the
main BIOS region and the sequestered BIOS region. Thus, in
such an embodiment, a single area of main partition memory
may include a general purpose region and an adjacent BIOS
region, and a single area of sequestered partition memory
may likewise include a general purpose region and an adja-
cent BIOS region.

In one embodiment, logical memory addresses starting
with zero are assigned to the main partition and to the seques-
tered partition, BIOS region 42 occupies the highest mega-
byte (MB) of main partition memory 30q, and BIOS region
46 occupies the highest MB of sequestered partition memory
52a. In other embodiments, approaches other than zero-based

10

15

20

25

30

35

40

45

50

55

60

65

8

addressing may be used. As shown 1n FIG. §, after a single-
partition processing system boots, 1its RAM 180 may not
contain two different BIOS regions and two different general
purpose regions, but only a single BIOS region 192 and a
single general purpose region 194.

The description above indicates that the BSP could execute
a PEI module twice to configure the different memory spaces
for the different partitions. In an alternative embodiment, a
processing system may use one or more different BIOS load-
ers or PEI modules to configure the different memory spaces.

Referring again to the example embodiment depicted 1n
FIG. 3, after executing BIOS loader 88, the BSP may execute
one or more modules to create a DXE 1in main partition 50, as
indicated at block 144. The modules for creating the DXE
may operate partially like conventional DXE modules. How-
ever, 1n one embodiment, the BSP marks the AP as disabled in
the ACPI tables 92 for the BSP. In the DXE phase, the BSP
may also use a start-up inter-processor mterrupt (SIPI) to
cause the AP to enter an 1dle loop 150. The BSP may also send
a system management interrupt (SMI), a processor manage-
ment interrupt (PMI), or a similar signal or message to the AP,
to cause the AP to set up a system management mode (SMM)
base and SMI handlers, as indicated at block 152. Once the
SMI base and handlers have been set up, the AP may revert to
executing the 1dle loop.

As 1indicated at block 160, the BSP then begins executing
BDS program 86, thereby entering a boot device selection
(BDS) phase. During BDS phase 160, instead of halting the
AP, the BSP may send the AP a boot trigger. For instance, the
BSP may send an inter-processor interrupt (IPI) to the AP, to
instruct the AP to begin executing the DXE phase 170. The IPI
may provide the entry point of the sequestered BIOS 46 that
was loaded 1n the PEI phase, for instance. Also, the BSP may
pass the AP the list of devices to be owned by sequestered
partition 52.

The AP may then execute DXE phase 170. Execution by
the AP may be similar to the execution 1n the BSP. However,
in the example embodiment, one difference 1s that the AP
skips functions like peripheral component interconnect (PCI)
enumeration, and instead only initializes the devices to be
owned by sequestered partition 52. The different execution
paths for the BSP and the AP may be taken based on deter-
minations, 1n each of DXE phases 144 and 170, whether the
current processing unit is the BSP or an AP. For instance, one
or more DXE modules may check the local advanced pro-
grammable interrupt controller (APIC), and may determine
that the current processing umit 1s the BSP if the processor
identifier (PID) 1s zero, and that the current processing unit 1s
an AP 11 the PID 1s non-zero. Thus, the same DXE image may
behave differently 1n main partition 50 than 1t does in seques-
tered partition 52, based on the PID.

The AP may then execute a BDS phase 172 and an SEE
phase 174. In the example embodiment, since the lowest
portion 50a of RAM 26 1s owned by main partition 50, SEE
phase 174 begins with the AP booting an SEE that does not
require zero-based physical memory.

While the AP 1s in the DXE phase 170, the BDS phase 172,
or the SEE phase 174, the BSP may pass from i1ts BDS phase
160 to an OS phase 162. Thus, the AP need not sit idle waiting
for the BSP to boot an OS. Instead, the AP may complete the
operations of the DXE phase and the BDS phase, and may
start the SEE phase before the BSP has loaded an OS or
completed the BDS phase.

In the example embodiment described above, a single firm-
ware 1mage 1s shared by the different partitions, and that
image 1s used to perform global 1nitialization of the platform
as well mitialization of the local environment for each parti-

US 7,610,481 B2

9

tion. The BSP can boot any suitable OS, including any suit-
able, conventional, off-the-shelf OS. Main partition 50 and
sequestered partition 52 may then operate as independent
processing environments.

In the example embodiment, the BSP partition owns the
low memory and boots the general purpose OS, while the AP
partition owns high memory and boots the SEE. However,
these roles may be swapped 1n other embodiments.

In the process of F1G. 4, a processing system uses a BSP to
boot a general purpose OS on a main partition, and the pro-
cessing system uses an AP to boot an embedded OS on a
sequestered partition. In one embodiment, processing unit 21
in processing system 20 may serve as the BSP, and processing
unit 23 may serve as the AP. The process of FIG. 4 may start
in response to processing system 20 being powered on or
reset. Then, as shown at blocks 110 and 112, the BSP may
perform certain security functions and PEI functions, such as
those described above with regard to FIG. 3. The process of
FIG. 4 also includes a DXE phase 114, like the corresponding
phase in FIG. 3, in which the BSP uses a SIPI and SMIs to set
up an SMM base and SMM handlers for the AP, and to put the
AP 1n an 1dle loop, as shown at blocks 120 and 122.

The BSP may then begin executing BDS program 86,
thereby starting a BDS phase 130. In BDS phase 130, the BSP
may construct a parameter structure with sequestering infor-
mation, such as a memory map 1dentifying the portions of
physical memory to be used as sequestered memory, a list of
devices to be available to the sequestered partition, etc. Also,
the BSP may copy that parameter structure to a predetermined
or well known region 1n the sequestered memory. In addition,
the BSP may extract an embedded OS 1mage from storage
(e.g., from a region of flash memory, from a special area of a
hard disk, or from some other non-volatile storage device),
and may copy that image to a predetermined or well-known
region in the sequestered memory.

The BSP may then send a boot trigger to the AP. For
example, the BSP may 1ssue an IPI with the AP as the target
processor and the first instruction of the embedded OS as the
address at which the target processor should start executing.
As indicated at block 134, the AP may then execute the
embedded OS within the sequestered partition. Furthermore,
the embedded OS may operate in the sequestered partition
independently of, and unknown to, the OS 1n the main parti-
tion.

After transmitting the IPI that triggers execution of the
embedded OS 1n the sequestered partition, the BSP may
proceed with selection of a boot device for the main partition.
The BSP may then use that boot device to launch an OS 1n the
main partition, as indicated at block 132.

FIGS. 6 and 7 are flowcharts depicting various aspects ol a
process for assigning devices to a partition, according to an
example embodiment of the present invention. In particular,
FIG. 6 represents the perspective of main partition 50, while
FIG. 7 represents the perspective of sequestered partition 52.

FIG. 6 begins with processing system 20 at or near the
beginning of an 1nitialization process. That process may have
started 1n response to processing system 20 being powered on
or reset, for instance. At block 210, BIOS 42 1n main partition
50 may scan all PCI buses 1n processing system 20, as well as
any other buses, and may build a first device list identitying all
of the devices discovered on those buses. For instance, 1n the

example embodiment, processing system 20 may scan one or
more PCI buses, PCI-E buses, USB buses, industry standard

architecture (ISA) buses, etc. In alternative embodiments,

other types of buses may be scanned. The process of scanning
buses 1n a processing system to determine which devices are
present may be referred to in general as a bus scan. A bus scan

10

15

20

25

30

35

40

45

50

55

60

65

10

may include operations such as the programming of bridges
and device base address registers (BARs).

When building the first device list, main partition 50 may
include the location information for some or all of the devices
discovered during the first scan. For example, the location
information may include the bus number, the device number,
the function number, and the device type for each discovered
device. The device type or any other suitable flag or data item
may be used to keep track of which devices are bridges. For
bridges, the local information may also 1dentity the type of
bridge and may include other information associated with a
bridge, such as subordinate bus information.

As indicated at block 212, after the first device list has been
built, main partition 50 may program device hide registers 90
and/or similar configuration constructs to hide certain prede-
termined devices. This programming may set or clear bits in
the configuration constructs, based on a pre-selected device
distribution. For instance, ROM 28 may have been pre-pro-
grammed by a user (€.g., a manufacturer, an administrator, an
end user, etc.) with configuration information that specifies
which devices are to be used by sequestered partition 52 and
hidden from main partition 50. In alternative embodiments,
the main partition may retrieve the configuration information
from any other suitable data repository.

The configuration mnformation may identify the devices to
be hidden by specitying how device hide registers 90 and
similar configuration constructs are to be configured. For
instance, processing system 20 may assign the device number
0 to a device in the expansion slot labeled PCI 1 1n FIG. 2, and
if an administrator has configured processing system 20 to
hide that device, the configuration information may include
data indicating that bit 0 of a Secondary PCI Device Hiding
(SPDH) register should be set to 1. The configuration infor-
mation in ROM 28 may use similar approaches to identify
other types of devices to be hidden, such as SATA controllers,
an onboard NIC, devices on other types of buses, etc. For
instance, the configuration information may include data
indicating that main partition 30 1s to use a function disable
(FD) register to hide particular devices on PCI-E buses, USB
buses, etc.

As 1ndicated at block 214, main partition 50 may then
perform a second bus scan, and may build a second device list
to 1dentily all of the devices detected during the second scan.
Main partition 50 may then reset the configuration constructs
to unhide or unblock any hidden devices, as indicated at block
216. Also, as shown at block 220, main partition 50 may
compare the first and second device lists and produce a list of
devices to be sequestered, to include the devices found 1n the
first scan but not in the second scan. The list produced based
on the comparison may be referred to as the list of sequestered
devices, and that list may include the same type of location
information as the first device list, for each device to be
sequestered.

As shown at block 222, main partition 50 may then start
sequestered partition 52, and may pass the list of devices to be
sequestered to sequestered partition 32. Since no devices will
be hidden, 1 accordance with block 216 of FIG. 6, seques-
tered partition 52 will be able to read the configuration space
of the devices to be sequestered.

As 1ndicated at block 230, after sending the sequestered
device list to sequestered partition 52, main partition 50 may
wait until sequestered partition 52 has booted. As shown at
block 232, after sequestered partition 32 has booted, main
partition 50 may again program configuration constructs such
as device hide registers 90 to hide the sequestered devices

US 7,610,481 B2

11

from main partition 50. Main partition 50 may then boot OS
60, as indicated at block 234. The process of FIG. 6 may then
end.

In one embodiment, the operations depicted 1n blocks 222,
230, and 232 may be performed 1n the BDS phase 160 of FIG.

3 or the BDS phase 130 of FIG. 4. For instance, the BSP may
send the IPI to the AP before passing the list of sequestered
devices. Then, once the BSP determines that the AP has
completed DXE phase 170, the BSP may program device
hide registers, as shown at block 232 of FIG. 6. The BSP may
then move to the OS phase, as shown at block 234 of FIG. 6
and block 162 of FIG. 3.

The process of FIG. 7 may start in response to the opera-
tions depicted at block 222 of FIG. 6, when main partition 50
starts sequestered partition 52. As indicated at block 310 of
FIG. 7, once started, sequestered partition 52 may receive
from main partition 50 the list of devices to be sequestered.
Sequestered partition 52 may then initialize the devices on the
list without performing a bus scan.

For mstance, sequestered partition may determine whether
all of the devices on the list have been 1nitialized, as shown at
block 320. If sequestered partition 52 has not yet iitialized
all of the devices on the list, sequestered partition may select
a next device to be mitialized, and may use information in the
list such as the bus number, the device number, the function
number, and the device type for the selected device to locate
that device, as shown at block 322. As indicated at block 324,
sequestered partition may then initialize that device. When
mitializing a device, sequestered partition 52 may extract
whatever information 1t requires from the configuration space
of that device, and may perform any other operations neces-
sary to configure the device, such as programming BARs of
the device and possibly executing an option ROM of the
device. However, 1n the example embodiment, sequestered
partition 52 avoids reprogramming any bridges or device
BARs, since, depending on the bus topology, reconfiguring
bridges or device BARs could render the bridges or devices
inaccessible. Also, in the example embodiment, sequestered
partition 52 does not mitialize any devices that aren’t
assigned to it (1.e., that are not included 1n the list of seques-
tered devices).

The above operations may be performed as part of the DXE
phase 170 of FIG. 3, or as part of the embedded OS phase 134
ol F1G. 4, for example. Once all of the devices for sequestered
partition 52 have been 1mitialized, sequestered partition 52
may boot OS 62, as indicated at block 330, and sequestered
partition 52 may use the sequestered devices. The process of
FIG. 7 may then end.

Thus, one partition 1n a processing system may discover
locations of devices to be sequestered, and may pass a list
with location information for those devices to a second par-
tition. The second partition may then initialize those devices.
Device hide registers and/or related configuration constructs
may then be programmed to hide or block those devices for
the first partition. In the example embodiment, the device hide
registers are so programmed before the OS on the first parti-
tion boots. In various embodiments, functions like program-
ming the ICH registers to block configuration access to the
sequestered devices may be performed by the either partition.
In the example embodiment, the location of each sequestered
device 1s provided to the sequestered partition, and the
sequestered partition therefore need not perform a bus scan.
The sequestered partition may therefore avoid the ambiguous
results that could happen 11 the sequestered partition were to
scan buses containing multiple instances of the same type of
device (e.g., USB ports). In addition, even though the main
partition may set device hide registers and/or related settings

10

15

20

25

30

35

40

45

50

55

60

65

12

alter the sequestered partition has booted, the sequestered
partition may continue to use the hidden devices since the
ICH may block configuration cycles for the sequestered
devices, but 1t may not block access to the I/O addresses and
memory mapped registers of those devices.

Also, as indicated above, a processing system may contain
more than one main partition, more than one sequestered
partition, or multiple main partitions and sequestered parti-
tions. Such processing systems may use variations of the
process described above to implement sequestered devices
for one or more sequestered partitions.

As has been described, a processing system may run two
(or more) OSs independently, without expensive hardware-
based partitioning or underlying software management layers
such as a VMM. Instead, pre-OS firmware may carve out a
region ol memory, copy a bootable OS 1mage mnto that region,
and then 1ssue an IPI to a targeted processing unit to cause that
OS to run on that processing unit. The processing system may
also support another OS running on another processing unit,
and the different OSs may operate completely or substantially

independently of each other. Further, an OS on one partition
may have no knowledge of any of the sequestered resources.

In light of the principles and example embodiments
described and 1llustrated herein, it will be recognized that the
described embodiments can be modified 1n arrangement and
detail without departing from such principles. Also, although
the foregoing discussion has focused on particular embodi-
ments, other configurations are contemplated as well. Even
though expressions such as “in one embodiment,” “in another
embodiment,” or the like may be used herein, these phrases
are meant to generally reference embodiment possibilities,
and are not intended to limit the invention to particular
embodiment configurations. As used herein, these terms may
reference the same or different embodiments that are com-
binable 1nto other embodiments.

Similarly, although example processes have been
described with regard to particular operations performed 1n a
particular sequence, numerous modifications could be
applied to those processes to derive numerous alternative
embodiments of the present invention. For example, alterna-
tive embodiments may include processes that use fewer than
all of the disclosed operations, processes that use additional
operations, processes that use the same operations 1n a differ-
ent sequence, and processes 1n which the individual opera-
tions disclosed herein are combined, subdivided, or otherwise
altered.

Alternative embodiments of the invention also include
machine-accessible media containing instructions for per-
forming the operations of the mvention. Such embodiments
may also be referred to as program products. Such machine-
accessible media may include, without limitation, storage
media such as floppy disks, hard disks, CD-ROMs, ROM, and
RAM, and other detectable arrangements of particles manu-
factured or formed by a machine or device. Instructions may
also be used 1n a distributed environment, and may be stored
locally and/or remotely for access by single or multi-proces-
sor machines.

It should also be understood that the hardware and software
components depicted herein represent functional elements
that are reasonably self-contained so that each can be
designed, constructed, or updated substantially i1ndepen-
dently of the others. In alternative embodiments, many of the
components may be implemented as hardware, soitware, or
combinations of hardware and soitware for providing func-
tionality such as that described and illustrated herein. The
hardware, software, or combinations of hardware and soft-

US 7,610,481 B2

13

ware for performing the operations of the invention may also
be referred to as logic or control logic.

In view of the wide varniety of useful permutations that may
be readily derived from the example embodiments described
herein, this detailed description 1s intended to be illustrative 53
only, and should not be taken as limiting the scope of the
invention. What 1s claimed as the invention, theretfore, 1s all
implementations that come within the scope and spirit of the
tollowing claims and all equivalents to such implementations.

What 1s claimed 1s: 10

1. A method for booting first and second partitions 1n a
processing system that has multiple processing units, the
method comprising:

during an 1nitialization process for the processing system:

copying software to a sequestered area of memory 1n the

processing system;

configuring the processing system to prevent a first parti-

tion of the processing system from accessing the seques-
tered area of memory;

using the software 1n the sequestered area of memory and

a second processing unit of the processing system to
boot a second partition of the processing system;

using an operating system (OS) and a {irst processing unit

of the processing system to boot the first partition of the
processing system;

creating a {irst basic input/output system (BIOS) region for

the first partition;

creating a second BIOS region for the second partition;

storing substantially matching copies of BIOS code 1n the

first and second BIOS regions; and

when executing the BIOS code 1n the second partition,

automatically determining an execution path, based on

an attribute of the second processing unit, wherein the

operation of automatically determining the execution

path comprises:

automatically determining whether the BIOS code 1s
executing on an application processor; and

if the BIOS code 1s executing on the application proces-
sor, skipping instructions for enumerating devices.

2. The method according to claim 1, wherein:

the operation of copying soitware to the sequestered area of

memory comprises loading an embedded OS into the
sequestered area of memory.

3. The method according to claim 1, further comprising;:

after booting the second partition, operating the second

partition substantially independently of the OS on the
first partition.

4. The method according to claim 1, wheremn the first
processing unit performs the operation of copying the soft-
ware to the sequestered area of memory.

5. The method according to claim 1, further comprising:

using the first BIOS region to boot the first partition; and

using the second BIOS region to boot the second partition.

6. The method according to claim 1, further comprising: 55

running a basic mputloutput system (BIOS) loader with a
first memory map to create the first BIOS region for the
first partition; and

running the BIOS loader with a second memory map to
create the second BIOS region for the second partition. 4

7. An apparatus, comprising;

a preboot manager to manage a process for mitializing a
processing system that has multiple processing units, the
preboot manager to perform operations during the ini-
tialization process comprising: 65

copying soltware to a sequestered area of memory in the
processing system;

15

20

25

30

35

40

45

50

14

configuring the processing system to prevent a first parti-
tion of the processing system from accessing the seques-
tered area of memory;

using a {irst processing unit in the processing system to
boot an operating system (OS) on the first partition;

transmitting a boot trigger from the first processing unit to
a second processing unit in the processing system, the
boot trigger to cause the second processing unit to use
the software 1n the sequestered area of memory to boot a
second partition of the processing system:;

creating a first basic input/output system (BIOS) region for
the first partition;

creating a second BIOS region for the second partition;

storing substantially matching copies of BIOS code 1n the
first and second BIOS regions; and

when executing the BIOS code 1n the second partition,
automatically determining an execution path, based on
an attribute of the second processing unit, wherein the
operation of automatically determining the execution
path comprises:
automatically determining whether the BIOS code 1s

executing on an application processor; and
if the BIOS code 1s executing on the application proces-
sor, skipping 1nstructions for enumerating devices.
8. The apparatus according to claim 7, wherein the preboot

manager Comprises:

a boot device selection program to send an inter-processor
interrupt (IPI) to the application processor of the pro-
cessing system, the IPI to cause the application proces-
sor to create a driver execution environment (DXE) for
the second partition.

9. The apparatus according to claim 7, the preboot manager

to perform operations comprising:

running a basic input/output system (BIOS) loader with a
first memory map to create the first BIOS region for the
first partition; and

running the BIOS loader with a second memory map to
create the second BIOS region for the second partition.

10. A manufacture, comprising:

a machine-accessible storage medium; and

instructions i the machine-accessible storage medium,
wherein the mstructions, when executed 1n a processing
system, cause the processing system to perform opera-
tions comprising:

copying soiftware to a sequestered area of memory 1n the
processing system;

configuring the processing system to prevent a first parti-

tion of the processing system from accessing the seques-
tered area of memory;

using the software in the sequestered area of memory and
a second processing unit of the processing system to
boot a second partition of the processing system;

using an operating system (OS) and a first processing unit
of the processing system to boot the first partition of the
processing system;

creating a first basic mnput/output system (BIOS) region for
the first partition;

creating a second BIOS region for the second partition;

storing substantially matching copies of BIOS code 1n the
first and second BIOS regions; and

when executing the BIOS code 1n the second partition,
automatically determining an execution path, based on
an attribute of the second processing unit, wherein the
operation of automatically determining the execution
path comprises:
automatically determining whether the BIOS code 1s

executing on an application processor; and

US 7,610,481 B2

15 16
if the BIOS code 1s executing on the application proces- using the first BIOS region to boot the first partition; and
sor, skipping instructions for enumerating devices. using the second BIOS region to boot the second partition.

14. The manufacture according to claim 10, wherein the
instructions, when executed, cause the processing system to
5 perform operations comprising:
running a basic input/output system (BIOS) loader with a
first memory map to create the first BIOS region for the
first partition; and
running the BIOS loader with a second memory map to

- 13 T'he manufacture according to claim 10, wherein the create the second BIOS region for the second partition.
instructions, when executed, cause the processing system to

perform operations comprising: * ok k% ok

11. The manufacture according to claim 10, wherein the
instructions, when executed, cause the processing system to
load an embedded OS 1nto the sequestered area of memory.

12. The manufacture according to claim 10, wherein the
instructions, when executed, cause the first processing unit to
copy the software to the sequestered area of memory.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,610,481 B2 Page 1 of 1
APPLICATION NO. : 11/407425

DATED . October 27, 2009

INVENTOR(S) . Cool et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 724 days.

Signed and Sealed this
Twelfth Day of October, 2010

Lot T s ppos

David I. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

