US007606873B2
a2 United States Patent (10) Patent No.: US 7,606,878 B2
Dumm 45) Date of Patent: Oct. 20, 2009
(54) METHOD AND SYSTEM FOR CAPTURING 6,772,204 B1* 8/2004 Hansencccceuu..... 709/220
AND AUTOMATING EXECUTION OF 7,113,989 B2* 9/2006 Murray etal. 709/224
ADMINISTRATIVE PROCESSES IN A 2001/0018710 Al 82001 Clarke
MACHINE-READARBRILE FORMAT 2005/0138557 Al* 6/2005 Bolderetal. 715/700
(75) Inventor: Bryan Dumm, Athens, OH (US) * cited by examiner

Primary Examiner—11 B Zhen

(73) Assignee: BC Publishing, Inc., Athens, OH (US) (74) Attorney, Agent, or Firm— William L. Botier

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1038 days.

(57) ABSTRACT

The present invention provides a method, a system and a

(21) Appl. No.: 10/804,889 computer program product for capturing administrative pro-
cesses 1n a machine-readable format, and for automating the
(22) Filed: Mar. 19, 2004 execution of the captured admimstrative processes. An
administrative process comprises administrative tasks,
(65) Prior Publication Data which, 1n turn, comprise administrative commands that need

to be performed, to execute the administrative process. All the

US 2005/0209985 Al Sep. 22, 2005 administrative commands are captured 1n a machine-readable

(51) Int.CL format using a generic command framework, to form profiles.
GO6F 15/177 (2006.01) The execution of the captured administrative processes 1s
(52) U.S.Cl 709/220- 709/223- 715/704 automated by performing the following steps: selecting pro-
e e e 3 ’ files that need to processed for the execution of a selected

(58) Field of Classification Search 718/101;

administrative process; processing the selected profiles;
updating the processed profiles; processing the updated pro-
files again, if required; and selecting and processing addi-
(56) References Cited tional profiles which need to be processed to execute the
selected administrative process.

709/223, 220; 715/704
See application file for complete search history.

U.S. PATENT DOCUMENTS
6,115,646 A * 9/2000 Fiszman etal. 700/181 15 Claims, 4 Drawing Sheets

300

/

301 303 305

/ / /

Network Map Administrative
(Generator List Generator

I I g

/

Profile Generator

Front-end

309

yd

/ 311
Backend

11e Controllers 217
319
f/ / ///

v

317
) L
Generators Filters Handlers
- Dr Machi
h 4

Hardware 323 System 325

Devices v Commands |~ Others
Administered Components \327

AN

321

U.S. Patent Oct. 20, 2009 Sheet 1 of 4 US 7,606,878 B2

A generic command framework for capturing
administrative commands in a machine
readable format is created

101

103
Profiles are generated
105
Network maps are generated
— . 107
Administration lists are generated

FIG. 1

U.S. Patent Oct. 20, 2009 Sheet 2 of 4 US 7,606,878 B2

Administrative processes are captured in a
machine-readable format to generate
administrative lists

203
A first set of administrative lists are selected

A first set of profiles from the selected 205
administrative lists are selected

201

] 207
o Selected/updated profiles are read by a
processing machine
225
209
No New profiles are
o Do pTOﬁles need to selected

e transformed ?

Yes 211

Profiles are transformed

FIG. 2a

U.S. Patent Oct. 20, 2009 Sheet 3 of 4 US 7,606,878 B2

213
Profiles are parsed to generate events

Generated events are executed using 215
administered components

Messages generated by administered 247
components in response to executed events are
collected
219
Profiles are updated

221

Do updated
profiles
need to be
processed?

@ Yes

No
223

Yes e

Do new
profiles
need to be
selected 7

No

FIG. 2b

U.S. Patent Oct. 20, 2009 Sheet 4 of 4 US 7,606,878 B2

303 305

Profile Generator Network Map Administrative
Generator List Generator
307
Front-end
309

-

311
Backend
Controllers 112
315 ‘ - 319

Y 317 ~ 7

l

ant Driven Machine

Hardware 323 System 325 Others
Devices I/ Commands

Administered Components

327

N\

321

FIG. 3

US 7,606,878 B2

1

METHOD AND SYSTEM FOR CAPTURING
AND AUTOMATING EXECUTION OF
ADMINISTRATIVE PROCESSES IN A

MACHINE-READABLE FORMAT

BACKGROUND

The present invention relates to the automation of admin-
istrative processes 1n a local or networked environment. More
specifically, the present invention relates to a method and
system for capturing administrative processes in a machine-
readable format to automate the execution of administrative
processes 1n a local or networked environment.

During the last few years, the complexity of computer
networks and the associated administrative processes
involved 1n the management of computer networks has
increased significantly. Administrative processes comprise
one or more administrative tasks that need to be performed.
The increased complexity of the admimistrative processes has
led to an associated increase 1n the demand for resources,
required for the management of the administrative processes.

The resources required to manage the administrative pro-
cesses of computer networks mainly comprise manpower and
material resources. Manpower resources comprise the admin-
istrative stail, who are required to define administrative pro-
cesses and execute them, as and when required. Material
resources comprise hardware and soltware components,
involved 1n the execution of administrative processes.

The increased demand for manpower resources and capital
resources has resulted 1 a significant increase 1n the costs
associated with the management ol administrative processes.
Although both these costs have increased, the increase in
costs associated with manpower resources have been signifi-
cantly higher compared to that associated with material
resources. There are two main reasons for this.

The first reason 1s the increased complexity of the admin-
istrative processes. Due to various factors such as increased
threats to system security, increased network size and other
problems, the number and complexity of the administrative
processes have increased significantly. This has resulted 1n an
enhanced requirement for administrative staff, who are
required to create and execute the administrative processes.

The second reason 1s that the administrative processes are
generally not captured 1n a re-usable format by the adminis-
trative stail. A significant amount of knowledge regarding the
administrative processes 1s generally available only to the
members of the administrative statf, who create or use the
administrative processes. This leads to problems such as non-
availability of knowledge about the administrative processes
to other staflf members for re-use. Further, it may also be
possible to modity administrative processes to achieve difier-
ent objectives. However, 11 the administrative processes are
not available 1n a proper re-usable format, 1t may not be
possible to extend the use of these administrative processes to
achieve different objectives.

A solution for this 1s to capture all administrative processes
in a re-usable format. Further, the selection and execution of
the captured administrative processes can also be automated
to a considerable extent. This can lead to a significant reduc-
tion 1n the costs associated with the management of admin-
istrative processes. Several attempts have been made to create
methods and systems, which can be used to capture the
administrative processes.

WIPO patent publication WO02353135A2, titled “Remote
Network Management Software™, describes one such system
and method for managing networks remotely. This 1s
achieved by installing distributed software agents in the

10

15

20

25

30

35

40

45

50

55

60

65

2

remote components being managed. The publication dis-
closes an extensible framework that comprises a software
component framework to update and manage remote network
services. This framework 1s implemented via Extensible
Mark-up Language (XML), or any other Standard General-
1zed Mark-up Language (SGML).

U.S. Pat. No. 6,115,646, titled “Dynamic And Generic
Process Automation System”, describes a system that pro-
vides worktlow management services in a heterogeneous dis-
tributed computing environment. This mvention decouples
process definitions, run-time process management and pro-
cess execution agents to create an object-oriented process
automation engine.

U.S. patent application US20010018710, titled “System
and Method for Improved Automation of a Computer Net-
work™, describes a system and method for controlling the
automation process 1 a computer network. This 1s achieved
by the introduction of an abstract resource model, which
comprises an automation decision-making component and an
automation-execution component.

There are certain limitations associated with the use of the
above-mentioned methods and systems. These methods and
systems do not achieve the automation of administrative pro-
cesses 1 a computer system by capturing the administrative
commands 1n a machine-readable format. Hence, they do not
facilitate the usage of the captured commands for multiple
uses.

Further, the above-mentioned methods and systems use
different frameworks to capture different administrative com-
mands. The use of various frameworks to capture different
administrative commands significantly increases the com-
plexity imvolved 1n the use of these methods and systems.

Hence, there exists a need for a method and system that can
be used to capture the administrative processes 1n a re-usable
format, by using a generic framework to capture the admin-
istrative commands. Further, the method and system should
also be capable of automating the execution of the captured
administrative processes.

SUMMARY

In accordance with one aspect, the present invention pro-
vides a method for capturing administrative processes 1n a
machine-readable format. The administrative processes com-
prise one or more administrative tasks that have to be per-
formed to execute the processes. Each administrative task has
an objective and 1s defined by one or more administrative
commands that need to be executed by system elements to
achieve the objective of the administrative task. An adminis-
trative command 1s a machine-understandable instruction,
which causes a processing machine to perform an operation,
as specified by the command. Examples of administrative
commands comprise shell commands (e.g., <mkdir>), as well
as other commands such as system commands. A system
command 1s an administrator’s mstruction (not a part of a
program) that calls for some action by the processing
machine’s executive program (a program that controls the
execution of other programs).

A generic command framework 1s created to capture the
structures of all types of administrative commands used in the
administrative process. The administrative commands are
captured by writing them in a machine-readable format, 1n
accordance with the generic command framework. Captured
administrative commands that define an administrative task
are written 1n a machine-readable format in a document, to
generate a profile. Network maps, which comprise the details
of one or more servers 1n a networked environment, are also

US 7,606,878 B2

3

generated. Administrative lists are generated by combining
profiles that define the administrative tasks, which constitute
an administrative process. In this manner, each admimstrative
list captures an administrative process 1n a machine-readable
format.

In accordance with another aspect, the present invention
provides a method for capturing administrative processes in a
machine-readable format, and further automating the execu-
tion of the captured administrative processes. A first set of
administrative lists 1s selected based on the admimstrative
process to be executed. The profiles contained 1n the selected
administrative list are then processed to perform the desired
administrative tasks that constitute the administrative pro-
CEess.

The processing of a profile comprises the steps involved in
parsing the profile to generate events; executing the generated
events by using administered components; collecting mes-
sages generated by the administered components in response
to the executed events; updating the selected profiles, based
on the collected messages; processing the updated profiles
again, 1f required; and selecting new profiles for processing,
based on the results of execution of the previously processed
profiles. The selection and processing of profiles 1n this man-
ner leads to the execution of the administrative process.

In accordance with another aspect, the present invention
provides a system for capturing administrative processes 1n a
machine-readable format, and further automating the execu-
tion of the captured administrative processes. The system
comprises a profile generator to generate profiles; a network
map generator to generate network maps; an administrative
list generator to generate administrative lists from profiles
and network maps; a front end; and a back end. The front end
enables at least one function from among the various func-
tions involved 1n the selection of profiles contained 1n admin-
istrative lists, reading the selected profiles, and transforming
them. The back-end comprises an event-driven machine to
process the selected profiles, which have been written 1n a
structured mark-up language; and one or more controllers to
connect the front-end to the event-drive machine to process
profiles.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the invention will hereinai-
ter be described 1n conjunction with the appended drawings
provided to illustrate and not to limit the invention, wherein
like designations denote like elements, and 1n which:

FIG. 1 illustrates a method for capturing administrative
processes 1n a machine-readable format, in accordance with
one embodiment of the present invention;

FIG. 2 illustrates a method for capturing administrative
processes and automating the execution of the captured
administrative processes, 1 accordance with one embodi-
ment of the present invention; and

FIG. 3 1llustrates the environment 1n which the system for
capturing the admainistrative processes and automating the
execution of the captured administrative processes of the
present invention works, 1n accordance with one embodiment
of the present invention.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The present mvention presents a method and system for
capturing administrative processes 1n a machine-readable for-
mat. The present invention also presents a method and a
system for capturing the administrative processes in a

10

15

20

25

30

35

40

45

50

55

60

65

4

machine-readable format, and further automating the execu-
tion of the captured administrative processes.

An administrative process comprises one or more admin-
istrative tasks, which need to be performed 1n a pre-defined
order, to execute the administrative process.

The admimstrative tasks comprise one or more adminis-
trative commands. These administrative commands when
executed 1n a pre-defined order, lead to the accomplishment
of the administrative task. Each administrative command is a
machine-understandable instruction that causes a processing
machine to perform an operation. The processing machine
can be a general-purpose computing device, a programmed
microprocessor, a micro-controller, an integrated circuit ele-
ment or other devices or arrangements of devices, which are
capable of executing the administrative commands that com-
prise the administrative task. Further, combinations of one or
more processing machines can also be mvolved 1n executing
administrative commands.

An administrative process can be captured 1n a machine-
readable format by capturing the constituent administrative
tasks. In turn, the administrative tasks can be captured 1n the
machine-readable format by capturing the constituent admin-
istrative commands in the machine-readable format.

Administrative commands may be commands that are
manually entered by an administrator, or the commands that
are automatically generated by a system. Further, the manu-
ally-entered or system-generated administrative commands
can be of two types—shell commands and system commands.
A shell command 1s a command entered 1n a shell to accom-
plish an administrative task. A shell 1s a command interpreter
that provides an interactive user interface with an operating
system, and 1s the layer of programming that understands and
executes the commands a user enters. A system command 1s
an administrator’s instruction (not part of a program) that
calls for action by the processing machine’s executive pro-
gram (a program that controls the execution of other pro-
grams).

For example, editing a configuration file can be an admin-
istrative task. All system-generated and administrator-gener-
ated admimistrative commands that are required to be pro-
cessed, 1n order to edit the configuration file, will be captured
in a machine-readable format.

A generic command framework can be used to capture the
administrative commands in a machine-readable format
using a structured mark up language. The generic command
framework defines a set of rules, based on which the different
structural elements of an adminmistrative command are
expressed 1n a machine-readable format. The structural ele-
ments of an administrattive command comprise command
name, shell-related information, command parameters and
command flags. All these structural elements can be captured
in accordance with the generic command framework, as
described in the present invention. Any structured mark up
language can be used to design and implement such a generic
command framework for capturing the administrative com-
mands.

Further, multiple command frameworks can be used for
capturing different types of administrative commands. How-
ever, the use of multiple command frameworks adds to the
complexity involved in the process of capturing the admainis-
trative commands 1n a machine-readable format. Therefore,
in one embodiment of the present invention, only one generic
command framework 1s used for capturing the administrative
commands 1n a machine-readable format. The generic com-
mand framework specifies the following rules (fields) for
capturing the different elements of an administrative com-
mand

US 7,606,878 B2

S

<command name="abc¢”> captures the name of the typed
command and changes accordingly with different com-
mands.

<shell> captures elements that express shell ideas such as
path information.

<param> captures the parameters a command needs. A
parameter can be specified by using a name="abc¢” format.

For example, in the profile given above, <amin:param

name="‘target”> specifies the location where a new direc-

tory should be created.
<flag> captures the flags of an administrative command.

Flags represent the additional information that 1s required

to be given with a command. For example, the mode

(which 1s an octal value, like 0753) of an admimstrative

command like “mkdir” needs to be specified by a user. In

accordance with the generic command framework, this
information can be captured as <tlag
name="mode”>0755</flag>.

Although a single generic command framework has been
used for capturing the administrative commands in this
embodiment, 1t will be apparent to a person skilled 1n the art
that multiple generic command frameworks can also be used
to capture different types of administrative commands 1n a
machine-readable format.

FIG. 1 illustrates a method for capturing administrative
processes 1n a machine-readable format, in accordance with
one embodiment of the present invention.

At step 101, a generic command framework 1s created to
capture administrative commands 1n a machine-readable for-
mat. The administrative commands when expressed 1n a
machine-readable format, in accordance with the generic
command framework, are called captured admimstrative
commands.

In one embodiment of the present invention, Extensible
Mark up Language (XML) 1s used to design and implement
the machine-readable format. This means that all administra-
tive commands are expressed 1n a machine-readable format
using XML.

For example, when an administrative command such as

cd/tmp mkdir -m 0754 test_dir test_dir2

1s typed 1n a linux shell, it 1s captured 1n a machine-readable
format using XML as follows:

<amin:command name="mkdir”>
<amin:param name="target”>test_ dir test_ dir2</amin:param>
<amin:flag name="mode”>0754</amin:flag>
<amin:shell name="dir’’>/tmp</amin:shell>

</amin:command:>

In this manner, by capturing administrative commands 1n a
generic command framework, the present invention allows
the separation of choices (administrative commands, data,
decisions) from processes (the shell, user interface, back-end
processing). This separation enables capturing administrative
processes 1n a machine-readable format. This can then be
used to automate execution of the captured administrative
processes.

In one embodiment of the present invention, namespaces
are mcorporated mto profiles to add additional metadata to
the profiles. An XML namespace 1s a collection of names,
identified by a URL reference, which are used in XML docu-
ments as element types and names. Namespaces are created
and used to prevent element names from clashing 1n two or
more XML syntax definitions. Hence, administrators can add

10

15

20

25

30

35

40

45

50

55

60

65

6

additional metadata to the profiles using their own
namespaces without affecting the already existing
namespaces.

At step 103, profiles are generated by combining all the
captured administrative commands that define an administra-
tive task. Hence, a profile 1s a machine-readable version of an
administrative task, and comprises captured administrative
commands, which when executed lead to the accomplishment
of the objective of the administrative task.

At step 103, one or more network maps are generated. Each
network map comprises details of network servers on which
one or more administrative commands, which constitute an
administrative task, need to be performed. A network map can
be a security network map, a webserver network map, a
database network map, or an entire network map containing
details of all the servers employed 1n the network.

At step 107, administrative lists are generated for each
administrative process that has to be executed. Fach admin-
istrative list corresponds to an administrative process, and
comprises one or more profiles, which define the administra-
tive tasks that constitute the administrative process. A pre-
defined order according to which administrative tasks need to
be executed 1s also provided 1n the admimistrative list. Hence,
an administrative list represents an administrative process 1n
a structured machine-readable format. An administrative list
can also comprise one or more network maps and associations
between the network maps(s) and the profiles contained in the
administrative list. The association between a network map
and a profile defines the server(s) on which each administra-
tive command 1n the profile has to be executed.

In one embodiment of the present invention, the profiles,
network maps and administrative lists are captured i a
machine-readable format using XML.

FIG. 2 describes a method for capturing the administrative
processes and automating the execution of the captured
administrative processes, 1 accordance with one embodi-
ment of the present invention.

At step 201, administrative processes are captured in a
machine-readable format. The method of capturing the
administrative processes has been explained in detail earlier,
with reference to FIG. 1.

At step 203, the first set of administrative lists 15 selected,
depending on the administrative process to be performed. The
selection of the first set of administrative lists can be per-
formed manually by an administrator or automatically. Auto-
matic selection 1s based on a set of pre-defined administrative
list selection rules. These rules define the manner 1n which
administrative lists need to be selected based on the messages
recerved from the administered network. Hence, an adminis-
trative list can be selected for processing by an administrator,
or it can be selected automatically by the processing machine,
using a script containing a pre-defined set of rules specified by
the administrator.

At step 2035, the first profile contained in the selected
administrative list 1s selected.

At step 207, the selected profile 1s read by a processing
machine.

At step 209, 1t 1s determined whether the read profile needs
to be transformed or not. The profile transformation process
involves changing the profiles from a first machine-readable
format to a second machine-readable format. The determina-
tion of the need to transform profiles 1s based on a set of
pre-defined transformation rules.

The transformation rules may be stored locally in the sys-
tem or network being administered, or they can be stored
outside it. For instance, consider a case where a local area
network (LAN) 1s being administered. In such a case, the

US 7,606,878 B2

7

transformation rules may be stored in a document that 1s
stored 1n the LAN or at some external Uniform Resource
Locator (URL) 1n an external network, such as the Internet.
When the document containing the transformation rules 1s
stored at an external URL, references to the URL can be used
to access the transformation rules.

In one embodiment of the present invention, profiles are
generated using XML. In this embodiment, the transforma-
tion of profiles mvolves converting an XML profile mto a
second XML profile. Transformations can be performed
using various available XML transformation languages such
as XSLT (Extensible Style Sheet Transformation) for trans-
forming XML documents from one form to another.

As determined at step 209, if the read profiles need to be
transformed, step 211 1s performed. At step 211, the selected
profiles are transformed from a first machine-readable format
to a second machine-readable format and step 213 is per-
formed.

At step 213, the transformed profiles are parsed to generate
events.

As determined at step 209, 11 the read profiles do not need
to be transformed, step 213 is performed. At step 213, the read
profiles are parsed to generate events.

Once the transformed/read profiles are parsed, the gener-
ated events are directed to appropriate administered compo-
nents for execution. Administered components comprise
devices and components (software modules and system com-
mands) whose administration needs to be automated.
Examples of administered components include network
devices such as routers and packet shapers, software pro-
grams and system commands for accomplishing administra-
tive tasks.

It will be apparent to a person skilled 1n the art that admin-
istered components are not limited to the above-mentioned
examples. Any component, which 1s required to execute an
event generated after parsing of the profile, will comprise
administered components in the environment of the present
ivention.

At step 215, the generated events are executed using the
administered components.

Control messages such as “success”, “error” or “not pro-
cessed” are generated by the administered components 1n
response to the executed events. Some system messages such
as stdOUT or stdERR may also be generated. These system
messages are the standard messages generated by shell com-
ponents 1n response to the processing of any shell command.
The messages provide metadata regarding the executed
events.

At step 217, all the control messages corresponding to the
parsed profile are collected. At step 219, the parsed profile 1s
updated, based on the collected messages.

In one embodiment of the present invention, a parsed pro-
file 1s updated by appending the collected messages (corre-
sponding to the parsed profile) to the parsed profile. For
example, consider a profile given below to create a directory:

<amin:command name="mkdir’>
<amin:param name="target”>test_ dir test_ dir2</amin:param:
<amin:flag name="mode”>0754</amin:flag>
<amin:shell name="dir”’>/tmp</amin:shell>
</amin:command:
<amin:command name="mkdir”’>
<amin:param name="target”>/tmp/test dir3</amin:param:
<amin:flag name="mode”>0755</amin:flag>
</amin:command:>

10

15

20

25

30

35

40

45

50

55

60

65

8

After this profile 1s has been parsed and 1s appended with the
collected messages, the updated profile would appear as fol-
lows:

<amin:command name="mkdir’>
<amin:param name="‘target’>test_ dir test_ dir2</amin:param:
<amin:flag name="mode’>0754</amin:flag>
<amun:shell name="dir’>/tmp</amin:shell>
<amin:message type="success’>Making directories 1n /tmp (perm:
=0754):test__dir, test__dir2</amin:message></amin:command:
<amin:command name=‘mkdir’>
<amin:param name=‘target’>/tmp/test_ dir3</amin:params
<amin:flag name="mode’>0755</amin:flag>
<amin:message type="success’>Making directories in (perm:
=0755):/tmp/test__dir3</amin:message></amin:command>

The appended message “success’™ signifies that the directory
has been created successiully.

After the profile has been updated at step 219, step 221 1s
performed. At step 221, it 1s determined whether the updated
profile needs to be processed again. This determination 1s
based on the messages contained 1n the updated profile and
the administrative task to be performed.

For example, consider a case when a profile for creating a
directory 1s processed and appended with messages generated
by the administered components. The updated profile appears
as follows:

<amin:command name="mkdir’>
<amin:param name=‘target’>test_ dir/amin:param>
<amin:flag name="mode’>0754</amin:flag>
<amin:shell name="dir’>/tmp</amin:shell>
<amin:message type="‘success’>
Making directories in /tmp (perm: =0754):test_ dir
</amin:message>

</amin:command:

<amin:command name="mkdir’>
<amin:param name=‘target’>test_ dir2 </amin:params>
<amin:flag name="mode’>0754</amin:flag>
<amin:shell name="dir’ >/tmp</amin:shell>
<amin:message type="‘error’>

Directory test_ dir2 exists
</amin:message>

</amin:command:>

<amin:command name="mkdir’>
<amin:param name=‘target’>/tmp/test_ dir3</amin:param>
<amin:tlag name="mode’>0735</amin:flag>
<amin:message type="‘not processed’>

This element was not processed

</amin:message>

</amin:command:>

The appended messages <‘success’>, <‘error’> and <‘not
processed’> signily that one command in the profile was
successiul, one indicated an error, and one was not processed.
Based on the messages appended to the commands 1n the
profile, the processing machine decides whether the profile
needs to be re-processed . For example, 1f the messages
appended to all executed commands 1n the processed profile
are <‘success’ >, then the processing machine decides that the
profile does not need to be processed again. However, 1n case
there 1s an <‘error’> or a <‘not processed’> message
appended to any of the commands in the profile, the process-
ing machine decides to process the profile again.

If the updated profile needs to be processed again, it 1s
selected for processing, and steps 207-219 are performed for
it.

However, as determined at step 221, 11 the updated profile
does not need to be processed again, step 223 1s performed. At

US 7,606,878 B2

9

step 223, 1t 1s determined whether the selected administrative
list contains any more unprocessed profiles.

If the selected administrative list contains other profiles,
which have not been processed, step 225 1s performed. At step
225, the next unprocessed profile contained 1n the selected
administrative list 1s selected and steps 207-219 are per-
tormed for the newly selected profile.

In this manner, the automated selection and processing of
administrative lists and the constituent profiles leads to the
automated execution of the administrative processes.

FI1G. 3 1llustrates the environment, 1n which the system for
capturing the administrative processes and automating the
execution of the captured administrative processes of the
present invention works, 1n accordance with one embodiment
ol the present 1nvention.

System 300 comprises a Profile Generator 301, a Network
Map Generator 303, an Administrative List Generator 305, a
Front-end 307, and a Back-end 309.

Profile Generator 301 1s a software module that captures all
administrative commands that constitute an administrative
task, using a generic command framework. Profile Generator
301 captures all the administrative commands, including the
manually entered and the automatically generated adminis-
trative commands, 1n the form of profiles. For example, when
a shell command for creating a directory 1s entered, Profile
Generator 301 captures the command using a generic coms-
mand framework. All administrative commands typed in a
normal shell have features such as name, flags, parameters,
and other shell concepts like path information, associated
with them. All these features of administrative commands are
captured in accordance with the generic command framework
described in the present invention.

In one embodiment of the present invention, a structured
mark-up language such as XML 1s used to capture adminis-
trative commands 1n a machine-readable format. The follow-
ing 1llustration presents an example of how Profile Generator
317 captures administrative commands in the form of pro-

files.

When the following administrative command 1s typed 1n a
[inux shell,

cd/tmp mkdir -m 0754 test_dir test_dir2

Profile Generator 317 captures it 1n a generic command
framework, using XML, as

<amin:command name="mkdir’>
<amin:param name="target”>test_ dir test_ dir2</amin:param:
<amin:flag name="mode”>0754</amin:flag>
<amin:shell name="dir”’>/tmp</amin:shell>

</amin:command:

Network Map Generator 303 1s a soiftware module that
generates network maps. A network map comprises details of
network servers on which one or more administrative com-
mands, which constitute an administrative task, need to be
performed. In one embodiment of the present invention, Net-
work Map Generator 303 generates network maps by record-
ing the names and IP addresses of all servers that are involved
in processing the given administrative commands. A network
map containing details of two servers named “jerry” and
“mickey” 1s given here as an example.

<amin:network xmlns:amin="http://projectamin.org/ns/”’>
<amin:server name=""jerry’ >
<amin:p=>206.183.254.10</amin:ip>

5

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

<amin:port>2034</amin:port>
</amin:servers
<amin:server name="mickey»
<amin:ip>206.183.254.51 </amin:ip>
<amin:port>3532</amin:port>
</amin:server>
</amin:network>

Admimstrative List Generator 305 1s a software module
that generates administrative lists for each administrative pro-
cess that has to be executed. Each administrative list corre-
sponds to an administrative process and comprises profiles
that define the administrative tasks that constitute the admin-
1strative process. A pre-defined order in which administrative
tasks need to be executed in order to execute the administra-
tive process 1s also provided 1n the admimstrative list. Hence,
an administrative list represents an administrative process 1n
a structured machine-readable format. An administrative list
can also comprise associations between the constituent pro-
files and one or more network maps.

Front-end 307 comprises one or more user interfaces,
which enable the interaction of a user with system 300.
Examples of user interfaces include a graphical user interface
(GUI), a web user mterface, or other types of interfaces such
as command-line user interfaces. Front-end 307 enables users
to select administrative lists, profiles and network maps,
depending on the administrative process to be performed. In
a fully automated system, Front-end 3077 performs such selec-
tion of administrative lists automatically in response to a
system requirement, without any user intervention. Front-end
307 reads the selected profiles and passes the read profiles to
back-end 309 for processing.

In one embodiment of the present invention, Front-end 307
can also perform transformations. Transformations involve
the conversion of profiles from a first machine-readable for-
mat to a second machine-readable format.

Transformations can be of two types—conditional trans-
formations and global transformations. Conditional transfor-
mations 1volve the selective transformation of the read pro-
files that meet a set of pre-defined transformation conditions.
(lobal transformations mvolve the unconditional transior-
mation of all read profiles. Front-end 307 generally performs
transformations where conditional transformations are
involved.

For example, consider a profile for building a software
which contains the hard coded location of the source code for
that software. Following 1s an example of such a profile,

generated by using XML

<amin:command name="unpack’>
<amin:param name=""target”>/usr/src</amin:params:
<amin:param name="archive”>/dir-sources/33/
bash-2.05b.tar.gz</amin:paramz>

</amin:command:.

Now assume that the source code for building the software
1s put in /my/archive instead of in /dir-sources/33/ as specified
in the above-mentioned profile. In such a case, a transforma-
tion would be required to correct the location of the source
code 1n the profile. However, there might be another profile in
which the new source code location (/my/archive) 1s speci-
fied. Therefore, this profile does not need to be transformed.

US 7,606,878 B2

11

This presents an example of a conditional transformation,
wherein one profile needs to be transformed while the other
does not. Therefore, Front-end 307 will perform this trans-
formation.

In accordance with one embodiment of the present mnven-
tion, such transformations are performed in accordance with
the rules defined by the use of XML transformation languages
such as XSLT.

Back-end 309 comprises one or more Controllers 311 and
an event-driven machine 313 for processing the selected pro-
files. The choice of event-driven machine 313 depends on the
machine-readable format in which the profiles have been
expressed.

Event-driven machine 313 comprises one or more Genera-
tors 315, one or more Filters 317, and one or more Handlers
319.

In one embodiment of the present invention, the adminis-
trative processes are captured using XML. In this embodi-
ment, event-driven machine 313 1s a SAX (Simple API for
XML) machine. A SAX machine 1s an advanced way of
putting together SAX processing pieces (generators, filters
and handlers) and controlling the flow of information among
them. A SAX machine 1s a common parser interface for XML
parsers. It allows application writers to write applications that
use XML parsers but are independent of the parser that 1s
actually used for parsing.

Controllers 311 act as a bridge between Front-end 307 and
event-driven machine 319 by passing the profiles read by
Front-end 307 to Generators 315. Controllers 311 also passes
back the updated profiles handed to it by Handlers 319 to
Front-end 307. Controllers 311 are also responsible for set-
ting up event-driven machine 313 1n a flexible user-defined
manner. The manner in which controllers are designed
depends on the type of Front-end 307 connected to the back-
end 309.

In accordance with one embodiment of the present mnven-
tion, controllers 311 can also perform profile transformations.
Controllers 311 are generally involved 1n performing global
transformations. That 1s, Controllers 311 generally perform
transformations when a global set of rules needs to be
enforced on all profiles, which are sent to Controllers 311 by
Front-end 307.

Generators 315 are components that generate a series of
events as they read the profiles passed to them by Controllers
311. In one embodiment of the present invention, Generators
315 are XML parsers. XML parsers can be based on the push
parsing/event-based parsing model. In this model, the parser
breaks down XML documents into identifiable pieces and
sends notifications regarding these pieces to different appli-
cations. The notifications are sent in “reading” order, that is,
as they appear 1n the text of the parsed document.

In another embodiment of the present invention, Genera-
tors 315 can read profile-related data from a datasource and
generate events by processing the profile-related data. The
datasource may be a database, an Idap server or other such
datasources, which can store the profile-related data, which 1s
to be read by Generators 315. For example, in one embodi-
ment of the present invention, Generators 315 can read event-
related data from a perl data structure and process 1t to gen-
erate events.

It would be apparent to a person skilled in the art that
Generators 315 of the present mvention are not limited to
reading profile-related data from a perl datastructure. Gen-
erators 313 can read and process profile-related data, stored 1in
any type of data structure.

The generated events are directed to Filters 317. Filters 317
are software modules that directly interact with administered

10

15

20

25

30

35

40

45

50

55

60

65

12

components 321, and direct the generated events to be
executed to appropnate administered components 321.

Administered components 321 comprise hardware devices
323, system commands 325, and other components 327,
which are used to execute the generated events. Examples of
other administered components comprise software programs
such as web servers and database servers, service monitoring,
programs, IDS systems, backup programs, and other such
components, that administrators need to interact with to per-
form administrative tasks.

The generated events are executed at administered compo-
nents 321, to which they are directed. Administered compo-
nents 321 generate messages 1n response to the execution of
the generated events.

Once the events are executed, Filters 317 collect the mes-
sages generated by administered components 321 1n response
to the execution of each event.

Filters 317 then pass the messages corresponding to each
executed event to Handlers 319. Filters 317 may pass all the
messages, or they may filter these messages and pass only
some ol the messages, to Handlers 319. Further, Filters 317
may also modily some of the messages before these messages
are passed to Handlers 319. In one embodiment of the present
imnvention, Filters 317 are SAX filters. As known 1n the art,
SAX filters can be designed to incorporate different message
filtering rules. For example, Filters 317 can block all mes-
sages, or let all messages pass to other system modules. They
can also be designed to add or remove an attribute from the
messages before passing them to other system modules.

In one embodiment, Handlers 319 are XML writers that
append the collected messages to the parsed profiles. The
parsed profiles that have been appended with the messages
(generated In response to the execution of the events con-
tained in the profile) are called updated profiles. Handlers 319
turther pass the updated profiles back to Controllers 311,
which in turn pass them to Front-end 307.

In this manner, the system of the present invention enables
the execution of the captured administrative processes.

An advantage offered by the present invention 1s that it uses
a generic command framework to capture all administrative
commands. It does not use different command frameworks to
capture different administrative commands. This signifi-
cantly reduces the complexity mvolved in the process of
capturing administrative commands and automating the
execution of the administrative processes.

In one embodiment of the present invention, the system and
method described in the present invention are used to build a
Security Manager application to manage the security levels of
a network. The Security Manager application generates
administrative lists, profiles and network maps to manage
security or firewall levels of the network. For example, the
Security Manager application may generate administrative
lists comprising an attack administrative list, an all-clear
administrative list, and a closed administrative list. Each of
these admainistrative lists comprises profiles containing
administrative commands that change the firewall for the
network, bringing it to an appropriate security level. When the
security of the network 1s threatened, an Intrusion Detection
System (IDS) installed 1n the network causes a script to be
run. The script causes the Security Manager application to
select and run the attack admimistrative list. The attack admin-
istrative list comprises the attack.xml profile and the entire-
network map. Hence, the attack.xml profile 1s sent to each
firewall server listed in the entire-network map. The execu-
tion of this profile upgrades the security level of the network
to a level higher than the original security level.

US 7,606,878 B2

13

The IDS continues to run appropriate scripts inresponse to
the security requirements of the network, and causes the
Security Manager to select other administrative lists. For
example, 1f the attack escalates, the Security Manager selects
and runs the closed administrative list containing the 5
closed.xml profile, which, when executed on the firewall
servers 1n the network, shuts down the entire network. Hence,
in this embodiment, no human intervention i1s needed and the
security problem of the network 1s administered by the
present invention in an automated manner. 10

The present invention may also be embodied in a computer
program product for use with a computer. The computer
program product includes a computer usable medium having,

a computer readable program code embodied therein.

While the various embodiments of the invention have been 15
illustrated and described, it will be clear that the present
invention 1s not limited to these embodiments only. Numer-
ous modifications, changes, variations, substitutions and
equivalents will be apparent to those skilled 1n the art, without
departing from the spirit and scope of the invention as 20
described 1n the claims.

What 1s claimed 1s:

1. A method for capturing administrative processes 1n a
machine-readable format, the administrative processes being,
processes thatneed to be implemented by an administrator for 25
achieving different objectives 1n a local or a networked envi-
ronment, the administrative processes comprising adminis-
trative tasks and the administrative tasks comprising admin-
istrative commands, the method comprising the steps of:

a. creating a generic command framework 1n a machine- 30
readable format to capture administrative commands
used in the administrative processes by capturing struc-
tures ol all types of the administrative commands,
wherein the structures of all types of the administrative
commands are captured by writing the adminmistrative 35
commands in the machine-readable format 1n accor-
dance with the generic command framework;

b. generating profiles that define the admimistrative tasks,
the profiles are generated by combining all the captured
administrative commands in the machine-readable for- 40
mat, the profiles being collections of the captured
administrative commands that define an adminmistrative
task, the profiles are generated by a profile generator,
and the profiles being the machine-readable version of
the admimistrative tasks, wherein the captured adminis- 45
trative commands when executed accomplish the
administrative task;

c. generating network maps, each network map comprising,
details of one or more servers 1n the networked environ-
ment on which the administrative tasks defined by the 50
profiles need to be performed, the network maps are
generated by a network map generator;

d. generating admin lists by combining one or more pro-
files that define administrative tasks, which constitute an
administrative process, wherein the admin lists com- 55
prise a pre-defined order in which the administrative
tasks need to be executed, the admain lists are generated
by an admin list generator, wherein each admin list
captures the administrative process 1 a machine-read-
able format, which 1s processed for automating execu- 60
tion of the administrative process;

¢. enabling selection of the one or more profiles contained
in the admin lists by using at least one function from a
plurality of functions;

f. transforming the selected profiles from a first machine- 65
readable format to a second-machine readable format
based on a predefined rule; and

14

g. processing the selected profiles written i the machine-
readable format by using an event-driven machine,
wherein the event-driven machine 1s a parser interface
for an XML parser, the steps of the method being imple-
mented by a processing machine.

2. The method of claim 1, wherein the admin lists com-
prises zero or more network maps and associations between
the profiles present in the admin list and the one or more
network maps, the association between a profile and one or
more network maps defining the server(s) on which the
administrative task defined by the profile needs to be per-
formed.

3. A method for automating the execution of administrative
processes 1n a local or a networked environment, the admin-
1strative processes comprising administrative tasks and the
administrative tasks comprising administrative commands,
the method comprising the steps of:

a. creating a generic command framework 1n a machine-
readable format that can be used to capture structures of
all types of adminmistrative commands used 1n the admin-
1strative processes, wherein the structures of all types of
the administrative commands are captured by writing
the administrative commands in accordance with the
generic command framework;

b. generating profiles that define the administrative tasks,
the profiles are generated by combining all the captured
administrative commands in the generic command
framework 1n a structured mark up language, the profiles
being collections of the captured administrative com-
mands that define an administrative task, wherein the
captured administrative commands when executed
accomplish the administrative task;

c. generating network maps, each network map containing,
details of one or more servers 1n the networked environ-
ment on which the administrative tasks defined by the
profiles need to be performed;

d. generating admin lists from one or more profiles and one
or more network maps, each admin list being a collec-
tion of one or more profiles and one or more network
maps, that define administrative tasks, which are
required to be performed in a pre-defined order for
executing an administrative process, wherein the admin
lists comprising associations between the profiles and
the one or more network maps present in the admin lists;

¢. selecting a first set of admin lists based on a selected
administrative process, which 1s to be executed;

f. selecting a first profile from among the one or more
profiles contained 1n the selected first set of admin lists;
and

g. processing the selected first profile, the processing ol the
selected first profile comprising the steps of:

1. parsing the selected first profile to generate XML
parser events:

11. executing the generated XML parser events by using,
administered components, the administered compo-
nents comprising at least one of local system devices,
networked system devices, solftware programs and
system commands, which are used to execute the
generated XML parser events;

111. collecting messages generated by the administered
components 1n response to execution of the generated
XML parser events, the messages provide meta-data
regarding the executed XML parser events;

1v. updating the selected first profile by appending the
generated messages to the selected first profile,
wherein the messages are appended 1n a structured
mark up language; and

US 7,606,878 B2

15

v. deciding 1 the updated profile needs to be processed
again, the decision being made by a processing
machine based on the generated messages using
which the selected first profile has been updated;

if the updated profile needs to be processed again, then 5
performing the steps of:

a) selecting the updated profile for processing; and

b) repeating step 1 for the selected first profile;

else performing the steps of:

c) selecting next profile to be processed from the 10
selected first set of admin lists based on the adminis-
trative tasks to be performed; and

d) repeating step 1 for the selected new profile; whereby
the execution of the administrative processes 1s auto-
mated by the automated processing of profiles that 15
define the administrative tasks, which are required to
be performed for executing the administrative pro-
Cesses.

4. The method of claim 3, further comprising the steps of:

a. determining 11 the selected first profile needs to be trans- 20
formed before processing, the transformation being
required when the selected first profile needs to be con-
verted from a first format of structured mark up language
to a second format of the structured mark up language;

if the selected first profile needs to be transtormed, then 25

b. transforming the selected first profile from the first for-
mat to the second format using a set of pre-defined rules;
and

clse

c. processing the selected first profile in the first format. 30

5. The method of claim 3, wherein the step of executing the

generated XML parser events comprises the steps of:

a. directing the generated XML parser events to adminis-
tered components using which the generated XML
parser events can be executed; and 35

b. executing the generated XML parser events using the
administered components to which the generated XML
parser events have been directed.

6. The method of claim 3, wherein the generated messages

comprise control messages and system messages. 40

7. A system embodied on one or more processing machines

in a computer network for automating the execution of
administrative processes 1n a local or a networked environ-
ment, the administrative processes comprising administrative
tasks and the administrative tasks comprising administrative 45
commands, the system comprising:

a. a prolile generator for generating profiles by capturing
the administrative commands 1n a structured mark up
language, the profiles being collections of the captured
administrative commands that define an admimstrative 50
task:

b. a network map generator for generating network maps,
the network maps containing details of one or more
servers 1n the networked environment on which the
administrative commands need to be performed; 55

¢. an admin list generator for generating admin lists by
combining one or more profiles and one or more network
maps, each admin list being a collection of one or more
profiles that define administrative tasks, which are

required to be performed in a pre-defined order for 60

executing an administrative process, wherein the admin

lists comprising associations between the profiles and
the one or more network map present 1n the admin list

d. a front-end for enabling at least one function from
among the functions of selecting profiles contained 1 65
admin lists, reading the selected profiles and transtorm-
ing the selected profiles from a first format of structured

16

mark up language to a second format of the structured
mark up language, based on a predefined rule; and

¢. a back-end comprising:

1. an event-driven machine for processing the selected
profiles written 1n a structured mark up language,
wherein the event-driven machine being a parser
interface tor XML parser; and

11. one or more controllers for connecting the front-end
with the event-driven machine for processing the
selected profiles, the controllers passing the selected
profiles from the {front-end to the event-driven
machine.

8. The system of claim 7, whereimn the event-driven
machine for processing the selected profiles comprises:

a. one or more generators, which generate events by pars-
ing the selected profile, the one or more generators are
XML parsers;

b. one or more filters, the filters directing the generated
events to admimstered components and causing execu-
tion of the generated events at the administered compo-
nents, thereby leading to the generation of messages by
the administered devices 1n response to the execution of
the generated events; and

c. one or more handlers, for updating the selected profile
with messages generated by the administered compo-
nents, the one or more handlers are XML writers.

9. The system of claim 7, wherein the admimistered com-
ponents comprise at least one of local devices, networked
devices, software programs and system commands, which are
used for executing the generated events.

10. The system of claim 7, wherein the pre-defined rules
are stored locally in the controller where the transformation
of selected profiles 1s performed, or are stored outside the
controller 1n the networked environment.

11. A computer program product for use with a computer,
the computer program product comprising a computer stor-
age medium having therein, for capturing and automating the
execution of administrative processes 1 a local or a net-
worked environment, the administrative processes compris-
ing administrative tasks and the administrative tasks compris-
ing administrative commands, the computer program product
comprising;

a. program instruction means for capturing the administra-

tive commands 1n a generic command framework 1n a
structured mark up language, the profiles being collec-

tions of the captured administrative commands that
define an administrative task

b. program istruction means for generating network maps,
cach network map containing details of one or more
servers 1n the networked environment on which the cap-
tured administrative commands need to be performed;

c. program 1instruction means for generating admin lists
from one or more profiles and one or more network
maps, each admin list being a collection of one or more
profiles that define administrative tasks, which are
required to be performed 1n a pre-defined order for
executing an administrative process, wherein the admin
lists comprising associations between the profiles and
the one or more network map present 1n the admain list;

d. program instruction means for selecting a first set of
admin lists based on a selected administrative process,
which 1s to be executed;

¢. program 1nstruction means for selecting a first profile
from among the one or more profiles contained 1n the
selected first set of admin lists; and

US 7,606,878 B2

17

f. program nstruction means for processing the selected
first profile, the program instruction means for process-
ing the selected first profile comprising:

1. program 1nstruction means for parsing the selected
first profile to generate XML parser events;

11. program 1instruction means for executing the gener-
ated XML parser events by using administered com-
ponents, the admimstered components comprising at
least one of local system devices, networked system
devices, soltware programs and system commands,
which are used to execute the generated XML parser
cvents;

111. program instruction means for collecting messages
generated by the administered components after the
execution of generated XML parser events, the mes-
sages provide meta-data regarding the executed XML
parser events:

1v. program instruction means for updating the selected
first profile by appending the generated messages 1n a
structured mark up language to the selected first pro-
file;

v. program istruction means for checking 11 the updated
proifile needs to be processed again; and

vl. program instruction means for selecting the next
profile contained in the selected first set of admin lists.

12. The computer program product of claim 11 further
comprising a program instruction means for transforming the
selected first profile before processing, the transformation
being required when the selected first profile needs to be
converted from a first format of structured mark up language
to a second format of the structured mark up language.

13. The computer program product of claim 11, wherein
the program 1instruction means for executing the generated
XML parser events further comprises:

a. program instruction means for directing the generated
XML parser events to administered components using
which the generated XML parser events can be
executed; and

b. program 1nstruction means for causing execution of the
generated XML parser events using the administered
components to which the generated XML parser events
have been directed.

14. A system embodied on one or more processing
machines for automating the execution ol administrative pro-
cesses 1n a local or a networked environment, the administra-
tive processes comprising admimstrative tasks and the
administrative tasks comprising admimstrative commands,
the system comprising:

a. a proflle generator for generating profiles by capturing

the administrative commands in a generic command

10

15

20

25

30

35

40

45

18

framework, the profiles being collections of the captured

administrative commands that define an administrative

task:

b. a network map generator for generating network maps,
the network maps containing details of one or more
servers 1n the networked environment on which the cap-
tured administrative commands defining the administra-
tive task need to be performed;

c. an admin list generator for generating admin lists, each
admuin list being a collection of one or more profiles that
define admimstrative tasks, which are required to be
performed 1 a pre-defined order for executing an
administrative process;

d. a front-end for enabling at least one function from
among the functions of selecting a profile contained 1n
the admin lists, reading the selected profile and trans-
forming the selected profile from one machine-readable
format into second machine-readable format; and

¢. a back-end comprising:

1. an event-driven machine for processing the selected
profile written 1n a structured mark up language,
wherein the event-driven machine being a parser
intertace for XML parsers, the event-driven machine
turther comprising;:

a) one or more generators, which generate events by
parsing the selected profile, the one or more gen-
crators are XML parsers;

b) one or more filters, the filters directing the gener-
ated events to administered components and caus-
ing execution of the generated events at the admin-
istered components, thereby leading to the
generation of messages by the administered
devices 1n response to the execution of the gener-
ated events; and

¢) one or more handlers, for updating the selected
profile with the messages generated by the admin-
istered components, the one or more handlers are
XML writers; and

11. one or more controllers for connecting the front-end
with the event-driven machine for processing the
selected profile, the controllers transtorming the pro-
file from one format of structured mark up language to
another format, 1t required, based on a set of pre-
defined rules and passing the selected profile from the
front-end to the event-driven machine.

15. The system of claim 14, wherein the administered
components comprise at least one of local devices, networked
devices, software programs and system commands, which are
used for executing the generated events.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

