12 United States Patent

US007602850B2

(10) Patent No.: US 7.602.850 B2

Reese 45) Date of Patent: Oct. 13, 2009
(54) CONTENT ADAPTIVE VARIABLE LENGTH 7,099,387 B2* 8/2006 Bjontegaard et al. 375/240
CODING (CAVLC) DECODING 2001/0033697 Al1* 10/2001 Shimada 382/246
2002/0114398 Al* 8/2002 Limetal.c.ooc...ll. 375/253
(75) Inventor: Robert J. Reese, Lake Oswego, OR 2003/0053700 AL* 3/2003 Ishii ..ocovoeerervererernnnnn, 382/233
(US) 2003/0202601 Al* 10/2003 Bjontegaard et al. ... 375/240.22
(73) Assignee: Intel Corporation, Santa Clara, CA * cited by examiner
(US) Primary Examiner—Behrooz Senfl
(*) Notice: Subject to any disclaimer, the term of this g;%ﬁiﬁoii?’ Agent, or Firm—Blakely, Sokoloft, laylor &
patent 1s extended or adjusted under 35
21) Appl. No.: 10/741,233 , ,
(21) Appl.- No A method and apparatus for decoding a bitstream. The
(22) Filed: Dec. 19, 2003 methﬁoc.l may include generating an indicatiop of a nuplber of
coellicients and a number of trailing ones in a portion of a
(65) Prior Publication Data bitstream using either a first lookup table (LUT) indexed by a
number of leading zeros to return a number of remaining bits
US 2005/0135691 Al Jun. 23, 2005 in a code and a second LUT indexed by both the number of
51) Tat. Cl leading zeros and the remaining code bits to return the num-
(51) ;;;4N '7 1 2006.01 ber of coellicients and the number of trailing ones or bit
COGK /36 (200 6. 0 1) parsing processing when the leading zeros value equals a
(01) predetermined value, generating an indication of a number of
(52) U..S. Cl. o 375/240.23; 382/246 total zeros, including using either a third LUT indexed by the
(58) Field of Classification Search 348/403, number of coefficients and bits of the bitstream when the
348/14.3, 469, 404, 406, 407, 419; 382/246, number of coellicients 1s 1n a first range or bit level processing
382/233, 239, 238, 232, 236; 341/51, 50, when the number of coetlicients 1s outside the first range,
341/67, 106, 143, 60, 63; 375/240.01, 240.12, geperating an indication of one or more run before values
o '375/ 240.29 using either a fourth LUT indexed by the number of coetii-
See application file for complete search history. cients and bits of the bitstream when a zeros left value is in a
(56) References Cited second range or bit parsing processing when the zeros lett 1s

U.S. PATENT DOCUMENTS

not 1n the second range, and generating coelilicients in block
positions 1n response to the generation of the trailing ones
value, the number of coeflicients value, the total zeros value

Trailing Ones | Number Of Coefficients (NC) | | Determination

6,188,797 B1* 2/2001 Moledma etal. 382/246 and run before values

6,546,053 Bl1* 4/2003 Ishitcocooeinininins 375/240.27 '

6,646,578 Bl ™ 11/2003 AU ..ccvvviviiiiiiiiiiniennen, 341/67

6,829,299 B1* 12/2004 Chuohetal. 375/240 22 Claims, 7 Drawing Sheets

Decoder
101 i >
e Number Of Trailing Ones (T1s)
Coefficients/ o 121 | Coefficient Coefficient & TR1s

Block Position

» Unit |dentification Unit

5| Generation Unit

110 122 113A 113B
> Total Zeros 7
Bitstream Generation | '\,
111 {
-3 ! i 123 Y
_ Buffering
—»{ Run Before Values | Run Before (RE) N3C
,.| Generation Unit Value(s}
112) »>
g — 124 Coefficient
L J Block Gen.

~
CAVLC Decoder

113

Y

Coefficients
In 4X4 Block
Positions

Vi Ol

Saliel{ papo) Salwel4 papo))
Ajsnoiraid Ajsnoinaid

US 7,602,850 B2

-
>
:
S Wojsue) |
> 19N1ISU0OSY 9SIaAU] AU 19p0oU WEND UoIIPal4
ol T
- + O[E0SY Aydosiu3 Aydonug| — [+ wiojsues]
S
aWel4 03pIA alWel 09pIA
POPOYe(18p009(] 18P0 eubuo

U.S. Patent

US 7,602,850 B2

Sheet 2 of 7

Oct. 13, 2009

U.S. Patent

SUOI)ISOd dl O_n_

A90ig vX¥ Ul
SUETITE g

19p0Ye(J1AVD

ell
U89 ¥00|g \ —

jusIdY30) 174" —
1%
(s)anjen HUn uoneiauas)
el (9y) a10jeg uny | SONIEA 310j8g UNY
buliaying
£Cl m _
N 001
NEA | uopessusg WESNSHIE
£l 1 soe7 BYo)

act v 22| oLl
Jun uoneouap] Hun

Jluf) uoclelauss)
uonisod %00i9 UONBUIWIBB(AOZV SJUsiia0]) JO JBqUINN | sauQ mc___m.._._.
SILM [% JuaIdIa0) JUsI01}807) LC) [SIUSIOIYB0]

(s|1) sauQ bunes) JO JoquinN

L0}
18p023(Q]

US 7,602,850 B2

Sheet 3 of 7

Oct. 13, 2009

U.S. Patent

V¢ Ol

(plepuels $9z'H woi4)
N

—— Juswbel4 apon

Duis/ed-ig

(21 “08)
an|eA PaullLId)opald
= SJUsIaR80) 10

laquinp Jojeseduwio)

$1
O Joquin b0z 3/qeu3
1N
(S141Puy}R0JWnN) A
sauQ) bues] puy slig U JxaN 207 4
SRR SJUBiY30) Iy
O ZHEN jo Joquiny (sigepoouny)

t0¢
syg o | Buisssoold
T
LAl g PxaN

+ S)g XN

(17) s0197 Buipeo JO Lequunp Weans)g jo 0} Weaisig
WO.4 pauiwIR)aQ ag Jouue) siig Sig U JxaN 104
Buiuuny JO JaquinN usym 9sn 104 1IN

TR
ig XN

Uoljeuillsls(d /1

U.S. Patent Oct. 13, 2009 Sheet 4 of 7 US 7,602,850 B2

Bit Stream Bits

000011 xxx ...

\W—“T_’

Use
. Next 2

e

NumCodeBits Table NumCoefAndTR1s Table

FIG. 2B

U.S. Patent Oct. 13, 2009 Sheet 5 of 7 US 7,602,850 B2

Total Zeros
Generation Unit

Next 6 Bits
Of Bitstream Total Zeros
LUT
Bitstream 302
100 N

Enable
310

TZ
Value

Comparator

Z<NC<9
7

301

NC 122 I

Bit Level Proc.
For NC>9 Or
NC < 2
303

F1G. 3

U.S. Patent Oct. 13, 2009 Sheet 6 of 7 US 7,602,850 B2

Run Before
Value Generation Unit

Next 3 Bits Run Before
Of Bitstream 100 Value
- LUT
Bitstream 400
100 Ve
Enable 8-Bit
Comparator 410 Run Before
ﬂ-» = .-= Value And
v VLC Code
at Length

Bit Parsing
Processing
Logic
403

FIG. 4

U.S. Patent Oct. 13, 2009 Sheet 7 of 7 US 7,602,850 B2

500
Main Static Slt\g?:;e Processor
Mermory Memory Memo
504 506 M 512

507 AL

| Cursor Wireless/
Display Keyboard Control Telephony
521 520 Device Interface

523 525

FIG. 5

US 7,602,850 B2

1

CONTENT ADAPTIVE VARIABLE LENGTH
CODING (CAVLC) DECODING

FIELD OF THE INVENTION

The present invention 1s related to the field of compression
and decompression; more particularly, the present invention

1s related to video content adaptive variable length coding
(CAVLC).

BACKGROUND

Video coding 1s used 1n a wide range of multimedia appli-
cations 1ncluding digital television, wvideoconferencing,
mobile video and video streaming. Video coding has devel-
oped with a number of international standards. A number of
these international standards include the use of variable
length codes (VLCs). For example, 1n the international stan-
dard jointly published by the ITU-T as Recommendation
H.263+, a variable length code (VLC) decoding 1s included.

In the prior art, some variable length code (VLC) decoding
implementations use lookup tables (LUTs). For example, a
H.263+decoder of Intel Corporation of Santa Clara, Calif.,
used LUTs to decode VLC codes. However, this decoder only
used the LUTs to decode coetficients and zero run informa-
tion. These LUTs were readily generated from the tables in
the H.263+standard’s specification. The current draft of the
H.264/MPEG-4 Part 10 specification includes a decoding
process 1 which VLC codes are used. See “Drait Errata List
with Revision-Marked Corrections for H.264/AVC, the
approved IJVT output document from the Sep. 2-5, 2003
meeting, JVI-1050.doc. In common with earlier video coding
standards, H.264 does not specily how to compress (“en-
code”) video and, mstead, specifies the syntax of a bitstream
containing coded video data and a method of decoding the
data.

During entropy coding with an H.264 video encoder, quan-
tized transform coelficients and side information (including
motion vectors, prediction mode choices and headers) are
entropy coded using variable-length codes or arithmetic cod-
ing. If vaniable-length coding 1s used, quantized transform
coellicients are coded using a context-adaptive variable
length coding (CAVLC) and other syntax elements are coded
with “universal” variable length codes.

CAVLC exploits the coefficients’ statistical correlation by
first scanning them 1n a zigzag manner 1nto a one-dimensional
array. Every non-zero coetlicient 1s then associated with a
variable run that counts the number of zero coetficients to the
previous non-zero coellicient.

Often 1 bits with a sign are among the highest-frequency
coellicients. These are counted and coded with the total num-
ber of non-zero coellicients using one rule from a set of code
tables. The decision of which table to use 1s made based on the
number of non-zero coeltlicients in neighboring blocks. Addi-
tionally, the sign of the 1 bits has to be indicated to the
decoder. The values of the remaining coelficients are then
coded using adaptive Rice codes. Thus, several code tables
are used, and the choice among the tables 1s made according
to the value of the previously encoded coetlicient. Thereaftter,
the sum of the runs 1s computed and encoded with one out of
15 tables depending upon the number of non-zero coetficients
in that block. At this point, the only remaining operation 1s to
code the individual run values with one out of seven code
tables, depending upon the remaining sum of the runs. All
code tables used by CAVLC are generated empirically.

To summarize, CAVLC encoding of a block of transform
coellicients proceeds as follows. First, the number of coetli-

10

15

20

25

30

35

40

45

50

55

60

65

2

cients and trailing ones ('T'1s) are encoded. Second, the sign of
cach T1 1s encoded. Next, the levels of the remaining non-
zero coellicients are encoded. Then, the total number of zeros
occurring before the last coellicient 1s encoded. Lastly, each
run of zeros 1s encoded.

An H.264 reference software implementation 1s currently
available. The software implementation uses pattern-match-
ing to obtain the number of coelficients and the number of
trailing ones. In this software implementation, pattern match-
ing 1s used between the codes 1n an encoder lookup table
(LUT) and the bits at the head of the bitstream. Other 1imple-
mentations use LUT's to obtain the number of coetficients and
the number of trailing ones. However, because of the size of
the tables 1s large 1n order to accommeodate all of the possible
inputs, the use of these tables 1s not efficient and 1s slow.
Similarly, LUTs are used in prior art implementations to
obtain the number of total zeros, and have the same limita-
tions as those implementations to obtain the number of coet-
ficients and the number of trailing ones.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more tully from
the detailed description given below and from the accompa-
nying drawings ol various embodiments of the invention,
which, however, should not be taken to limit the invention to
the specific embodiments, but are for explanation and under-
standing only.

FIG. 1A 1s a block diagram of an H.264 video encoder and
decoder (CODEC).

FIG. 1B 1s one embodiment of a VLC decoder.

FIG. 2A 1s a tflow diagram of one embodiment of the
process for generating the number of coelficients and the
number of trailing ones.

FIG. 2B 1llustrates an example of the use of the two lookup
tables to generate the number of coelflicients and the number
of trailing ones.

FI1G. 3 1s a flow diagram of one embodiment of a total zeros
generation unit.

FIG. 4 1s a flow diagram of one embodiment of a runs
betore value generation unit.

FIG. S1sablock diagram of one embodiment of a computer
system.

DETAILED DESCRIPTION

A method and apparatus for efficiently decoding codes of a
variable-length code (VLC) bitstream 1s described. In one
embodiment, the bitstream contains quantized coefficient
level and block position information (e.g., an H.264 bait-
stream). In one embodiment, the VLC code decoding process
uses small-memory-footprint lookup tables (LUTs) com-
bined with bit-level processing to achieve a level of perfor-
mance beyond that obtained using prior art techniques,
including performing decoding of VLC codes efficiently 1n a
reduced, and potentially minimized, number of central pro-
cessing unit (CPU) cycles.

In the following description, numerous details are set forth
to provide a more thorough explanation of the present inven-
tion. It will be apparent, however, to one skilled 1n the art, that
the present invention may be practiced without these specific
details. In other instances, well-known structures and devices
are shown in block diagram form, rather than i1n detail, 1n
order to avoid obscuring the present invention.

Some portions of the detailed descriptions that follow are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.

US 7,602,850 B2

3

These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
cifectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though notnecessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons ol common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing’ or “‘computing’ or “calculating” or “deter-
mimng”’ or “displaying” or the like, refer to the action and
processes ol a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories 1nto other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or 1t may comprise a
general purpose computer selectively activated or recontig-
ured by a computer program stored in the computer. Such a
computer program may be stored imn a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), erasable programmable ROMs
(EPROMs), electrically erasable programmable ROMSs (EE-
PROMSs), magnetic or optical cards, or any type of media
suitable for storing electronic instructions, and each coupled
to a computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention 1s not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

A machine-readable medium includes any mechanism for
storing or transmitting information 1 a form readable by a
machine (e.g., acomputer). For example, a machine-readable
medium 1ncludes read only memory (“ROM™); random
access memory (“RAM”); magnetic disk storage media; opti-
cal storage media; flash memory devices; etc.

Overview

One encoder embodiment uses content adaptive variable

length coding (CAVLC) to code quantized coellicients for
cach 4x4 block of each 16x16 macroblock (MB) in an H.264

video bitstream. The use of CAVLC takes advantage of the

10

15

20

25

30

35

40

45

50

55

60

65

4

presence ol a large number of coeflicients that quantize to
zero and the order of the remaining nonzero coellicients. For
cach 4x4 block, the following VLC-coded data may be
present: the number of coelflicients and a number of trailing
ones, n signed coellicient levels, a number of total zeros
between coelficients (excludes trailing zeros), and m run
betore values (block position information). Each of these has
a separate set of VLC codes defined for the encoder.

FIG. 1A 1s a block diagram of the basic structure of an
H.264 video encoder and decoder (CODEC). The processing
blocks included operate together to create a bitstream of data
compliant with the H.264 standard and to decode such a
bitstream as set forth in the H.264 standard. Referring to FIG.
1A, an original video frame 101 1s processed in units of a
macroblock. Each macroblock corresponds to a 16x16 pixel
region of the displayed frame. Prediction block 102 forms a
prediction for each macroblock (or part of a macroblock)
based on data that has been previously coded in the same
frame (“intra” prediction) or other video frames (“inter” pre-
diction using motion estimation and compensation) and this
prediction 1s subtracted from the current macroblock. Trans-
form and quantization block 103 transforms the residual data
produced by this subtraction into the spatial frequency
domain and quantizes the transformed data to remove less-
significant information. Entropy encoder 103 compresses the
quantized values with header data to form a coded bitstream.
In the decoder, the same process occurs in the reverse order.
That 1s, entropy decoder 104 decompresses the bitstream,
rescaling the values (using inverse quantization) and per-
forms an inverse transform on the rescaled values; reconstruc-
tion block 106 forms a prediction and adds the prediction to
the decoded residual to produce a decoded video frame.

FIG. 1B 1s one embodiment of a VLC decoder, such as the
entropy decoder that appears in FIG. 1A. The VLC decoder
comprises processing logic that may comprise hardware (e.g.,
circuitry, dedicated logic, etc.), software (such as 1s run on a
general purpose computer system or a dedicated machine), or
a combination of both.

Referring to FIG. 1B, decoder 101 decodes a bitstream 100
using a number of coellicients and trailing ones (1T1s) gen-
eration unit 110, a total zeros generation unit 111, a run before
values generation unit 112, and coetlicient block generator
113. The number of coellicients and trailing ones (T1s) gen-
eration unit 110, the total zeros generation unit 111, and the
run before values generation unit 112 form a CAVLC
decoder.

The number of coellicients and T1s generation unit 110
receives bitstream 100 and generates trailing ones (TR1s)
value 121 and a number of coelficients (NC) value 122 in
response thereto. In one embodiment, the number of coetli-
cients and T1s generation unit 110 comprises a small inverse
lookup table that outputs the number of coetlicients and T1s
developed from analysis of the encoder VLC codes and some
processing logic for handling one or more outlier cases not
handled by the lookup table.

The total zeros generation unit 111 receives the NC value
122 and bitstream 100 and generates a number of total zeros
(TZ) value 123 1n response thereto. In one embodiment, the
total zeros generation unit 111 uses a combination of a small
lookup table and bit-level processing to decode the number of
total zeros from the bitstream.

The run before values generation unit 112 receives bit-
stream 100, NC value 122, and TZ value 123 and generates
run before (RB) values 124 in response thereto. In one
embodiment, the run before values generation unit 112 com-
prises a small lookup table and bit-level processing to decode
run before values.

US 7,602,850 B2

S

Coellicient block generator 113 receives bitstream 100,
T1s value 121, NC value 122, TZs value 123, and RB values

124 and generates coellicients 1n 4x4 block positions. In one
embodiment, the generation of coeflicients and trailing ones
in 4x4 block positions 1s done 1n accordance with the H.264
Standard. Coetficient determination umt 113A determines
coelficients from the bitstream, and coefficient and T1s block
position identification umt 113B determines the block posi-
tions for the coellicients, including the level-1 coetlicients
resulting from the T1s. In one embodiment, the operations of
both of these units are 1n accordance with the H.264 Standard.
The coellicients along with the block position information, 1s
stored 1n butlering 113C. In one embodiment, decoder 101
decodes all of the CAVLC codes for a 4x4 block from the
bitstream at once, storing the multiple coelficients and run
betfore values 1n butlers.

Embodiments of the present invention reduce the lookup
table memory requirements, which 1s especially beneficial for
processors that lack a secondary cache because usage of the
primary cache has a large effect upon overall performance.

Number of Coetlicients and Trailing Ones

In one embodiment, a single VLC 1s used to code the
number of coellicients and the number of T1s. In one encoder
embodiment, the number of coeflicients and the number of
T1s are encoded using a code read from an LUT indexed by
those two values plus an mput value N (selecting one of 4
subtables given below) calculated from the number of coel-
ficients 1n surrounding blocks. In one decoder embodiment,
because most of the codes begin with a string of zero bits
whose length determines total code length and how to extract
number of coellicients and trailing ones from the remainder
of the code, two lookup tables are used, both being a set of 4
tables corresponding to the value of N. The first table, indexed
by the number of leading zeros, returns the number of remain-
ing bits in the code. The second table, indexed by both the
number of leading zeros and the remaining code bits, returns
the number of coellicients and the number of trailing ones.
Exemplary tables are given below.

In one decoder embodiment, to compensate for a few codes
that have no leading zeros and for a few codes for which the
number of remaining bits cannot be determined from the
number of leading zeros, the decoder includes additional
processing. In one embodiment, a code having no leading
zeros 1s handled by 4 bit-parsing code fragments, one for each
value of N, where N 1s generated 1n accordance with the
H.264 Standard. The bit parsing code fragments are small and
fast because they are only needed for a very few cases. To
compensate for codes for which the number of remaining bits
cannot be determined from the number of leading zeros, a
unique value 1s returned from the second table lookup and
signals the performance of another lookup 1n a third table
containing the values for these few special cases. This 1s the
auxiliary LUT given below.

FIG. 2A 1s a flow diagram of one embodiment of the
process for generating the number of coelficients and the
number of trailing ones. The process 1s performed by process-
ing logic that may comprise hardware (e.g., circuitry, dedi-
cated logic, etc.), software (such as 1s run on a general purpose

computer system or a dedicated machine), or a combination
of both.

Referring to FIG. 2A, comparison unit 201 recerves LZ
value 130 and compares whether L.Z value 130 1s equal to
zero. I 1t 1s not, comparison unit 201 enables next bit indica-
tion LUT 202 and disables bit parsing code fragment process-
ing 206 using enable output 210. I1 1t 1s, comparison unit 201

10

15

20

25

30

35

40

45

50

55

60

65

6

enables bit parsing code fragment processing 206 and dis-
ables next bit indication LUT 202 using enable output 210.

Next bit indication LUT 202 recerves LLZ value 202 and,
using L.Z value 202 as an index, outputs an indication of
which of the next bits n 1n bitstream 101 are to be examined.
In one embodiment, next bit indication LUT 202 comprises

the Number of Code Bits (NumCodeBits) table given below.

Using the next bit indication n from next bit indication
LUT 202 as well as the next n bits of bitstream 101, next bit
determination processing logic determines the values of the
next n bits 1n bitstream 101 and outputs them. The number of
coellicients and trailing 1s LUT 204 receives the next bits of
bitstream 101 output by next bit determination processing
logic 203 and LZ value 130 as an index into one of a set of
tables (e.g., 4 tables) selected by N. The value N and its
generation are set forth 1n the H.264 Standard. In response to
the 1nputs, the number of coetlicients and trailing 1s LUT 204
outputs a value indicative of the number of coellicients (NC)
and a value 1ndicative of the number of T1s. In one embodi-
ment, the number of coellicients and trailing 1s LUT 204

comprises the Number of Coellicients and Trailing Ones
(NumCoefAndTR1s) table given below.

Thereatter, output unit 203 recerves the values indicative of
the number of coetlicients and the number of trailing zeros
and using comparison unit 205 A tests whether the number of
coellicients 1s represented with a predetermined value (e.g.,
1'7). If not, then the values of the number of coetficients and
the number of trailing ones are output from output unit 205. I
s0, then comparison unit 205A enables alternative LUT 2038
via enable 205C and the next bits plus one more bit of bit-
stream 100 are used as an index into alternative LUT 209,
which generates the NC and T1s that are output from output

unit 205.

FIG. 2B illustrates an example of the use of the two lookup

tables, NumCodeBits table 202 and NumCoefAndTR1s table
207. Retferring to FIG. 2B, the bitstream includes 4 leading
zero bits. Therefore, LZ equals 4. Using the LZ value, the
NumCodeBits table 1s indexed and the number 1n the Num-
CodeBits table corresponding to an LZ value of 4 1s the
number 2. This means that the next two bits in the bitstream

after the four leading zeros are accessed. In this case, the next
2 bits are both 1, which equals 3. The LZ value, 4, and the
number 3 are used to access a location 1n the
NumCoelfAnd TR 1s table. Specifically, the LZ value specifies
a section of the table, and the number 3 1s the offset from the

start of the section of the table corresponding to an LLZ value
of 4. Accessing the NumCoefAndTR1s table using an LZ

value of 4 and the next two bits being a value of 3, the final
table lookup returns a number of coellicients (NumCoell) of
5 and a number of trailing ones (1R1s) of 2. Note that this 1s
an example only and the preferred lookup tables are given
below.

Referring back to FIG. 2A, 11 comparison unit 201 1ndi-
cates that there are no leading zeros and enables bit-parsing
code fragment processing, then one of 4 bit parsing code
fragments 1s selected based on the value of N (generated 1n
accordance with the H.264 Standard). Each bit-parsing code
fragments processing bits in bitstream 101 one at a time to
determine the number of coelficients and the trailing 1s. The

VLC values for all possible NC/T1 combinations are defined
in the H.264 standard.

US 7,602,850 B2

7

EXEMPLARY LOOKUP TABLES FOR TFE
NUMBER OF COEFFICIENTS AND TRAIL.
ONES

I
NG

In one embodiment, a lookup number of NumCoell code-

word bits to read 1s performed based upon the number of
leading zeros. Four tables: Num-VLC 0, VLC 1, VLC 2, and

VLC ChromaDC, are used.

const U8 NumNumCoeffCodeBits[4][16] =

{0,0,0,1,1,2,2,2,2,3,3,3,3,2,0},
{0,1,2,2,2,2,2,3,3,3,2,2,0},
{0,3,3,3,3,3,2,2,1,0},
{0,0,0,2,1,1,1}

I

8

A lookup of NumCoell and TROnes using codeword 1ol-

[NumLeadingZeros—1] [codeword].

typedef struct {
I8 NumCoeft;
I8 TROnes;

} struct. NumCoeffAnd TROnes;

lowing leading zeros 1s performed indexed by [VLClIndex]

In one embodiment, an entry of 17 for NumCoell in the
{ 10 lollowing tables signals an 1nvalid code and the need to read
an additional bit. These are a few cases 1n the VLC-NUM

tables where the number of leading zeros matches codewords

of ditt

‘erent lengths (all varying only by one bait).

For those cases, the above table, NumNumCoeftCodeBits,
has the shorter code length; the fewer bits of the longer

codewords match the “17 signal” entries.

const struct_ NumCoeffAndTROnes NumCoeffAndTROnes [4][16][8] =

i
/T VLC O

i
{{1:1}:{_1:_1}:{_:~:_;}?{_;:_d*}:{_l —1},{—1,—:~},{—1,—;},{—1,—1
{42,2},4-1,-1},4-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1
L7133 =11 = 1= 111 2,1 1,01 =1,=15a=1,- 1 g,
17,-1 43 4-1,-1 1 =1,-15,45,31,{3,2,{-1,-1}4{-1,-1}},
{{6:3}:{4:2}:{3:- } {2 0} {_ - _:}:{_ _:~}?{_:~ —1 } {_ :_:}}:
{{7:3}:{5:2}:{4:- } {3 0} {_ ot ~}={_ — } {_1 —1 } {_ ~:_d~}}:
{{8:3}:{6:2}:{5 }:{4 0} {_ ~:_:~}:{_ L,—1 }9{_ “!_: }:{_ ~:_d~}}:
193 117,21:16,1 145,07, -1,-1 1 4-1,- 1} {-1,-1 },{-1,-1}},
(18,0.{9.2}.{8.1}.{7,0.{10,3}.{8,2]}, {7 1},{6.0}},
1112,35,{11,2},{10,1},410,0},411,3},{10,2},{9,1},{9,0}},
{{143},{13,2},{12,1},412,0},{13,3},412,2},{11,1 },{11,0}},
1116,3},115.2},{15,1},114,0},{15,3},{14,2},{14,1 },{13,0}},
1116,01,416,2},{16,1},415,0},{-1,-1 },{-1,-1,{-1,-1},{-1,-1}},
;{ 3,0} {1 =L =11 - LD - Lm L - L1 {-1-1})
/I VLC 1
{
11177154225 4-1,-1 1 4= 1,-1 1,443 1,43,3 1= 1,-1},{-1,-1}},
(117,-11,017,-1},{5,3},{2.1}, 16,3 1135 2}5{351}5{1:0}}9
7351421141 1:42,05-1,-1p4-1,-14-1,-1 },{-1,-1}},
18:31,15:2 115,143,051, -1,-1 },{-1,=1 -1~ 1 14~ 1,-1}
{{550}9{692}:{65;}:{4:0}:{_ 1,-1 } {_ 1,-1 } {_ 1,-1 } {_ ~:_j~}}:
{{993}9{792}9{7=:~}9{6=0}={_ - }a{_ }a{_] }9{_ ~=_j~}}=
{{11,3},{9.2},{0.1},{8.0}.{10,3}.{8,2}.{8.1},{7.0}},
{411,04,411,2},{11,1},410,0},{12,3},410,2},{10,1 },{9,0} },
{{14,3},{13,2},{13,1},413,0},{13,3},412,2},{12,1 },{12,0}},
{417,-1},{17,-1},{14,2},{14,0},{15,0},{15,2},{14,1} },
{{16,3},{16,2},{16,1},{16,0},{-1,-1},{-1,-1},{-1,-1}.{-1,-1}},
%{15,3},{—1,—1},{—1,—1},{—1,—1},{—1,—1},{—1,—1},{—1,—1},{—1,—1}}
//?VLC 2
{

U152 1141 114:.2113,1 1a8,3143,2 512,15,
13071721171 112,0119,3516,2116,1 111,05 5,
117:07:16,01,19,21,15,01,110,35,18,21,18,1 1, (4,0} ,

-
e
-
{1
{1
{1
}?

2,31,{11,2},{10,1},{9,0},{11
2,01,{13,2},{12,1}.{1
7,-1},{17,-1},{17,~1

6,11{15,01.{15,3}.{1

1,0V, {1
L 113

// VLC DC Chroma

{
{{050}5{_1:_1} {
112:27,4-1,-1},1-1
112.07,13,31,12,1
114:07,13.01,1-1

{{3:2}:{3:1}:{_:~:
{{4:2}:{4:1}9{_;:

h

~11{-1
~1}{-1
}: 1: }:{ :
—1L 11
1,{-1,-1
1,{-1,-1

37,110,2},{9,1},{8,0}},
3,31.412,2}1,{11,1}.{10,0}},
} {_1?_1}:{_1:_1}:{_15_1}?{_1:_1}}:
5?2}9{_1:_1}:{_1?_1}:{_1:_1}9{_19_1}}:
6,31,{16,21,{-1,-1}{-1,-1} {-1,-1},{-1,-1},{-1,-1},{-1,-1}},
6:0}:{_1:_1}:{_1:_1}:{_1:_1}:{_1:_1}:{_1:_1}:{_1:_1}:{_1:_1}}:

:_1}:{_15_1}:{_15_1}:{_
:_1}:{_1 _1}={_1=_1}={_
J“:_l}:{_i9_1}:{_1:_1}}
~}:{_d~:_ }:{_; - }:{_:~
~}?{_ -2 }:{_:~ - }?{_:~
~}:{_ - }:!{_j - }n{_:

// Leading zeros

/1
/2
/3
/4
5
/16
T
/8
/9
/1
/i1
/i1
/i1
/i1

.I:.uJMHf::J

// Leading zeros

/1
/2
/3
4
/3
/16
7
/8
/9
/i1
/1
/1

-

// Leading zeros

/i1
/2
/i3
/4
13
/6
7
/8
9

/i1
/2
/3
/4
/5
/16

// Leading zeros

US 7,602,850 B2

9

An alternate lookup table for the VLC-NUM 2 case of 6
leading zeros 1s given below. The output of the VLC-NUM 2
LUT can result in a 2-bit codeword or any of 6 3-bit code-
words. The 2-bit codeword matches an entry in the table
above. The 3-bit codewords are handled here.

const struct. NumCoeffAnd TROnes
AItVLC2NumCoeffAndTROnes[8] = {

{15,1},{14,0},{14,3} {14,2} {14,1} {13,0} {-1,~1},{~-1,-1}
1

The prior art approach 1s slower. More specifically, one
prior art approach for decoding these values 1s to perform
pattern matching between the codes in the encoder’s table
(selected by N) and the bits at the head of the bitstream. Thas
can be rather slow as there are up to 62 codes, with lengths up
to 16 bits, for each N. Another less efficient prior art approach
creates all-inclusive mverse lookup tables, sized to match the
longest possible code. Such an approach is less efficient due
to the resulting larger processor cache usage and correspond-
ing larger number of cache misses. A full inverse lookup table
would be 64K*3*4=768 K bytes (3 bytes for entry for run
betore, number of trailing ones, and code length), compared
with the 1104 bytes used 1n one embodiment of the present
invention.

Number of Total Zeros

In one embodiment, an encoder obtains the VL.C for this
value using a lookup table mndexed by this value and the
number of coelficients (NC, value 1 ... 15). The number of
possible values (and the length of the VLC’s) decreases as the
number of coelficients increases. For decoding, in one
embodiment, the decoder uses a lookup table for NC=2 ... 9
inclusive and unique code for each of the remaining cases.
This blend of methods provides better performance tradeoif
between lookup table size and code size/execution cycles.
The lookup table 1s indexed by the next 6 bits from the
bitstream—=6 bits being the maximum VLC length for those
cases, and returns number of total zeros and VLC code length
packed into an 8-bit value (packing to reduce lookup table
S1Z¢€).

FI1G. 3 1s a flow diagram of one embodiment of a total zeros
(TZ) generation unit that comprises comparison unit 301, TZ
LUT 302, and bat level processing 303. Each of these blocks
1s 1implemented with processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, etc.), software
(such as 1s run on a general purpose computer system or a
dedicated machine), or a combination of both.

10

15

20

25

35

40

45

10

Retferring to FIG. 3, comparison unit 301 recetves NC
value 122 and compares whether NC value 122 1s greater or
equal to 2 and less than or equal to 9. I 1t 1s, comparison unit
301 enables TZ LUT 302 and disables bit level processing
303 using enable output 310. It 1t 15 not, comparison unit 301
enables bit level processing 303 and disables TZ LUT 302
using enable output 310.

If TZ LUT 302 1s enabled, TZ LUT 302 1s indexed by the
next 6 bits of bitstream 100 and, in response thereto, outputs
a value indicative of the number of TZ and the VLC code
length. An exemplary TZ LUT 1s given below. The number of
17 1s the output of total zeros generation unit 111. The VLC
code length 1s used to update the current point in bitstream
100 to the next VLC.

I1 bit level processing 303 1s enabled (for cases when NC 1s
greater than 9 or less than 2), bit level processing 303 gener-
ates a value indicative of the number of total zeros.

In one embodiment, bit level processing 303 generates 1ts
outputs using NC-specific code. Two examples of the NC-
specific code used when the lookup table 1s not used follow.
NC-specific code for the other values of NC (e.g., NC equals
10, 11, 12, 14 and 15) use similar techniques and would be
apparent to one skilled in the art 1n view of the code given
below.

LZ: Leading Zeros, 1e number of zero bits at start of VLC
CL: Code Length in bits
TZ: Total zeros
NC=1
HLZ=0
TZ=1,CL=1
Else if LZ =8
TZ=15,CL=9
Else
T7Z =1L2%2 - (final bit of code), CL = LZ+2
NC=13
CL=LZ+1
HLZ <2
TZ=1L7Z+2
Else if LZ =2
TZ=1
Else if LZ > 2
TZ=0,CL=3

Total Zeros

The following 1s one embodiment of a TZ LUT, for Num-
Coefl=2 . .. 15, which 1s indexed by the next 6 bits from the
bitstream. This LUT returns a byte that contains total zeros in
the low nibble and the bitstream code length in the upper

nibble.

const U8 TZ_ Lookup[14][64] = {

1

Oxbe, 0x6d, Ox6¢C, Ox6b, OxX5a, 0x5a, 0x59, 0x59, 0x48, 0x48, 0x48, 0x48, 0x47, 0x47, 0x47, 0x47,
0x46, 0x46, 0x46, 0x46, 0x45, 0x45, 0x45, 0x45, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,

0%33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32,
0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30

I3
{

0Ox6d, Ox6b, 0x5¢, 0x5¢, OxX5a, 0x5a, 0x59, 0x59, 0x48, 0x48, 0x48, 0x48, 0x45, 0x45, 0x45, 0x45,
0x44, 0x44, 0x44, 0x44, 0x40, 0x40, 0x40, 0x40, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33,
0x32,0x32,0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x31, 0x31, Ox31, 0x31, 0x31, 0x31, 0x31, 0x31

I3
1

0x5c¢, 0x5¢, Ox5b, 0x5b, 0x5a, Ox3a, 0x50, 0x50, 0x49, 0x49, 0x49, 0x49, 0x47, 0x47, 0x47, 0x47,
0x43, 0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x42, 0x38, 0x3&, 0x38, 0x38, 0x38, 0x38, 0x38, 0x3\,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31

s

US 7,602,850 B2

11

-continued

{

12

0x5b, Ox5b, 0x359, 0x59, Ox4a, Ox4a, 0x4a, Ox4a, 0x48, 0x48, 0x48, 0x48, 0x42, 0x42, 0x42, 0x42,
Ox41, 0x41, O0x41, 0x41, 0x40, 0x40, 0x40, 0x40, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37,
0x36, 0x36, 0x36, 0X36, 0x36, 0X36, 0X36, 0x36, 0x35, 0X35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35,
0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33

}s
1

0x6a, 0x60, 0x51, 0x51, 0x48, 0x48, 0x48, 0x48, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39,
0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0X36,
0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32

s
{

0x69, 0x60, 0x51, 0x51, 0x47, 0x47, 0x47, 0x47, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0X38,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32,
0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25

s
1

0x68, 0x60, 0x52, 0x52, 0x41, 0x41, Ox41, 0x41, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33,
0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25,
0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24

I3
1

0x61, 0x60, 0x57, 0x57, 0x42, 0x42, 0x42, 0x42, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35, 0x35,
0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 026,
0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24,
0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23

I3
1

0x51, 0x51, 0x50, 0x50, Ox46, 0x46, 0x46, 0x46, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32,
0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25, 0x25,
0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24,
0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23

I3
{

0x40, 0x40, 0x40, 0x40, 0x41, 0x41, Ox41, 0x41, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32, 0x32,
0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x35, 0x35, 0x35, 0x35, 0x353, 0x35, 0x35, 0x35,
0x14, 0x14, 0x14, 0x14, Ox14, 0x14, Ox14, 0x14, 0x14, 0x14, 0x14, Ox14, 0x14, 0x14, 0x14, 0x14,
0x14, 0x14, 0x14, 0x14, Ox14, 0x14, Ox14, 0x14, 0x14, 0x14, 0x14, Ox14, 0x14, Ox14, 0x14, 0x14

I8
1

0x40, 0x40, 0x40, 0x40, 0x41, 0x41, 0x41, 0x41, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x13, 0x13, 0x13, 0x13, 0x13, 0x13, Ox13, 0x13, 0x13, 0x13, 0x13, Ox13, 0x13, Ox13, 0x13, 0x13,
0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13, 0x13

I3
1

0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31,
0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23,
0x12, 0x12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12,
0x12, 0x12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12

}s
1

0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x21, 0x21, 0x21, 0x21, 0x21, 0x21, Ox21, 0x21, 0x21, 0x21, 0x21, 0x21, 0x21, O0x21, 0x21, 0x21,
0x12, 0x12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12, 0x12,
0x12, 0x12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12, 0x12, 0x12, Ox12, 0x12, 0x12, 0x12, 0x12

I
{
0Ox1
0Ox1
0Ox1
0Ox1
1

b //TZ__Lookup

=
=

RN aNN AN a)

— — O O

Again, one much slower alternative prior art approach for
decoding this number of zeros value is to perform pattern
matching between the codes in the encoder’s table (part
selected by NC) and the bits at the head of the bitstream. Thas
can be rather slow as there are up to 16 codes of length up to
9 bits 1n the table. The other currently used method of a full

iverse lookup table requires 15*512%*2 bytes, or 15360
bytes, compared to the 896 byte table used by one embodi-
ment of the present invention.

60

65

Run Before Values

In one embodiment, an encoder obtains the VLLC for these
values using a lookup table indexed by this value and a Zeros-
Left value (ZL, possible values 1 . . . 15) calculated while
calculating the 4x4 block position of the coelfficients. The
number of possible values (and the length of the VLC’s)
decreases as ZL decreases. For decoding, the decoder uses a
lookup table for ZL<7 and bit parsing code for the case when
Z1.>6. In one embodiment, the lookup table 1s indexed by the

US 7,602,850 B2

13

next 3 bits from the bitstream, with 3 bits being the maximum
VLC length for those cases, and returns run before value and
VLC code length packed mto an 8-bit value (packing to
reduce lookup table size).

FI1G. 4 15 a flow diagram of one embodiment of a run before
(RB) value generation umt that comprises comparison unit
401, RB LUT 402, and bit parsing processing 403. Each of
these blocks 1s implemented with processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, etc.), soit-
ware (such as 1s run on a general purpose computer system or
a dedicated machine), or a combination of both.

Referring to FIG. 4, comparison unit 401 receives ZL value
131 and compares whether ZL value 131 1s greater than 6. It
it 1s not, comparison unit 401 enables RB LUT 402 and
disables bit parsing processing 403 using enable output 410.
IT 1t 1s, comparison unit 401 enables bit parsing processing

403 and disables RB LUT 402 using enable output 410.

It RB LUT 402 1s enabled, RB LUT 402 1s indexed by the
next 3 bits of bitstream 100 and, in response thereto, outputs
a value 1indicative of the RB value and the VLC code length.
An exemplary RB LUT 1s given below. In one embodiment,
the value indicative of the RB value and the VLC code length
are output as an 8-bit value. The RB value 1s the output of the
run before generation unit 112. The VLC code length 1s used
to update the current point in bitstream 100 to the next VLC.

If bit parsing processing 403 1s enabled (for cases when ZL
value 131 1s greater than 6), bit parsing processing 403 gen-
crates a RB value.

Exemplary pseudo-code for the ZL>6 case 1s as follows:

L.Z: Leading Zeros, 1e number of zero bits at start of VLC
CL: Code Length in bits
RB: Run Before
HLZ >2
RB=LZ+4
CL=LZ+1
Else
RB =7 - (3 leading bitstream bits)
CL=3

An alternative approach of pattern matching 1s not too bad
when ZI.<7, as the maximum number of codes 1s 7, with
lengths up to 3 bits, but ends up being much slower because
there can be multiple Run Before values to read for each 4x4
block, thus multiplying the inefficiency cost. Using a full
inverse lookup table instead would require 7%2048%2 bytes
(28672), compared to the 48-byte table used by one embodi-
ment of the present invention.

Run Before

Below 1s one embodiment of a run before lookup table, for
ZerosLelt=1.6, which 1s indexed by the next 3 bits from the
bitstream. This LUT returns a byte that contains Run Before
value 1n the low mibble and the bitstream code length 1n the
upper nibble.

const U8 RB__ Lookup[6][8] = {

1
0x11, 0x11,0x11, 0x11, 0x10, 0x10, 0x10, 0x10,
s
1

0x22, 0x22, 0x21, 0x21, 0x10, 0x10, 0x10, 0x10,

Js
!

0x23, 0x23, 0x22, 0x22, 0x21, 0x21, 0x20, 0x20,

s

10

15

20

25

30

35

40

45

50

55

60

65

-continued
{
0x34, 0x33, 0x22, 0x22, 0x21, 0x21, 0x20, 0x20,
5
{
0x35, 0x34, 0x33, 0x32, 0x21, 0x21, 0x20, 0x20,
3
{
0x31, 0x32, 0x34, 0x33, 0x36, 0x35, 0x20, 0x20.
5

t; //RB__Lookup

Decode All CAVLC Codes for 4x4 Block at Once

The bitstream ordering of the CAVLC codes enables a
decoding implementation that initially obtains the number of
coellicients, the number of trailing ones, and the coetficients,
and then processes this information to place the coetficients
and trailing ones into the approprniate 4x4 block positions,
obtaining Total Zero and Run Before values from the bait-
stream as they are needed to determine block position. In one
decoder embodiment, all of the CAVLC codes (including
Total Zeros and Run Before values) for the 4x4 block are
parsed at once, buflering the decoded values. This 1s more
eificient because the overhead associated with reading bit-
stream data, which includes loading a pointer, reading the
next few bytes, shifting to the current bit offset, checking for
and possibly correcting for start code emulation prevention
bytes, 1s mncurred only once for each 4x4 block.

Embodiments of the present mvention may be used for
H.264 video decoding. Using the lookup tables described
herein, the H.264 video decoding may be performed with
faster results than the prior art.

For portable video applications (for which memory foot-
print 1s even more important), the total lookup table size of
one embodiment o the present invention 1s 2048 bytes, which
1s much smaller than the ~800 Kbytes for a full inverse lookup
solution.

An Exemplary Computer System

FIG. S1s a block diagram of an exemplary computer system
that may perform one or more of the operations described
herein. Referring to FIG. 5, computer system 500 may com-
prise an exemplary client or a server computer system. Com-
puter system 500 comprises a communication mechanism or
bus 511 for communicating information, and a processor 512
coupled with bus 511 for processing information. Processor
512 includes a microprocessor, but 1s not limited to a micro-

processor, such as, for example, Penttum™, PowerPC™™,
Alpha™, etc.

System 500 further comprises a random access memory
(RAM), or other dynamic storage device 504 (referred to as
main memory) coupled to bus 511 for storing information and
istructions to be executed by processor 5312. Main memory
504 also may be used for storing temporary variables or other
intermediate information during execution of istructions by
processor 512.

Computer system 1500 also comprises a read only memory
(ROM) and/or other static storage device 506 coupled to bus
511 for storing static information and instructions for proces-
sor 512, and a data storage device 507, such as amagnetic disk
or optical disk and 1ts corresponding disk drive. Data storage
device 507 1s coupled to bus 511 for storing information and
instructions.

Computer system 300 may further be coupled to a display
device 521, such as a cathode ray tube (CRT) or liquid crystal
display (LCD), coupled to bus 511 for displaying information

US 7,602,850 B2

15

to a computer user. An alphanumeric input device 522,
including alphanumeric and other keys, may also be coupled
to bus 511 for communicating information and command
selections to processor 512. An additional user input device 1s
cursor control 523, such as a mouse, trackball, trackpad,
stylus, or cursor direction keys, coupled to bus 511 for com-
municating direction information and command selections to
processor 512, and for controlling cursor movement on dis-
play 521.

Another device that may be coupled to bus 511 1s hard copy
device 524, which may be used for printing instructions, data,
or other information on a medium such as paper, film, or
similar types of media. Furthermore, a sound recording and
playback device, such as a speaker and/or microphone may
optionally be coupled to bus 511 for audio interfacing with
computer system 500. Another device that may be coupled to
bus 511 1s a wired/wireless communication capability 525 to
communication to a phone or handheld palm device.

Note that any or all of the components of system 500 and
associated hardware may be used 1n the present invention.
However, 1t can be appreciated that other configurations of the
computer system may include some or all of the devices.

In the foregoing specification, the mvention has been
described with reference to specific exemplary embodiments
thereot. It will be evident that various modifications may be
made thereto without departing from the broader spirit and
scope of the invention as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded 1n
an 1llustrative sense rather than a restrictive sense.

I claim:

1. A method for decoding a bitstream comprising:

using a variable length coding (VLC) decoder to perform
operations of

generating an indication of a number of coellicients and a
number of trailing ones 1n a portion of a bitstream using,
either:

a first lookup table (LUT) indexed by a number of lead-
ing zeros to return a number that indicates anumber of
remaining bits 1n a code to be read from the bitstream
and a second LUT indexed by both the number of
leading zeros and the remaining code bits to return the
number of coellicients and the number of trailing

ones; or
bit level parsing when the leading zeros value equals a
predetermined value;
generating an indication of a number of total zeros, includ-
ing using either a third LUT indexed by the number of
coellicients and bits of the bitstream when the number of
coellicients 1s 1n a {irst range or bit level parsing when
the number of coellicients 1s outside the first range;

generating an indication of one or more run before values
using either a fourth LUT indexed by the number of
coellicients and bits of the bitstream when a zeros left
value 1s 1n a second range or bit level parsing when the
zeros left 1s not 1n the second range; and

generating coellicients 1in block positions in response to the

generation of the trailling ones value, the number of
coeflficients value, the total zeros value and run before
values.

2. The method defined 1n claim 1 wherein the predeter-
mined value 1s zero.

3. The method defined in claim 1 further comprising select-
ing either the bitlevel parsing or the first LUT, wherein the bit
level parsing comprises bit parsing code fragments.

4. The method defined 1n claim 1 further comprising using,
another LUT indexed by the number of coetlicients value

10

15

20

25

30

35

40

45

50

55

60

65

16

output from the second LUT when the number of coellicients
value output from the second LUT 1s a predefined value.

5. The method defined 1n claim 4 wherein the predefined
value 1s greater than the number of possible coetlicients 1n a

block.
6. The method defined 1n claim 1 wherein the first range 1s

when the number of coellicients 1s greater than or equal to 2
and less than or equal to 9.
7. The method defined in claim 1 wherein the bit level
parsing to generate the total zeros indication comprises code.
8. The method defined 1n claim 1 wherein the second range
1s when the zeros left value 1s greater than 6.

9. An article of manufacture comprising:

a machine-accessible storage medium storing instructions
thereon that, when accessed by the machine, cause the
machine to perform operations comprising,

generating an indication of a number of coelficients and a
number of trailing ones 1n a portion of a bitstream using
cither:

a first lookup table (LUT) indexed by a number of lead-

ing zeros to return a number that indicates a number of
remaining bits in a code to be read from the bitstream
and a second LUT indexed by both the number of

leading zeros and the remaining code bits to return the
number of coellicients and the number of trailing

ones; or

bit level parsing when the leading zeros value equals a
predetermined value;

generating an indication of a number of total zeros, includ-
ing using either a third LUT indexed by the number of
coellicients and bits of the bitstream when the number of
coellicients 1s 1n a {irst range or bit level parsing when
the number of coelficients 1s outside the first range;

generating an indication of one or more run before values
using eirther a second LUT indexed by the number of

coellicients and bits of the bitstream when a zeros left
value 1s 1n a second range or bit level parsing when the

zeros left 1s not 1n the second range;

generating coellicients in block positions in response to the
generation of the trailling ones value, the number of
coelficients value, the total zeros value and the one or
more run before values.

10. The article of manufacture defined 1n claim 9 wherein
the predetermined value 1s zero.

11. The article of manufacture defined 1n claim 9 wherein
the bit level parsing comprises bit parsing code fragments.

12. The article of manufacture of claim 9, wherein the
machine-accessible medium further includes data that cause
the machine to perform operations comprising:

using another LUT when the number of coetlicients value

output from the second LUT 1s a predefined value.

13. The article of manufacture defined 1n claim 12 wherein
the predefined value 1s greater than the number of possible
coellicients 1 a block.

14. The article of manufacture defined 1n claim 9 wherein
the first range 1s when the number of coelficients 1s greater
than or equal to 2 and less than or equal to 9.

15. The article of manufacture defined 1n claim 9 wherein
the bit level parsing to generate total zeros indication com-
prises code.

16. The article of manufacture defined in claim 9 wherein
the second range 1s when the zeros left value 1s greater than 6.

17. An apparatus for decoding a bitstream comprising:

means for generating an indication of a number of coelli-
cients and a number of trailing ones in a portion of a
bitstream using either:

US 7,602,850 B2

17

a first lookup table (LUT) indexed by a number of lead-
ing zeros to return a number that indicates anumber of
remaining bits 1n a code to be read from the bitstream
and a second LUT indexed by both the number of
leading zeros and the remaining code bits to return the
number of coellicients and the number of trailing
ones; or

bit level parsing when the leading zeros value equals a
predetermined value;

means for generating an indication of a number of total
zeros, including using either a third LUT 1indexed by the
number of coellicients and bits of the bitstream when the
number of coelilicients 1s 1n a {first range or bit level
parsing when the number of coellicients 1s outside the
{irst range;

means for generating an indication of one or more run
betore values using either a fourth LUT indexed by the
number of coellicients and bits of the bitstream when a

zeros left value 1s 1n a second range or bit level parsing
when the zeros lett 1s not 1n the second range;

means for generating coelflicients 1n block positions 1n
response to the generation of the trailing ones value, the
number of coelficients value, the total zeros value and
run before values.

18. The apparatus defined in claim 17 wherein the bit level

parsing comprises bit parsing code fragments, wherein the
means for generating the indication of the number of coetfi-
cients 1s operable to select either the bit level parsing or the

first LUT.

19. The apparatus of claim 17 wherein another LUT 1s used
when the number of coetficients value output from the second
LUT 1s a predefined value.

20. An apparatus for decoding a bitstream comprising:

e

a number of coellicient and trailing zeros generation unit,
having first and second lookup tables (LUTs) and bit

5

10

15

20

25

30

35

18

level parsing, to generate an indication of a number of

coellicients and a number of trailing ones 1n a portion of

a bitstream using either:

the first LUT indexed by a number of leading zeros to
return a number that indicates a number of remaining
bits 1n a code to be read from the bitstream and the
second LUT indexed by both the number of leading
zeros and the remaining code bits to return the number
of coetlicients and the number of trailing ones; or

bit level parsing when the leading zeros value equals a
predetermined value;

a total zeros generation unit, having a third LUT and bait
level parsing, to generate an indication of a number of
total zeros, including using either the third LUT mdexed
by the number of coellicients and bits of the bitstream
when the number of coelficients 1s 1n a first range or bit
level parsing when the number of coelficients 1s outside
the first range;

a run before values generation unit, having a fourth LUT
and bit level parsing, to generate an indication of one or
more run before values using either the fourth LUT
indexed by the number of coellicients and bits of the
bitstream when a zeros left value 1s 1n a second range or
bit level parsing when the zeros left 1s not 1n the second
range;

a coellicient generator unit to generate coetficients 1n block
positions 1n response to the generation of the trailing
ones value, the number of coellicients value, the total
zeros value and run before values.

21. The apparatus defined 1n claim 20 wherein the bit level

parsing comprises bit parsing code fragments, and further
comprising a selection to choose either the bit parsing or the

first LUT.

22. The apparatus defined 1n claim 20 further comprising

using another LUT when t
output from the second LU"

e

e

ne number ot coed

tficients value

" 1s a predefined value.

e

s

e

	Front Page
	Drawings
	Specification
	Claims

