12 United States Patent

US007600219B2

(10) Patent No.: US 7,600,219 B2

Tsantilis 45) Date of Patent: Oct. 6, 2009
(54) METHOD AND SYSTEM TO MONITOR 7,069,474 B2* 6/2006 Atallahetal. 714/39
SOFTWARE INTERFACE UPDATES AND 7,191,196 B2* 3/2007 Perksetal. 707/203
ASSESS BACKWARD COMPATIRILITY 7,191,435 B2* 3/2007 Lauetal. 717/168
7,216,343 B2* 5/2007 Dasetal.cccou........ .. 717/168
75 _ . oys : - O 7,289,973 B2* 10/2007 Kiessigetal. 707/1
(73) Inventor: Efstratios Tsantilis, Sinsheim (DE) 2005/0022176 Al* 1/2005 Ramachandran etal. ... 717/170
(73) Assignee: SAP AG, Walldorf (DE) 2005/0086642 Al* 4/2005 Runteetal. 717/122
OTHER PUBLICATIONS
(*) Notice: SlleE:C’[' 10 any dlSCIalmer’i the term of this Seacord et al., “K-BACEE: knowledge-based automated component
patent 1s extended or adjusted under 35 o . .
ensemble evaluation”, 2001, Proceedings of the 27th Euromicro
U.S.C. 154(b) by 685 days. Conference.
Boonsiri et al., “Automated Component Ensemble Evaluation”, Aug.
(21) Appl. No.: 10/730,975 2002, International Journal of Information Technology, vol.8, No. 1.*
_ Lin et al., “Multuser Collaborative Work 1in Virtual Environment
(22) Filed: Dec. 10, 2003 based CASE Tool”, Apr. 2003, Information and Software Technol-
ogy, vol. 45, Issue 5, pp. 253-267.*
(65) Prior Publication Data _ _
* cited by examiner
US 2005/0132346 Al Jun. 16, 2005 _
Primary Examiner—Lewis A Bullock, Jr.
Assistant Lxaminer—Jue S Wan
(51) Int.Cl. 2
GO6EF 9/44 (2006.01) (74) Attorney, Agent, or Firm—Kenyon & Kenyon LLP
(52) US.CL ..., 717/122; 717/168; 717/170;
707/203 (37) ABSTRACT
(58) Field of Classification Search 707/203; A system and method for monitoring updates to the interface
o 717/1 2_2: 163, 170 portion of a software library or repository. An embodiment of
See application file for complete search history. the invention determines whether detected changes made to
(56) References Cited the software interface are likely to cause backward compat-

U.S. PATENT DOCUMENTS

6,073,161
0,298,353
6,519,767
0,591,417
6,678,882
0,873,935
0,898,708
6,971,093
0,986,132

A * 6/2000 DeBoskeyetal. 709/200
Bl* 10/2001 Apte ..ccoovvvvivniinnnnnen 707/103 R
Bl1* 2/2003 Carteretal. 717/140
Bl1* 7/2003 Strysniewicz et al. 717/168
Bl* 1/2004 Hurleyetal. 717/121
B2* 3/2005 Spinrad etal. 702/186
Bl1* 5/2005 Theodossyetal. 716/5
Bl1* 11/2005 Springccccoeevevvnennn. 717/170
Bl1* 1/2006 Schwabe 717/168

SOFTWARE
REPOSITORY 210

.."*-_ :

SOFTWARE
INTERFACE

DEFINITIONS 215
'-..______._______..-ﬂ‘

ibility problems. Initially, an embodiment assembles and
stores a snapshot of a baseline version of the software inter-
face. Then, an embodiment assembles a snapshot of an
updated version of the interface and compares the updated
snapshot to the baseline snapshot to detect whether any
changes have been made. Any differences between the
updated snapshot and the baseline snapshot are rated by an
embodiment according to a backward compatibility metric

and reported 1n an alert message to an appropriate user.

32 Claims, 4 Drawing Sheets

SOFTWARE
REPOSITORY 220

SOFTWARE
INTERFACE

DEFINITIONS 225
. ______,..-r"

—

SOFTWARE

REPOSITORY

API 230

k_

SNAPSHOT
ASSEMBLER 240 MONITOR

OBJECT 250

BASELINE
SNAPSHOT 253

UPDATED
SNAPSHOT 255

SNAPSHOT

COMF’ARATDR 245

ALERT
MESSAGE

DIFFERENCES
260

SOFTWARE INTERFACE MONITOR 110

U.S. Patent Oct. 6, 2009 Sheet 1 of 4

NETWORK SERVER 170

NETWORK SERVER

SOFTWARE
REPOSITORY
INTERFACE 185

PROCESSOR
180

NETWORK RSE%FTWTARE
INTERFACE 175 013'0 ORY

NETWORK INTERFACE
160
PROCESSOR 130

MASS STORAGE
INTERFACE 135

MASS STORAGE
140

US 7,600,219 B2

FIG. 1

NETWORK 165

MAIN MEMORY 125

SOFTWARE INTERFACE |
MONITOR 110

OPERATING :
SYSTEM 115

|
-t

COMPUTING DEVICE 150

U.S. Patent Oct. 6, 2009 Sheet 2 of 4 US 7,600,219 B2

SOF TWARE
REPOSITORY 21

SOFTWARE
REPOSITORY 220

FIG. 2

SOFTWARE
INTERFACE
DEFINITIONS 215

SOFTWARE

INTERFACE
DEFINITIONS 225

MONITOR

BASELINE
SNAPSHOT 253

UPDATED
SNAPSHOT 25

SNAPSHOT
COMPARATOR 245

&)

ALERT DIFFERENCES
MESSAGE 260
270

SOFTWARE INTERFACE MONITOR 11

U.S. Patent Oct. 6, 2009 Sheet 3 of 4 US 7,600,219 B2

0~ FIG. 4

READ BASELINE

SNAPSHOT 410

ASSEMBLE UPDATED
SNAPSHOT 420

SET PREFERENCES 31

S

DETECT DIFFERENCES
BETWEEN UPDATED
SNAPSHOT AND BASELINE

ASSIGN DATA OBJECTS AND SNAPSHOT 430
SUBROUTINES TO BE
MONITORED 320

RATE DETECTED
DIFFERENCES 440

ASSEMBLE BASELINE
SNAPSHOT 330

SET BACKWARD
COMPATIBILITY STATUS OF
MONITOR OBJECT 450

SAVE MONITOR OBJECT 340

OUTPUT STATUS AND
DETECTED DIFFERENCES

460

OPTIONALLY RESET

MONITOR OBJECT 470

U.S. Patent

Oct. 6, 2009 Sheet 4 of 4

500
START AT FIRST ELEMENT OF
BASELINE SNAPSHOT 510

LOOK FOR ELEMENT IN
UPDATED SNAPSHOT 520

F T 1S
NOTE DELETED NO ELEMENT YES
ELEMENT 540 FOUND?

L

230

US 7,600,219 B2

FIG. 5

COMPARE ELEMENT

ATTRIBUTES ACCORDING TO
A BACKWARD COMPATIBILITY

METRIC 550

ADVANCE TO NEXT ELEMENT
IN BASELINE SNAPSHOT 560

EXAMINE REMAINING ELEMENTS IN
UPDATED SNAPSHOT 570

N

v

DETERMINE OVERALL BACKWARD
COMPATIBILITY 580

OUTPUT DETECTED DIFFERENCES
AND COMPATIBILITY STATUS 590

US 7,600,219 B2

1

METHOD AND SYSTEM TO MONITOR
SOFTWARE INTERFACE UPDATES AND
ASSESS BACKWARD COMPATIBILITY

TECHNICAL FIELD

This 1invention relates generally to software update moni-

toring. More specifically, the invention relates to a method
and system for monitoring changes to the interface portions of
soltware objects, modules, and libraries.

BACKGROUND OF THE INVENTION

Computer programs frequently rely on external software
libraries to provide necessary functionality. These software
libraries—also referred to as software repositories—are typi-
cally collections of software modules that are designed to
perform a variety of tasks pertaining to a given subject matter.
To employ the capabilities of a given soitware module resid-
ing 1n a library, a programmer typically writes an application
program, usually in the same language in which the library
has been coded. The application program normally includes
an appropriate procedure call according to the exact syntax
necessary to mvoke the desired module. Depending on the
way the desired module has been coded, certain parameters
and other data may also be supplied as part of the procedure
call, 1n order to invoke the module properly and to achieve the
desired result. In object-oriented languages, the concept of
using previously-developed software modules residing in
libraries has been broadened to include the use of software
objects. Solftware objects are self-contained software build-
ing blocks that incorporate data as well as processing logic.

When an existing software library 1s modified 1n order to
correct errors or to provide new functionality, the interface
portions of the software modules 1n the library may be
changed. For example, a new parameter may be added, an
existing parameter may be deleted, or an optional parameter
may become mandatory. Such updates to the interface por-
tions of existing software libraries may jeopardize the proper
operation of application programs that were designed to use
previous versions of these software modules. Unless a pro-
grammer of an application program is notified when a module
in a software library has been changed, the application pro-
gram may no longer function as designed. Instead, unpredict-
able errors may occur when a changed software module 1s
invoked by an application program that uses an out-of-date
invocation syntax.

Not all software architectures exhibit this kind of problem.
For example, some application programs are statically linked.
In these more traditional soiftware architectures, a linking
program resolves all references made to external software
modules residing 1in libraries. The linker then bulds a seli-
contained, stand-alone executable program that contains a
copy of every software module required by the program.
Once a final executable program has been created by the
linker, subsequent modifications to the external software
libraries will have no effect. This 1s because the previously-
created executable program still includes a copy of the older
version of the required soitware modules.

Because static linking soitware architectures create stand-
alone executable programs, every statically linked program
that uses a software module obtained from a given software
library will contain a separate copy of the module’s execut-
able code that has been extracted from that library. For this
reason, after a program has been statically linked, if a com-
ponent software module 1s then updated to correct errors, the
statically linked program will not receive the benefit of that

10

15

20

25

30

35

40

45

50

55

60

65

2

update. A technique known as “dynamic linking” addresses
this concern by creating a dynamic link library. A dynamic
link library (DLL) 1s a relocatable software library that 1s
linked to a program at run time—that 1s, whenever the pro-
gram 1s executed. Unlike statically linked programs, a pro-
gram created mn a dynamic linking environment does not
contain a copy of every soltware module required by the
program. Instead, when a dynamically linked program 1s
loaded into memory, a linking loader first ascertains whether
the required DLL 1s already resident in memory. If 1t 1s not,
the DLL must be loaded by a linking loader 1into a free area of
memory and its base address determined. All outstanding
references to soltware modules within the DLL are then
resolved by the linking loader, and execution of the program
1s allowed to proceed.

Dynamic linking ensures that only one copy of a library
module will be loaded into memory when a program
executes. All programs share the same version of the library.
Thus, when a DLL 1s updated, all programs that subsequently
invoke a software module 1in that DLL will automatically use
the updated version.

Other known software architectures include features that
are similar to dynamic linking. For example, a remote proce-
dure call (RPC) provides an interface mechanism that permits
a local program to 1invoke a software module that resides on a
remote computer. The local calling program sends an RPC
invocation message, icluding any required parameters, to a
remote computer. A message recerver on the remote computer
accepts the message, mvokes the proper software module on
behalf of the calling program, and then sends the results back
to the calling program. As 1n the case of DLLs, 1f a remote
soltware module 1s updated, the new version becomes 1mme-
diately available to all calling programs that invoke 1t.

In object oriented architectures, a soltware library may
maintain software objects that have been developed to per-
form critical or commonly-used functions. Such an object-
oriented software library may reside locally on the same
computer that executes a calling application program. On the
other hand, an object-oriented software library may reside
remotely on another computer. When an application or call-
ing program sends a message to an object (thereby invoking a
corresponding object method), an underlying software utility
may access the library, locate the appropriate object, and
invoke the object using a local dynamic invocation method or
it may mvoke the object using a remote mnvocation method,
depending on where the object 1s located.

When dynamically linked or remotely imvoked software
modules or objects are modified by a software developer, a
calling program that uses the modified software module or
object may cease to function as designed, depending on the
extent of the modification. If the underlying software archi-
tecture 1s one that includes runtime syntax checking, a pro-
gram that functioned well previously may suddenly generate
errors and stop executing 1f, for example, an updated software
module 1s invoked with an old parameter list. On the other
hand, 11 the changes are not significant enough to cause a
runtime system to generate a syntax error, the calling program
may nevertheless experience other runtime errors 1f the
updated software module 1s invoked, for example, with a
parameter that supplies a value that 1s no longer within an
acceptable range or the parameter 1s supplied in an out-oi-
date format.

Similar errors may occur if a software architecture detects
that a library has been updated relative to a calling applica-
tion, and automatically attempts to recompile the application.
In this situation, an application program that previously per-

US 7,600,219 B2

3

formed flawlessly may suddenly no longer execute because
compilation errors materialized after an underlying software
library was updated.

Accordingly, there 1s a need 1n the art for a system and
method to monitor updates to software libraries and to notify
appropriate soltware engineers when a modification 1s likely
to cause a given soitware module to be no longer backward
compatible with previous versions.

SUMMARY OF THE INVENTION

Embodiments of the present imvention are directed to a
system and method for monitoring updates to the interface
portion of a software library or repository. An embodiment of
the invention determines whether detected changes made to
the software interface are likely to cause backward compat-
ibility problems. Initially, an embodiment assembles and
stores a snapshot of a baseline version of the software inter-
face. Then, an embodiment assembles a snapshot of an
updated version of the interface and compares the updated
snapshot to the baseline snapshot to detect whether any
changes have been made. Any differences between the
updated snapshot and the baseline snapshot are rated by an
embodiment according to a backward compatibility metric
and reported 1n an alert message to an appropriate user.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a high-level block diagram of a computer system
incorporating a soltware interface monitor 1 accordance
with an embodiment of the present invention.

FIG. 2 1s a logical block diagram 1llustrating the primary
clements of a software interface momitor, according to an
embodiment of the present invention.

FIG. 3 1s a high-level flow chart illustrating a method for
creating a monitor object for monitoring a software reposi-
tory, according to an embodiment of the present invention.

FIG. 4 1s a high-level flow chart illustrating a method for
updating a monitor object, according to an embodiment of the
present invention.

FIG. 5 1s a detailed flow chart illustrating a method for
comparing one snapshot with another, according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention will be described
with reference to the accompanying drawings, wherein like
parts are designated by like reference numerals throughout,
and wherein the leftmost digit of each reference number
refers to the drawing number of the figure in which the ref-
erenced part first appears.

FI1G. 1 1s a high-level block diagram of a computer system
incorporating a software interface monitor in accordance
with an embodiment of the present invention. Software inter-
face monitor 110 may be loaded 1into main memory 125 of
computing device 150, along with other application programs
120, as well as operating system software 115. Prior to execu-
tion, however, a copy of software interface monitor 110 may
reside on mass storage 140 or other computer storage media.
In addition to soitware loaded into memory, computing
device 150 may also include at least one processor 130 and at
least one mass storage device 140 that 1s connected to pro-
cessor 130 via mass storage interface 1335. Additionally, com-
puting device 150 may include network interface 160, which
allows computing device 150 to send and receive data to and
from other computing devices connected to network 165.

10

15

20

25

30

35

40

45

50

55

60

65

4

When executed, software interface monitor 110 may com-
municate with software repository interface 185 in order to
compile a snapshot of the interface portions of individual
solftware modules contained 1n software repository 190.
According to an embodiment, a snapshot 1s a recorded com-
pilation of soitware declarations for selected public or exter-
nally-accessible data objects and subroutines contained in a
software library or repository. Depending on the particular
programming language(s) used, a data object may be called
other names, such as “parameter,” “data structure,” “data
clement,” “field,” “variable,” “object,” “class,” or “property.”
Similarly, a subroutine may be called “function,” “proce-
dure,” “method,” or other terms known 1n the art.

For each subroutine and/or data object included 1n a snap-
shot, a variety of attributes may be recorded. For example, one
attribute of a data object may be the object’s data type. As 1s
known, a data type 1s a category of data. Typical data types
include void (no type), integer numeric, alpha-numeric (char-
acter), tloating point numeric, logical (true/false), date, and
pointer (memory address). Other data types are well known in
the art. Specific data types are generally dependent on the
particular language used to define a data object.

Other data object attributes that may be recorded 1n a
snapshot 1nclude: size, array, events, class, superclass, and
aggregation. The size of a data object may indicate the num-
ber of memory elements required to store that data object.
Alternatively, data object size may indicate a maximum num-
ber of significant digits, a maximum value, or some other
s1ze-related limaitation.

An array 1s an ordered arrangement of a plurality of data
objects that 1s well known 1n the art. For example, a vector 1s
a one-dimensional array; a matrix 1s a two-dimensional array.
Most programming languages have the ability to define and
mampulate arrays of data objects in more than one dimension.

Aggregation 1s an attribute indicating that a data objectis a
collection of other data objects and/or subroutines, each hav-
ing possibly different sets of individual attributes. Aggrega-
tion 1s common 1n object-oriented languages, where a given
object may comprise collections of subroutines (sometimes
called methods) as well as collections of data objects (some-
times called properties), all of which together define the
object. As 1s known 1n the art, collections may be nested. That
1s, a collection may include other collections, each of which
may include even more collections, i a nested fashion.

Some data objects may be classified as optional or manda-
tory. This designation 1s another attribute that 1s most often a
characteristic of subroutine parameters. For example, 1n some
programming languages, an optional subroutine parameter
may be given a default value. In this circumstance, if the
subroutine 1s invoked without that parameter, its default value
1s used. On the other hand, if the subroutine 1s invoked with
the optional parameter, but its value difiers from the default
value, the default value will be overridden by the new value.

As has been stated, snapshots may include subroutine dec-
larations as well as data object declarations. A subroutine 1s a
group of computer 1nstructions written in a computer pro-
gramming language. Terms known 1n the art to be equivalent
to the term “subroutine” include: module, procedure, func-
tion, method and macro. Subroutines may accept parameters,
which are themselves data objects that have attributes.
Depending on the features of the programming language 1n
which they are implemented, a subroutine may or may not
return a value after 1t 1s executed. If a subroutine does return
a value, the subroutine itself may possess data type attributes
corresponding to the type of information the subroutine
returns. Another attribute of a subroutine may be its invoca-
tion mechanism. Some subroutines may be ivoked directly

- Y

US 7,600,219 B2

S

by a traditional subroutine call. Others may be invoked
remotely via a Remote Function Call (RFC) or Remote Pro-
cedure Call (RPC).

Within object-oniented approaches to software engineer-
ing, a software object may include both subroutines and data
objects, as well as object-oriented attributes, such as class
definitions and hierarchies, rules of instantiation, and rules of
inheritance. Thus, according to an embodiment, a snapshot
may also iclude software object declarations, 1n addition to
subroutine declarations and data object declarations.

For convenience, the terms “software element,” or simply
“element” will be used interchangeably herein to refer to any
soltware object, the declaration of which may be recorded 1n
a snapshot. Thus, without loss of generality, a software ele-
ment may correspond to a subroutine declaration, a subrou-
tine parameter declaration, a data object declaration, or a
soltware object declaration.

A snapshot may be structured or implemented according to
any number of techniques known 1n the art for storing sofit-
ware element declarations. For example, a snapshot may be
implemented as a computer file containing a database of
records corresponding to the software elements found in a
software library or repository. A snapshot may also be imple-
mented as a computer file containing a text-based list with
cach line 1n the file describing a software element declaration.
As another example, a snapshot may be implemented as a
symbol table similar to the kind produced by high-level com-
puter language compilers when they compile source code into
linkable or relocatable binary files. A snapshot need not be
stored 1n a computer {ile, but may be placed in random access
memory (RAM) or other forms of storage media known 1n the
art.

Returming to FIG. 1, to assemble a snapshot of software
repository 190, software interface monitor 110 may first
cause processor 130 to invoke network interface 160. Net-
work interface 160 may then communicate over network 165
to locate and establish a network connection with network
interface 175 residing on network server 170. Responding to
a connection request from network interface 160, network
interface 175 may communicate with network server proces-
sor 180 to establish a communication session between soft-
ware nterface monitor 110 and software repository 190
though software repository interface 185. Once this commu-
nication session has been created, software interface monitor
110 may then query soitware repository interface 185 in order
to build a snapshot of the interface portion of each public
soltware module selected from software repository 190. Soft-
ware 1nterface monitor 110 may store the resulting snapshot
on mass storage 140. Alternatively, software interface moni-
tor 110 may store the resulting snapshot on a suitable mass
storage device residing elsewhere on network 165.

Some time later, software interface monitor 110 may
assemble a second snapshot of software repository 190 using
the same procedure. Once the first snapshot and the second
snapshot have been assembled, software interface monitor
110 may then compare the two snapshots to determine
whether software repository 190 has changed. Based on that
comparison, software interface monitor 110 may analyze the
detected differences between the two snapshots and may
determine that software repository 190 1s no longer backward
compatible.

Soltware repository 190 and software repository interface
185 need not be located on a remote network server 170.
Instead, software repository 190 and software repository
interface 185 may be co-located on computing device 150.

FIG. 2 1s a logical block diagram 1llustrating the primary
clements of a software interface momitor, according to an

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiment of the present invention. As shown in FIG. 2,
soltware interface monitor 110 may include two processing,
components: snapshot assembler 240 and snapshot compara-
tor 245. Additionally, software interface monitor 110 may
also include a number of monitor objects 250. A monitor
object 1s a software data structure that contains information
pertaining to the software repository that 1s being monitored
for backward compatibility by software interface monitor
110. For example, a monitor object may contain the name of
auser or login ID, a list of software elements 1n the repository
that are to be monitored, and the network name or 1D of the
computer on which the software repository 1s located. A
monitor object may also include a first (or baseline) snapshot
253 of the software repository, as well as a second (or
updated) snapshot 2355 of the software repository. Alterna-
tively, a monitor object may include pointers to baseline
snapshot 253 and updated snapshot 255, each of which may
be stored 1n separate locations.

Still referring to FIG. 2, snapshot assembler 240 may
assemble a baseline snapshot 233 of software repository 210
by mvoking methods provided by software repository appli-
cation programmer’s interface (API) 230 that permit snap-
shot assembler 240 to access soitware interface definitions
215, which describe the accessible software elements pro-
vided by software repository 210.

Software interface definitions 215 may comprise a dictio-
nary—that 1s, a database of definitional information for each
publicly accessible software element, including information
describing the attributes of each subroutine and 1ts param-
cters, as well as the attributes of each data object and/or each
soltware object. Alternatively, software interface definitions
215 may comprise a symbol table of the type normally pro-
duced by language compilers known in the art. Software
interface definitions 215 may also be implemented as a simple
text list.

According to an embodiment, snapshot assembler 240 may
first assemble a baseline snapshot 253 of software repository
210. At some later time, either triggered automatically
according to event-driven methods known 1n the art, or trig-
gered manually at the discretion of an operator, snapshot
assembler 240 may assemble an updated snapshot 2355 of
soltware repository 210. If software repository 210 has not
been modified since baseline snapshot 253 was assembled,
updated snapshot 255 may be substantially 1dentical to base-
line snapshot 253. On the other hand, 1f software repository
210 has been changed since snapshot assembler 240
assembled baseline snapshot 233, and particularly 1f software
interface defimitions 213 have been changed 1n the meantime,
then updated snapshot 255 may include those new definitions
and thereby be different from baseline snapshot 253.

Rather than create two snapshots of the software repository
210, where each snapshot 1s separated from the other by a
period of time, an embodiment of the present invention may
also create snapshots of different software repositories for
comparison. Still referring to FIG. 2, snapshot assembler 240
may interact with software repository API 230 to assemble
baseline snapshot 253 from software interface definitions
215. Then, snapshot assembler 240 may interact with sofit-
ware repository API 230 to assemble updated snapshot 2355
from software interface definitions 225, which define the
accessible software elements corresponding to a second sofit-
ware repository 220.

The two software repositories 210 and 220 may comprise
different releases or versions of the same software library. On
the other hand, software repositories 210 and 220 may com-
prise soltware libraries having substantially different capa-
bilities and mterfaces. Software repositories 210 and 220 may

US 7,600,219 B2

7

be located on different computers, or may be located on the
same computer. Additionally, software repositories 210 and
220 may be located on the same computer as soltware inter-
face monitor 110.

Again referring to FIG. 2, snapshot comparator 245 may
compare baseline snapshot 253 and updated snapshot 255 to
detect differences 260 between them. These detected differ-
ences 260 may be optionally output to a computer file or a
display (not shown), or they may be transmitted to another
computer over network 165 (see FIG. 1). As snapshot com-
parator 245 detects differences 260 between baseline snap-
shot 250 and updated snapshot 255, snapshot comparator 245
may rate each detected difference according to a backward
compatibility metric. As the difference ratings are compiled,
snapshot comparator 245 may also form an overall backward
compatibility rating of updated snapshot 255 with respect to
baseline snapshot 253. This overall backward compatibility
rating may then be compared to a backward compatibility
threshold. If the overall backward compatibility rating
exceeds the backward compatibility threshold, snapshot
comparator 245 may 1ssue an alert message 270 indicating
that updated snapshot 2355 1s not backward compatible with
baseline snapshot 250. In addition to alert messages, snapshot
comparator 245 may also transmit the detected differences
260 to selected users via any number of methods known inthe
art, including e-mail.

FIG. 3 1s a high-level flow chart 1llustrating a method 300
for creating a monitor object for monitoring a software
repository, according to an embodiment of the present inven-
tion. The method 300 mitially receives user preferences infor-
mation, which may include a user’s name, a name to be
assigned to the monitor object, and other system profile infor-
mation (310). After imitialization (310), the method selects
the particular software repository to be monitored, and may
then communicate interactively with a user to 1dentity and
select the particular software elements to be monitored 1n the
soltware repository (320) and included 1n a snapshot. As part
of this selection step, method 300 may record information
necessary to locate and access the selected software reposi-
tory, such as a remote computer ID and other security infor-
mation (320). Method 300 then assembles a baseline snapshot
of the selected elements 1n the desired software repository
(330). To select the desired software repository and assemble
the baseline snapshot, method 300 may access a software
object repository API (see FIG. 2, item 230), which may
provide software methods capable of: (1) accessing a desired
soltware object repository, (2) listing the software elements
published by the software object repository, and (3) selecting,
desired software elements to be included in the snapshot.
Using additional software object repository API1 230 capabili-
ties, method 300 may retrieve data declarations and attributes
for each selected software element (330). Method 300 may
then convert the retrieved information 1nto an internal snap-
shot format using methods known in the art (330). Finally,
method 300 may save the data comprising the now-1nitialized
and activated monitor object (340).

FIG. 4 1s a high-level flow chart 1llustrating a method 400
for updating a monitor object, according to an embodiment of
the present invention. The method 400 may begin when a user
invokes the software interface monitor 110 and selects a par-
ticular monitor object to update. Alternatively, method 400
may begin when software interface monitor 110 1s invoked by
an event-driven trigger, which may select a particular monitor
object. Method 400 then accesses the selected monitor object,
retrieves the stored profile information and software object
repository information from the monitor object, and loads the
previously-assembled baseline snapshot into memory (410).

10

15

20

25

30

35

40

45

50

55

60

65

8

Method 400 then accesses the identified software object
repository and assembles an updated snapshot in the same
manner that was used to assemble the baseline snapshot (420)
(see also, FIG. 3—method 300; FIG. 2—discussion of snap-
shot assembler 240). When both the baseline snapshot and the
updated snapshot are assembled and available, method 400
begins the process of comparing the two snapshots to detect
any differences between them (430). The result of this com-
parison 1s a table of detected differences between the two
snapshots (430). These detected differences are each rated or
categorized according to a backward compatibility metric
(440), and the overall backward compatibility status of the
soltware object repository 1s determined, based on the rated
differences (450). Following the snapshot comparison and
determination of backward compatibility, method 400 may
output the backward compatibility status as well as the
detected differences according to the profile information
stored 1n the monitor object (460). For example, 11 the back-
ward compatibility status indicates that the software object
repository 1s no longer backward compatible, method 400
may elect to 1ssue an alert message (see 1tem 270, FIG. 2) to
the appropriate users i1dentified in the monitor object. Alter-
natively, method 400 may simply output the detected ditier-
ences and overall backward compatibility information to a
display for review by an interactive user. Finally, method 400
may reset the monitor object by replacing the old baseline
snapshot with the new updated snapshot (470).

In addition to comparing an old snapshot of a software
object repository with a new snapshot of the same software
object repository, methods 300 and 400 may be employed to
compare one software object repository with a different soft-
ware object repository. In this alternate use, step (420) of
method 400 may be modified to permit selection of a different
soltware object repository.

FIG. 5 15 a detailed tlow chart illustrating a method 500 for
comparing one snapshot with another, according to an
embodiment of the present invention. Once a baseline snap-
shot and an updated snapshot have been loaded into memory,
method 500 may begin by selecting the first element of base-
line snapshot (510). Holding the first element of baseline
snapshot in one hand, method 500 looks for the same element
in updated snapshot (520). If the element 1s not found 1n
updated snapshot (530), method 500 notes 1ts absence (540)
and advances to the next element 1n the baseline snapshot
(560). Otherwise, i the element 1s present in the updated
snapshot, method 500 compares the element’s attributes, and
records any detected differences (550). At the same time (or
alternatively 1n a separate step, as discussed 1n FIG. 4, step
440), the method also evaluates the detected differences
according to a backward compatibility metric. Method 500
then advances to the next element 1n the baseline snapshot

(560) and repeats the process (520). At

ter all of the elements
in the baseline snapshot have been examined and/or com-
pared to corresponding elements in the updated snapshot,
method 500 determines whether any elements remain in the
updated snapshot that should be considered. If elements
remain in the updated snapshot, method 500 evaluates each of
them according to the same backward compatibility metric
(570). Finally, an overall backward compatibility value 1s
determined for the updated snapshot based on the individual
ratings of each detected difference between the two snapshots
(580), and the detected differences are output, along with the
overall backward compatibility status (590).

At step 550, method 500 compares the attributes of corre-
sponding elements 1n two snapshots, records any detected
differences, and then rates or evaluates the detected differ-
ences according to a backward compatibility metric (350).

US 7,600,219 B2

9

This 1s an algorithmic process that considers each type of
difference separately. For example, an element that 1s present
in a baseline snapshot, but 1s missing or omitted from an
updated snapshot 1s an incompatible difference. An element
that changes from optional to mandatory 1s also considered to
be an mcompatible difference. A new element (one that 1s
present only 1n the updated snapshot, not the baseline snap-
shot) 1s not necessarily incompatible. However, if the new
clement 1s mandatory, then 1t creates an incompatible differ-
ence. Also, a new field in a data structure will create an
incompatible difference, but only 1f the field 1s inserted
between other members of the data structure and only 11 the
data structure 1s a parameter to a subroutine that 1s imnvoked
through a Remote Function Call (RFC). If the new field 1s
added to the end of the data structure, the new data structure
may still be compatible with the old data structure.

Several embodiments of the present invention are specifi-
cally illustrated and described herein. However, 1t will be
appreciated that modifications and variations of the present
invention are covered by the above teachings and within the
purview of the appended claims without departing from the
spirit and intended scope of the invention.

What 1s claimed 1s:
1. A method for monitoring updates 1n a soltware reposi-
tory 1n a multi-author software design environment, compris-
ng:
constructing a first snapshot of a set of software module
source code stored by the software repository at a first
point 1n time, the source code represented by a plurality
ol objects;

constructing a second snapshot of the set of software mod-
ule source code stored by the soitware repository at a
second point in time;

comparing the first snapshot with the second snapshot, to

detect differences 1n the source code;

rating each detected difference according to a backward

compatibility metric, the backward compatibility metric
representing a probability that the detected difference

renders a source code attribute of the second snapshot
incompatible with a similar source code attribute of the

first snapshot;

determining an overall backward compatibility score for
the second snapshot, based on the rated differences; and

1ssuing an alert message to registered authors of the set of
soltware module source code when the overall backward
compatibility exceeds a backward compatibility thresh-
old, wherein the alert message 1s 1ssued only to users
associated with objects for which differences are
detected.

2. The method of claim 1, wherein the backward compat-
ibility threshold 1s set by a registered author.

3. The method of claim 1, wherein the constructing 1s
performed a plurality of times, to construct a plurality of
successive snapshots representing the software repository as
respective points 1n time, each successive snapshot having a
version and being stored 1n a snapshot history database.

4. The method of claim 3, wherein each successive snap-
shot 1s constructed on a periodic basis.

5. The method of claim 4, wherein the periodic basis 1s a set
timetable.

6. The method of claim 3, wherein each successive snap-
shot 1s constructed 1n response to a predefined event.

7. The method of claim 1, wherein the alert message 1s
issued only to authors of objects for which differences are
detected.

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The method of claim 1, wherein the alert message 1s
issued only when the overall backward compatibility score
indicates the second snapshot 1s not backward compatible.

9. The method of claim 1, wherein the backward compat-
ibility metric comprises a table of soltware modifications
identifying backward-compatible software modifications and
backward-incompatible software modifications.

10. The method of claim 1, wherein the backward-incom-
patible detected differences include: a deleted parameter
from a subroutine; and a deleted field from a public data
structure.

11. The method of claim 1, wherein the backward-incom-
patible detected differences include: an added mandatory
parameter 1n a subroutine; and an added mandatory field 1n a
public data structure.

12. The method of claim 1, wherein the backward-incom-
patible detected differences include: an optional parameter

redefined as a mandatory parameter; a changed parameter
data type; and a changed public field data type.

13. A system for monitoring updates 1n a software reposi-
tory 1n a multi-author software design environment, compris-
ng:

a processor configured to construct a first snapshot of a set

of software module source code stored by the software

repository at a {irst point 1in time, the source code repre-
sented by a plurality of objects;

the processor configured to construct a second snapshot of
the set of software module source code stored by the
soltware repository at a second point 1n time;

the processor configured to compare the first snapshot with
the second snapshot, to detect differences 1n the source
code;

the processor configured to rate each detected difference
according to a backward compatibility metric, the back-
ward compatibility metric representing a probability
that the detected difference renders a source code
attribute of the second snapshot incompatible with a
similar source code attribute of the first snapshot;

the processor configured to determine an overall backward
compatibility score for the second snapshot, based on
the rated differences;

the processor, 1n connection with an output device, config-

ured to 1ssue an alert message to registered authors of the
set of software module source code when the overall
backward compatibility exceeds a backward compat-
ibility threshold, wherein the alert message 1s 1ssued
only to users associated with objects for which differ-
ences are detected.

14. The system of claim 13, wherein the first and second
snapshots are constructed from a subset of the software mod-
ule source code, the subset specified by a registered author.

15. The system of claim 13, wherein the constructing 1s
performed a plurality of times, to construct a plurality of
successive snapshots representing the software repository as
respective points 1n time, each successive snapshot having a
version and being stored 1n a snapshot history database.

16. The system of claim 15, wherein each successive snap-
shot 1s constructed on a periodic basis.

17. The system of claim 16, wherein the periodic basis 1s a
set timetable.

18. The system of claim 15, wherein each successive snap-
shot 1s constructed 1n response to a predefined event.

19. The system of claim 13, wherein the alert message 1s
issued only to authors of objects for which differences are
detected.

US 7,600,219 B2

11

20. The system of claim 13, wherein the alert message 1s
issued only when the overall backward compatibility score
indicates the second snapshot 1s not backward compatible.

21. The system of claim 13, wherein the backward com-
patibility metric comprises a table of software modifications

identifying backward-compatible software modifications and
backward-incompatible software modifications.

22. The system of claim 13, wherein the backward-incom-
patible detected differences include: a deleted parameter
from a subroutine; a deleted field from a public data structure,
an added mandatory parameter to a subroutine, an added
mandatory field to a public data structure, an optional param-
cter redefined as a mandatory parameter, a changed parameter
data type, and a changed public field data type.

23. A computer-readable storage medium encoded with
instructions configured to be executed by a processor, the
instructions which, when executed by the processor, cause the
performance of a method, comprising:

constructing a {irst snapshot of a set of software module
source code stored by the software repository at a first
point 1n time, the source code represented by a plurality
of objects;

constructing a second snapshot of the set of software mod-
ule source code stored by the soitware repository at a

second point in time;

comparing the first snapshot with the second snapshot, to
detect differences 1n the source code;

rating each detected difference according to a backward
compatibility metric, the backward compatibility metric
representing a probability that the detected difference
renders a source code attribute of the second snapshot
incompatible with a similar source code attribute of the
{irst snapshot;

determining an overall backward compatibility score for
the second snapshot, based on the rated differences; and

1ssuing an alert message to registered authors of the set of
soltware module source code when the overall backward
compatibility exceeds a backward compatibility thresh-
old, wherein the alert message 1s 1ssued only to users

associated with objects for which differences are
detected.

24. The computer-readable storage medium of claim 23,
wherein the constructing 1s performed a plurality of times, to
construct a plurality of successive snapshots, each successive
snapshot having a version and being stored in a snapshot
history database.

25. The computer-readable storage medium of claim 24,
where the each successive snapshot 1s constructed on a peri-
odic basis.

26. The computer-readable storage medium of claim 25,
wherein the periodic basis 1s a set timetable.

27. The computer-readable storage medium of claim 24,
wherein the periodic basis 1s responsive to a predefined event.

10

15

20

25

30

35

40

45

50

12

28. The computer-readable storage medium of claim 23,
wherein the issuing 1s performed for only the authors of
affected software modules.
29. The computer-readable storage medium of claim 23,
wherein the alert message 1s 1ssued only when the overall
backward compatibility score indicates the updated version 1s
not backward compatible.
30. The computer-readable storage medium of claim 23,
wherein the compatibility metric comprises a table of soft-
ware modifications including backward-compatible software
modifications and backward-incompatible software modifi-
cations.
31. The computer-readable storage medium of claim 23,
wherein the backward-incompatible detected differences
include: a deleted parameter from a subroutine, a deleted field
from a public data structure, an added mandatory parameter
to a subroutine, an added mandatory field to a public data
structure, an optional parameter redefined as a mandatory
parameter, a changed parameter data type, and a changed
public field data type.
32. A method for monitoring updates in a software reposi-
tory 1n a multi-author software design environment, compris-
ng:
associating a registered author of the software design envi-
ronment with a subset of a plurality of software module
source code stored by the software repository, the source
code defiming a plurality of objects, wherein the subsetis
based on 1mput recerved from the registered author;

constructing a first snapshot of the subset at a first point 1n
time;

constructing a second snapshot of the subset at a second

point 1n time;

wherein each snapshot includes an aggregation of methods

and parameters of the software module source code 1n
the subset, with methods and parameters of any software
module referenced by the software module source code
in the subset;

comparing the first snapshot with the second snapshot, to

detect differences 1n the source code;
rating each detected difference according to a backward
compatibility metric, the backward compatibility metric
representing a probability that the detected difference
renders a source code attribute of the second snapshot
incompatible with a similar source code attribute of the
first snapshot;
determining an overall backward compatibility score for
the second snapshot, based on the rated differences; and

1ssuing an alert message to the registered author of the
subset when the overall backward compatibility exceeds
a predetermined threshold set by input from the regis-
tered author, the alert message including a list of each
rated difference, wherein the alert message 1s 1ssued
only to users associated with objects for which differ-
ences are detected.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,600,219 B2 Page 1 of 1
APPLICATION NO. : 10/730975

DATED . October 6, 2009

INVENTOR(S) . Efstratios T'santilis

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 1152 days.

Signed and Sealed this
Fifth Day of October, 2010

Lot T s ppos

David I. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

