US007587639B2
a2 United States Patent (10) Patent No.: US 7,587,639 B2
Marisetty et al. 45) Date of Patent: Sep. 8, 2009
(54) SYSTEM AND METHOD FOR ERROR 5,890,162 A * 3/1999 Huckins 707/104.1
INJECTION USING A FLEXIBLE PROGRAM 6,691,250 B1* 2/2004 Chandiramani et al. 714/25
INTERFACE FIELD 6,961,874 B2* 11/2005 Lodrigecoceeevennnnn.e. 714/38
2002/0010833 Al1* 1/2002 Yoshihiro 711/112
(75) Inventors: Suresh K. Marisetty, Fremont, CA 2003/0172321 Al* 9/2003 Wolin etal. ..ocoeveveveen.... 714/41
(US): Rajendra Kuramkote, Newcastle 2004/0078683 Al* 4/2004 Buiaetal. 714/37
WA (US): Koichi Yamada, Los Gatos, 2006/0112307 ALl* 52006 Marisetty et al. 714/11
CA (US); Scott D. Brenden, Bothell,
WA (US); Kushagra V. Vaid, San Jose, OTHER PUBLICATIONS
CA (US)

First Otfice Action from Foreign Counterpart Chinese Patent Appli-
cation No. 200510138060.0, mailed Aug. 2, 2007, 10 pgs. total,
(translation included).

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Primary Lxaminer —Emer. son C Puente
U.S.C. 154(b) by 715 days. (74) Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &

Zatman LLP

(21) Appl. No.: 10/985,502
(57) ABSTRACT

(22) Filed: Nov. 9, 2004
A system and method for mnjecting hardware errors into a

(65) Prior Publication Data microprocessor system 1s described. In one embodiment, a
soltware 1interface between system soitware and system firm-

US 2006/0112307 Al May 25, 2006 ware 1s established. Software test and debug for software

(51) Int.CL error handlers may thus be supported. The software interface
GO6F 11/00 (2006.01) may support both a query mode call and a seed mode call.

When a query mode call 1s 1ssued, it may request whether or
not the system firmware and hardware support the injection of
a specified kind of error. A return from this call may be used
to make a list of supported errors for injection. When a seed
(56) References Cited mode call 1s 1ssued, the corresponding error may be mjected
into the hardware.

(52) USe ClLe oo 714/41

(58) Field of Classification Search 714/41
See application file for complete search history.

U.S. PATENT DOCUMENTS

5,671,352 A * 9/1997 Subrahmaniam et al. 714/41 80 Claims, 7 Drawing Sheets
L L L L L L L T R 1 184
] iy
S :
! ERROR
: APPLICATION SOFTWARE INJECTION
! 180 UTILITY
E l 182
|
|
| OPERATING SYSTEM o
- SOFTWARE HANDLER
170 172
164 — 162 ‘ I
S 160
_YJ— N8 —
PROCESSOR/PLATFORM
FIRMWARE >
120

ERROR INJ. INTERFACE
14

PROCESSOR/PLATFORM HARDWARE
1o

U.S. Patent Sep. 8, 2009 Sheet 1 of 7 US 7,587,639 B2

l

I

I

I

I

I

: APPLICATION SOFTWARE INJECTION
, 180 UTILITY

: 182

:
I
!
!
l

OP. SYS.
ERROR
HANDLER
172

OPERATING SYSTEM
- SOFTWARE
170

118

PROCESSOR/PLATFORM
FIRMWARE
120

ERROR INJ. INTERFACE
114

PROCESSOR/PLATFORM HARDWARE
10

FIG. 1

U.S. Patent Sep. 8, 2009 Sheet 2 of 7 US 7,587,639 B2

APPLICATION SOF TWARE INJECTION

280 UTILITY
282

OP. SYS.
OPERATING SYSTEM ERROR

270 272

—260 218

SYSTEM
ABSTRACTION

LAYER

ABSTRACTION
LAYER
252

222
224
PLATFORM ERROR INJ. IIF PLATFORM ERROR INJ. I/F
216 214

PLATFORM PROCESSOR
HARDWARE HARDWARE

212 210

FIG. 2

U.S. Patent Sep. 8, 2009 Sheet 3 of 7 US 7,587,639 B2

APPLICATION SOFTWARE INJECTION

380 UTILITY
382

OP. SYS.

300 372

<. 360
362

OP. SYS. LOADER 318
350

EXTENSIBLE FIRMWARE
INTERFACE

340

PROCESSOR/PLATFORM FIRMWARE
320

w -
-y e il Lol - g e -

330

328
ERROR INJ. INTERFACE
314

PROCESSOR/PLATFORM HARDWARE
310

FIG. 3

U.S. Patent Sep. 8, 2009 Sheet 4 of 7 US 7,587,639 B2

BEGIN 410
APPLICATION 414
WANTS ERROR X

418
NO 422
QUERY FOR
ERROR X

426

ERROR X
ON LIST?

YES

ERROR X NO

SUPPORT?

YES

430
ADD TO LIST

INJECT 434
ERROR X

FIG. 4

U.S. Patent Sep. 8, 2009 Sheet 5 of 7 US 7,587,639 B2

1
BEGIN 210
APPLICATION WANTS | °14
LEVEL Y ERROR X

018
NO 522
QUERY FOR
LEVEL
526
ADD LEVEL
TOLIST
530
@ -

YES
NO 038
QUERY FOR
ERROR X
542

NO

534

ERROR
X ON LIST?

ERROR
X SUPPORT?

YES
546
ADD ERROR X
TOLIST

INJECT 550
ERROR X

FIG. 5

US 7,587,639 B2

Sheet 6 of 7

Sep. 8, 2009

U.S. Patent

0z
390149
SNg
JOVHOLSYIVA | gl 07
o NOYd3 ve
THVMINY 1 S IND NN
0l AT SAS 3 SNE
g
0

89
9 3/1 SNY
9 JHOVD

40SSIN0Nd 03

S30IA30
ANOD

9l
bt

ct
SOIHAVYO 390148 5NY
4d3d-1H
/1 SNd
8t ¢l

Oll 3SNOW
Olany J4avO8A I
174 e

Pl

SNE W3LSAS

3¥
2, 4/l SN4
147 IHOVO

40SSID0Nd (

%

SJ0IAId
O/

V9 Ol

@\ |
B [|
3 d9 9l
&
~ 0¢
7, S301A3a ISNO
T~
R 1OVNOLS YIVA . 07 AWOD 27 [AYVYOGAIN
-
j74 vl 8l
O/ OlaNY $301A30 0! 390148 SNg

-

I~

-

f s

e SOIHAVHD

J43d-HOIH

&N

—

—

g |

- _ _
= S €
2 JHYM NI VM INE

v Z
AYOWII HOW | | 3900 3409 AMOWIN

00y8d 00dd

d0S5300dd g0S53004d

U.S. Patent

US 7,587,639 B2

1

SYSTEM AND METHOD FOR ERROR
INJECTION USING A FLEXIBLE PROGRAM
INTERFACE FIELD

The present invention relates generally to microprocessor
systems, and more specifically to microprocessor systems
that may support the testing of software error handlers by
commanding the injection of hardware errors into the system.

BACKGROUND

Hardware errors in a microprocessor may arise irom
numerous sources, such as cosmic ray strikes, over-tempera-
ture hot spots, supply voltage spikes, and many other sources.
These hardware errors may propagate into the processor,
platform, and software, causing data corruption which has the
potential to bring down the system, lead to errant system
behavior, or cause silent data corruption. To increase reliabil-
ity and availability, many microprocessor systems may
implement error detection, error containment, error correc-
tion, and error recovery schemes. Several of these functions
may be performed 1n the hardware or 1n system firmware.
However, 1n some circumstances the operating system sofit-
ware or application software may need to recerve error mes-
sages Irom hardware and act upon them using an error handler
module.

The error handler module provides a challenge during the
design and debug of the module itself. It may not be possible
to adequately test its function without providing 1t with actual
hardware errors. This may be performed at the microproces-
sor manufacturer’s facility using specialized and costly hard-
ware tools and 1nstrumentation for 1njecting hardware errors
at will. This may be extremely difficult to do at an operating
system soltware vendor’s facility or at an application soft-
ware vendor’s facility. They may not wish to obtain special-
ized and costly hardware which may be useful only for a
limited set of processor revisions, nor may they have the
trained personnel to operate it.

In some processor embodiments, there may be an error
injection interface which would permait the injection of cer-
tain errors at will. However, these interfaces may vary
between processor revision levels and therefore require
extensive re-coding of any software for the control of the error
injection. Again, this many not be a practical approach for the
operating system soltware vendors or application software
vendors.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example,
and not by way of limitation, 1n the figures of the accompa-
nying drawings and in which like reference numerals refer to
similar elements and 1n which:

FIG. 1 1s a diagram of error injection in a system with
firmware, according to one embodiment of the present dis-
closure.

FIG. 2 1s a diagram of error injection 1 a system with
separate system and processor firmware, according to one
embodiment of the present disclosure.

FIG. 3 1s a diagram of error injection 1n a system with
multilayer firmware, according to one embodiment of the
present disclosure.

FI1G. 4 1s a flowchart of software utilizing an error injection
system, according to one embodiment of the present disclo-
sure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 1s a flowchart of software utilizing an error injection
system, according to another embodiment of the present dis-
closure.

FIG. 6A 1s a schematic diagram of a system for injecting
errors, according to an embodiment of the present disclosure.

FIG. 6B 1s a schematic diagram of a system for injecting
errors, according to another embodiment of the present dis-
closure.

DETAILED DESCRIPTION

The following description includes techmques for mject-
ing hardware errors 1nto a microprocessor system to facilitate
the testing ol soitware error handlers. In the following
description, numerous specific details such as logic 1mple-
mentations, software module allocation, bus and other inter-
face signaling techniques, and details of operation are set
forth in order to provide a more thorough understanding of the
present invention. It will be appreciated, however, by one
skilled 1n the art that the invention may be practiced without
such specific details. In other instances, control structures,
gate level circuits and full software instruction sequences
have not been shown in detail 1n order not to obscure the
invention. Those of ordinary skill in the art, with the included
descriptions, will be able to implement appropriate function-
ality without undue experimentation. In certain embodi-
ments, the invention 1s disclosed in the environment of an
Itantum® Processor Family compatible processor (such as
those produced by Intel® Corporation) and the associated
system and processor firmware. However, the invention may
be practiced 1n other kinds of processors, such as the Pen-
tium® compatible processors (such as those produced by
Intel® Corporation), an X-Scale® family compatible proces-
sor, or any of a wide variety of different general-purpose
processors from any of the processor architectures of other
vendors or designers. Additionally, some embodiments may
include or may be special purpose processors, such as graph-
ics, network, 1image, communications, or any other known or
otherwise available type of processor in connection with 1ts
firmware.

Referring now to FIG. 1, a diagram of error injection 1n a
system with firmware 1s shown, according to one embodi-
ment of the present disclosure. In the FIG. 1 embodiment,
processor/platform hardware 110 may include one or more
microprocessors and various supporting chips, such as sys-
tem memory, memory controllers, imput/output controllers,
system busses or other forms of system interconnects, and
various mput/output devices. In some embodiments, some of
these supporting chips may be collected into an integrated
“chipset”. Processor/platform hardware 110 may include an
error 1njection interface 114 which may permit outside influ-
ence on the operation of processor/platiorm hardware 110. In
one embodiment, error injection interface 114 may include
registers or other communications interfaces to permit recev-
ing commands to purposely 1nject various kinds of hardware
errors 1nto processor/platform hardware 110 1n order to facili-
tate the testing, debugging, and validation of various software
error handlers. It 1s noteworthy that the software error han-
dlers should be validated when loaded 1n the complete error
handling environment, which may also include hardware
error handlers and firmware handlers. A particular error may
be first handled by hardware, and may then be handed off to
firmware, and finally may be handed oif to software for reso-
lution.

FIG. 1 shows several layers of software that may execute
on processor/plattorm hardware 110. These may include one
or more operating system software 170 and one or more

US 7,587,639 B2

3

application software 180. Each may have 1ts own error han-
dler, such as operating system error handler 172 and error
injection utility 182. Operating system error handler 172 may
receive various hardware error messages over an error mes-
sage 1terface 118 when errors occur 1n processor/platiorm
hardware 110. In varying embodiments, the error messages
may arise from the hardware, or may be sent by the firmware
alter being mvoked by the hardware. Once recerved by the
operating system 170, the error messages may be passed via
a soltware interface 184 to error mjection utility 182.

It may be possible to have software directly communicate
with error injection interface 114, but for various reasons this
would not be preferable. An end-user testing operating sys-
tem error handler 172 or error injection utility 182 would not
necessarily know which kinds of errors could be mjected into
a particular version of processor hardware and platform hard-
ware. A different software version would be required for each
“stepping” or revision level of the processor and platform
hardware. And, due to security concerns, there may be rea-
sons that detailed knowledge of the error injection interface
114 should not be widely distributed.

Therefore, in one embodiment a software interface 160
may be defined between the software, which may include the
operating system software 170 and application software 180,
and the processor/platiorm firmware 120. Software interface
160 may permit the software to both inquire about what kinds
support for error injection 1s present in a given environment,
and also to task the actual error injection based upon that
knowledge. The use of software interface 160 may advanta-
geously permit software testing without requiring rewriting
the software for each stepping level of hardware presented.

Software interface 160 may include two parts: a call 164
and a return 162. Call 164 may further be divided into two
portions: a query mode and a “seed” or mjection command
mode. In query mode, the call may contain a request for an
answer to the question of whether or not the support exists for
injecting the described error. In one embodiment, the sofit-
ware may make a series of queries and keep a table or other
form of record of the answers receitved. In this manner, the
solftware may gain knowledge of the overall support that
ex1sts for 1injecting errors 1n a given processor and platform.

The software mterface 160 may include the capacity to
describe many more kinds of errors than would be expected 1in
any particular implementation, in order to permit future
growth. Data words sent as part of a query may include
several flelds 1n order to describe 1n detail the error whose
injection would be desired. For example, a field may describe
the severity of the error, which may include recoverable
errors, fatal local errors, corrected errors, fatal global errors,
and perhaps others. Another field may describe the particular
hardware structure in which the error would occur, which
may include the cache, the translation look-aside builer
(TLB), the system interconnect, the register file, micro-archi-
tectural structures, and perhaps others. A third field may
describe the “trigger” or conditions under which the
requested error would be injected. The trigger could 1n vari-
ous embodiments be when a particular branch nstruction 1s
taken or not taken, when a particular buifer reaches a certain
portion ol 1ts capacity, or the operation type being executed by
the processor during which the error could occur. In other
embodiments, many other triggers could be defined.

In one embodiment, the data words may include a field for
error structure hierarchy level. In one embodiment, there may
be four levels, with level 1 having the coarsest grain of
description of errors and level 4 having the finest grain of
description. An example of a level 1 error description would
be a cache error of a particular severity and to a particular

10

15

20

25

30

35

40

45

50

55

60

65

4

cache level. A level 2 error description could include all the
level 1 description, and, 1n addition, whether the error would
be 1n the data or tag portion of the cache, and the index and
way of the cache 1n which the error would take place. A level
3 error description could include all the level 2 description,
and, 1n addition, the precise address where the cache error
would occur. The use of the error structure hierarchy levels
may assist in permitting the gradual inclusion of more and
more error types without having to re-characterize software
interface 160. It 1s anticipated that 1n one embodiment a
particular hierarchy level may be maintained across the dif-
tering hardware structures 1n which the error occurs. In other
words, a particular hardware and firmware 1mplementation
may support only generic errors for injection in the various
hardware structures, or may support very detailed specific
errors for 1njection 1n the various hardware structures. How-
ever, 1n other embodiments the hierarchy levels may vary
from one hardware structure to another.

The return 162 to the query call may simply include fields
to characterize the requested error as either “supported” or
“not supported”. The return 162 may also give global answers
to 1indicate which hierarchy levels of errors are supported.
This may help the software tailor future queries in those
embodiments where the hierarchy levels are constant across
the varying hardware structures.

Call 164 may also include a “seed” or 1injection command
mode. In one embodiment, the seed mode data words may be
equivalent to the corresponding data words from the query
mode, with the exception of a single bit that may serve as a
flag to indicate whether the data word 1s to be interpreted as
for query mode or seed mode. In other embodiments, data
words for the seed mode may be coded differently than the
corresponding data words for the query mode.

The return 162 to the seed mode call 164 may occur 1n
circumstances where a seed mode call requests the 1njection
of a non-supported error. In this case the return 162 may
simply indicate that the error requested was not supported. In
other embodiments, other information could be contained in
the return 162.

As described above, the use of the software interface 160
may permit the operating system software 170 or the appli-
cation software 180 to cause errors to be 1injected on com-
mand without detailed knowledge of the error injection inter-
face 114. Such knowledge may be required for the interaction
between the processor/platform firmware 120 and the error
injection mterface 114. In one embodiment, a query interface
132 may be used for processor/platform firmware 120 to
request information about what kinds and hierarchy levels of
error 1jection supported by error injection interface 114 1n
conjunction with processor/platform firmware 120. In other
embodiments, processor/platiorm firmware 120 may be pro-
grammed to contain this information about the platform it 1s
inserted 1nto. This programming may 1n some embodiments
take the form of a table or set of registers. In some embodi-
ments, certain hardware errors may be emulated by proces-
sor/platform firmware 120 so there may be no need to inter-
rogate error 1njection interface 114 for these errors.

In one embodiment, there may also be a tasking interface
122 for processor/platiorm firmware 120 to use when “seed-
ing” (commanding the injection of) errors. In one embodi-
ment, processor/platform firmware 120 may send tasking
message over path 126 to the error injection interface 114. In
one embodiment, these tasking messages may write to regis-
ters or other storage devices 1n error mjection interface 114.
Return path 124 may be used for error injection interface 114
to communicate status or non-support messages to processor/
platform firmware 120.

US 7,587,639 B2

S

Referring now to FIG. 2, a diagram of error injection 1n a
system with separate system and processor firmware 1s
shown, according to one embodiment of the present disclo-
sure. The FIG. 2 system may be generally similar to that of the
FIG. 1 system, but the processor and platform firmware has
been segregated into a processor abstraction layer (PAL) 252
which supports the processor hardware 210 and a system
abstraction layer (SAL) 2354 which supports the platform
hardware 212. In one embodiment, the FIG. 2 system may use
an Itanium® Processor Family compatible processor, such as
those produced by Intel® Corporation, and the PAL 2352 and
SAL 254 developed for use thereon. In such an environment,
error message interface 218 may be a machine-check-archi-
tecture (MCA) interface, capable of conveying errors
detected 1n platform hardware 212 and processor hardware
210. In varying embodiments, the error messages may arise
from the hardware, or may be sent by the PAL 252 after being
invoked by the hardware, or may be sent by the SAL 254 after
being mnvoked 1n turn by the PAL 252.

In one embodiment, software interface 260 may generally
convey the same kinds of data words between the software
and the PAL 252 as disclosed above in connection with soft-
ware interface 160 of FI1G. 1. In other embodiments, software
interface 260 may be defined exactly as that of software
interface 160 of FIG. 1. Platiorm related errors may require a
second software interface 256 between the software and the
SAL 254. The data words on call 264 of software interface
260 and on call 266 of software interface 256 may include
fields for the severity of the error, the particular hardware
structure 1n which the error would occur, and the “trigger” or
conditions under which the requested error would be 1njected.
Platform hardware structures for the SAL 254 software inter-
face 256 may include a peripheral component interconnect
(PCI) bus, an extended PCI (PCI-E) link, a common system
interconnect (CSI) link, or other structures typically found on
a system motherboard. Fields for hierarchy levels of errors
may also be included. In the case of soitware interface 260,
the particular hardware structure in which the error would
occur may 1nclude structures within the processor: 1n the case
ol software interface 260, the particular hardware structure 1n
which the error would occur may include structures within the
platform outside the processor.

Referring now to FIG. 3, a diagram of error injection 1n a
system with multilayer firmware 1s shown, according to one
embodiment of the present disclosure. The FIG. 3 system may
be generally similar to that of the FIG. 1 system, but the
processor and platform firmware has been organized into a
layered structure as shown. The basic functions of processor/
platform firmware 320 are logically closest to the hardware. A
common 1nterface between the software and the processor/
platform firmware may be presented by extensible firmware
interface (EFI) 340. The EFI 340 may be used to present a
virtual firmware/hardware machine to the software. Finally, a
small lightweight operating system loader 350 may sit above
the EFI 340. In one embodiment, the FIG. 2 system may use
a Pentium® compatible processor, such as those produced by
Intel® Corporation, and EFI 340 developed for use thereon.
In such an environment, error message interface 318 may be
a machine-check-architecture (MCA) interface, capable of
conveying errors detected in processor/platform hardware
310. In varying embodiments, the error messages may arise
from the hardware, or may be sent by the processor/platiform
firmware 320 after being invoked by the hardware, or by the
EFI 340 after being invoked by the processor/platiorm firm-
ware 320.

In one embodiment, software interface 360 may generally
convey the same kinds of data words between the software

10

15

20

25

30

35

40

45

50

55

60

65

6

and the EFI 340 as disclosed above in connection with soft-
ware interface 160 of FI1G. 1. In other embodiments, software
interface 360 may be defined exactly as that of software
interface 160 of FIG. 1. The data words on call 364 of soft-
ware 1terface 360 may include fields for the severity of the
error, the particular hardware structure 1n which the error
would occur, and the “trigger” or conditions under which the
requested error would be 1njected. Fields for hierarchy levels
of errors may also be included.

Referring now to FIG. 4, a flowchart of software utilizing
an error 1njection system 1s shown, according to one embodi-
ment of the present disclosure. The FIG. 4 process may be
executed by software connected to the firmware and hardware
via a soltware interface such as software interface 160 of FIG.
1 above. When the process begins at block 410, 1t may wait at
block 414 until the software desires to test its error handler
with particular error X. In decision block 418, 1t may be
determined whether error X 1s on a list maintained by the
software of supported errors for injection. If so, then the
process exits via the YES path. Then 1n block 434 the softwar
1ssues a seed call and error X 1s 1injected into the hardware.
The process then repeats at block 414.

If, however, in decision block 418 it 1s determined that error
X 1s not on the list, then the process exits via the NO path, and
in block 422 a query call 1s made concerning the support for
error X. In decision block 426 1t may be determined whether
support for error X exists in the processor/platform hardware.
If so, then the process exits via the YES path. In block 430
error X 1s added to the list before the software 1ssues a seed
call and error X 1s injected into the hardware atblock 434. The
process then repeats at block 414.

If, however 1n decision block 426 1t 1s determined that

support does not exist for error X, then the process exits via
the NO path and returns to block 414.

Referring now to FIG. 5, a flowchart of soitware utilizing
an error injection system 1s shown, according to another
embodiment of the present disclosure. The FIG. 5 process
may be executed by software connected to the firmware and
hardware via a software interface such as software interface
160 of FI1G. 1 above. The FIG. 5 process may differ from the
FIG. 4 process 1n that the FIG. 5 system supports hierarchy
levels that may be umiform across various portions of the
hardware.

When the process begins at block 510, 1t may wait at block
514 until the software desires to test 1ts error handler with
particular error X corresponding to hierarchy level Y. In deci-
sion block 518 it may be determined whether a maximum
hierarchy level supported 1s on the list maintained by software
of errors and hierarchy levels supported by hardware. It not,
then the process exits along the NO path and in block 522 a
query call 1s 1ssued to determine the level supported. Then 1n
block 526 the hierarchy level 1s wnitten to the list before
entering decision block 530. If 1t 1s determined that the maxi-
mum hierarchy level 1s on the list, then the process exits via
the YES path and enters decision block 530 directly.

In decision block 530 it may be determined whether the
maximum hierarchy level on the list 1s greater than or equal to
the desired level Y. I not, then the process exits along the NO
path and returns to block 514. If so, then the process exits
along the YES path and enters decision block 534.

In decision block 534, 1t may be determined whether error
X 15 on the list maintained by the soitware of supported errors
for 1njection. I so, then the process exits via the YES path.
Then 1n block 550 the software 1ssues a seed call and error X
1s mjected nto the hardware. The process then repeats at

block 514.

US 7,587,639 B2

7

If, however, 1n decision block 534 1t 1s determined that error
X 1s not on the list, then the process exits via the NO path, and
in block 538 a query call 1s made concerning the support for
error X. In decision block 542 1t may be determined whether
support for error X exists in the processor/platform hardware.
IT so, then the process exits via the YES path. In block 546
error X 1s added to the list before the software i1ssues a seed
call and error X 1s injected into the hardware at block 550. The
process then repeats at block 514.

If, however 1n decision block 542 it 1s determined that
support does not exist for error X, then the process exits via
the NO path and returns to block 514.

Referring now to FIGS. 6 A and 6B, schematic diagrams of
systems for injecting errors are shown, according to two
embodiments of the present disclosure. The FIG. 6 A system
generally shows a system where processors, memory, and
mput/output devices are interconnected by a system bus,
whereas the FIG. 6B system generally shows a system where
processors, memory, and mput/output devices are 1ntercon-
nected by a number of point-to-point interfaces.

The FIG. 6 A system may include one or several processors,
of which only two, processors 40, 60 are here shown for
clarity. Processors 40, 60 may include level one caches 42, 62.
The FIG. 6A system may have several functions connected
via bus interfaces 44, 64, 12, 8 with a system bus 6. In one
embodiment, system bus 6 may be the front side bus (FSB)
utilized with Pentium® class microprocessors manufactured
by Intel® Corporation. In other embodiments, other busses
may be used. In some embodiments memory controller 34
and bus bridge 32 may collectively be referred to as a chipset.
In some embodiments, functions of a chipset may be divided
among physical chips differently than as shown in the FIG.
6 A embodiment.

Memory controller 34 may permit processors 40, 60 to read
and write from system memory 10 and from a firmware
erasable programmable read-only memory (EPROM) 36. In
some embodiments the firmware may present an error 1njec-
tion software interface to software. In some embodiments
firmware EPROM 36 may utilize flash memory. Memory
controller 34 may include a bus interface 8 to permit memory
read and write data to be carried to and from bus agents on
system bus 6. Memory controller 34 may also connect with a
high-performance graphics circuit 38 across a high-perior-
mance graphics interface 39. In certain embodiments the
high-performance graphics interface 39 may be an advanced
graphics port AGP interface. Memory controller 34 may
direct data from system memory 10 to the high-performance

graphics circuit 38 across high-performance graphics inter-
face 39.

The FIG. 6B system may also include one or several pro-
cessors, ol which only two, processors 70, 80 are shown for
clarnity. Processors 70, 80 may each include a local memory
controller hub (MCH) 72, 82 to connect with memory 2, 4 and
with firmware 3, 5. In some embodiments the firmware may
present an error injection software interface to soitware. Pro-
cessors 70, 80 may exchange data via a point-to-point inter-
face 50 using point-to-point interface circuits 78, 88. Proces-
sors 70, 80 may each exchange data with a chipset 90 via
individual point-to-point interfaces 52, 34 using point to point
interface circuits 76, 94, 86, 98. Chipset 90 may also
exchange data with a high-performance graphics circuit 38
via a high-performance graphics interface 92.

In the FIG. 6 A system, bus bridge 32 may permit data
exchanges between system bus 6 and bus 16, which may 1n
some embodiments be a industry standard architecture (ISA)
bus or a peripheral component interconnect (PCI) bus. In the
FIG. 6B system, chipset 90 may exchange data with a bus 16

5

10

15

20

25

30

35

40

45

50

55

60

65

8

via a bus interface 96. In either system, there may be various
input/output I/O devices 14 on the bus 16, including in some
embodiments low performance graphics controllers, video
controllers, and networking controllers. Another bus bridge
18 may in some embodiments be used to permit data
exchanges between bus 16 and bus 20. Bus 20 may in some
embodiments be a small computer system interface (SCSI)
bus, an 1ntegrated drive electronics (IDE) bus, or a universal
serial bus (USB) bus. Additional I/O devices may be con-
nected with bus 20. These may include keyboard and cursor
control devices 22, including mice, audio I/O 24, communi-
cations devices 26, including modems and network inter-
faces, and data storage devices 28. Software code 30 may be
stored on data storage device 28. In some embodiments, data
storage device 28 may be a fixed magnetic disk, a floppy disk
drive, an optical disk drive, a magneto-optical disk drive, a
magnetic tape, or non-volatile memory including flash
memory.

In the foregoing specification, the mvention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

The invention also relates to apparatus for performing the
operations herein. This apparatus may be specialty con-
structed for the required purposes, or it may comprise a gen-
eral purpose computer selectively activated or reconfigured
by a computer program stored 1n the computer. Such a com-
puter program may be stored or transmitted 1n a computer-
readable medium, such as, but 1s not limited to, a computer-
readable storage medium (e.g., any type of disk including
floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memo-
riecs (RAMs), EPROMs, EEPROMSs, flash memory, magnetic
or optical cards, or any type of media suitable for storing
clectronic mstructions).

What 1s claimed 1s:

1. A method, comprising:

receving, at an interface coupled with target hardware, a

request for injecting a first error 1nto the target hardware
from software on a system;

determiming whether support exists for said first error; and

injecting said first error into said target hardware when said

support for said first error 1s determined to exist, wherein
said request includes a hierarchy level of granularity
related to said first error.

2. The method of claim 1, further comprising sending a
return message when said support for said first error 1s deter-
mined not to exist.

3. The method of claim 1, wherein said support for said first
error mncludes support 1n hardware of said system.

4. The method of claim 1, wherein said support for said first
error includes support in emulation firmware of said system.

5. The method of claim 1, wherein said request 1s a system
call.

6. The method of claim 1, wherein said request to indicate
a particular component of the target hardware structure 1n
which said first error to occur.

7. The method of claim 1, further comprising receiving a
query to request an answer whether support exists for said
first error.

8. The method of claim 7, wherein said query to be con-
tained 1n a system call.

US 7,587,639 B2

9

9. The method of claim 8, wherein said answer to be con-
tained 1n a system call return.

10. A method, comprising:

receiving a request for injecting a first error from software

Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist, wherein said
request includes a hierarchy level of granularity related
to said first error.

11. The method of claim 10, wherein said hierarchy level of
granularity describes a subset of all errors capable of being
requested by said request.

12. A method, comprising:

receiving a request for injecting a first error from software

Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist, wherein said
request to indicate a level of severity of said first error.

13. A method, comprising:

receiving a request for injecting a {irst error from software

Oon a systems:

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist, wherein said
request to indicate a triggering event to time the injection
of said first error.

14. A method, comprising:

receiving a request for injecting a {irst error from software

Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist; and

receiving a query to request an answer whether support

exists for said first error, wherein said answer to include
a hierarchy level of granularity related to said first error.

15. The method of claim 14, wherein said hierarchy level of
granularity describes a subset of all errors capable of being
requested by said request.

16. A method, comprising:

receiving a request for injecting a first error from software

Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist; and

receiving a query to request an answer whether support

exi1sts for said first error, wherein said answer to indicate
a hardware structure 1n which said first error to occur.
17. A method, comprising:
receiving a request for injecting a {irst error from software
Oon a systems:

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist; and
receiving a query to request an answer whether support
exists for said first error, wherein said answer to indicate
a level of severity of said first error.

18. A method, comprising:

receiving a request for injecting a {irst error from software
Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist; and

receiving a query to request an answer whether support

exists for said first error, wherein said answer to indicate
a triggering event to time the injection of said first error.

10

15

20

25

30

35

40

45

50

55

60

65

10

19. An apparatus, comprising;:

means for recerving a request for injecting a first error mnto

target hardware from software on a system;

means for determining whether support exists for said first

error; and
means for injecting said first error 1nto said target hardware
when said support for said first error 1s determined to exist,
wherein said request to indicate a level of severity of said first
SITor.

20. The apparatus of claim 19, further comprising means
for sending a return message when said support for said first
error 1s determined not to exist.

21. The apparatus of claim 19, wherein said support for
said first error includes support in hardware of said system.

22. The apparatus of claim 19, wherein said support for
said first error includes support 1n emulation firmware of said
system.

23. The apparatus of claim 19, wherein said request 1s a
system call.

24. The apparatus of claim 19, wherein said request
includes a hierarchy level of granularity related to said first
CITOr.

25. The apparatus of claim 24, wherein said hierarchy-level
of granularity describes a subset of all errors capable of being
requested by said request.

26. The apparatus of claim 19, wherein said request to
indicate a particular component of the target hardware struc-
ture 1n which said first error to occur.

277. The method of claim 19, wherein said request to 1ndi-
cate a level of severity of said {first error.

28. The apparatus of claim 19, wherein said request to
indicate a triggering event to time the 1njection of said {first
CITOr.

29. The apparatus of claim 19, further comprising means
for receiving a query to request an answer whether support
exi1sts for said first error.

30. The apparatus of claim 29, wherein said query to be
contained 1n a system call.

31. The apparatus of claim 30, wherein said answer to be
contained 1n a system call return.

32. The apparatus of claim 29, wherein said answer to
include a hierarchy level of granularity related to said first
CITOr.

33. The apparatus of claim 32, wherein said hierarchy level
of granularity describes a subset of all errors capable of being
requested by said request.

34. The apparatus of claim 29, wherein said answer to
indicate a particular component of the target hardware struc-
ture 1n which said first error to occur.

35. The apparatus of claim 29, wherein said answer to
indicate a level of severity of said first error.

36. The apparatus of claim 29, wherein said answer to
indicate a triggering event to time the 1njection of said first
CITOr.

37. A computer-readable storage media storing software
code that, when executed by a processor, causes the processor
to perform a process comprising:

recerving a request for mjecting a first error into the target

hardware from software on a system;

determining whether support exists for said first error; and

injecting said first error 1into said target hardware when said

support for said first error 1s determined to exist, wherein
said request to indicate a level of severity of said first
CITof.

38. The computer-readable media of claim 37, further com-
prising sending a return message when said support for said
first error 1s determined not to exist.

US 7,587,639 B2

11

39. The computer-readable media of claim 37, wherein
said support for said first error includes support 1n hardware
of said system.

40. The computer-readable media of claim 37, wherein
said support for said first error includes support 1n emulation
firmware of said system.

41. The computer-readable media of claim 37, wherein
said request 1s a system call.

42. The computer-readable media of claim 37, wherein
said request to indicate a particular component of the target
hardware structure in which said first error to occur.

43. The computer-readable media of claim 37, further com-
prising receiving a query to request an answer whether sup-
port exists for said first error.

44. The computer-readable media of claim 43, wherein
said query to be contained 1n a system call.

45. The computer-readable media of claim 44, wherein
said answer to be contained 1n a system call return.

46. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising;:

receiving a request for injecting a first error from software

Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support

for said first error 1s determined to exist, wherein said

request includes a hierarchy level of granularity related
to said first error.

47. The computer-readable media of claim 46, wherein
said hierarchy level of granularity describes a subset of all
errors capable ol being requested by said request.

48. A computer-readable media containing software code
that, when executed by a processor, performs a process com-

prising:
receiving a request for injecting a first error from software
Oon a system;

determining whether support exists for said first error; and

injecting said first error into said system when said support
for said first error 1s determined to exist, wherein said
request to indicate a level of severity of said first error.

49. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising:

receiving a request for injecting a first error from software

Oon a systems:

determining whether support exists for said first error; and

injecting said first error into said system when said support
for said first error 1s determined to exist, wherein said
request to indicate a triggering event to time the injection
of said first error.

50. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising:

receiving a request for injecting a first error from software

Oon a systems:

determining whether support exists for said first error;

receiving a query to request an answer whether support
exists for said first error; and

injecting said first error into said system when said support
for said first error 1s determined to exist, wherein said
answer to include a hierarchy level of granularity related
to said first error.

51. The computer-readable media of claim 50, wherein
said hierarchy level of granularity describes a subset of all
errors capable of being requested by said request.

10

15

20

25

30

35

40

45

50

55

60

65

12

52. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising:

recerving a request for injecting a first error from software

on a system;

determining whether support exists for said first error;

receving a query to request an answer whether support
exists for said first error; and

injecting said first error 1nto said system when said support
for said first error 1s determined to exist, wherein said
answer to indicate a hardware structure in which said
first error to occur.

53. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising;:

recerving a request for injecting a first error from software

on a system;

determiming whether support exists for said first error;

receving a query to request an answer whether support
exists for said first error; and

injecting said first error into said system when said support
for said first error 1s determined to exist, wherein said
answer to indicate a level of severity of said first error.

54. A computer-readable media containing software code
that, when executed by a processor, performs a process com-
prising:

receving a request for ijecting a first error from software

on a system;

determining whether support exists for said first error;

receving a query to request an answer whether support
exists for said first error; and

injecting said first error into said system when said support
for said first error 1s determined to exist, wherein said
answer to indicate a triggering event to time the injection
of said first error.

55. An apparatus, comprising:
an interface coupled with target hardware including:

a first module to recetve a request for 1njecting a {first
error into said target hardware from soiftware on a
system:

a second module coupled with said first module to deter-
mine whether support exists for said first error; and

a third module coupled with said first module and said
second module to 1nject said first error into said target
hardware when said second module determines said
support for said first error exists, wherein said request
includes a hierarchy level of granularity related to said

first error.

56. The apparatus of claim 55, wherein said first module to
send a return message to said soitware when said second
module determines said support for said first error does not
exist.

57. The apparatus of claim 55, wherein said support 1s
performed by hardware of said apparatus.

58. The apparatus of claim 55, wherein said support 1s
performed by emulation firmware of said apparatus.

59. The apparatus of claim 58, wherein said first module to
decode from said request a hierarchy level of granularity to
describe a subset of all errors capable of being requested by
said request.

60. The apparatus of claim 35, wherein said first module to
decode from said request a particular component of the hard-
ware structure in which said first error to occur.

US 7,587,639 B2

13

61. The apparatus of claim 55, wherein said first module to
decode from said request a level of severity of said first error.

62. The apparatus of claim 55, wherein said first module to
decode from said request a triggering event to time the 1njec-
tion of said first error.

63. The apparatus of claim 55, wherein said first module to
receive a query and to send an answer whether support exists
tor said first error.

64. The apparatus of claim 63, wherein said answer to
include a hierarchy level of granularity related to said first
eITor.

65. The apparatus of claim 64, wherein said hierarchy level
of granularity describes a subset of all errors capable of being
requested by said request.

66. The apparatus of claim 63, wherein said answer to
indicate a particular component of the target hardware struc-
ture in which said first error to occur.

67. The apparatus of claim 63, wherein said answer to
indicate a level of severity of said first error.

68. The apparatus of claam 63, wherein said answer to
indicate a triggering event to time the injection of said first
eITor.

69. A system, comprising:

a firmware interface coupled with target hardware, the

firmware interface to perform the following:

to recerve a request for 1njecting a first error into the
target hardware,

to determine whether support exists for said first error,
and

to 1nject said first error into the target hardware when
said support for said first error exists, wherein said
request to indicate a level of severity of said first error;
and

target hardware to recerve said first error and to send an
error message.

70. The system of claim 69, further comprising software
coupled with said firmware via an interface to send said
request.

71. The system of claim 70, wherein said software to
receive said error message from said hardware.

72. The system of claim 70, wherein said firmware to send
a return message to said software when said firmware deter-
mines said support for said first error does not exist.

73. The system of claim 70, wherein said support 1s per-
formed by said hardware.

74. The system of claim 70, wherein said support 1s per-
formed by emulation firmware of said firmware.

75. The system of claim 70, wherein said firmware to
receive a query from said software and to send an answer to
said software whether support exists for said first error.

10

15

20

25

30

35

40

45

50

14

76. A system, comprising;:

firmware to receive a request for injecting a first error, to
determine whether support exists for said first error, and
to 1nject said first error when said support for said first
error exists;

hardware to recerve said first error and to send an error

message; and

software coupled with said firmware via an interface to

send said request, wherein said firmware to decode from
said request a hierarchy level of granularity to describe a
subset of all errors capable of being requested by said
request.

77. The system of claim 70, wherein said firmware to
decode from said request a particular component of the target
hardware structure 1n which said first error to occur.

78. A system, comprising;:

firmware to recerve a request for injecting a first error, to

determine whether support exists for said first error, and
to 1nject said first error when said support for said first
error exists:

hardware to receive said first error and to send an error

message; and

software coupled with said firmware via an interface to

send said request, wherein said firmware to decode from
said request a level of severity of said first error.

79. A system, comprising;:

firmware to receive a request for injecting a first error, to

determine whether support exists for said first error, and
to 1nject said first error when said support for said first
error exists;

hardware to recerve said first error and to send an error

message; and

software coupled with said firmware via an interface to

send said request, wherein said firmware to decode from
said request a triggering event to time the injection of
said first error.

80. A system, comprising:

firmware to recerve a request for injecting a first error, to

determine whether support exists for said first error, and
to 1nject said first error when said support for said first
error exists;

hardware to receive said first error and to send an error

message; and

software coupled with said firmware via an interface to

send said request,

wherein said firmware to receive a query from said sofit-

ware and to send an answer to said software whether
support exists for said first error, and

wherein said answer to include a hierarchy level of granu-

larity related to said first error.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,587,639 B2 Page 1 of 1
APPLICATION NO. : 10/985502

DATED . September 8, 2009

INVENTOR(S) . Marisetty et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 1001 days.

Signed and Sealed this
Twenty-first Day of September, 2010

Lot T s ppos

David I. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

