12 United States Patent

US007580966B2

US 7,580,966 B2
Aug. 25, 2009

(10) Patent No.:
45) Date of Patent:

Le Quere
(54) METHOD AND DEVICE FOR REDUCING
THE TIME REQUIRED TO PERFORM A
PRODUCT, MULTIPLICATION AND
MODULAR EXPONENTIATION
CALCULATION USING THE MONTGOMERY
METHOD
(75) Inventor: Patrick Le Quere, Villebon sur Yvette
(FR)
(73) Assignee: Bull SA, Les Clayes Sous Bois (FR)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 525 days.
(21) Appl. No.: 10/469,246
(22) PCT Filed: Mar. 13, 2002
(86) PCT No.: PCT/FR02/00897
§ 371 (c)(1),
(2), (4) Date: Aug. 28, 2003
(87) PCT Pub. No.: WQ002/073450
PCT Pub. Date: Sep. 19,2002
(65) Prior Publication Data
US 2004/00547705 Al Mar. 18, 2004
(30) Foreign Application Priority Data
Mar. 14,2001 (FR) e, 01 03480
(51) Int.CL
GO6l 7/38 (2006.01)
(52) US.ClL e 708/491
(58) Field of Classification Search 708/491,

708/492; 380/28
See application file for complete search history.

72

c1.=0; S1:=0; C2:=0,; §2:=0; R:=(

|

for 1=0 to 3-1___

(C1,87):=C2]2%+52[2%4&,.b |~—76 |
- i 1
m:=[(CT, +51 + (R/2")].n| |~~T78
(02,82) :=C1+S1+m.n 80
R:=C2 +82 +R B2 |

(56) References Cited

U.S. PATENT DOCUMENTS

6,185,596 Bl 2/2001 GQGressel et al.

7,046,800 B1* 5/2006 Tencaetal. 380/28

7,174,015 B1* 2/2007 Kocetal.ccevevenn.nn..n. 380/28
OTHER PUBLICATIONS

Koc, CK et al: Multi-Operand Modulo Addition Using Cary Save
Adders, Electronics Letters, IEE Stevenage, GB, vol. 26, No. 6, Mar.
15, 1990, pp. 361-363, XP000122754; ISSN: 0013-5194, p. 361,
Right Hand col. Line 48,-p. 362, Right Hand col. Line 50.

(Continued)

Primary Examiner—Choung D Ngo
(74) Attorney, Agent, or Firm—Miles & Stockbridge P.C.;
Eric G. King

(57) ABSTRACT

The mvention relates to a method for speeding up the time
required to perform a Montgomery product calculation by
applying the High-Radix Montgomery method on computing
hardware. A loop of operations 1s performed consisting in
repeating successive operations, 1.€.: a first addition operation
involving the addition of a value of one of several first prod-
ucts, designated ai-b and a value of one variable, designated u,
according to a first relationship u:=u+ai-b; and a second addi-
tion operation involving the addition of a value of one of
several second products, designated m-n, and a value of vari-
able u according to a second relationship u:=u+m-n. At least
the first and second addition operations are Carry-Save addi-
tion operations in order to speed up the time required to

perform an addition.

45 Claims, 5 Drawing Sheets

70

-]

|
|

[u:=C2/2" +52/2"+r 2"}~ 84

[If uzn then ui=u-n | 6

ikl S —

US 7,580,966 B2
Page 2

OTHER PUBLICATIONS

Koc, CK et al: Carry-Save Adders for Computing the Product AB
Modulo N, Electronics Letters, IEE Stevenage, GB, vol. 26, No. 13,
Jun. 21, 1990, pp. 899-900, XP000107954, ISSN: 0013-5194, p. 899,
Left Hand col. Line 36—p. 900, Lefthand col. Line 4.

Ploog H et al: FPGA Based Architecture Evaluation of Cryptographic
Coprocessors for Smartcards; FPGAS for Custom Computing
Machines, 1998, Proceedings, IEEE Symposium on Napa Valley,
CA,USA Apr. 15-17, 1998, Lost Alamitos, CA, USA, IEEE Comput.
Soc. US, Apr. 15, 1998, pp. 292-293, XP010298224 ISBN: 08186
8900-3, p. 292, Lefthand col. Line 13—Right Hand col. Line 10, p.
293, Letthand col. Linel0-Line 23.

Shand, M et al: Fast Implementations of RSA Cryptography, Com-
puter Arithmetic, 1993, USA IEEE Comput. Soc. Jun. 29, 1993, pp.
252-259,XP010128541,ISBN: 081863862 1,p. 252, Lett col., Line
1-p. 254, Rught col., Line 25, p. 256, Letft col,—Line 29-p. 257, Right
col, Line 10; p. 258, Left col.,.Linel 1-p. 259, Left col, LN 10.

Koc C K: Montgomery Reduction With Even Modulus; IEE Proceed-
ings, vol. 141, No. 5 pp. 314-316-XP006001604; ISSN: 1350-2387;
p. 314, Left col., Line 1-p. 315, Left col., Line 45, p. 315, Right col.
Line 2-p. 316, Left col. Line 15.

Guinier D: Multiplication of Large Integers by the Use of Modular
Arithmetic Application to Cryptography, SIG Security, vol. 7, No. 4,

1990, pp. 7-20, XP000925424, ISSN0277-920X; p. 8, Line 12-p. 9,
Line 23, p. 10, Line 13-p. 18, Line 24, p. 18, Line 30-p. 19, Line 22.

Schindler W: A Timing Attack Against RSA With the Chinese

Remainder Theorem; Cryptographic Hardware & Embedded Sys-
tems, Aug. 17-18, 2000 Proceedings, Lecture Notes in Computer
Science, Berlin: Springer, DE, vol. 1965, Aug. 17, 2000, pp. 109-124,
XP001049131; ISBN: 3-540-41455-X; p. 109, Line 12-p. 112, Line
20; p. 114, Line 24-p. 117, Line 16.

Koc CK et al: Fast Software Exponentiation in GF (2) Proceedings
13th IEEE Symp on Computer Arithmetic; Jul. 6, 1997; pp. 225-231,
XP010241213; ISBN: 0-8186-7846-1, p. 225, Right col. Line 14-p.
228, Lett col. Line 6.

Cetin Kaya KOC, Koc@ece.orst.edu, “High-Speed RSA Implemen-
tation” RSA Laboratories; RSA Data Security, Inc., 100 Marine

Parkway, Ste. 500, Redwood City, CA 94065-1031; Version 2.0, Nov.
1994,

* cited by examiner

U.S. Patent Aug. 25, 2009 Sheet 1 of 5 US 7,580,966 B2

[0:20;1:20 k1

for 1=0 to S-17

X :=WonPro(d,b) 8
X :=MonPro(x,1) 10

FI1G. T

Y

20
FIG.2

U.S. Patent Aug. 25, 2009 Sheet 2 of 5 US 7,580,966 B2

C=0110 0000 00710)

S=071007001 1110
C+S= 710710 1070 0000=680

(C+S)/16=1010 1010 =170
C/16=0110 0000

S/16=0700 71007
C/16+S/16=1010 1007=169

FIG.4

/2 c1:=0; S1:=0; C2:=0,; S2:=0, R:=0 70

for 1=0 to §-17

(C1,51):=C2]/2"+S2][2"&,.b |76

| ' W 1
m:=[(C1 +81 + (R/2")].n’ |~—78
(C2,52) :=C1+51+m.n 80
R:=C2,+82 +R 62

ur=c2/2"+82/2¥+R/ 2"

If u>n tnen u:=u-n

U.S. Patent Aug. 25, 2009 Sheet 3 of 5 US 7,580,966 B2

M* mod n for all x=2,3,4,...,m-1 ap

N 94 FIG.6

for 1=s'-2 downto 0

100

m.n;m=0,1,2,3...75 114
116
NG e FIG.7
C:=(32 126
If £ #0 then C:=MonPro(C;%H) 128

C:=MonPro(C, 1) 122

U.S. Patent Aug. 25, 2009 Sheet 4 of 5 US 7,580,966 B2

a0 FIG.8

M:=M2+[(M1-M2).(Q " modP)mod P].Q 134

180

164

F1G.9

US 7,580,966 B2

Sheet 5 of 5

Aug. 25, 2009

U.S. Patent

202"

I LOC-

00¢

US 7,580,966 B2

1

METHOD AND DEVICE FOR REDUCING
THE TIME REQUIRED TO PERFORM A
PRODUCT, MULTIPLICATION AND
MODULAR EXPONENTIATION
CALCULATION USING THE MONTGOMERY
METHOD

FIELD OF THE INVENTION

The invention relates to methods and devices for speeding
up the time required to perform modular arithmetic opera-
tions, and more particularly a modular exponentiation, a
modular multiplication and a Montgomery product on com-
puting means.

BACKGROUND OF THE INVENTION

A modular multiplication operation consists of carrying
out the following operation:

a‘b mod n;

where a, b and n are itegers, n being called the modulus.

In a conventional manner, in order to effect a modular
multiplication the computing means first of all carry out a
multiplication of a by b, followed by modulo n reduction. The
time for performing this operation is proportional to k* where
k 1s the number of bits necessary in order to encode respec-
tively a, b and n 1n binary form.

In a manner which 1s equally well known to mathemati-
cians, a modular multiplication can be carried out by the
Montgomery method. This method mtroduces Montgomery
products as described 1n the document by Cetin Kaya Kog,
“High Speed RSA Implementation”, which may be obtained
from the following address:

RSA Laboratories

RSA Data Security, Inc.

100, Marine Parkway, Suite 500

Redwood City, Calif. 94-65-1031

U.S.A.

In the following description this document will be referred
to as D1. The subject matter of the document “High Speed
RSA Implementation 1s hereby imncorporated by reference 1n
its entirety.

A modular exponentiation operation consists of carrying
out the following operation:

X mod n;

where X, ¢ and n are 1ntegers, n being the modulus.

The calculation of this exponentiation by known methods,
such as for example the “square and multiply” method,
involves k modular multiplications, k being the number of
bits necessary in order to encode respectively x, ¢ and n 1n
binary form. Thus it 1s assumed that the time for performing,
this operation is proportional to k°.

The modular exponentiation operations constitute basic
operations of data encrypting/decrypting devices. For
example, the encrypting/decrypting devices implementing
the RSA (Rivest-Shamir-Adleman) use modular exponentia-
tions.

These devices currently exist 1n various such as electronic
components or electronic cards intended to be associated with
computing means in order to perform and/or to speed up the
encrypting/decrypting operations.

Electronic commerce, particularly on the Internet, uses a
large number of these encrypting/decrypting devices in order
to encrypt and decrypt commercial operations such as pay-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ments. The turnover of companies carrying out electronic
commerce 1s therefore limited by the number of encrypting
and decrypting operations which can be performed per sec-
ond.

Consequently 1t will be 1magined that 1t 1s important to
speed up the time required for performing a Montgomery
product calculation, a multiplication and a modular exponen-
tiation on a machine equipped with computing means.

Therefore the object of the invention 1s to propose a method
and a device for speeding up the time required to perform a
Montgomery product calculation, a modular multiplication
and a modular exponentiation on a machine equipped with
computing means.

The invention therefore relates to a method for speeding up
the time required to perform a Montgomery product calcula-
tion by applying the high-radix Montgomery method on com-
puting hardware, the said method comprising a loop of opera-
tions consisting of reiterating successive operations, wherein
in particular:

a first addition operation between a value of one of several
first products, denoted a,-b and a value of a variable,
denoted u, according to a first relationship u:=u+a,b;

a second addition operation between a value of one of
several second products, denoted m'n, and a value of the
variable u according to a second relationship u:=u+m-n;

characterised 1n that at least the said first and second addition
operations are carry-save addition operations in order to
speed up the time required for performing an addition.
According to other characteristics and advantages of the
invention, the method comprises:
in a loop of operations a third operation of division of the
variable u by a power of 2, denoted 2%, where w is the
radix, according to a third relationship

characterised in that the variable u 1s registered 1n the form of
a carry-save ordered pair formed by two variables, denoted C
and S, for performing operations of the loop, and that the third
operation of division of the varniable u 1n the form of a carry-
save ordered pair 1s carried out 1n two steps, namely:
a preliminary step of calculation and storage of a carry
digit, denoted R_, which 1s at risk of being lost by the
division of each variable C and S by the power of 2;

a step of division of each variable C and S by the power of
2;

the preliminary step of calculation of the carry digit R
comprises the operation of adding in a conventional
manner o least significant bits of the variable C, denoted
C,, to w least significant bits of the variable S, denoted
Sq, according to a fourth relationship R :=C +S,;

a recombination of u on the basis of the variables C and S
of the carry-save ordered pair and of the carry digit R
comprises the operation of shifting to the right by w bits
the carry digit R and in a conventional manner adding
the result obtained to the variables C and S according to

a fifth relationship uv:=C+S+R _/2;

it comprises at the end of performing the loop of opera-
tions:

a step of recombination (84) of the variable u on the basis
of at least the values of the variables C and S of the
carry-save ordered pair calculated during the perfor-
mance of the loop of operations, and

US 7,580,966 B2

3

a step of reduction (86) of the variable u according to a sixth

relationship u:=u-n, where n 1s a modulus,

the said steps of recombination and of reduction of the

variable u overlapping 1n such a way as to speed up the
time required to perform them;

the radix m 1s equal to 4 bits 1n order to optimise the time

required for performing the calculation of a Montgom-
ery product on the mput vanables of the Montgomery
product encoded on 512 or 1024 bits;

the first products a b are pre-calculated before performing

the loop of operations; and

the second products m'n are pre-calculated belore per-

forming the loop of operations.

The invention also relates to a method of speeding up the
time required to perform the calculation of a first and a second
Montgomery product by applying for each product a method
including at least one first step during which the first addition
operation for the first product is carried out at the same time
as the second addition operation for the second product.

According to other characteristics and advantages of this
method for speeding up the time required to perform the
calculation of a first and a second Montgomery product:

it comprises at least a second step shifted i time with

respect to the first, during which the second addition
operation for the first product is carried out at the same
time as the first addition operation for the second prod-
uct;

it comprises at the end of performing the loop of opera-

tions:

a step of recombination then of reduction for the first prod-

uct performed first; and then,

a step ol recombination then of reduction for the second

product performed second;

one of the input vanables of the first Montgomery product

performed first 1s made up of the least significant bits of
a variable, and one of the mput variables of the second
Montgomery product performed second 1s made up of
the most significant bits of this same variable.

The mmvention also relates to a method of speeding up the
time required for performing a modular multiplication calcu-
lation by applying a method implementing Montgomery
products, characterised in that the calculation of the Mont-
gomery products 1s carried out by applying at least one of the
methods according to the invention.

According to other characteristics and advantages of this
method for speeding up the time required for performing a
modular multiplication calculation:

the said method implementing Montgomery products 1s the

Montgomery method.

SUMMARY OF THE INVENTION

The mvention also relates to a method of speeding up the
time required for performing a modular exponentiation cal-
culation by applying a method implementing modular multi-
plications, the calculation of the modular multiplications
being carried out by applying a method according to the
invention.

According to other characteristics and advantages of this
method of speeding up the time required for performing a
modular exponentiation calculation:

the said method implementing modular multiplications 1s

the m-ary method with a word size of r bits;

the word size r of the m-ary method 1s equal to 5 bits 1n

order to speed up the time for performing the m-ary
method when input variables of the modular exponen-
tiation calculation are encoded on 512 or 1024 bits:

5

10

15

20

25

30

35

40

45

50

55

60

65

4

the second products m-n are pre-calculated before applying

the m-ary method;

the said method implementing modular multiplications 1s

the Chinese remainders method.

The mvention also relates to a method of speeding up the
time required for performing a first modular exponentiation
calculation by applying a method implementing second
modular exponentiations, the second modular exponentia-
tions being carried out by applying a method according to the
invention.

According to other characteristics and advantages of this
method of speeding up the time for performing the calcula-
tion of a first exponentiation:

the said method implementing second modular exponen-

tiations 1s the Chinese remainders method;

it 1s applied to numbers encoded on more than 320 bits.

The 1invention also relates to a computer programme com-
prising programme code 1nstructions for performing certain
steps of the method according to the invention when the said
programme 1s executed on principal computing means asso-
ciated with the said computing hardware.

The 1mvention also relates to a system for speeding up the
time required to perform a Montgomery product calculation
using the high-radix Montogomery method on computing
hardware, the said system comprising;:

means for effecting a first addition operation between a

value of one of several first products, denoted a,-b, and a
value of a vanable, denoted u, according to a first rela-
tionship u:=a,-b;

means for effecting a second addition operation between a

value of one of several second products, denoted mn,
and a value of the variable u according to a second
relationship uv:=u+m-n,

characterised 1n that the means for effecting the first and the
second addition operations include at least one carry-save

adder;

according to other characteristics and advantages of this sys-
tem:
the means for effecting the first and the second addition
operations include at least one first carry-save adder
adapted to carry out the first addition operation and a
second carry-save adder (158; 232) adapted to carry out
the second addition operation;
it includes conventional means for carrying out a third
operation of division of the variable u by a power of 2,
denoted 2%, where m 1s the radix, according to a third
relationship

it includes means for storing the variable u in the form of a
carry-save ordered pair formed by two varnables, denoted C
and S, and means for carrying out the third operation of
division of the variable u 1n the form of a carry-save ordered
pair comprising:
means for calculation and storage of a carry digit, denoted
R_, which 1s at risk of being lost by the division of each
variable C and S by the power of 2;
means for division of each variable C and S by the power of
2;
the means for calculation and storage of the carry digit R
include means for conventional addition of the w least
significant bits of the variable C, denoted C,, to the w

US 7,580,966 B2

S

least significant bits of the variable S, denoted S,
according to a fourth relationship R _:=C_ +S,;

1t comprises:

means for recombination of the variable u at least on the

basis of the values of the vaniables C and S of the carry-
save ordered pair;

means for reduction of the variable u, the said means for

recombination of the variable u and the said means for
reduction being connected to one another 1n such a way
that operation thereot overlaps under the control of the
control means;

the radix m 1s equal to 4 bits 1n order to optimise the time

required to perform a Montgomery product calculation
on 1nput variables of the Montgomery product encoded
on 512 or 1024 bits;

it includes means for pre-calculation of the first products a,-

b;
it includes means for pre-calculation of the second prod-
ucts m-n;

the said means for pre-calculation of the first and/or the

second products include a conventional adder.

The 1nvention also relates to a system for speeding up the
time required to perform the calculation of a first and a second
Montgomery product, characterised 1n that 1t includes two
carry-save adders which are activated simultaneously;

According to another characteristic of the system for
speeding up the time required to pertorm the calculation of a
first and a second Montgomery product, 1t includes a single
means for recombining the variable u on the basis of at least
the values of the variables C and S of the carry-save ordered
pair, connected to the input of a single means for reduction of
the vanable u.

The 1nvention also relates to a system for speeding up the
time required to perform a modular multiplication calculation
by a method implementing Montgomery products, the said
Montgomery product calculations being performed on com-
puting hardware, characterised in that it includes at least one
system for speeding up the time required to perform the
calculation of the Montgomery products according to the
invention.

The 1invention also relates to a system for speeding up the
time required to perform a modular multiplication calculation
by the Montgomery method implementing Montgomery
products on computing hardware, characterised 1n that it
includes at least one system for speeding up the time required
to perform the calculation of the Montgomery products.

The 1nvention also relates to a system for speeding up the
time required to perform a modular exponentiation calcula-
tion by a method implementing modular multiplications,
characterised 1n that 1t includes at least one system for speed-
ing up the time required to perform the calculation of the
modular multiplications according to the invention.

The 1nvention also relates to a system for speeding up the
time required to perform a modular exponentiation calcula-
tion by the m-ary method with a word size of r bits 1mple-
menting modular multiplications, characterised in that it
includes at least one system for speeding up the time required
to perform the calculation of the modular multiplications
according to the mnvention.

According to another characteristic of the system for
speeding up the time required to perform the modular expo-
nentiation calculation by the m-ary method, 1t includes at
least one register for shifting 5 bits to the left 1n order to speed
up the performance of the m-ary method with a word size of
r bits of the m-ary method equal to 5 bits.

The 1nvention also relates to a system for speeding up the
time required to perform the calculation of a modular expo-

10

15

20

25

30

35

40

45

50

55

60

65

6

nentiation by the Chinese remainders method implementing
modular multiplications, characterised in that it includes at
least one system for speeding up the time required to perform
the modular multiplication calculation according to the
invention.

The 1mvention also relates to a system for speeding up the
time required to perform the calculation of a first modular
exponentiation by a method implementing second modular
exponentiations, characterised in that 1t includes at least one
system for speeding up the time required to perform the
calculation of the second modular exponentiations according
to the invention.

The 1mvention also relates to a system for speeding up the
time required to perform at least a first modular exponentia-
tion calculation by the Chinese remainders method which
itself implements second modular exponentiations, charac-
terised 1n that 1t includes at least one system for speeding up
the time required to perform the calculation of the second
modular exponentiations according to the invention.

The mvention also relates to an electronic component
which includes at least one system according to the invention.

According to another characteristic of this component, it 1s
formed with at least one FPGA.

The mvention also relates to an electronic card which
includes at least one system according to the invention.

According to another characteristic of this electronic card,
it conforms to the PCI standard.

The invention also relates to a machine characterised in
that 1t 1s associated with at least one system according to the
invention.

The mvention also relates to a method of speeding up the
time required to perform the calculation of a first modular
exponentiation, denoted M* mod n, where M is the input
message, E 1s the exponent and n 1s the modulus, on principal
computing means, characterised 1n that 1t further comprises:

a {irst step of separating the calculation of the first modular
exponentiation into two second modular exponentia-
tions by applying the Chinese remainders method,

a second step consisting of calculating each of the second
modular exponentiations by applying the m-ary method
which implements modular multiplications,

steps consisting of eflecting the modular multiplications
by applying a method implementing Montgomery prod-
ucts.

According to other characteristics and advantages of this

method for speeding up the time required to perform the
calculation of a first modular exponentiation:

the 1mput variables are natural itegers encoded on more
than 320 bats;

the word size r of the m-ary method 1s equal to 5 bits 1n
order to speed up the time required to perform the m-ary
method when the input variables of the calculation of the
modular exponentiation are encoded on 512 or 1024
bits;

the calculations of the second modular exponentiations are
carried out substantially in parallel; and

the Montgomery products are calculated using the high-
radix Montgomery method.

The high-radix Montgomery method 1s implemented 1n

accordance with one of the methods according to the mven-
tion.

The 1nvention also relates to a computer programme com-
prising programme code 1nstructions for performing certain
steps of a method according to the invention when the said
programme 1s executed on the principal computing means.

US 7,580,966 B2

7
BRIEF DESCRIPTION OF THE DRAWINGS

The 1mvention will be better understood upon reading the
following description which 1s given solely by way of
example and with reference to the accompanying drawings,

in which:

FIG. 1 shows the Montgomery method for carrying out a
modular multiplication;

FI1G. 2 shows a method of calculating a Montgomery prod-
uct 1n 1ts high-radix form;

FIG. 3A 1s an electronic diagram of a carry-save adder;

FIG. 3B 1s an electronic diagram of a conventional adder;

FI1G. 4 1s an example of division of a number represented in
the form of a carry-save ordered pair;

FIG. S shows a method of calculating a Montgomery prod-
uct according to the mvention;

FIG. 6 shows a method of modular exponentiation accord-
ing to the m-ary method;

FI1G. 7 shows a method of modular exponentiation accord-
ing to the mvention;

FIG. 8 shows the Chinese remainders method;

FIG. 9 1s a schematic view of a Montgomery multiplier
according to the mvention; and

FIG. 10 1s a schematic view of a modular exponentiator
according to the mvention.

DETAILED DESCRIPTION

The following notations are used 1n the description which
follows:

D2 denotes the following document: Cetin Kaya Kog,
“RSA Hardware Implementation”, which may be
obtained from the same address as the previously men-
tioned document D1;

:=1s the allocation symbol, thus X:=M signifies that the
value of a variable denoted M 1s allocated to a variable

denoted X:

“dec” indicates that the digit which precedes 1t 1s 1n decimal
notation;

“FPGA component” refers to the known programmable
component of the FPGA (field programmable gate

array) type.
FIG. 1 shows the Montgomery method for carrying out a

modular multiplication between a first input variable denoted
“a” and a second input variable denoted “b” according to the
followmg relationship:

a‘b mod n;

where a, b and n are natural integers, n being the modulus.

The following description of this method only presents the
information necessary for an understanding of the imnvention.
For turther information the reader may refer, for example, to
the document D1, chapter 3.8 “Montgomery’s method”.

The modular multiplication according to the Montgomery
method 1s carried out 1n five successive steps number 2, 4, 6,

8 and 10 on FIG. 1.

The step 2 consists of calculating the varniablen', according
to the following relationship:

no=-Hgy ;
where:
the sign — represents the operation of complement to 1;

n, represents the w least significant bits of the modulus n, w
being called the radix;

5

10

15

20

25

30

35

40

45

50

55

60

65

8

represents the mverse of n, and 1s defined by the
relationship n,n,”'=1 mod (2%), this equation being
solved by known methods such as the extended Euclid-
can algorithm.
The significance of the calculation of n', 1n this step will
become apparent upon reading the description of FIG. 2.
In the second step 4 the Montgomery remainder of the
input variable a, denoted a, is calculated according to the
following relationship:

—1
I

a:=a'p mod n

where:
a 1s the first input variable of the modular product;
n 1s the modulus of the modular product;

p is defined by the following relationship: p=2*, where k is
the natural integer such that: 2! =n<2*.

In the third step 6 the Montgomery remainder of the input
variable b, denoted b, is calculated according to the following
relationship:

b:=b-p mod n;

where:
b 1s the second mput variable of the modular product;
n 1s the modulus;
p 1s 1dentical to the variable p defined 1n the second step 4.

In the fourth step 8 the Montgomery product between the
remainder a and the remainder b is calculated and the result is

allocated to a variable x according to the following relation-
ship:

x:=MonPro(a,b);

where:

a and b are the remainders calculated respectively at steps
4 and 6;

MonPro represents the Montgomery product operation
between the variables a and b. This operation will be
described later with regard to FIG. 2.

In the fifth step 10 the Montgomery product between the
variable x and the unit is calculated and the result is allocated
to a variable x according to the following relationship:

x:=MonPro(x,1);

where:
X 1s the variable calculated at the fourth step 8;
1 represents the unit;

MonPro represents the Montgomery product operation.

At the end of the five steps 2, 4, 6, 8 and 10 the result of the
multiplication of the first variable a by the second variable b
modulo n 1s obtained 1n the variable x.

FIG. 2 shows the Montgomery method 1n its high-radix
form for calculating a Montgomery product, also referred to
here as the high-radix Montgomery method.

The following description of this method only presents the
information necessary for an understanding of the invention.
For further information the reader may refer, for example, to
the document D2, chapter 7.5 “High radix Montgomery’s
method”.

The calculation of a Montgomery product corresponds to
the MonPro operations of FIG. 1. This operation will be
presented 1n the particular case of step 8 of FIG. 1, that 1s to
say that the following calculation 1s described here:

MonPro(a,b)=a-bp~' mod n;

US 7,580,966 B2

9

where:
a and b are the respective Montgomery remainders of the
variables a and b calculated at steps 4 and 6 of FIG. 1;
p~ " is the modulo n inverse of the variable p defined during
the description of step 4 such that p~" satisfies the fol-
lowing relationship: p-p~'=1 mod n.

This method has three principal steps 16, 18 and 20. The
first step 16 consists of imitialising a variable u and an 1ndex 1
according to the following relationships: u:=0; 1:=0. It also
consists of pre-calculating first products ab which will be
defined with regard to operation 24 of this method.

The second step 18 consists of repeating a loop of opera-
tions as long as the index 11s not less than or equal to a variable
s—1, the index 1 being incremented at the end of each 1teration
of the loop. This loop of operations 1s’ denoted 1n a conven-
tional manner “for 1=0 to s—1". The variable s which deter-
mines the number of 1terations 1s defined here by the follow-
ing relationship:

k:=s/w:

where:
k represents the number of bits necessary to encode the
modulus n, that 1s to say that k satisfies the relationship:
2 l=n<2k
m 1s the radix.
Thus 11 for example k=512 bits and 11 the radix mw=4 bits,
s=128.
Moreover, 11 the division of k by the radix o does not give
a natural integer, 1t 1s possible to add to the binary represen-
tation of the modulus n most significant bits equal to 0 1n such
a way that the binary representation of the modulus n thus
obtained contains anumber of bits k' which 1s amultiple of the
radix m.
The loop of operations 18 includes four successive opera-
tions 24, 26, 28 and 30.
The first operation 24 of the loop of operations 18 consists
of carrying out a first operation of addition and allocating the
result to the variable u according to the following relation-

ship:

u:=u+a;b;

where:

a, represents the m least significant bits of the variable a
after a i” shift to the right of w bits of the binary repre-
sentation of a, 1 corresponding to the index i of the
variable a_;

b represents the Montgomery remainder of the input vari-
able b:

u 1s the variable mitialised during step 16.

All of the values of the products a,. b when the value of the
index 1 varies from 0 to 2—1 will be called hereafter “the first
products”.

The operation 26 consists of allocating to a variable m the
result of the multiplication of a variable u, by n', modulo 2%
according to the following relationship:

m:=ugyn'g mod 2%;

where:
u, represents the m least significant bits of the variable u
previously calculated during the operation 24:
n', 1s the variable calculated during the step 2 of the method
of FIG. 1;

m 1s the radix.

The operation 28 consists of carrying out a second opera-
tion of addition then allocating the result to the variable u
according to the following relationship:

10

15

20

25

30

35

40

45

50

55

60

65

10

U U+ H

where:

u 1s the variable previously defined;

m 1s the varniable calculated during the operation 26;

n 1s the modulus of the modular multiplication of FIG. 1.

All of the possible values of the products m-n when the
value of m varies from 0 to 2®-1 will be referred to hereafter
as “the second products™.

The operation 30 consists of carrying out an operation of
division of the variable u by a power of 2, the allocating the
result of the division to the variable u according to the fol-
lowing relationship:

yr=u2"

where:

u 1s the variable previously calculated;

2% 1s the power of 2, o being the radix.

At the end of the loop of operations 18, the step 20 is
performed. This step consists of carrying out an operation of
reduction 11 the value of the variable u obtained at the end of
the loop of operations 18 1s greater than n, n being the modu-
lus. The reduction operation consists of allocating to the

variable u the result of the subtraction u minus n according to
the following relationship:

. —U—H

where u and n are respectively the value calculated during the
loop of operations 18 and the modulus of the modular multi-
plication of FIG. 1.

It will be noted that the Montgomery method described 1n
FIGS. 1 and 2 transforms modulo n multiplications into
modulo 2% multiplications. The modulo 2® multiplications
are performed much more quickly on conventional comput-
ing means. However, it 1s known that this gain 1n speed at the
level of the modular multiplications 1s counterbalanced by the
slowness of the calculation of the remainders a and b during
steps 4 and 6 of FIG. 1.

The high-radix Montgomery method 1s currently used with
a radix value equal to 8, this value corresponding to a byte
(8-bit word). Surprisingly 1t was determined by tests that this
radix value was not the optimum for speeding up the time
required to perform the calculation of a high-radix Montgom-
ery product 1n the following conditions:

the calculation 1s carried out on large numbers. The desig-

nation “large numbers™ 1s intended to mean natural 1nte-
gers encoded 1n binary form on at least 320 bits.

the calculation 1s carried out by computing hardware. The

designation “computing hardware™ 1s intended here to
mean electronic components, or sets of electronic com-
ponents specially designed to carry out the calculation.
Polyvalent computing means, such as a conventional
computer associated with a programme enabling this
calculation to be carried out, are effectively excluded
from this hardware.

The following tests were carried out for variables a, b and
n encoded 1n binary form on 512 bits, that 1s to say for a value
of the variable k, previously defined, equal to 512 bits. The
tests consist 1n a {irst step of designing hardware for calcula-
tion of a Montgomery product according to the method of
FIG. 2. In a second step the test consist of determining the
time required to perform a calculation of a Montgomery
product according to the method of FIG. 2 on computing
hardware designed during the first step and for the maximum
operating frequency of this hardware. Thus 1t will be noted 1n
the following numerical examples that the maximum operat-

US 7,580,966 B2

11

ing frequency of the hardware decreases as the value of the
radix o increases. For the following numerical results the
computing hardware 1s formed with a FPGA (field program-
mable gate array) component having the reference 10K 200E-
1. In these conditions the results obtained are as follows:

For a radix o equal to 2 bits, the maximum operating
frequency of the computing hardware 1s 66 MHz. The
time required to perform a Montgomery product calcu-
lation according to the method of FIG. 2 1s 8280 nano-
seconds.

For a radix o equal to 3 bits, the maximum operating,
frequency of the computing hardware 1s 60 MHz. The
time required to perform a Montgomery product calcu-
lation according to the method of FIG. 2 1s 6447 nano-
seconds.

For a radix o equal to 4 bits, the maximum operating,
frequency of the computing hardware 1s 50 MHz. The
time required to perform a Montgomery product calcu-
lation according to the method of FIG. 2 1s 5940 nano-
seconds.

For a radix o equal to 5 bits, the maximum operating,
frequency of the computing hardware 1s 40 MHz. The
time required to perform a Montgomery product calcu-
lation according to the method of FIG. 2 1s 6475 nano-
seconds.

Therefore 1t will be appreciated upon reading the results of
these tests that in order to optimise the time required to
perform a Montgomery product calculation according to the
method of FIG. 2 for large numbers encoded on 512 bits the
radix must be chosen to be equal to 4 baits.

In a similar fashion it has been determined that a value of
the radix equal to 4 bits also makes 1t possible to optimise the
time required to perform the calculation of a Montgomery
product according to the method of FIG. 2 for large numbers
encoded on 1024 baits.

There 1s another method 1n existence for calculating the
Montgomery products which 1s known by the name o1 “Mont-
gomery method 1 1ts simple form™. This method corresponds
to the high-radix Montgomery method 1n the case where the
radix 1s equal to 1 bit. Consequently this method will not be
described 1n greater detail here, and 1t will simply be consid-
ered that the high-radix Montgomery method also includes
the case where the radix 1s equal o 1 bit.

FIGS. 3A and 3B show an electronic diagram of a carry-
save adder and an electronic diagram of a conventional adder.

Onthe diagrams A, B,, D, C.and S, denote respectively the
i”” bits starting from the right of the binary representation of
variables A, B, D, C and S, the bit furthest to the right of each
representation having an index 1 equal to zero.

The carry-save adder of FIG. 3A comprises three cells 40,
42 and 44. These cells 40, 42 and 44 are respectively con-
nected at the input to first means (not shown) for storage of the
bits A,, B, and D, the bits A, B,, and D, and the bits A, B,
and D, of the mput variables A, B and D. They are also
connected at the output respectively to second means (not
shown) for storage of the bits C, and S, C, and S,, and C, and
S, of the output vanables C and S.

The cell 40 1s adapted to calculate the value of the bit S,
according to the following relationship:

S O =A 'D@B 'D@DG

where:

A,, B, and D, are mput bits of the cell;

D represents the logical operation “exclusive OR”.

The cell 40 1s also adapted to calculate the value of the bit
C, according to the following relationship:

Cl . :AD BG‘FA G.Dﬂ_l-Bﬂ.Dﬂ

10

15

20

25

30

35

40

45

50

55

60

65

12

where:

A,, By and D, are defined above;
+ represents the logical operation “OR’™;
-represents the logical operation “AND”.

In a manner similar to the cell 40 the cell 42 1s adapted to
calculate the output bits C, and S, according to the following
two relationships:

S.:=4, BB ,BD;;

CE'. :Al.Bl-l-Al.Dl-l-Bl.Dl'

In a manner similar to the cells 40 and 42, the cell 44 1s
adapted to calculate the output bits S, and C; according to the
following two relationships:

SE . :Az EBBE@DE .

C3 . :Az .BE+A2 _D2+Bz _D2 .

The operation which consists of calculating the output bits
of the variables S and C as a function of the input bits accord-
ing to the preceding relationships 1s called a carry-save addi-
tion.

It will be noted that at the output of the carry-save adder, the
result of the addition of the three input variables A, B and D 1s
registered 1n the two output variables C and S, C and S
forming what 1s called a carry-save ordered pair, denoted (C,
S). In order to obtain the result of the addition of the three
input variables A, B and D 1n one single variable U, the
variables C and S must be recombined according to the fol-
lowing relationship:

U:C+S

where:

C and S are the vanables of the carry-save ordered pair
obtained at the output of the carry-save adder;

+ represents the conventional addition operation.

The method consisting of adding the bits of the input vari-
ables according to the preceding relationships in order to
obtain a carry-save ordered pair, then recombining the vari-
ables of the carry-save ordered pair 1n order to obtain the final
result of the addition of the mput variables 1s known by the
name of “the carry-save method”. Thus the carry-save
method 1s made up of an operation of carry-save addition
followed by an operation of recombination of the carry-save
ordered pair.

The time required to perform the calculation of C,; and S,
by the cell 40 1s denoted A. It1s assumed that the time required
to perform the calculation of C, and S, and of C; and S, by
their respective cells 42 and 44 1s also equal to A. In these
conditions the time required to perform the carry-save addi-
tion between the three input variables A, B and D 1s equal to
M. In fact the bits of the binary representations of the variables
A, B and D are processed in parallel by the cells 40, 42 and 44.
This result can be generalised for carry-save adders including
numerous cells, 1 such a way as to be able to carry out
carry-save additions on large numbers as defined previously.

It will be noted that a carry-save adder can also be provided
by software such as a programme permitting processing in
parallel of the carry-save addition operations.

FIG. 3B shows a conventional adder adapted to carry out
the conventional addition of two input variables A and B and
to store the result 1n an output variable S.

r

T'his conventional adder comprises three cells 48, 50, 52.

r

T'he cell 48 1s connected to the output of first means (not
shown) for storage of the bits A, and B, and to the input of

US 7,580,966 B2

13

second means (not shown) for storing the bit S,. It 1s also
connected to an input of the cell 50. Thais call 48 1s adapted to
add the bits A, and B, 1n a conventional manner and to trans-
mit the carry digit of this addition to the cell 50. The result of
this addition 1s stored 1n the second means for storage of the
bit S,.

The cell 50 1s connected to the output of first means (not
shown) for storage of the bits A, and B, and to the mnput of
second means (not shown) for storage of the bit S,. It 1s also
connected to an mput of the cell 52. This cell 50 1s adapted to
add the bits A, and B, 1n a conventional manner and to trans-
mit the carry digit of this addition to the cell 52. The result of
this addition 1s stored in the second means for storage of the
bit S,.

The cell 52 1s connected to the output of first means (not
shown) for storage of the bits A, and B, and to the input of
second means (not shown) for storage of the bits S, and S,.
This cell 52 1s adapted to add the bits A, and B, the result and
the carry digit of this addition being stored in the second
means for storage, 1n the bits S, and S; respectively.

The time required to perform the calculation S, by the cell
48 1s denoted A and 1t 1s assumed that the time required to
pertorm the calculation of S, and of' S,, S; respectively by the
cells 50 and 52 1s 1dentical to that of the cell 48. It will be noted
upon reading the description of this conventional adder that
the performance of the calculation of S, by the cell 50 can
only commence when the cell 48 has transmitted the carry
digit of the addition of the bits A, and B, that 1s to say when
the calculation of S, 1s terminated. Likewise, the performance
of the calculation of S, S, by the cell 52 can only commence
when the cell 50 has finished the calculation of S;. Conse-
quently, the addition of the two 1mput vaniables A, B by the
adder of FIG. 3B necessitates a time to perform 1t of 3 A.

Theretfore 1t will be appreciated that 1n order to add three
input variables A, B and D with the aid of the conventional
adder of F1G. 3B, the time required to perform the calculation
1s 3 for a first addition of A to B to which it 1s appropriate to
add 3 A, corresponding to the time required to perform a
second addition between the result of the first addition and the
variable D. Thus to carry out an addition between three input
variable A, B and D with the aid of this conventional adder
necessitates a time of 6A.

With the aid of this simplified example 1t 1s established that
the time required to perform a conventional addition 1s pro-
portional to the numbers of bits of the mput vanables.

By way of comparison 1t may be assumed that the perfor-
mance time A 1s the same for the cells 40, 42, 44, 48, 50 and
52 of FIGS. 3A and 3B. Thus a carry-save addition between
the variables A, B and D with the aid of the carry-save adder
1s performed 1n a time A. In order to obtain the results of the
addition 1n one single variable, the variables C and S must be
recombined by carrying out a conventional addition operation
between them which 1s performed 1n a time 3A. The total time
required to perform the addition of the variables A, B and D
using a carry-save adder 1s then equal to 4A, as against 6 A 1n
the case where only conventional adders are used.

It will also be appreciated upon reading the preceding
description that the gain in time achieved by virtue of the use
of carry-save adders 1s all the more substantial as the addi-
tions are carried out on large numbers. In fact, the time
required to perform a conventional addition 1s proportional to
the number of bits of the input variables, which i1s not the case
for a carry-save addition.

However, it 1s known that the use of carry-save adders 1s
only usetul in order to carry out additions between three input
variables. Moreover, the result obtained at the output of a
carry-save adder 1s presented in the form of a carry-save

5

10

15

20

25

30

35

40

45

50

55

60

65

14

ordered pair which necessitates recombination of the output
variables C and S by a conventional addition, thus limiting the
uselulness of a carry-save adder. It has also been appreciated
that 1t 1s difficult to carry out arithmetic operations on a
variable represented in the form of a carry-save ordered patr.
For example 1t 1s not possible simply to carry out an operation
of division by a power of 2, denoted 2%, of a carry-save
ordered pair according to the following relationship:

(C, $)22:=(CRe, §/2%)

where C and S are the variables of the carry-save ordered parr.

This difficulty 1s illustrated on the example of FIG. 4
where:

C=0110 0000 0010; and

5=01001001 1110.

By recombination of the variables C and S according to the
relationship C+S the following result 1s obtained:

C+5=10101010 0000(=680 dec).

By division of the recombined carry-save ordered pair C+S
by a power of 2, 1 this case 16, the following result 1s then
obtained:

(C+5)/16=10101010(=170 dec).

Now, 1f the same calculation 1s carried out but with the
order of the operations reversed, that 1s to say that first of all
the division operation and then the recombination operation 1s
carried out, then the following numerical results are obtained
1N success1on:

C/16=0110 0000;
S/16=0100 1001;

C/16+5/16=1010 1001(=169 dec).

It will therefore be noted that the simple division of each
variable C and S by a power of two does not permit the exact
result to be obtained. It 1s therefore necessary to recombine
the carry-save ordered pair (C, S) before performing a divi-
s1on of a variable stored 1n the form of a carry-save ordered
pair. No known solution to this problem exists in the current
prior art.

Upon reading the known drawbacks of the carry-save
adders, 1t will be appreciated that 1t 1s not obvious to use these
adders within the framework of the calculation of a Mont-
gomery product. In fact, the known methods of calculation of
a Montgomery product only involve addition operations
between two variables and not three. Furthermore, these
known methods include, particularly in the case of the high-
radix method, arithmetic operations which cannot be carried
out on carry-save pairs, such as the operation 30 of FIG. 2.

FIG. 5 shows a method according to the mmvention for
calculation of a Montgomery product between two 1nput vari-
ables, denoted a and b, corresponding to the remainders cal-
culated during the steps 4 and 6 of the method of FIG. 1. In

order to present this method, the same notations are used as
those defined with regard to FIG. 2.

FIG. 5 comprises three successive principal steps 70, 72
and 74, the step 70 being a step of iitialisation, the step 72
being a step of 1teration of a loop of operations, and the step
74 being a step of recombination and reduction of the result.

US 7,580,966 B2

15

The 1mitialisation step 70 consists of 1nitialising the vari-
ables necessary for the calculation of the Montgomery prod-
uct according to the following relationships:

C1:=0;
S1:=0;
C2:=0;
S2:=0;
R:=0;

where:

C1 and S1 are variables of a first carry-save ordered pair
denoted (C1, S1);

C2 and S2 are variables of a second carry-save ordered pair
denoted (C2, S2);

R 1s a variable for storage and cumulative totalling of carry
digits, the significance of which will become apparent
upon reading the following description.

The step 70 also consists of pre-calculating the first prod-

ucts a b defined with regard to the operation 24 of FIG. 2.

For this, b is multiplied by all the possible values of a_, that
is to say the natural integers between 0 and 2™-1.

The second step 72 consists of reiterating a loop of opera-
tions as long as an index, denoted 1, 1s not greater than or equal
to a variable s—1, the mndex 1 being incremented at the end of
cach iteration of the loop. This loop of operations 1s denoted
in a conventional manner “for 1=0 to 2-1”. The variable s
which determines the number of iterations 1s defined in an
analogous manner to that of step 18 of FIG. 2.

The loop of operations 72 comprises four successive opera-
tions 76, 78, 80 and 82.

The operation 76 consists of carrying out a first operation
ol carry-save addition between the variables C2 divided by
2%, S2 divided by 2? and one of the first products a_-b defined
with regard to the operation 24 of FIG. 2. This addition
operation 1s carried out with the aid of a carry-save adder
according to the following relationship:

(C1, S1):=C2/2°+S52/2+a;'b

where:

m 1S the radix;

(C1, S1) 1s the first carry-save ordered pair formed by the

variables C1 and D1;

a-b is one of the first products;

C2 and S2 are the vanables of the second carry-save

ordered pair (C2, S2).

It will be noted that this operation 76 fulfils the same
function as the operations 24 and 30 of FIG. 2, but the {irst
addition operation 1s carried out with the aid of a carry-save
adder.

The operation 78 consists of carrying out the conventional
addition of the variables C1,,, S1, and (R/2%), and then allo-
cating the result of this operation to a variable m, according to
the following relationship:

. :(Cl D+Sl G+(R/2UJ) 0) 'HID

where:
C1, and S1, represent the w least significant bits respec-
tively of the vanables C1 and S1, o being the radix;
(R/2%), represents the w least significant bits of the result
of the division of R by 2, w being the radix;
n', 1s the variable calculated during step 2 of the method of
FIG. 1;

m 1S a variable 1n which the result 1s stored.

10

15

20

25

30

35

40

45

50

55

60

65

16

The operation 80 consists of carrying out a second opera-
tion of addition between the variables C1, S1 and one of the

second products m-n defined with regard to the operation 28

of FIG. 2. This addition 1s carried out by a carry-save adder
and the result 1s allocated to the variables C2, S2 of the second

carry-save ordered pair according to the following relation-
ship:

(C2, 82):=C1+S1+m#

where:
C1 and S1 are the variables previously calculated;
m-n 1s one of the second products;

S2 and C2 are the vaniables of the second carry-save
ordered patr.

It will be noted that the operation 80 fulfils the same func-

tion as the second addition operation of FIG. 2, butitis carried
out with the aid of a carry-save adder.

The operation 82 consists of calculating the variable R by
adding the variables C2,, S2,, and the value of the variable R
in a conventional manner. The result 1s allocated to the var-
able R according to the following relationship:

R:=C2y+S2+R

where:

C2,, S2, are respectively the w least significant bits of the
variables C2 and S2,) being the radix;

R 1s the variable for storage and cumulative totalling of the

carry digits.

In fact, 1t has been discovered that the difference 1n result
between the operation (C2+S2)/2" and the operation (C2/2%+
S2/2%), as illustrated by the example of FI1G. 4, 1s equal to the
carry digit of the operation C2,+S2,. Therefore the carry digit
of the operation C2,+S2, 1s here called “the carry digit which
1s at risk of being lost by the division of each variable C2 and
S2 by a power of 2, denoted 2””°. Therefore this operation 82
calculates the carry digit which 1s at risk of being lost by the
division of each variable C2 and S2 of the second carry-save
ordered pair by the power 2% during the operation 76. Fur-
thermore, here the operation 82 cumulatively totals the carry
digit of the addition of C2,+S2 at each 1teration of the loop of
operations 72 for subsequent use in the step 74.

The step 74 of recombination and reduction 1s made up of

a recombination operation 84 followed by a reduction opera-
tion 86.

The operation 84 consists of carrying out a conventional
addition between the variable C2 divided by 2%, the variable
S2 divided by 2% and the variable R divided by 2%, the result
being allocated to a vaniable u according to the following
relationship:

[

u:=C2/2"+S52/2"+R2"

where:
m 18 the radix;
C2, S2 and R are the variables previously calculated during
the loop of operations 72;
u 1s a variable of storage of the result of the operation.

It will be noted that this operation 1s a combination of the
following operations:

A division by 2% of each variable of the carry-save ordered
pair (C2, S2).

An operation of extraction from the cumulative totalling of
the carry digits calculated during the execution of the
loop of operations 72, this operation being carried out by
shifting the variable R to the right by bits.

US 7,580,966 B2

17

An operation of recombination of the second carry-save
ordered pair (C2, S2) calculated during the execution of
the loop of operations 72.

An operation of addition to the previously recombined
second carry-save ordered pair of the cumulative total of
the carry digits which would have been lost 1f they had
not been stored and cumulatively totalled 1n the variable
R during the execution of the loop of operations 72. Thus
this operation makes 1t possible to restore the true value
of the result at the end of the loop of operations 72 1n
spite of the operations of division of each variable of a
carry-save ordered parr.

The operation 86 consists ol carrying out a reduction

operation 1f the variable u 1s greater than the modulus n
according to the following relationship:

U —U—H

where u 1s the result of the Montgomery product.

This operation 1s denoted 1n a conventional manner: “if
u=n then u:=u-n".

The method of calculation of a Montgomery product
according to the invention 1s clearly faster than the known
method of FIG. 2. In fact, the first and second addition opera-
tions 76 and 80 are carried out with the aid of carry-save
adders, whilst 1n the known method the first and second
addition operations 24 and 28 are carried out with the aid of at
least one conventional adder. Furthermore, the method of
FIG. 5 discloses a method of carrying out a division of a
variable represented in the form of a carry-save ordered pair
by a power of 2, which avoids a step of recombination of the
carry-save ordered pair before performing this division. This
speeding up of the time required to perform the Montgomery
product calculation 1s all the more substantial as the input
variables a, b are larger, i.e. encoded on a substantial number
of bits (greater than 320 baits).

It will be noted that the operations 78 and 82 include
additions on small numbers encoded on m bits and that an
optimisation of the time required to perform these two opera-
tions has no significant effect.

Moreover, the operations 84 and 86 are carried out less
frequently than the operations of the loop 72, and conse-
quently an optimisation of the time required to perform them,
whilst possible, has o more effect than that of the operations
of the loop 72. However, in a variant these operations are
speeded up. An embodiment of this variant will be presented
with regard to FIG. 9.

In another variant, all of the second products m'n are cal-
culated before the loop of operations 72 1s executed and are
stored 1n a memory. Thus the operations of calculating the
first products a,-b and the second products m-n during the loop
of operations 72 are replaced by operations of selection of the
results of these calculations in the said memory.

In a variant, the radix m 1s chosen to be equal to 4 bits in
such a way as to optimise the time required to perform the
calculation of the Montgomery product between input vari-
ables encoded on 512 or 1024 bits on computing hardware. In
fact, 1t has been determined in a manner similar to that
described with regard to the method of FIG. 2 that for such
input variables a value of the radix w equal to 4 bits speeds up
the time required to perform the Montgomery product calcu-
lation.

The embodiment will preferably be a combination of the
method of FIG. 5 and the two variants described above.

FIG. 6 shows a method of calculation of a modular expo-
nentiation according to the m-ary method in order to carry out
the following calculation:

5

10

15

20

25

30

35

40

45

50

55

60

65

18

M?% mod n

where:

M, E and n are natural integers encoded in binary form on

a maximum of k bits,

M 1s the message; E 1s the exponent; and n 1s the modulus.

The m-ary method of calculating a modular exponentiation
1s known, and therefore the description which follows only
has the aim of introducing the elements necessary for an
understanding of the invention. The reader may refer to docu-
ment D1, chapter 2.4 “The m-ary Method” for more detailed
information.

FIG. 6 includes four successive steps 90, 92, 94 and 96.

The step 90 consists of calculating and registering in a
memory the following exponentiations of the variable M:

M mod n;

where:

M 1s the message;

¢. 1S an exponent;

n 1s the modulus.

The preceding exponentiation 1s calculated for all the val-
ues of the exponent a between 2 and m—1, m being equal to 27,
where r 1s a parameter pre-defined by the user. This step 1s
represented 1n a conventional manner 1n FIG. 6 by the caption
“M” mod n forall a=2,4, ... m-1".

The step 92 consists of cutting the binary representation of
the exponent E 1nto s' r-bit words, each denoted F,, where 11s
an index of the word and varies from O for the word furthest to
the right in the binary representation of E to s'-1 for the word
turthest to the left of this same binary representation. s' 1s
calculated according to the following relationship:

k=s"r

where:

k 1s the number of bits of the binary representation of E;

r 1s the pre-defined parameter.

IT k 1s not divisible by r, bits equal to 0 are added to the left
of the binary representation of the exponent E in order to
obtain a binary representation including a number of bits
divisible by the parameter r. For example, 1f r and k are
respectively equal to 5 and 512 bits then 3 bits of zero value
are added to the left of the binary representation of the expo-
nent E 1n order to obtain a binary representation including 515
bits, which makes it possible to obtain s' equal to 103.

The different words F, are obtained, for example, by suc-
cessive operations of shifting to the left of the exponent E of
r bits 1n a shait ledt register.

The step 94 consists of calculating M**~! mod n and allo-
cating the result to a variable C according to the following
relationship:

C:=M5-1 mod n;

where:

n 1s the modulus;

F._, is the (s'-1)” word determined during the step 92;

M 1s the message;

C 1s the variable 1n which the result of the operation 94 1s

stored.

The step 96 consists of reiterating a loop of operations as
long as the index 1 mitialised at the value of s'-2 1s not less
than or equal to O, the index 1 being decremented at the end of
cach 1teration of the loop. This loop of operations 1s denoted
in a conventional manner “for 1=s'-2 downto 0. The variable
s' which determines the number of iterations has been defined
previously.

US 7,580,966 B2

19

This loop of operations comprises two successive opera-
tions 98, 100.

The operation 98 consists of calculating a modular expo-
nentiation of the variable C and then allocating the result to
the variable C according to the following relationship:

C:=C? mod n

where:

C 1s the vaniable imtialised during the step 94;

r 1s the pre-defined parameter;

n 1s the modulus.

The operation 100 consists of calculating a modular mul-
tiplication of the vanable C, previously obtained during the
operation 98, by the variable M**! if the word F, is different
from O according to the following relationship:

C:=C-Mfimodn

where:
n 1s the modulus:
F. 1s the word of index 1 determined during the step 92;

C 1s the variable previously calculated during the operation
98.

This operation 1s represented 1n a conventional manner in
FIG. 6 by the caption “If F =0 Then C:=C-M*" mod n”.

At the end of the execution of the loop of operations 96, the
variable C contains the result of the modular exponentiation
of the message M.

The m-ary method described above for calculating a modu-
lar exponentiation implements approximately 0 operations of
modular multiplication, ¢ being calculated by the following
relationship:

§=2"=Dtk—r+(k/r=1)(1-1/2")

where:

k 1s the number of bits of the exponent E;

r 1s the pre-defined parameter.

This represents a reduction 1n the number of operations by
comparison with other known methods, such as the LR binary
algorithm, of 17 to 18% when the exponentiation relates to
large numbers encoded on 512 or 1024 bits. However, certain
methods are known to be even faster, such as for example the
RL binary algorithm which permits parallel operations. How-
ever, 1t has been determined experimentally that the m-ary
method for a parameter r chosen to be equal to 5 bits 1s an
optimum compromise between the number of modular mul-
tiplication operations carried out and the resources necessary
in order to implement this method. “Resources™ 1s intended to
mean for example the number of cells of a FPGA component.

FI1G. 7 shows a method of calculation of a modular expo-
nentiation according to the invention which 1s illustrated in
the case of the calculation of the following exponentiation:

M~ mod n

where:
M, E are natural integers encoded in binary form on a
maximum of 512 bits;
M 1s the message;
E 1s the exponent; and
n 1s the modulus.

The method of modular exponentiation according to the
invention implements the m-ary method 1n which the modular
multiplications are carried out according to the Montgomery
method described with regard to FIG. 1. The Montgomery
products are for example calculated according to the method
of FIG. § with a radix equal to 4 bits. Furthermore, in the

10

15

20

25

30

35

40

45

50

55

60

65

20

particular case described here the parameter r of the m-ary
method 1s chosen to be equal to 5 bits in such a way as to speed
up the time required to perform the calculation of the expo-
nentiation for input variables encoded on 512 or 1024 bats.

This method comprises seven successive steps 110, 112,
114, 116, 118, 120 and 122.

The step 110 consists of calculating the Montgomery
remainder of the message M according to the following rela-
tionship:

M:=M-p mod n
where:

M 1s the message;

p 1s the parameter of the Montgomery method defined
during the step 4 of the method of FIG. 1 according to the
following relationship: p=2*, where k is the number of
bits of the modulus n;

n 1s the modulus;

M is the variable in which the remainder of the message M

1s registered.

The calculation of the remainder of M 1s carried out by
conventional methods such as the extended Euclidean algo-
rithm.

The step 112 consists of calculating the variable n', accord-
ing to the following relationship: n',=-n,~*. This calculation
has already been described with regard to step 2 of F1G. 1 and
therefore 1t will not be described again here 1n detail. This
calculation 1s also carried out by conventional methods such
as the extended Fuclidean algorithm.

The step 114 consists of calculating all of the second prod-
ucts m-n. For this the product mn 1s calculated for each value
of m between O and 13. In fact, an examination of the opera-
tion 26 of F1G. 2 shows thatm 1s congruent with u,n', modulo
2%, such that the value of m can only be between 0 and 15
when the radix m 1s equal to 4 bats.

The step 116 consists of raising the remainder M in the
Montgomery sense to the power a for all the different values
of o between 2 and 31. In fact, the parameter r of the m-ary
method 1s equal to 5 bits here, and 1t follows from the step 90
of the method of FIG. 6 that it 1s not necessary to calculate the
powers M higher than 31. This step 116 1s for example carried
out by thirty-one successive Montgomery product calcula-
tions according to the following relationship:

M*=MonPro(M M>1)

where MonPro designates a Montgomery product calculated
for example according to the method of FIG. 5.

During this step, the following operations are carried out in
SUCCEeSS101;

M*=MonPro (M,M), where M has been calculated during,
the step 110;

M->=MonPro (M,M?), where M~ has been calculated dur-
ing the preceding operation;
etc . .

-

Thus M* to M>! are obtained successively.

—

The step 118 consists of cutting the exponent E ito a
succession of 5-bitwords called F, in accordance with the step
92 ofthe m-ary method described with regard to FIG. 6. Then,
still in step 118, the value of M* ' is allocated to a variable C

according to the following relationship:

C:=NIF102

where I, ,, is the 102" word F, as defined with regard to the
step 94 of FIG. 6.

US 7,580,966 B2

21

It will be noted that during this step M* '® does not have to
be calculated since this calculation has already been carried
out during the step 116.

The step 120 consists of reiterating a loop of operations as
long as an index 1 iitialised at the value 101 1s not strictly less
than O, the index 1 being decremented by 1 with each 1teration
of the loop of operations. The 1nitial value of the index 1 1s
calculated 1n accordance with the step 96 of FIG. 6 for a
parameter r of the m-ary method equal to 5 bits and a value of
the variable k equal to 515 bits.

The loop of operations 1s made up of two successive opera-
tions 126 and 128.

The operation 126 consists of calculating and storing the
raising to the power 32 of the variable C according to the
following relationship:

C:=C?*

where:

C is the variable initialised at step 118;

32 1s calculated 1n accordance with the operation 98 of the
m-ary method of FIG. 6, according to the relationship
32=2", where 5 is the value of the parameter r of the
m-ary method.

The operation 128 consists of calculating the Montgomery

product of the variable C by the variable M*" and storing this
result according to the following relationship:

C:=MonPro(C M)

where:

M*"1s selected from amongst the powers of M calculated at
the step 116 knowing the value of F;;

MonPro designates the Montgomery product operation,
for example performed 1n accordance with the method
of FIG. §.

It will be noted that this operation 128 also includes a test
of the value of F, 1n such a way as to perform a Montgomery
product calculation 11 the value of F, 1s different from O.

In a vanant, the Montgomery product calculation 1s sys-
tematically performed in order to avoid the test of the value of
F..

At the end of the step 120, the step 122 1s performed. This
step consists of calculating the Montgomery product between
the variable C and the unit 1 and storing this result according
to the following relationship:

C:=MonPro(C, 1)

where:
C is the variable calculated at step 120;
1 represents the unit;

C 1s a vaniable 1n which the result of the modular exponen-

tiation of the mput message M 1s registered.

It will be noted that the combination of the m-ary method
and the Montgomery method 1n order to calculate modular
multiplications 1s of particular interest in the case of the
calculation of an exponentiation since the Montgomery
remainder of the mput message M 1s only calculated once.
Thus the drawback of the Montgomery method, that 1s to say
the necessity of calculating the remainders of input variables
betfore carrying out the Montgomery product calculations 1s
limited. This combination of the m-ary method and the Mont-
gomery method therefore makes 1t possible to speed up the
time required to perform the calculation of a modular expo-
nentiation.

In a variant 1t 1s also possible to combine the method of
FIG. 7 with the Chinese remainders method (also called the

5

10

15

20

25

30

35

40

45

50

55

60

65

22

CRT method). The Chinese remainders method 1s succinctly
described 1n FIG. 8. This method 1s known, and the reader
may refer for more detail to chapter 4.1: “Fast Decryption

using CRT™ of the document D1.

The Chinese remainders method makes 1t possible to break
down a first modular exponentiation operation 1nto two sec-
ond modular exponentiation operations with smaller expo-

nents and moduli.
The first modular exponentiation i1s denoted as follows:

M~ mod n

where:
M 1s an mput message;
E 1s an exponent;

n 1s a modulus which 1s broken down 1n the form of a
product such that n=P-Q), where P and Q are first natural
integers.

In a first step 130, this first exponentiation 1s broken down
into two second exponentiations respectively module E1 and
E2 which are calculated separately according to the following
relationships:

M1:=M%Z! mod P
M2:=M*? mod Q

where:
M 1s the input message;
E1=E mod (P-1);
E2=E mod (Q-1);
M1 and M2 are variables for storage of the intermediate
results.

In a following step 134, the result of the first modular
exponentiation 1s obtained by combining the previously cal-
culated variables M1 and M2 according to the following
relationship:

M:=M2+[(M1-M2)-(O ' mod P)mod P/-Q

where:
M1 and M2 are the variables calculated at step 130;
Q and P are the first numbers such that n=P-Q.

As k 1s the number of bits necessary 1n order to encode the

modulus n, it 1s possible to choose P and Q such that P and Q
have a number of bits substantially equal to k/2. In these
conditions, 1t 1s considered that the Chinese remainders
method makes 1t possible to reduce by a factor 4 the number
of operations required in order to calculate the first exponen-
tiation, when this latter 1s implemented by computing soft-
ware. This factor 1s ol the order of 2 when the Chinese remain-
ders method 1s implemented by computing hardware such as
a FPGA component. Furthermore, 1n order to speed up the
time required to perform the calculation of the first exponen-
tiation, the calculations of the variables M1 and M2 can be
cifected 1n parallel.

It will be noted that this method thus makes 1t possible to
break down a first modular exponentiation concerning large
numbers encoded on 1024 bits 1nto two second modular expo-
nentiations concerning large numbers encoded on 512 bits.

Estimations of the time required for calculation of a first
modular exponentiation have been made in the following
conditions:

the first modular exponentiation concerning large numbers
of 1024 bats 1s broken down into two second modular
exponentiations each of 512 bats;

US 7,580,966 B2

23

cach of the second modular exponentiations 1s calculated
according to the method of FIG. 7 in which the Mont-
gomery products are calculated according to the method
of FIG. §.

In these conditions when the method 1s implemented by a
FPGA component working at 40 MHz, the time required to
perform the calculation of the first modular exponentiation 1s
substantially equal to 4.71 milliseconds.

In the same conditions but for large numbers encoded on
102 bits 1t has been determined that the time required to
perform the calculation of a first exponentiation 1s substan-
tially equal to 17.8 milliseconds.

FIG. 9 1s a schematic representation of computing hard-
ware 150 according to the invention. This hardware 1s called
here a “Montgomery multiplier”. In this Figure only the ele-
ments specific to the mvention have been shown. The other
components which are not shown but are necessary to the
implementation of the method of FIG. 5 may be easily deter-
mined 1n a conventional manner on the basis of the elements
described previously. Thus the components necessary 1n
order to implement the operations 78 and 82 of FIG. 5 as well
as the division operations have not been shown. Equally, the
storage bufiers for the vaniables C1, S1, C2, S2, R and u are
not shown.

This multiplier 150 includes a memory 152 connected to
the input and the output of specific computing means 154
under the control of control means 156.

The Montgomery multiplier 150 described here by way of
example 1s adapted to co-operate with the principal comput-
ing means (not shown). These principal computing means
perform for example a modular exponentiation according to
the method of FIG. 7. In such a situation the Montgomery
multiplier 150 1s a coprocessor which makes 1t possible to
speed up the time required to perform the Montgomery prod-
uct calculations.

The memory 152 1s connected by means of the data input/
output bus to the principal computing means (not shown).

The memory 152 1s adapted to store the following vari-
ables:

the variable M calculated during the step 110 of the method

of FI1G. 7;
the variable n', calculated during the step 112 of the method
of FI1G. 7;

the second products m-n calculated during the step 114 of

the method of FIG. 7;
the variables M™ a calculated during the step 116 of FIG. 7;
the variable C initialised during the step 118 and calculated

during the operations 126 and 128 of the method of FIG.

7,

the unit 1 necessary for carrying out the step 122 of the

method of FIG. 7; and

the first products a b pre-calculated during the step 70 of

the method of FIG. 5.

The specific computing means 154 include a first and a
second carry-save adder 157, 158, a first and a second con-
ventional adder 160 and 162, a shiit rnight register 164 and a
conventional subtractor 166.

The first carry-save adder 157 1s connected to an output of
the memory 152 and to an output of the second carry-save
adder 158. It 1s also connected to the mput of the second
carry-save adder 158. This carry-save adder 1s intended here
to carry out the first addition operation 76 of the method of
FIG. 5. Its structure 1s conventional and follows from that
described with regard to FI1G. 3A.

The second carry-save adder 158 1s connected to the output
of the memory 152 and to an output of the first carry-save
adder 157. It 1s also connected to an mput of the first carry-

10

15

20

25

30

35

40

45

50

55

60

65

24

save adder 157. This adder 158 1s intended here to carry out
the second addition operation 80 of the method of FIG. 5. Its
structure 1s similar to that of the first carry-save adder 157.

The first conventional adder 160 1s connected to an input
and to the output of the memory 152. This adder 1s intended to
carry out the pre-calculation of the first products a-b and the
second products mn. For example, the calculation of the
second products m-n 1s carried out according to the following
succession of calculations:

2N=N+N
IN=N+2N

AN=N+3.N

elc....

The results of the calculations of the first and the second
products are then stored 1n the memory 152 and the locations
provided for that purpose.

The second conventional adder 162 1s connected to the
output of the second carry-save adder 158 and to an mput of
the subtractor 166. This second adder 162 1s intended to carry
out the recombination operation of FIG. 5. Its structure fol-
lows from that described with regard to FIG. 3B. However,
the cells which make 1t up, such as the cell 48 of FIG. 3B, are
grouped 1n stages of 32 cells. The output of each stage i1s
directly connected to a corresponding stage 1n the subtractor
166 1n such a way that as soon as the calculation of the
addition 1n one of the stages 1s finished the result 1s directly
transmitted to the corresponding stage of the subtractor 166
without waiting. Thus the subtractor 166 performs the sub-
traction operation with only one clock cycle delay on the
addition operation. This structure 1s known under the name
“pipe line”, and makes it possible to speed up the time
required to perform operations.

The subtractor 166 1s adapted to carry out the operation 86
of F1G. 5. Therefore for example 1t 1s connected to the outputs
of the second conventional adder 162 and of the memory 152.
It 1s also connected to an input of the memory 152 for example
in order to store the result of the reduction operation 86.

The shift right register 164 1s adapted to shiit to the right by
o bits, o being the radix of the high-radix Montgomery
method. This register 164 1s intended to carry out the opera-
tions of calculating the a,, the result then being used in order
to select one of the corresponding first products ab in the
memory 152. The connections of the shift register 164 to the
other components of FIG. 9 have not been shown 1n order to
simplity the schematic representation, but such connections
can be easily determined.

The control means 156 are adapted to control the operation
of the specific computing means 154 and of the memory 152
in accordance with the method of FI1G. 5. These control means
are designed 1n a conventional manner.

All of the elements 1n FIG. 9 are, for example, implanted 1n
a FPGA component or 1n a ASIC component. In a variant this
component 1s associated with other electronic components on
an electronic card 1n such a way as to produce an electric card
conforming to the PCI standard. A card conforming to the PCI
standard can be slotted into standard computers, and these
latter are then adapted to form the principal computing
means.

In the case of a FPGA component with the reference XIL -
INX XCV1600E-6 operating at 45 MHz, the estimates of the

number of clock cycles required 1n order to perform each step
of the method of FIG. 5 are as follows:

35 clock cycles for the step 70;
260 clock cycles for the step 72;

US 7,580,966 B2

25

39 clock cycles for the step 74 of recombination and reduc-

tion.

Thus the estimate of the total number of clock cycles in
order to calculate a Montgomery product according to the
method of FIG. 5 1s 334 clock cycles for the input variables
encoded on 512 bats.

In these conditions 1t has also been estimated that the
method of FIG. 7 implements 643 Montgomery products and
that the step 114 of FIG. 7 of pre-calculation of the second
products m-nnecessitates 38 clock cycles. Thus an estimate 1s
obtained of the number of clock cycles necessary 1n order to
calculate a modular exponentiation concerning large num-
bers of 512 bits equal to 214223 clock cycles. For an operat-
ing frequency of the FPGA component of 45 MHz this cor-
responds to a number of 512 bit exponentiations substantially
higher than 200 per second. It will be noted that for this
estimate 1t 1s considered that the steps 110 and 112 of the
method of FIG. 7 are performed by the principal computing,
means associated with the Montgomery multiplier 150. Con-
sequently the number of clock cycles required 1n order to
execute these two operations 1s not taken into account in this
estimate. However, it 1s admaitted that the time required to
perform them 1s approximately 10 times less than that of steps
114 to 122.

In a variant the specific computing means 154 comprise
one single carry-save adder. In fact, when the method of FIG.
5 1s being carried out the first addition operation 76 always
precedes the second addition operation 80 since the result of
the first addition 76 1s used 1n this second addition operation
80. Consequently the first and the second carry-save adders
157, 158 are never active at the same time, and 1t 1s theretfore
possible to replace them by one single carry-save adder which
carries out the first addition operation 76 and the second
addition operation 80 alternately.

FIG. 10 1s a schematic representation of the computing
hardware 200 according to the invention associated with prin-
cipal computing means. In this schematic representation only
the principal electronic components have been shown, but the
other components can be easily determined.

The principal computing means 201 are adapted to perform
the modular exponentiations according to the method of FIG.
7 by co-operating with the computing hardware 200. They
are, for example, formed with a computer. In the particular
case described here, the means 201 are adapted to perform a
first and a second modular exponentiation. The first and the

second modular exponentiations are each carried out accord-
ing to the method of FIG. 7 and

consequently implement respectively the first and the second
Montgomery products.

The computing hardware 200 1s adapted to form a copro-
cessor for the principal computing means 201. It includes a
Montgomery multiplier 202 associated with means for shift-
ing to the lett 204 under the control of first control means 206.

The Montgomery multiplier 202 1s a variant of the Mont-
gomery multiplier 150 of FIG. 9 1n which the use of the
resources 1s optimised. In fact it 1s adapted to perform the first
and the second Montgomery product calculations substan-
tially 1n parallel without nevertheless halving the resources to
be implemented. Thus it makes 1t possible to divide by two the
time required to perform two Montgomery product calcula-
tions.

This Montgomery multiplier 202 includes a memory 210
associated with specific computing means 212 under the con-
trol of second control means 214. Just as 1n FIG. 9, only the
principal components have been shown, but the other com-
ponents can be easily determined.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

The memory 210 1s adapted to store the following vari-
ables:
the remainder M of an input message M of the first expo-
nentiation, calculated during the step 110 of the method
of FI1G. 7 by the computing means 201.

the remainder M' of an input message M' of the second
exponentiation, calculated during the step 110 of the
method of FIG. 7 by the computing means 201.

the variables n', and n", calculated during the steps 112 of
the method of FIG. 7 respectively for the first and the
second modular exponentiations;

the second products m'n and m'n' calculated during the

steps 114 of the method of FIG. 7 respectively for the
first and the second modular exponentiations;

the variables M® and M'” calculated during the steps 116 of

the method of FIG. 7 respectively for the first and the
second modular exponentiations;

the variables C and C' calculated during the step 118 and

during the operations 126 and 128 of the method of FIG.
7 respectively for the first and the second modular expo-
nentiations;

the unmit 1 necessary 1n order to perform the step 122 of the

method of FIG. 7;

the moduli n and n' respectively of the first and the second

modular exponentiations.

The memory 210 includes a first and a second data input
buifer 1n such a way as to register two different data items
simultaneously. It also has a first and a second data output
builer 1n such a way as to make simultaneously available to
the specific computing means 212 two different data items,
one 1n each data buffer.

The specific computing means 212 include a first and a
second shift right register 216, 218, a first and a second
conventional adder 220, 222, a block of carry-save adders 224
and a block 226 for recombination and reduction.

The first shift right register 216 1s connected to the first data
output buifer of the memory 210 and top the input of the first
conventional adder 220. This first shift register 216 1is
intended to be used during the operations of calculating the
first modular exponentiation. Thus this register 1s used 1n a
similar manner to the register 164 of FIG. 8 in order to
calculate the a..

The second shift register 218 1s similar to the first shift
register 216. However, this latter 1s connected to the second
data output butier of the memory 210 and to the mput of the
second conventional adder 222. This shiit register 1s intended
to be used during the operations of calculating the second
modular exponentiation.

The first conventional adder 220 1s connected to the first
data input builer of the memory 210. This conventional adder
220 1s mtended to be used for calculating the first modular
exponentiation. Its structure and its operation are similar to
those of the conventional adder 160 of FIG. 8.

The second conventional adder 220 1s connected at the
output of the second shift register 118 and to the second 1nput
butifer of the memory 210. Its structure and 1its operation are
similar to those of the conventional adder 160 of FIG. 8.

The block 224 of carry-save adders 1s connected to the first
and the second data output butters of the memory 210, and to
the mput of the recombination and reduction block 226. This
block 224 comprises two carry-save adders 230 and 232. The
first and the second carry-save adders 230, 232 are respec-
tively adapted to carry out the first addition operation 76 and
the second addition operation 80 of the method of FIG. 5.
These two carry-save adders 230, 232 are controlled by the
second control means 214 so that the operations of calculat-
ing the first and the second Montgomery products are inter-

US 7,580,966 B2

27

laced. Thus after an initialisation phase the first addition
operation 76 for the first Montgomery product 1s performed
by the first carry-save adder 230 whilst at the same time the
second addition operation 80 for the second Montgomery
product 1s performed by the second carry-save adder 232.
Then during the following operations of executing the loop of
operations 72, the situation 1s reversed, that 1s to say that the
carry-save adder 230 performs the first addition operation 76
tor the calculation of the second Montgomery product whilst
at the same time the second carry-save adder 232 performs the
second addition operation 80 for the calculation of the first
Montgomery product. The second control means 214 take
advantage of the fact that in the method of FIG. 5 applied to
the calculation of one single Montgomery product the first
and the second addition operations are always successive and
cannot be carried out at the same time. Consequently during
the calculation of a single Montgomery product there 1s
always a carry-save adder which 1s inactive. Thus the second
control means described here control the mactive carry-save
adder 1n order to perform an addition operation intended for a
second Montgomery product performed 1n parallel with the
first.

The recombination and reduction block 226 1s made up of
a conventional adder 236 connected to the mput of a conven-
tional subtractor 238. The conventional adder 236 1s con-
nected to the output of the block 224 of carry-save adders.
This conventional adder 236 1s adapted to carry out the
recombination operation 84 of the method of FIG. 5.

The subtractor 238 1s connected for example to the input of
the principal computing means 201 capable of using the result
of the Montgomery product. The subtractor 238 1s adapted to
carry out the reduction operation 86 of the method of FIG. 5.

The second control means 214 are provided 1n a conven-
tional manner and are connected to all of the components of
the Montgomery multiplier 202. They are also adapted to
control the different operations of calculating the first and the
second Montgomery products produced by the Montgomery
multiplier 202.

The Montgomery multiplier 202 1s produced for example
with the aid of a FPGA or ASIC component.

The shift left means 204 are connected to the mput and to
the output of the principal computing means 201 under the
control of the first control means 206.

The means 204 for carrying out a shiit to the left include a
memory 240 of the RAM type (random access memory) in
which a first and a second exponent are stored which corre-
spond respectively to those of the first and the second modular
exponentiations. The first and the second exponents are
denoted respectively E1 and E2. This memory 240 1s con-
nected to the input of a first and a second r-bit shift lett register
242, 244, r being the parameter of the m-ary method.

The shift left register 242 1s adapted to determine and
supply the variables F, dertved from the exponent E1 1n accor-
dance with step 118 of the method of FIG. 7. This shiit
register includes a number of bits which 1s lower than that of
the exponent E1, for example 32 bits whereas the exponent E1
1s encoded on 512 bits. Thus as soon as all of the bits con-
tained 1n this register have been shifted, the register 1s imme-
diately reloaded with the following 32 bits of the exponent E1
extracted from the memory 240. This makes 1t possible to use
a 32-bit shift register to shift the numbers encoded on a higher
number of bits.

The shitt left register 244 1s similar to the shiit register 242,
but 1t 1s intended to supply the variables F'. derived from the
exponent E2.

The first control means 206 are connected to the shaft left
means 204 and to the second control means 214. They are

5

10

15

20

25

30

35

40

45

50

55

60

65

28

adapted to control the shiit left means 204 and the Montgom-
ery multiplier 202 by means of the second control means 214.
They are also connected to the principal computing means
201 and adapted to co-operate with these latter in order to
implement the method of FIG. 7. Thus the steps 110 and 112
of the method of FIG. 7 are, for example, carried out by the
computing means 201 whilst the steps 114 to 122 implement
the computing hardware 200 to speed up the calculation time.

All of the elements of F1G. 10 are for example implanted 1n
a FPGA component or in a ASIC component. In a variant this
component 1s associated with other electronic components on
an electronic card 1n such a way as to produce an electronic
card which conforms to the PCI standard. A card which
conforms to the PCI standard can be slotted into standard
computers, and these latter are then adapted to form the
principal computing means.

In a varniant the first modular exponentiation 1s carried out
on the least significant bits of the mput message whilst the
second modular exponentiation 1s carried out on the most
significant bits of this same message, and the results of the
exponentiations on the least significant bits and the most
significant bits are then recombined in order to obtain the final
result.

The operation of the components of the computing hard-
ware shown i FIGS. 9 and 10 1s conventional per se. The
functioning of the co-operation between these diflerent com-
ponents follows directly from the methods described with
regard to FIGS. 5§ and 7. Consequently the co-operation
between the different components will not be described 1n
greater detail here.

The operation of the method of FIG. 7 will now be 1llus-
trated with the aid of a simple example consisting of calcu-
lating the following modular exponentiation:

149190 mod 165

where:

149 1s the value of the input message 1n decimal, denoted M

in this example;

100 1s the value of the exponent 1n decimal, denoted E 1n

this example;

165 1s the value of the modulus in decimal, denoted n 1n this

example.

In the following description of this example, and 1n order to
simplily the presentation, the Montgomery products are cal-
culated according to the high-radix Montgomery method of
FIG. 2 and not by the method of FIG. 5. The radix 1s chosen
here to be equal to 4 bits.

Moreover, the parameter r of the m-ary method 1s chosen
here to be equal to 3 bits.

The binary representations of M, n and E are as follows:

M=1001 0101(=149 dec)
E=0110 0100(=100 dec)

#=1010 0101(=165 dec).

It will be deduced from these binary representations that
the mput variables are encoded on 8 bits and that conse-
quently the parameter p of the step 110 of FIG. 7 which 1s
necessary 1n order to calculate the remainder of M, denoted

M, is equal to 2%, that is to say 256. The step 100 of the method

of FIG. 7 therefore consists of carrying out the following
calculation:

M=149x256mod 165.

By a conventional method, such as the extended Euclidean
algorithm, this gives: M=29 dec.

US 7,580,966 B2

29

The step 112 of FI1G. 7 consists of calculating n', according,
to the relationship defined at step 2 of FIG. 1. For this, first of
all n, 1s determined, that 1s to say the 4 least significant bits of
the modulus n. n, is then equal to 5. Next, n, ™" is calculated
with the aid of the following relationship:

no'Hy =1 mod 16.

In order to calculate the value of the variable n, =" use is
made of the fact that this value 1s a natural integer between O
and 15. Consequently for each possible value of the variable
n, " the following product is calculated:

ny,n, + mod 16.

Then the value of n,™" which satisfies the previously
defined relationship 1s selected. By this method 1t 1s deter-
mined that n,~" is equal to 13.

Next its complement to 1 1s calculated and n',=3 1s
obtained.

The step 114 of the method of FIG. 7 consists of pre-
calculating the 16 possible values of the second products mn.
Given the simplicity of the example described here, this will
be done not 1n this step but directly at the moment when the
value of one of the second products 1s required.

The step 116 consists of calculating M for the successive
values of o between 2 and 31. However, 1n the particular
example described here the exponent E breaks down into only
two S-bit words F, and F, of which the values are as follows:

F,=00100(=4 dec)

F,=00011(=3 dec).

Consequently only the variables M> and M are necessary
in order to perform the following steps. Therefore only the
two variables M> and M™* will be calculated here.

In order to calculate M® and M* the following operations
are carried out successively:

M?=MonPro(M M)
M°=MonPro(M M?)

M*=MonPro(M AM°).

The calculation of these different Montgomery products 1s
carried out according to the method described with regard to

FIG. 2. The method is identical for the calculation of M=, M°
and M, and therefore only the calculation of M* is described
below.

At step 16 of the method of FIG. 2 applied to the calculation
of M?, the first products M,-M are pre-calculated, where the
variable M, takes successively the following values:

M,~1101(=13 dec)

M ,=0001(=1 dec)
After calculation,
My,M=377; and

<

are obtained.

The loop 18 of operations of FIG. 2 1s then executed suc-
cessively for the indices 1=0 and 1=1.

For 1=0, the operations 24 to 30 of the loop 18 are therefore
as follows:

u:=M,M=1 0111 1001(=377 dec)

m:=uyn'g mod 2°=93 mod 16=11

5

10

15

20

25

30

35

40

45

50

55

60

65

30

u=u+mn=377+11x165=2192

u:=u/29=2192/16=137.

For the index 1=1, the operations 24 to 30 of the loop 18 are
therefore as follows:

u:=u+M,-M=137+129=166
m:=uyn'g mod 2=36 mod 16=2
u:=u+mn=166+2 165=496

u:=u/2"=496/16=31.

Therefore M*=31 is obtained. In a similar manner it is
determined that M°=164; and M*=16.

It will be noted that M™ at the end of the loop of operations
18 1s equal to 181, which 1s higher than the modulus, and
consequently the reduction step 20 must be performed.

During the operation 118 of the method of FIG. 7, the value
of the variable M"*~!, that is to say here M"", is allocated to the
variable C.

Theoperations 126 and 128 of the loop of operations 120 of
the method of FIG. 7 are then performed for the value of the
index 1=0.

The operation 126 consists of calculating the variable C2,
that is to say here calculating (M”)~. The following succes-
s1ve operations are then performed:

M°=MonPro(M* M)
Me=MonPro(M° M°)
M>2=MonProM'° M)
MO4=MonPro(M>? M>?)

MPC=MonProM°* M) =(M>)*?

These Montgomery products are calculated according to
the method described with regard to FIG. 2. The calculations
of the variables M'°, M=, M®*, M”° are similar to that of M®,

and therefore they will not be described 1n detail here.
The calculation of M® is carried out according to the fol-
lowing relationship:

M° =MonPro(M* M"Y =MonPro(16, 16)

During the step 16 of the method of FIG. 2, the first two
Montgomery products a,b, that is to say here M,*M” and
M, *M? are pre-calculated. The values of M,,* and M, * are as
follows:

M, *=0000(=0 dec)

M, *=0001(=1 dec)

From this the following values of the first products are
deduced:

MM =0x16=0
M M=1x16=16

The loop of operations 18 of FIG. 2 1s then executed suc-
cessively for 1=0 and 1=1.

For 1=0, the operations 24 to 30 of the loop 18 are theretfore
as follows:

u:=u+a;-b=0
m:=uyn'nmod 2“=0x3 mod 16=0
u:=u+mn=0+0x165=0

u:=u/2°=0/16=0

US 7,580,966 B2

31

For 1=1, the operations 24 to 30 of the loop 18 are therefore
as follows:

u:=u+a,b=0+16=16
m:=ugn'g mod 2“°=0x3 mod 16=0
u:=u+mn=16+0x165=16

u:=u/2"=16/16=1

In a similar manner the following numerical results are
obtained:

M'®=136
M3=31
M**=16;

M”3=136.

When the operation 128 of the method of FIG. 7 1s being
carried out, F, being difterent from 0, the Montgomery prod-
uct between the variable C>~ and M is calculated according
to the following relationship:

C:=MonPro(d° M)

where:
M~°=136:;
M*=16.

At the end of the calculation of this Montgomery product
according to the method of FIG. 2 the following result 1s
obtained:

C:=MonPro(136, 16)=91

The loop of operations 120 of the method of FIG. 7 1s only
executed one single time since the 1nitial value of the index 1
1s O.

At the end of the execution of the loop of operations 120,
the step 122 1s performed. It consists of carrying out the
tollowing operation:

C:=MonPro(C, 1)

where:
C=91;
1 1s the unit.
At the end of the calculation of this Montgomery product

according to the method of FIG. 2 the following numerical
result 1s obtained:

C:=MonPro(91,1)=1

Thus the final result of the modular exponentiation 149'°

mod 165 1s equal to 1.

Therefore 1t will be appreciated on reading the preceding
description that the mnvention makes 1t possible to speed up
the time required to perform the calculation of a Montgomery
product on computing hardware. The preceding description
also describes the application of the invention to methods of
calculation of modular exponentiations and multiplications,
the methods of calculation of the modular exponentiations
and multiplications being themselves optimized 1n order to
speed up still more the time required to perform them. The
modular multiplications or the modular exponentiations are,
as has already been indicated, used 1n numerous processes
and systems for encrypting/decrypting data. However, the
applications of the mvention are not limited to this field of
application but extend to all the technical fields where Mont-

10

15

20

25

30

35

40

45

50

55

60

65

32

gomery products, modular multiplications or modular expo-
nentiations are used, such as for example the field of telecom-
munications or others.

While this invention has been described in conjunction
with specific embodiments thereof, i1t 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, the preferred embodi-
ments of the invention as set forth herein, are intended to be
illustrative, not limiting. Various changes may be made with-
out departing from the true spirit and full scope of the mnven-
tion as set forth herein and defined 1n the claims.

What 1s claimed 1s:

1. A method of processing the calculation of a Montgomery
product a-b-p™" mod n on the basis of a high-radix 2 Mont-
gomery method, where

m 1s a radix and m=2,

n 1s a modulus of a modular product,

p is equal to 2%, where k is a natural integer such that
2 1=n<2",

a 1s a Montgomery remainder of a cryptographic variable a
so that a:=a-p mod n, and

b is a Montgomery remainder of a cryptographic variable b
so that b:=b-p mod n,

the method being implemented on computing hardware
formed from a set of electronic components comprising
at least one carry-save adder, having an mput and an
output, carried out by said computing hardware to
increase a number of encrypting and decrypting opera-
tions performed per unit time, and comprising a loop of
operations, iterated s times, wherein the i”* loop with i
going from O to s—1, comprises:

a first arithmetic operation of addition of a value of one of
several first products, denoted a,-b and a value of a vari-
able, denoted u, wherein a, represents the w least signifi-
cant bits of operand a, after the operand a having been
shifted to the right 1 times by w bits;

a second arithmetic operation of addition of a value of one
of several second products, denoted m-n, and a value of
said variable u, where m 1s defined by the following
relation:

m:=u,n'y mod 2

where
u, represents the w least significant bits of the variable u,
and
n" is equal to —n,~", where n,, represents the m least sig-
nificant bits of the modulus n,

a third operation of division of the variable u by a power of
2, denoted 2® according to a third relationship

wherein the method comprises
delivering, at the input of said at least one carry-save adder,
the value of the variable u in the form of a carry-save
ordered pair and said value of one of the several first and
second products, denoted a -b, m-n respectively, in order
to perform said first and second arithmetic addition
operations and 1n order to obtain at the output of said at
least one carry-save adder a result of respectively the
first and the second arithmetic addition operations in the
form of a carry-save ordered pair,
allocating to the value of the variable u the result obtained
at the output to said at least one carry-save adder, the

US 7,580,966 B2

33

variable u being registered in the form of a carry-save
ordered pair formed by two vanables C and S,

carrying out the third operation of division of the variable
u 1n the form of a carry-save ordered pair 1n two steps
comprising 5
a) a preliminary step of calculation and storage of a carry

digit, R _, which 1s at risk of being lost by the division
of each said variable C and S by the power of 2 and;
b) a step of division of each said variable C and S by the
power of 2; and 10
repeating the delivery and allocation operations for each
iteration.

2. A method as claimed 1n claim 1, wherein the preliminary
step of calculation of the carry digit R comprises the opera-
tion of adding w least significant bits of the vaniable C, 15
denoted C,, to w least significant bits of the variable S,
denoted S, according to a fourth relationship R _:=C,+5,.

3. A method as claimed 1n claim 2, further comprising a
step o recombination of u on the basis of the variables C and
S of the carry-save ordered pair and of the carry digit R_ by a 20
shift operation, shifting to the nght by w bits the carry digit R |
and adding the result obtained to the variables C and S accord-
ing to a fifth relationship u:=C+S+R /2.

4. A method as claimed 1n claim 1 wherein the method
wherein the method further comprises at the end of perform- 25
ing the loop of operations:

a step of recombination of the variable u on the basis of at
least the values of the variables C and S of the carry-save
ordered pair calculated during the performance of the
loop of operations, and 30

a step of reduction of the variable u according to a sixth
relationship u:=u-n, where n i1s the modulus of the
modular product,

said steps of recombination and of reduction of the variable
u overlapping 1n such a way as to speed up the time 35
required to perform them.

5. A method as claimed in claim 1, wherein the radix m 1s
equal to 4 bits 1n order to optimize the time required for
performing the calculation of a Montgomery product on input
variables ol the Montgomery productencoded on 512 or 1024 40
bits.

6. A method as claimed 1n claim 1, wherein the first prod-
ucts a,b are pre-calculated before performing the loop of
operations.

7. A method as claimed 1n claim 1, wherein the second 45
products m-n are pre-calculated before performing the loop of
operations.

8. A method of speeding up the time required to perform
the calculation of a first and a second Montgomery product by
applying for each product a method as claimed 1n claim 1, 50
wherein the method includes at least one first step during
which the first addition operation for the first product 1s car-
ried out at the same time as a second addition operation for the
second product.

9. A method as claimed 1n claim 8, wherein the method 55
comprises at least a second step shifted in time with respect to
the first step, during which the second addition operation for
the first product 1s carried out at the same time as the first
addition operation for the second product.

10. A method as claimed 1n claim 8, wherein the method 60
comprises at the end of performing the loop of operations:

a first step of recombination of u, then of reduction for the
first product, said first step of recombination of u being
performed on the basis of the variables C and S of the
carry-save ordered pair and of the carry digit R by a shift 65
operation, said reduction being performed by shifting to
the right by m bits the carry digit R and adding the result

34

obtained to the variables C and S according to a fifth
relationship u:=C+S+R _/2%; and then,

a second step of recombination of u, then of reduction for

the second product, said second step of recombination of
u being performed on the basis of the variables C and S
of the carry-save ordered pair and of the carry digit R _ by
a shift operation, said reduction being performed by
shifting to the right by w bits the carry digit R and
adding the result obtained to the vaniables C and S
according to a fifth relationship u:=C+S+R /2.

11. A method as claimed i1n claim 8, wherein an nput
variable of the first Montgomery product performed {first 1s
made up of the least significant bits of a variable, and an input
variable of the second Montgomery product performed sec-
ond 1s made up of most significant bits of said same variable.

12. A method of speeding up the time required to perform
the calculation of a modular multiplication by applying a
method implementing Montgomery products, wherein the
calculation of the Montgomery products 1s carried out by
applying the method as claimed 1n claim 1.

13. A method as claimed 1n claim 12, wherein said method
implementing Montgomery products 1s the Montgomery
method.

14. A method of speeding up the time required to perform
the calculation of a modular exponentiation by applying a
method implementing modular multiplications, wherein the
calculation of the modular multiplications 1s carried out by
applying a method as claimed in claim 12.

15. A method as claimed 1n claim 14, wherein said method
implementing modular multiplications 1s a m-ary method
with a word size of r bits.

16. A method as claimed 1n claim 15, wherein the word size
r of the m-ary method 1s equal to 5 bits 1n order to speed up the
time for performing the m-ary method when input variables
of the modular exponentiation calculation are encoded on 512
or 1024 bits.

17. A method as claimed 1n claim 15, wherein the second
products m-n are pre-calculated betfore applying the m-ary
method.

18. A method as claimed 1n claim 14, wherein said method
implementing modular multiplications 1s a Chinese remain-
ders method.

19. A method of speeding up the time required for perform-
ing a first modular exponentiation calculation using second
modular exponentiations, 1n which the second modular expo-
nentiations are carried out by applying the method as claimed
in claim 14.

20. A method as claimed 1n claim 19, wherein said second
modular exponentiations 1s a Chinese remainders method.

21. A method as claimed in claim 1, wherein the method 1s
applied to numbers encoded on more than 320 baits.

22. A computer-readable medium upon which is encoded a
sequence of programmed instructions which, when executed
by a processor, cause the processor to perform the method as
claimed 1n claim 1.

23. A system for processing the calculation of a Montgom-
ery product a-b-p~" mod n on the basis of a high-radix 2
Montgomery method, where

m 1s a radix and m=2,

n 1s a modulus of a modular product,

p is equal to 2%, where k is a natural integer such that

2=l=n<2*

a 1s a Montgomery remainder of a cryptographic variable a

so that a:=a-p mod n, and

b is a Montgomery remainder of a cryptographic variable b
so that b:=b-p mod n,

US 7,580,966 B2

35

said system including computing hardware formed from a
set of electronic components, said processing compris-
ing a loop of operations, carried out by said computing
hardware iterated s times, wherein the i” loop with i
going from 0 to s—1, comprising;:

a first arithmetic operation of addition of a value of one of
several first products, denoted a b and a value of a vari-
able, denoted u, wherein a, represents the w least signifi-
cant bits of operand a, after the operand a having been
shifted to the right 1 times by w bits;

a second arithmetic operation of addition of a value of one
of several second products, denoted mn, and a value of
said variable u, where m 1s defined by the following
relation:

m:=lyn'g mod 2%

where

u, represents the w least significant bits of the variable u,
and

n'" is equal to —n,” ", where n, represents the w least sig-
nificant bits of the modulus n,

a third operation of division of the variable u by a power of
2, denoted 2 according to a third relationship

wherein said computing hardware 1includes at least:
one carry-save adder adapted to recerve as an input the
variable u 1n the form of a carry-save ordered pair and
said value of one of several products, denoted a,'b, mn
respectively, and to deliver at an output the result of
respectively the first and the second arithmetic addition
operations 1n the form of a carry-save ordered patr,
means for allocating to the value of the variable u the result
obtained at the output of said at least one carry-save
adder and for storing the variable u in the form of a
carry-save ordered pair formed by two variables Cand S,
means for carrying out the third operation of division of the
variable u 1n the form of a carry-save ordered pair com-
prising
a) means for calculation and storage of a carry digit, R _,
which 1s at risk of being lost by the division of each
said variable C and S by the power of 2 and;
b)means for division of each said variable C and S by the
power of 2.

24. A system as claimed in claim 23, wherein the system
comprises at least one first carry-save adder adapted to carry
out the first arithmetic addition operation and a second carry-
save adder adapted to carry out the second arithmetic addition
operation.

25. A system as claimed 1n claim 23, wherein the means for
calculation and storage of the carry digit R include means for
addition of the w least significant bits of the variable C,
denoted C,, to the w least significant bits of the vaniable S,
denoted S, according to a fourth relationship R _:=C +S,.

26. A system as claimed 1n claim 23, further comprising:

means for recombination of the variable u at least on the
basis of the values of the variables C and S of the carry-
save ordered pair, and

means for reduction of the variable u, said means for
recombination of the variable u and said means for
reduction being connected to one another 1n such a way
that operation thereot overlaps under the control of the
control means.

10

15

20

25

30

35

40

45

50

55

60

65

36

277. A system as claimed 1n claim 23, wherein the radix m 1s
equal to 4 bits 1n order to optimize the time required to
perform a Montgomery product calculation on input vari-
ables of the Montgomery product encoded on 512 or 1024
bits.

28. A system as claimed 1n claim 23, further comprising
means for pre-calculation of the first products a, b.

29. A system as claimed 1n claim 28, further comprising
means for pre-calculation of the second products mn.

30. A system as claimed 1n claim 29, wherein said means
for pre-calculation of the first product and/or said means for
pre-calculation of the second product include an adder.

31. A system according to claim 23 for speeding up the
time required to perform the calculation of a first and a second
Montgomery product, comprising:

a first Montgomery product calculation system configured

to calculate a first Montgomery product according to
claim 23; and

a second Montgomery product calculation system config-
ured to calculate a second Montgomery product accord-
ing to claim 23;

wherein the carry save adder of the first Montgomery prod-
uct calculation system and the carry-save adder of the
second Montgomery product calculation system are
activated simultaneously, 1n such way that at a same {irst
time the carry-save adder of the first Montgomery prod-
uct calculation system carries out the first arithmetic
operation for the first Montgomery product, while the
carry-save adder of the second Montgomery product
calculation system carries out the second arithmetic
operation for the second Montgomery product.

32. A system as claimed 1n claim 31, further comprising a
single means for recombining the variable u on the basis of at
least the values of the variables C and S of the carry-save
ordered pair, said single means for recombining the variable
u connected to the input of a single means for reduction of the
variable u according to a relationship

U =u-n,

where n 1s a modulus.

33. A system according to claim 23 configured to speed up
the time required to perform a modular multiplication calcu-
lation by a method implementing Montgomery products, said
Montgomery product calculations being performed on com-
puting hardware, comprising at least one system for speeding
up the time required to perform the calculation of the Mont-
gomery products as claimed 1n claim 23.

34. A system for speeding up the time required to perform
a modular exponentiation calculation by a method 1mple-
menting modular multiplications, comprising at least one
system for speeding up the time required to perform the

calculation of the modular multiplications as claimed in claim
33.

35. A system for speeding up the time required to perform
a modular exponentiation calculation by a Chinese remain-
ders method implementing modular multiplications, com-
prising at least one system for speeding up the time required
to perform the modular multiplication calculation as claimed
in claim 34.

36. A system for speeding up the time required to perform
the calculation of a first modular exponentiation by a method
implementing the calculation of a plurality of second modular
exponentiations, comprising at least one system for speeding
up the time required to perform the calculation of the second
modular exponentiations as claimed in claim 34.

US 7,580,966 B2

37

37. A system for speeding up the time required to perform
a modular exponentiation calculation by an m-ary method

with a word size of r bits implementing modular multiplica-
tions, comprising at least one system for speeding up the time
required to perform the calculation of the modular multipli-
cations as claimed in claim 33.

38. A system as claimed 1n claim 37, further comprising at
least one register for shifting 5 bits to the left 1n order to speed
up the performance of the m-ary method with a word size of
r bits of the m-ary method equal to 5 bits.

39. A system for speeding up the time required to perform
at least the calculation of at least a first modular exponentia-
tion by the Chinese remainders method which itsellf 1imple-
ments second modular exponentiations, comprising at least
one system for speeding up the time required to perform the
calculation of the second modular exponentiations as claimed
in claim 38.

40. A system according to claim 23 configured to speed up
the time required to perform a modular multiplication calcu-

10

15

38

lation by the Montgomery method implementing Montgom-
ery products on computing hardware, comprising at least one
system for speeding up the time required to perform the
calculation of the Montgomery products as claimed 1n claim
23.

41. An electronic component, comprising at least one sys-
tem as claimed 1n claim 23.

42. An electronmic component as claimed 1n claim 41,
wherein said electronic component 1s formed with at least one
FPGA.

43. An electronic card, comprising at least one system as
claimed 1n claim 23.

44. An electronic card as claimed 1n claim 43, wherein said
clectronic card conforms to the PCI standard.

45. A machine for processing the calculation of a Mont-
gomery product on the basis of a high radix Montgomery
method, the machine being associated with at least one sys-
tem as claimed 1n claim 23.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

