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(57) ABSTRACT

A method of adjusting process variables 1n a processing flow
1s disclosed. Processed samples are tested to determine
sample parameters of the tested samples. The sample param-
cters are analyzed analyzing in relation to the process vari-
ables applied in the processing steps to determine the impact
of the process variables on the sample parameters The process
variables are modified in an attempt to change the sample
parameters towards predetermined target values. And, the
sequence ol processing steps 1s repeated with the modified
process variables. The analyzing step includes, for given
samples, automated matching between patterns of process
variables applied for the samples and corresponding sample
data sets of parameters determined from the samples; quan-
tifying the degree of match in terms of score values associated
with patterns of process variables; and determining the sig-
nificance of said score values 1n terms of significance values
based on the deviation of the parameters in the sample data
sets from said predetermined target values.
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Lot number 1234567
Wafer number 1 2 3 456 7 8 9101112131415161718192021 222324 25
Implant 111 111111111122 22222222 2?2
Diffusion 111111122 2222222222111 111

Implant
1 Asdose 1.4E13 cm ™ -2
2 As dose 1.5E13 cm ™ -2

Diffusion
1 Temp. 1000C
2 Temp. 1020C
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| ot number 1234567

Wafer number 123456 7 8 910111213141516171819202122232425
Implant 1111111111111 22222222 2222
Diffusion 1111111 2222222222221 11111
Implant and Diffusion 1 1 1 1 1 11 2 2 2 2 2 2 3 333334444 44
Implant

1 As dose 1.4F13 ¢cm ™ -2
2 As dose 1.5F13 cm ™ -2

Diffusion
1 Temp. 1000C
2 Temp. 1020C

Implant and Diffusion
1 As dose 1.4E13 cm ™ -2 and Temp. 1000C
2 As dose 1.4E13 cm ™ -2 and Temp. 1020C
3 As dose 1.5E13 cm ™ -2 and Temp. 1020C
4 As dose 1.5E13 cm ™ -2 and Temp. 1000C

FIG. 3
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FIG. 4

Lot number 1234567

Waiter number 123 4507 8 9101112131415161718192021 22232425
Split 11T 1111111111122 22222222 272
SplitZ 11111112 22 222222222111 111
Split3 1212121212121 212121212121
Split1 and SplitZ 11111112 2 2 2 2 2 3 33333444444
Split1 and Split3 121 2121212121343 4343434 3 4
Split2 and Split3 1212121343 434343434212121

Split
1 Split1: Splitgroup
2 Split1: Splitgroup?2
SplitZ
1 Split2: Splitgroup
2 Split2: Splitgroup?2

Split3
1 Split3: Splitgroup
2 Split3: Splitgroup?

Split1 and Split2
1 Split1: Splitgroup1 and Split2: Splitgroup
2 Split1: Splitgroup1 and Split2: Splitgroup?2
3 Split1: Splitgroup2 and Split2: Splitgroup2
4 Split1: Splitgroup2 and Split2: Splitgroup

Split1 and Split3
1 Split1: Splitgroup1 and Split3: Splitgroup
2 Split1: Splitgroup1 and Split3: Splitgroup?
3 Split1: Splitgroup2 and Split3: Splitgroup2
4 Split1: Splitgroup2 and Split3: Splitgroup

Split2 and Split3
1 Split2: Splitgroup1 and Split3: Splitgroup
2 Split2: Splitgroup1 and Split3: Splitgroup?2
3 Split2: Splitgroup2 and Split3: Splitgroup?2
4 Split2: Splitgroup2 and Split3: Splitgroup
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METHOD OF ADJUSTING PROCESS
VARIABLES IN A PROCESSING FLOW

The invention relates to methods for adjusting process
variables 1n a processing flow that comprises a sequence of
processing steps. A typical application 1s the development of
optimized process tlows in the semiconductor industry, but
other applications are envisioned as well.

BACKGROUND

The fabrication of integrated circuits (ICs) requires the
processing of single-crystal (silicon) waters 1n a large number
of subsequent process steps. The total set of process steps that
belongs to a specific technology 1s called a “process tlow™ or
just simply a “tlow.” During each step, the silicon and other
involved materials are structured, modified, transformed or in
other ways manipulated. The outcome of one process step 1s
then passed on as mput to the next. Prominent examples of
process steps 1n semiconductor fabrication are epitaxy, oxi-
dation, film deposition, lithography, etching, 1on 1implanta-
tion, and diffusion.

Each process step 1s characterized by a great variety of
process parameters. These correspond directly to specific
equipment settings and/or programs (“recipes’) by which the
actual fabrication process 1s determined and controlled.
Examples of process parameters include things like growth-
or deposition-rates, the composition of gas tlows or chemical
ctchants, exposure times, etch times, furnace temperatures,
implant species, implant energies and doses, bias voltages or
currents, wait times, and the like.

Once a technology 1s fully developed, the corresponding,
process flow 1s “frozen.” From then on, all process parameters
may only vary within a narrow range around previously
defined “target” values. This narrow bandwidth 1s called the
specification range or shortly the “spec range.”

Silicon walers are typically processed 1n lots of 25, 1.e.,
groups of 25 walers receive the same treatment, either
because they are indeed simultaneously processed in the
same piece ol equipment or because they are processed 1n a
short sequence as a batch. To develop or improve a technol-
ogy, 1t 1s fundamental to run experiments at various process
steps. Therefore, the waters of “experimental lots™ are splitup
into groups. Different split groups vary at least at one process
step 1n at least one process condition. Wafers that belong to
the same split group undergo the same processing. The term
“water split” (or simply “split”) 1s used as synonym for “pro-
cess experiment” herein.

Whether a water lot has been split up or not, once it has
passed the last process step, 1t will be more or less extensively
tested. The data 1s then evaluated and analyzed and the results
are fed back into the process flow. For standard production
maternal (with typically no applied splits), this 1s done 1in order
to momtor the process and to enable failure analysis for
development material (typically including a number of dii-
terent splits) to achieve and/or improve a certain device per-
formance. In the context of the invention, focus 1s on the latter.

A Tundamental feedback loop in semiconductor manutac-
ture 1nvolves processing, test, evaluation and analysis. Para-
metric data analysis, however, quite naturally requires a diif-
ferent evaluation approach {for device and process
development than for monitoring high-volume production. In
standard high-volume production (usually) a great many lots
are processed 1n a uniform manner; whereas the water splits
during development phases are typically applied on just a
restricted number of lots. For development material, however,
the application of rather complex experimental split matrices
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and a largely extended test depth, with parameter numbers
casily ranging up to several thousands, literally demand for a
new methodology to facilitate data evaluation. Evaluating the
impact of experimental splits—mnot to mention possible cross-
dependencies—on such extended numbers of (electrical)
parameters 1s not only prone to errors, but 1n many cases
proves to be impossible for more than just the primary param-
cters. Conventional statistical methods/concepts, such as cor-
relation calculus, ANOVA, CPK, etc., are valuable, but sim-
ply not sufficient. Intelligent data reduction becomes the key
to achieve and maintain efficiency (and cost effectiveness).

SUMMARY

The ivention provides an automated data assessment
which enables the developer to quickly focus the analysis on
those parameters that are truly and significantly affected by an
experimental split and/or cross-split.

Specifically, the invention provides a method of adjusting
process variables 1n a processing flow that comprises the
following steps: testing processed samples to determine
sample parameters of the tested samples; analyzing the
sample parameters 1n relation to the process variables applied
in the processing steps to determine the impact of the process
variables on the sample parameters; modilying the process
variables 1 an attempt to change the sample parameters
towards predetermined target values; and repeating the
sequence of processing steps with the modified process vari-
ables.

In described embodiments, the analyzing step includes, for
given samples: automated matching between patterns of pro-
cess variables applied for the samples and corresponding
sample data sets of parameters determined from the samples;
quantifying the degree of match in terms of score values
associated with patterns of process variables; and determin-
ing the significance of the score values 1n terms of signifi-
cance values based on the deviation of the parameters 1n the
sample data sets from the predetermined target values.

In a preferred application, the processing flow 1s a semi-
conductor technology development flow and the processing
steps 1mvolve application of different patterns of processing
variables to different samples 1 a lot of semiconductor
walers. Because of the application of the mvention, manual
ispection 1s confined to areduced data set, easily saving 90%
or more of the usual time needed to analyze the full data.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the invention will become apparent from
the following detailed description, with reference to the
accompanying drawings, wherein:

FIG. 1 1s a simplified flow chart that illustrates a funda-
mental feedback loop 1 accordance with an embodiment of a
method of the invention;

FIG. 2 1s a table illustrating a simple split matrix;

FIG. 3 1s a table illustrating a split matrix containing a
cross-split;

FIG. 4 1s a table 1llustrating a split matrix including cross-
splits;

FIGS. 510 12 are waler graphs of different test parameters;

FIG. 13 1s a table listing score values and significance

values for the test parameters 1n relation to the split matrix of
FIG. 4;

FIG. 14 1s a chart 1llustrating the matching between param-
cters and split patterns;
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FIG. 15 15 a split-score table listing the parameters with
their highest score value, significance value and overall score
value for the corresponding splits and cross-splits; and

FI1G. 16 1s a diagram 1llustrating parametrical distributions.

DETAILED DESCRIPTION OF EMBODIMENTS

With reference to FIG. 1, raw walers are provided in an
initial step. The waters are subjected to a sequence of process
steps 1 to n. At the end of the process flow, the walers are
tested (Etest, MP). As a result of the testing, parametrical test
data are obtained. The parametrical test data are evaluated
with the mventive method for split pattern recognition and
significance ranking. Based on the resulting overall score
values for the test parameters and the corresponding splits or
cross-splits, the test results are then analyzed. The results of
the analysis provide an mput to the various process steps,
which are adjusted 1n an attempt to align the test parameters
with predetermined target values. This closes the feedback
loop, which will be repeated until the process flow has been
optimized to satisfaction.

At “Test”, a distinction between “Ftest” and “MultiProbe”
(=MP) 1s made. Etest engineering-checks and verifies the
clectrical performance on the device level (i.e., 1t measures
the parameters of individual devices such as transistors,
diodes, capacitors, resistors, inductors, etc.; and 1s sometimes
also called “parametric test”). MultiProbe engineering, on the
other hand, checks and verifies the functionality on the circuit
level. For the purpose of this disclosure, considerations are
confined to parametrical, 1.e., Etest data. This, however,
should not 1n any way restrict the applicability of the dis-
closed method.

The suggested method has been developed to meet the need
for an “intelligent” data reduction. To actually perform the
automated data assessment, the method can be cast into a
soltware tool, implemented as part of the fundamental feed-
back loop. The tool helps to largely speed up general split-lot
evaluations. The algorithm 1n the mventive method executes
the following six steps for a given process split matrix and the
resulting set of parametric data:

1) automatically identifies parameters which are likely to
be atfected by a specific split;

2) determines possible cross-splits (1.e., superimposed pri-
mary splits given 1n the split matrix) and, as 1in 1), automati-
cally 1dentifies parameters which have a high possibility for
being atfected by the cross-split;

3) conducts, for every parameter 1n the data-set and all
possible splits/cross-splits, an automated ranking which
yields the best-fitting parameter split combination;

4) calculates a “significance value” for every best {itting
parameter split combination by comparing 1t to a given speci-
fication (e.g., the process control document) and so deter-
mines an “overall score value”;

5) sorts all parameters according to this overall score value;

6) creates split graphs and statistical split summaries for
the most significant parameter split combinations and formats
them 1n a way that they can be readily analyzed;

Steps 1) and 2) are done by abstract pattern recognition. At
the heart of the procedure 1s a general methodology that
compares abstract split patterns with patterns found in para-
metric data. Based on a specific “sameness” methodology,
various sets of score values are calculated that focus on diif-
ferent aspects of the comparison. Employing concepts of
tuzzy logic operations, these subordinate score values get
combined to an overall score value which 1s eventually used
to do the ranking of the parameter split combinations (data
reduction).
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4

The basic concepts of the split pattern recognition and
significance ranking procedure are outlined below by means
of fictitious examples, which will also help to further 1llus-
trate some of the terminology.

The application of split matrices to water lots has been
previously considered. A split matrix 1n this context 1s a
schematic table that assigns process conditions to waler num-
bers. FIG. 2 shows a simple example.

For the fictitious 25-wafer lot with number #1234567,
there are two splits (1.e., process experiments) at two different
process steps, namely an implant dose split (As=arsenic) and
a diffusion temperature split. Each of the splits contains two
split groups (waler groups with varying process conditions).
For the implant split, split-groupl consists of wafers 1-13
with an arsenic implant dose of 1.4E13 cm” and split-group2
consists of wafers 14-25 with an arsenic-dose of 1.5E13 cm”.
For the diffusion split, on the other hand, split-groupl con-
sists of waters 1-7 and 20-25 with a process temperature of
1000° C. and split-group2 consists of walers 8-19 with a
temperature ol 1020° C. (see the corresponding numbers in
front of the first column split-group descriptions, and in the
two split rows below the waler numbers). In this table form,
there 1s a unique correlation between water number and split-
group for every experimental split applied to a specific lot
which 1s processed according to a specific flow. In general, as
will be seen below, neither the number of splits nor the num-
ber of split-groups 1s limited to two as 1n this simple example.
It should be kept 1n mind that the term “split™” designates a
certain process experiment (as a whole) and the term “split-
group”’ designates a certain group ol waters which actually
undergo the same process condition as part of a specific
experiment (split).

The two splits of the previous example (1.e., the implant
split and the diflusion split) will be called “primary splits” or
splits of “cross-split level 17, because they represent the real
process conditions thathave actually been applied to a certain
lot. In reality, however, two or more splits will often have a
“cross-impact” on certain electrical parameters, 1.e., the
variation of a specific Etest parameter will be influenced by
more than just one process experiment. In the case of our
example of FIG. 2 this would mean that a certain device
parameter (Etest parameter) reacted to the variation in the
arsenic 1implant dose and the temperature difference 1n the
diffusion step. To be able to deal with such cross-impacts we
have to supplement the original split matrix by “cross-splits™.
For the previous example, this means we have to determine
the superposition of the implant and the diffusion split. FIG.
3 shows this superposition. In principle we have the same
table as 1n FIG. 2 with just a new split entry below the water
row and the corresponding split descriptions at the bottom of
the table. The new split 1s labeled “Implant & Diffusion™ to
show which primary splits the cross-split 1s composed of.
Contrary to the primary splits, the cross-split has four ditfer-
ent split-groups: split-groupl with waters 1-7 (As dose
1.4E13 cm?, diffusion temp. 1000° C.), split-group2 with
wafers 8-13 (As dose 1.4E13 cm?, diffusion temp. 1020° C.),
split-group3 with wafers 14-19 (As dose 1.5E13 cm”, diffu-
sion temp. 1020° C.) and split-group4 with wafers 20-25 (As
dose 1.5E13 cm?, diffusion temp. 1000° C.).

Every split-group of the cross-split represents a unique
combination of the original split conditions of the two pri-
mary splits. In this case, there are 2x2 possible combinations,
so that we have 4 new cross-split-groups 1n total.

This cross-split 1s a secondary split (cross-split level 2),
because two primary splits have been superimposed to form
the new split-groups. Analogously, the combination of three
primary splits would yield a cross-split of level 3 and so on. (It
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goes without saying that there had to be at least three primary
splits 1 the original split matrix to build such a tertiary
cross-split.) For a given primary split matrix the developed
algorithm automatically builds all possible cross-splits up to
a user-defined cross-split level. Once they have been created,
these cross-splits are treated exactly the same way as the
original primary splits during the subsequent evaluation.

Now that the terms “split” and “split-group” on the one
hand and the concept of “cross-splits” on the other hand have
been introduced, we are not going to use this simple split
matrix, whose only purpose was to provide an explanatory
example. To 1illustrate the split pattern recognition and sig-
nificance ranking methodology we need to proceed from
concrete process conditions and use “abstract splits™ (see
FIG. 4) mstead.

FIG. 4 shows the matrix of three primary splits (Splitl-
Split3) with two split-groups each and the superpositions of
all possible secondary splits (cross-split level 2), which have
tour split-groups each. The possible tertiary split (cross-split
level 3) will be neglected.

The evaluation methodology will be applied to a fictitious
set of eight test parameters representing, €.g., a number of
Etest reads. “Read” in this context 1s used as synonym for
“parameter”’. FIGS. 5 to 12 show the variations of these
parameters as function of the water number. Water numbers
(1-25) are displayed along the x-axis, parameter values along
the y-axis. The little diamonds represent the waler averages,
the associated vertical columns represent the standard devia-
tions (x0). Parameter values are given in arbitrary units
(=a.u.). The wider dashed line represents the (assumed) target
value of the parameter (=TARGFET), the upper solid line
represents the upper specification limit (max. spec.
lim1t=SPCmax), and the lower shorter dashed line represents
the lower specification limit (min. spec. limit=SPCmin). The
numerical spec. values for each plot in addition to some other
data, 1s automatically provided by the program (see FIGS.).
This data becomes relevant in practical cases, but 1s of no
importance for the following explanations.

FIGS. 5 to 12 show a number of selected examples 1n a
manner that could be found in real data as well. FIGS. 5 and
6 (parameters 1 and 2), for example, depict the case of a
two-fold split (1.e., a split including two split-groups) where
the first 13 waters have been differently processed from the
last 12 waters. But unlike parameter 1, the ofiset between the
two split-groups 1s much smaller for parameter 2. In FIG. 10
(parameter 6), we see the same two-fold split, with the only
difference that this time the group averages are about the
same, only the standard deviations of both groups vary. FIGS.
7 and 9 (parameters 3 and 5) show two other examples of a
two-fold split. Parameter 5, for example, exhibits a bimodal
distribution which can often be found when wafers are pro-
cessed 1n a two-chamber system (as might be the case, e.g., 1n
some etch or sputter equipment). Parameter 4 1n FIG. 8 breaks
down 1nto four different water groups, that could be the result
of a cross-impact of the process splits underlying FIGS. 5 and
7. Lastly, FIGS. 11 and 12 show the behavior of two param-
cters that are not affected by any split—one parameter (pa-
rameter 8) displaying a larger variation than the other (param-
cter 7).

Applying the split pattern recognition and significance
ranking methodology on this test data yields the “score-table”™
in FI1G. 13. The first column 1n FI1G. 13 lists all the parameter
names which could be found 1n the data set. The next columns
contain for every possible parameter split and/or parameter
cross-split combination, the so-called “split 1dentification
score value”. Here, we have 3 primary splits and 3 secondary
splits (cross-splits of level 2), 1.e., there are 6 general splits 1n
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total. For every parameter split combination, we find a value
between 0 and 1 representing a measure of the quality of the
correspondence between split (or cross-split) and parametric
data. A split 1d score (=split identification score value) close
to 1 means that a split pattern could almost certainly be
identified 1n the parametric data; whereas a value close to 0
indicates that there 1s no significant match between the split
pattern and the data. For parameter 4 in FIG. 13, for example,
we find a split identification score value of 0.95 for the pair
“Parameterd/Splitl”, 0.02 for the pair “Parameterd/Split2”,
0.99 for the pair “Parameterd/Splitl & Split2” (cross-split of
primary splits 1 and 2), and 0.63 for the pair “Parameterd/
Splitl & Split3™ (cross-split of primary splits 1 and 3). All
other values can be interpreted accordingly. That 1s, 1 we just
look at parameter 4, we see that of all 6 splits the split pattern
ol the cross-splitlabeled “Splitl & Split2” exhibits the closest
match with respect to the parametric signature of “Param-
cterd”. This 1s 1llustrated 1n FIG. 14.

FIG. 14 again shows the parametric variation of “Param-

cterd”. Additionally, the split patterns of FIG. 4 have been
inserted 1n the bottom part. The split-groups of the various

splits have been highlighted to emphasize waiter groups that
belong together.

By simple inspection we see that, of all splits, the pattern of
cross-split “Splitl & Split2” bears the most apparent resem-
blance to the parametric variation. But why 1s that?

If we take “Splitl”, for example, we would expect that the
parametric values of wafers 1-13 (split-groupl) are clearly
distinct from those of wafers 14-23 (split-group2). Likewise
we would expect that within each split-group the values
should be approximately same. A quick glance at FIG. 14
reveals that the first criterion 1s fully met (the averages of
walers 1-13 are clearly lower compared to the averages of
walers 14-25), whereas the second criterion 1s only partially
met (the averages of waters 1-7 of split-group1, for example,
are lower than for waters 8-13 of the same split-group; within
split-group2 we find a similar situation with watfers 14-19
having higher values than wafers 20-25). That 1s the reason
why the split 1d score for the combination “Parameterd/
Splitl” already 1s quite high with a value of 0.95 (see FIG.
13), but has not fully reached 1 yet.

If we take “Split3”, for example, the situation 1s completely
different. This split shows an alternating pattern (one water of
split-group1 1s followed by a water of split-group2, etc.), 1.e.,
for a parameter affected by this split we would therefore
expect that 1t somehow mirrors this alternating pattern (as,
¢.g., can be found for “Parametery™). However, we do not see
any such behavior in FIG. 14. As a consequence we obtain a
very low split 1d score for the combination “Parameterd/

Split3” (the value 1s rounded to 0.00 1n the table of FIG. 13).

As we have just seen, the combination “Parameterd/Splitl”
already vields a relatively high splitid score 01 0.95. But what
seems to be a good match can still be improved considering,
cross-splits as well. If we look at the superposition of “Splitl”
and “Sphit2” (—=*“Splitl & Split2”), for example, we obtain a
cross-split pattern with four distinct split-groups composed of
walers 1-7, 8-13, 14-19 and 20-25 respectively (see FIG. 14).
Another look at FIG. 14 now makes 1t more or less seli-
evident that this wafer allocation means the perfect match
between split pattern and parameter variation. All four of the
split-groups can be clearly distinguished from each other and,
additionally, are fairly homogeneous in themselves. This
finds its expression 1n a split 1d score of 0.99 which 1s very
close to 1 (the highest possible value). Since 0.99 1s the
highest split 1d score 1n connection with “Parameterd”, 1t 1s
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highlighted 1n the table of FIG. 13. All the other splits and/or

cross-splits yield lower identification scores for this specific
parameter.

The columns 1 FIG. 13 labeled “All Splits/Max-Score

value’” and “Split with max Score value” collect these highest
split 1dentification scores together with their corresponding
split descriptions for all included parameters. As a result we
obtain a list which, for every parameter, yields the corre-
sponding split or cross-split that fits best to the respective
parametric variation. For example, for the parameter labeled
“Parameterl”, the split labeled “Split1” has the highest split
1d score with 1.00. The same 1s true for “Parameter2”. For
“Parameter3”, “Split2” shows the best matching with a split
1d score of 1.00. For “Parameterd”, as we have seen, 1t 1s the
cross-split “Splitl & Split2” with 0.99, etc.

It must be mentioned that the split 1d scores under real
conditions normally do not reach values as high as 1n these
explanatory examples. (There are mainly two reasons for this:
1) the distributions are usually broader (—data overlap); and
2) the differences between split group averages are typically
not as pronounced as in the given examples.) For typical
cases, split 1d scores exceeding 0.60 already indicate good,
scores greater than 0.80 even excellent matches. On the other
hand, 1t for a specific parameter the highest split 1d score 1s
small (typically less than 0.20) or even minimal—as 1t 1s the
case for “Parameter7” (with 0.01) or “Parameter8” (with
0.00)—no correspondence between the parametric variation
and any of the split or cross-split patterns could be 1dentified.

Once the list of the highest split 1d scores has been calcu-
lated, the most important step for the split pattern recognition
and significance ranking has been done. The multitud” of
possible parameter split assignments has been reduced to a
1:1 correlation (parameter €<= best fitting split pattern), and
with the split identification score value, we have a (first)
cardinal measurable quantity which defines a transitive order
on the assigned parameter split pairs.

However, what has been achieved so far 1s not fully sudifi-
cient to assess the impact of process splits on a set of param-
cters. For this, we need to consider yet another important
aspect: the split 1dentification score values we have been
using so far can be determined completely independent of any
additional (external) data. For their calculation, we only need
to know the split pattern (as, e.g., given in FIG. 4) and the
“pure” parametric data (as, e.g., given in FIGS. 5 to 12). Now,
if we take the previous example (FIG. 13), we find that for
“Parameterl” as well as “Parameter2” the split labeled
“Splitl” yields the highest split 1d score 1n both cases with a
numerical value of 1.00. That means both parameters have
been clearly identified to reflect the pattern of “Splitl”. A look
at the diagrams i FIGS. 5 and 6, however, shows that the
difference between the two split-groups of “Sphitl” (i.e.,
walers 1-13 and walers 14-235) with respect to the given
specification range (spec range) 1s much smaller for “Para-
mater2” than 1t 1s for “Parameterl”. The spec range for all
cight test-parameters goes from 100, the spec minimum
(=SPCmuin), to 200, the spec maximum (=SPCmax), the 1deal
target value being 150 (=TARGET). “Parameterl” now pos-
sesses an average of 120 for split-groupl and 180 for split-
group2, whereas the average of “Parameter2” for split-
groupl 1s 135 and 165 for split-group2. If we take the spec
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width as reference, the parametric variation caused by
“Splitl” therefore extends over

180 —120
60%(£U.6: ]

200 —-100

of the spec-range of “Parameterl”, but only

165 - 135
30%(& 0.3 = ]

200 — 100

of the spec-range of “Parameter2”. This teaches us two
things: Split 1d scores just quantily how good specific split
patterns are mapped to certain parameters. They do not quan-
tify the split-significance. This 1s true no matter whether
parameters respond to the same split, as 1n the case above
(“Split1™), or to different splits, as e.g. 1n the case of “Param-
cter2” and “Parameter3” (“Parameter3” has its highest splitid
score of 1.00 for “Splhit2”, see FIG. 13).

That 1s the reason why the suggested methodology for a
split identification 1s supplemented by a method for a signifi-
cance ranking. The ratio of split-group oifset to spec width,
which has just been calculated, will be called the “signifi-
cance value” of a split. When a split includes more than two
split-groups, the split-group oflset 1s defined as the difference
between the average value of the highest and the lowest
split-group.

The significance values of the splits with the highest splitid
scores are listed 1n FIG. 13 under “Significance of max Score-
Split”. Here we find a “significance” of 0.60 for the pair
“Parameterl/Splitl”, 0.30 for “Parameter2/Splitl”, 0.50 for
“Parameter3/Split2”, 1.20 for “Parameterd/Splitl & Split2”,
etc. From the last number we see that the significance can
adopt values exceeding unity, 1.e., the variation between high-
est and lowest split-group 1s larger than the actual spec range.

Now we have two separate characteristics—the split 1d
score and the significance value—which must be combined to
obtain the so-called “overall score value™. This overall score
value 1s also a cardinal measurable quantity and constitutes
the last column in the table of FIG. 13. The transitive order
defined by it, can eventually be used to rank the parameter
split-pairs and therefore to actually reduce the data for the
following (manual) analysis.

The combination of the different characteristics (1n order to
obtain the split 1d scores and the overall score values) 1s done
by employing basic principles of fuzzy logic operations.

FIG. 15 depicts the pairs of best-fitting parameter split
combinations together with their corresponding “max-score
values”, “significances” and “overall-score values”. This
“final score-table” has been sorted according to the overall
score values, which are given as percentage values 1n the last
column of FIG. 15.

As we can see, the combination of “Parameterd/Splitl &
Split2” possesses the highest overall score value, although 1ts
split 1d score 1s slightly less than that of the pair “Parameterl/
Splitl”. This 1s due to the fact that the significance of the
cross-split “Splitl & Split2” for “Parameterd™ 1s twice as high
as that of “Splitl” for “Parameterl”.

A score-table as given 1n FIG. 15 1s the main result of the
split pattern recognition and significance ranking procedure,
because 1t tells the person doing the following (manual) 1n-
depth analysis which parameter split combinations are actu-
ally worthwhile to be inspected and, on the other hand, which
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parameters may be neglected without taking the risk of miss-
ing any major effect. It 1s the first aspect that simplifies the
analysis, but 1t 1s the second aspect that greatly reduces the
overall time needed to actually do the analysis.

The preceding disclosure 1llustrated what kind of input1s 5
needed (1.e., the actual parametrical data, the primary split
matrix and the specifications for the various parameters),
what sort of output will be obtained (i.e., the full split matrix
including cross-splits, the split 1d score- and significance-
table and the overall-score-table with the best-fitting param- 10
cter split-pairs ranked according to their overall-score value),
and how this output must be 1nterpreted in order to facilitate
the following data analysis. Despite the fact that only basic
clements of conventional statistics and fuzzy logic operation
are utilized to conduct the split identification and significance 15
ranking, the concrete methodology used therein 1s completely
new. Furthermore, the underlying principle could also be
taken as a basis for a more general approach for parametrical
data assessment.

In order to calculate the score and significance values listed 20
in FI1G. 15 the following 1ssues have to be resolved: How can
different distributions be compared? What makes a split (or
cross-split) unique and distinguishable from another one and
how can the differences be quantified? How can these quan-
tities be combined to vield an overall-score value which 25
finally allows the necessary ranking of the different parameter
split pairs?

Process experiments (splits) usually lead to intended or
unintended parameter variations which will be measured at
Ftest (see FIG. 1). Quite naturally, these tests are carried out 3Y
on all waters within a lot and on several sites distributed over
the waler. As a consequence, one must be able to compare
parameter distributions rather than single parametrical val-
ues. FIG. 16 shows an example of two such parametrical
distributions to be compared. 33

In FIG. 16, a reference distribution REF and a measured
(actual) parameter distribution ACT are shown. The distribu-
tion of a parameter X 1s either characterized by 1ts distribution
density ¢(x) or its cumulative distribution ®(x), which 1s
simply the integral of the corresponding density. For simplic-
ity reasons we are going to assume all distributions to be of
normal type with the density function having Gaussian- or
bell-shaped distribution. Thus, any involved distribution can
be characterized by 1ts mean-value u (average) and standard
deviation o.

To compare two distributions, 1n this context, means to
determine a characteristic value which quantifies the degree
of matching between the actual and the reference distribution.

For this purpose the statistical sameness value 1s used. It 1s
defined as >V

40

45

S =

(D aci (Mper + KT Rer) — P (HRer — KO Rer)]

NRer
55
Quantities referring to the actual or the reference distribu-
tion are subscripted accordingly. The normalization factor 1s
defined by the reference distribution:
60

NREfE(I)REf(MREﬁkgREf)_(I)REf(l‘LRE‘kaGREf)

The non-normalized sameness N, xS yields the probabil-
ity to find a value x of the actually considered distribution
within the k oy, - range around the mean-value p,, . of the
reference distribution. In the example of FIG. 16, the factork 65
was set to 1 for 1llustration purposes, butnormally k=3 1s used
for sameness calculations.

10

The criteria whether a split pattern matches a specific
parameter variation are the following: 1) homogeneity of the
parameter values within each split-group; and 2) distinguish-
able oflsets between different split-groups. “Homogeneity”™
in this context simply means: Can a specific number of wafers
be seen to form a coherent group, 1.e., 1s the parametrical
distribution of each wafer similar/same to the parametrical
distribution defined by the other waters within the same split-
group? For the cross-split labeled “Splitl & Split2” 1n our
example of FIG. 4, we should for instance ask: Is the para-
metrical distribution of water 1 similar/same to the parametri-
cal distribution formed by wafers {2,3,4,5,6,7}? For wafer 2
we would ask, 1s the distribution of water 2 similar/same to
the distribution of wafers {1,3,4,5,6,7}? For wafer 11, which
belongs to split-group2, we would ask, 1s its distribution
similar/same to that of wafers {8,9,10,12,13}? And, so forth.
“Distinguishable offsets” on the other hand means: Can the
parametrical distribution of one split-group be clearly sepa-
rated from that of the other split-groups? In terms of our
example (“Splitl & Split2”), we should therefore ask: Canthe
parametrical distribution defined by wafers {1,2,3.4,5,6,7}
(1.e., split-groupl) be separated from the distribution of
wafers {8,9,10,11,12,13} (i.e., split-group2), or from that of
wafers {14,15,16,17,18.19} (i.e. split-group3), etc.? The bet-
ter both criteria are met; the better 1s the matching between
parameter- and split pattern.

The notion “homogeneity” within the context of this dis-
closure 1s quantified as follows:

Based on the assumption/approximation that all encoun-
tered distributions are of normal-type, the sameness S can be
written as a function of five parameters

S:S(HA c29 4 crruﬂeﬁ Gﬂeﬁ k)

OT
S=S(AVG(4),STD(4),AVG(R),STD(R),k)

where AVG(X) and STD(X) designate the average and stan-

dard deviation of a set of waters for a specific parameter (X=A
or R, where A=actual and R=reference). With the following
additional definitions:

w: specific wafer-index, i.e. w €{1, ..., N};

N: maximum waler-index, e.g. N=25 (for a 25 wafer lot);

A(w)={w}: set containing wafer-index w;

SG(W)={W,, ..., W, }: set of all wafer-indices that belong
to the split-group which includes the water with index w;

n(w)=SG(w)l: cardinality of the set SG(w), 1.e. number of
waters included 1n the split-group containing water w;

R(w)=SG(w)MA(w): set SG(w) without A(w);

we are able to introduce

Ph::-m (W) =

1, 1t r{w) =1
S(AVG(A(w)), STD(A(w)), AVG(R(w)), STD(R(w)), 3), 1if n(w) > 1

and

1 N
otal _ —

These defimitions operationalize the term “homogeneity”
according to what has been previously described. For each
waler w its “homogeneity-contribution” P, _(w) 1s deter-
mined by calculating the sameness value of 1ts parametrical
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distribution with respect to the corresponding distribution
found 1n the remaining split-group. If there 1s only one wafer
included 1n the split-group (i.e., n(w)=1), P, . (w)i1ssetto 1.
The symbol ‘P, __ °has been chosen to indicate that this value
can be interpreted as a probability that waler w does not
disturb the homogeneity of its own split-group SG(w).

The necessary sameness calculations are done with k=3.
Every water contributes with the same statistical weight to the
total split-group homogeneity-assessment P, " That is
the reason why this value has been defined as the simple
average of all individual values P,__(w). P, 7" therefore
assesses the overall homogeneity over all split-groups includ-
ing all waters.

In order to operationalize the second criterion, 1.e., the
split-group oflset assessment, we need the following defini-
tions:

N..: number of split-groups;

1, 1: split-group 1ndices;

AVG(1): average of split-group 1:

STD(1): standard deviation of split-group 1:

S(1, 1)=S(AVG(Q),STD(1),AVG(7),STD(3), 3) sameness of

split-group 1 with respect to split-group 1 (k=3);

With this we define

|
Pog (i, )=1- E(S(i,, P +50,0)
and

_1Nsg—1 Ngg

Ne:(Nger — 1
H,%GJE( sG ;G )] Z Zpﬂﬁ(fa i

i=1 =i+l

The quantity P_ (1, j) measures the separability of split-
group 1 from split-group 7. In contrast to P, __ (w), the defini-
tion of P_ (1, J) has been made symmetric, including the term
(S(1, 1)+5(7, 1))/ 2, because this way each split-group simulta-
neously serves in every P_ (1, J) calculation as actual and as
reference distribution, and none of the split-groups 1s given
preference over the other.

The characteristic values for the separability of the split-
groups have been denoted P_ rand P, ﬁ?ﬂm in order to idicate
that they, too, may be interpreted as a sort of probabilities. The
term (S(1, 1)+S(3, 1))/2 can be taken as the probability that
split-group 1 1s same to split-group 7. Its complement 1-(S(1,
1)+5(3, 1))/2 can therefore be seen as the probability that
split-group 1 1s different from split-group j. Pﬂﬁ?‘”m‘? then cal-
culates the average of all individual offset probabilities P, (1,
1)-

In the previous sections, characteristic values (probabili-
ties) have been defined which assess two important, but sub-
ordinate aspects necessary for the split pattern identification
(1.e., the split-groups’ homogeneity and their offsets). Since
there are many different split and cross-split patterns that
usually have to be compared to a parametric signature, one
obtains a great number of different P, /*** and P, /***’ values
(one pair for every parameter split combination). These must
be sorted in order to be able to pick the best fitting pattern. For
this purpose, we need to combine these subordinate charac-
teristic values mto a single split identification score value
(split 1d score), which can then be used to select a certain
parameter split pair.

In the context of this disclosure, combining P, _“** and
P.,:;,ﬁi’c":"mz into just one single split 1d score 1s done employing
very elementary tuzzy logic principles, since the classical
logical functions “AND” and “OR” are not suited to solve this
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problem. Following classical Boolean logic, one can state that
a given parametric variation reflects a specific split pattern the
better, the less disturbed the homogeneity within “AND” the
more distinct are the offsets between its split-groups. How-
ever, the values introduced to characterize the degree of
homogeneity or the split-group offsets are not of binary type
(1.e. “true” or “false”, “yes” or “no”, 1 or O etc.). They can take
all values out of the range from O to 1. This corresponds to an
interpretation as “more” or “less” rather than “ves™ or “no”. In
classical Boolean logic, however, only true binary-type val-
ues can be subjected to functions such as “AND”, “OR”, efc.
That 1s the reason why fuzzy logic has to be employed in order
to combine the different subordinate values.

In the theory of fuzzy sets, the logical values “true” and
“false” (*‘ves” and “no”), which apply to any given logical
statement, are replaced by the so-called membership func-
tions p(x). Where 1n classical Boolean logic the element X 1s
either a member of the set A or not

(xE4) “=""true or (x&4) “=" false

:>A(x)=1 or A(x)=0

1s the degree of membership 1in fuzzy logic by nature “tuzzy”.

The membership function quantifies this degree of member-
ship:

A(x)=p(x)

When the membership function 1s normalized, 1.e. 0=
p(X)=1, it can be interpreted as the probability that the ele-
ment belongs to the set.

For the purposes of the disclosed method, the fuzzy equiva-
lent of a classical “AND” 1s needed: That 1s, “Are all values

within the split-groups evenly (homogeneously) distrib-
uted?” AND “Are all offsets between the split-groups clearly
distinguishable?”

Fuzzy theory provides different operators which general-
ize classical logical functions. For the disclosed method a
simplified fuzzy operator corresponding to the classical logi-
cal “AND” 1s being used. Derived from the so-called gamma
operator, 1t reads as follows:

pv) = | | pix)
=1

x: element of a (classical) base-set;

p(x): overall (normalized) membership-function 0=p(x)
=1]1;

p,(X): (normalized) membership-function 1 0=p (x)=1;

This equation can also be 1dentified as the classical expression
for the calculation of the joint probability of m independent
events, when the probability for each event 1 1s given by p,.
The split 1d value for every split and/or cross-split s 1s there-
fore calculated by

() =Prom™  (S)XPof "™ (5)

These P, (s) are listed as score values 1n columns 2-7 of FIG.
13. For every parameter the maximum of 1ts split i1d scores
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P, /""" 1s determined and listed 1n column 8 of FIG. 13 and 1n
column 4 of FIG. 15.

P = Py(3) = max{Pig(s)}

i

The determination ot P, /”“* alone—as has been pointed out
carlier—i1s not yet suflicient to finally rank the identified
parameter split pairs. To achieve this goal, significance values
of all best fitting parameter split pairs have to be determined
in addition to the maximum split 1d scores calculated so 1ar.
The significance value (or simply significance) was 1ntro-
duced as the ratio of the maximum split-group oflset relative
to the spec width. In the following section this 1s put more
formally:

Let us assume we are presently considering the parameter
with the index v. Following the previously discussed meth-
odology we may have determined P, *** and P_ "' for all
splits/cross-splits s and finally found the split/cross-split s
with the highest P, /”*** value. This split indexed s may now
possess N different split-groups.

We define:

MAX(3) = max{AVG(i)}
MIN(S) = min{A VG(i)}

where

Famnt

| € {1, ,Ng(j]

AV (G(1) designates the average of parameter v with respect to
split-group i. We assume that split § consists of N <z Split-
groups, so thatiE€{1, ..., N .}. MAX(8) and MIN(S) are then
the group-maximum and -minimum obtained for split s. The
span of these two values 1s then to be compared with the spec
width. It 1s therefore introduced:

NSPCH(v)=min{(USL(¥)-TAR(+)),(TAR(v)-LSL
(V) }

USL(v) and LSL(v) designate the upper and lower spec limat,
TAR(v) the target value of parameter v. NSPCH(v), as the
narrow spec-half, then selects the mimimum of both sides of
the spec. The significance of split/cross-split s with respect to
parameter v 1s then defined as:

MAX(s) — MIN(s)

SGN(s, v) = —— NSPCH(v)

This definition of the significance value becomes neces-
sary, because parameters can be asymmetric 1n their specifi-
cations. It can be stated that for asymmetric limits the relevant
range for parametric variations 1s generally given by the “nar-
row” spec-side. So that SGN(s,v) has been defined dividing
the split-span by 2xNSPCH(v) and not the full spec-width,
1.e. USL(v)-LSL(v). For symmetrical specs there 1s no dii-
ference, 1.¢., 2xNSPCH(v)=USL(v)-LSL(v).

The significance values of the best fitting parameter split
pairs for our example (see the split matrix in FIG. 4 and the
parameter variations 1n FIGS. 5 to 12) have been determined
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according to the formula for SGN(s,v) and are given 1in col-
umn 10 of the table 1n FIG. 13 and 1n column 5 of the table in
FIG. 15.

To obtain the final overall score value, we need to combine
the maximum split 1d score for every parameter P, /*“*(v)=P, ,
(s,v) with the corresponding significance value SGN(s,v).
Since the co-domain of the significance 1s [0,+c0[, we have to
normalize 1t in order to obtain P, (with 0=P,, =1), a value
which (again) 1s going to be interpreted as a sort of probabil-
ity. This probability 1s then used—employing the same fuzzy
concept underlying the determination of P, , (s)—to combine
it with the P, /“* value to eventually yield the overall score

value. P;, 1s determined by:

SGN (5, v)}

Pio(s,v)=1-— exp{— 7
sig

As long as the a split significance is low, P, (S,v) varies
linearly with SGN(s,v). For large split significances, how-
ever, 1t levels off and approaches unity. This reflects the logi-
cal interpretation that, 1f a given split variation exceeds a
certain limit (defined by the significance-fractiont,, ), 1t sim-
ply becomes significant (1.e., P__(s,v)—1), no matter if it

exceeds t,, by a factor ot 10, lﬂggor even 1000.

The parameter 1, 1s called the “significance fraction”,
because 1t defines the fraction of the spec range—actually
2xNSPCH(v), to be precise—irom that on a certain split
variation really starts getting relevant. For our purposes

f . —0.25 1s used.

Sig
Once P, (s,v) has been calculated, the overall score value

P . (s,v) for split s and parameter v is defined by

Posy (S, v) = Py (v) X Py (5, v)

= Pig(5, v) X Pig(s, v)

For our example, P__ (s,v) 1s given as percentage value in
column 11 of FIG. 13 and in column 6 of FIG. 15. The table
in FIG. 15 has then been sorted according to these overall
score values in descending order. Only parameter split pairs
with large overall score values (P__ (s,v)—1 or 100% respec-
tively) exhibit a high probability that the distribution of
parameter v actually reflects the pattern of the best-fitting
split/cross-split s on the one hand, and that the parametric
variation due to this split/cross-split s is really significant with
respect to the specification of parameter v on the other hand.

What 1s claimed 1s:

1. A method of adjusting process variables 1n a processing
flow that comprises a sequence ol processing steps, the
method comprising:

testing processed samples to determine sample parameters

of the tested samples;

analyzing said sample parameters 1n relation to the process
variables applied in the processing steps to determine the
impact of the process variables on the sample param-
clers;

moditying the process variables in an attempt to change the
sample parameters towards predetermined target values;
and

repeating the sequence of processing steps with the modi-
fied process variables;
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wherein the analyzing step includes, for given samples:

automated matching between patterns of process variables
applied for said samples and patterns of corresponding
sample data sets of parameters determined from said
samples;

quantitying the degree of match 1n terms of score values
associated with patterns of process variables; and

determining the significance of said score values in terms

of significance values calculated based on the deviation
of the parameters in the sample data sets from said

predetermined target values.

2. The method of claim 1, wherein the processing flow 1s a
semiconductor technology development flow and the pro-
cessing steps mvolve application of different patterns of pro-
cessing variables to different samples 1n a lot of semiconduc-
tor wafers.

3. The method of claim 2, wherein the patterns of process-
ing variables comprise process splits 1n which different val-
ues of a single process variable, or of a combination of pro-
cess variables, are applied to different samples 1n a lot.

4. The method of claim 3, wherein the patterns of process-
ing variables comprise virtual cross-splits derived from said
process splits by combining the application of process vari-
ables from diflerent process splits to each sample of a lot.

5. The method of claim 1, wherein the degree of match
between patterns of process variables and sample data sets of
parameters determined from said samples 1s quantified by:

determining data subsets within said sample data sets of

parameters;
calculating first subordinate score values which reflect the
degree ol homogeneity within said data subsets;

calculating second subordinate score values which retlect
the degree of deviation between different said data sub-
sets; and
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combining said first and second subordinate score values
into single super-ordinate score values applying prin-
ciples of fuzzy logic.

6. The method according to claim 5, wherein said signifi-
cance values are determined by:

determining sample parameter group-ranges within the

sample data sets of parameters;

calculating ratios of said sample parameter group-ranges to

predetermined specification ranges; and

normalizing the calculated ratios to obtain normalized sig-

nificance score values.

7. The method according to claim 6, wherein maximum
super-ordinate score values are determined from said super-
ordinate score values and said normalized significance score
values applying principles of fuzzy logic.

8. The method according to claim 7, wherein matched
patterns of process variables and patterns of sample data
parameters are ranked according to said overall score value.

9. The method according to claim 1, wherein said signifi-
cance values are determined by:

determining sample parameter group-ranges within the

sample data sets of parameters;

calculating ratios of said sample parameter group-ranges to

predetermined specification ranges; and

normalizing the calculated ratios to obtain normalized sig-

nificance score values.

10. The method according to claim 9, wherein maximum
super-ordinate score values are determined from said super-
ordinate score values and said normalized significance score
values applying principles of fuzzy logic.

11. The method according to claim 10, wherein matched
patterns of process variables and patterns of sample data
parameters are ranked according to said overall score value.
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