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(57) ABSTRACT

A “multicast code constructor” facilitates network based cod-
ing 1n a multicast environment by determining efficient codes
for optimizing network flows, thereby increasing reliable net-
work throughput. The network code constructor processes
incoming data at each node on a byte-by-byte level to produce
outgoing packets to each node in the network. Network cod-
ing 1s provided 1n which arithmetic operations can occur 1n
any finite field with more than N-1 elements, where N repre-
sents the number of recervers in the network. Further, the
complexity of arithmetic employed by the coder 1s indepen-
dent of the network capacity, and dependent only on the
number of receivers 1n the network. In addition, 1n one
embodiment, multicast codes are restricted to the portion of
the network obtained by a union of unicast tlows from a
sender node to each recerver node to produce codes which do
not flood the network excessively, thereby producing a lower
code design complexity.
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REDUCING A NETWORK WITH INTEGER EDGE
CAPACITIES TO A NETWORK WITH UNIT EDGE CAPACITIES

300
inputs:
 Directed Acyclic Graph (V,E’) of Nodes and Edges,
210 * Integer Capacities on each Edge

Replace each Edge having Capacity ¢
with ¢ Edges having Unit Capacity.
320

Output:
 Directed Acyclic Graph (V,E) of Nodes and Unit-
Capacity Edges

FIG. 3

DETERMINING THE MULTICAST CAPACITY OF A NETWORK

Inputs: 400
* Directed Acyclic Graph &=(V,E) of Nodes and Edges,
* Unit (or integer) Capacities on each Edge,
* Source Node s in V, and N Receiver Nodes r,, ..., r, in V
420

Run max-flow algorithm to find
the max-flow C; from s to r

40

Output:
 Multicast capacity C

FIG. 4

450
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DESIGNING A CODE FOR A NETWORK: INITIALIZATION STAGE

Inputs:
e Arate R<=C, 500
A Directed Acyclic Graph ¢&(V,E) of nodes and (unit-capacity)

Edges,
* A Source Node sin V, and N Receiver Nodes r,, ..., r, in V

505
Add new node s'and new edges e _,...,e . from s’to source node s.
On each new edge e, 515

Set n(e_j) = the R-dimensional row vector
with 1 in the j 'th place and O elsewhere

Next edge

For each receiver r;
525 250

Run flow algorithm to find a flow of magnitude R
(1.e., R edge-disjoint paths) from s'to r.

Let F,;denote the j 'th path (j =1,..,R)
in the flow from s'to r..

535

540

Discard edges not in any flow.

Order remaining edges e.,...,e topologically from s.

v 550

FIG. 5

045
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550 v DESIGNING A CODE FOR A NETWORK: ENCODER STAGE

Fort=12 ..., T 1}

600

For each receiver r,

Let £, denote the j'th path (j =7,...,R} in the flow to 1,
Let ;. denote the edge e, in P,; with the largest ' <= ".
Let 7.1 ={e, , ..., ez} be the "frontier edge set" for receiver r, at step t.

625

602
k=0

605

610

615

e, is in the
frontier edge set, .e, e,= ¢, o
for some /",

620

k=k+1
Let v, = n(e’), where e'is the predecessor of €, i+ In path P, ..

Let S, = {n(e;,), - M€ nq), M€ j0eg)s ---» n(e; g)}-
[Note {v,} U S, is a linearly independent set of vectors.]

630

640

Next step ¢

v 645

Choose a linear combination of v,, ..., v, (See FIG. 8), i.e.

V1,1 c e vl,R

TI=(7]1 77&)=(ﬁ1 ﬁk)

such that nis notin the span ofany S, ..., S,.
[Note that {5} U S, is a linearly independent set of vectors, / =

Vel " Verg

1.k

Set n(e,) = 1.

Set fle) = (B,,.... B)-

635

FIG. 6
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DESIGNING A CODE FOR A NETWORK: DECODER STAGE

v 645

700
F h iver r;
L
Let e,,...,e, denote the edges entering r,.
~1

Compute: n(e) - My(e)
er)={ @ .

M (eg) Nk (ex)

720

Next receiver

730

Output:
* A reduced graph, an encoding vector ff(e) on each edge e, and
* A decoding matrix ¢r;) at each receiver r; in the graph

FIG. 7



U.S. Patent Aug. 11, 2009 Sheet 7 of 9 US 7,574,518 B2

CHOOSING A LINEAR COMBINATION OF v, ..., v,
NOT IN THE SPAN OF ANYS,, ..., S,

Input: 800
* R-dimensional vector v;, and
e setof R-17 R—dlmensmnal vectors S, fori=1,...,k

Denote by L the vector space spanned by v, fori=1,... k. 810
Compute the set of vectors v, fori = 1,. K. spannmg L. K’
Is less than or equal to k. Renumber the indices if needed.

Forj=1,...,k
By Gaussian elimination compute avectorZ inL
such that for any vectory in S Y. S 0.

820

Now we have to find a vecto? v in L such that v. Z IS not zero
or
j"' 1,....K.
Assume vectors Z 1 =1,. k” are linearly independent and
all other Z, | j = k”+1 Kk can be written as linear
combinations of these. Renumber the indices if needed.

830

Find c, j = 1,...,k” by solving the following system
of linear equatlons which gives v (See FIG. 9).

K

840

Note that the solution to the above set of equations may not
be unique and one of the solutions can be calculated by
Gaussian elimination.

850

Output:
* R-dimensional vector v=Z_*f. v,and
* kcoefficients f,...,
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CHOOSING A LINEAR COMBINATION OF ¢, ..., ¢,

900

Input:

. Lmearly mdependent vectors Z, /= 1,...,k" and
. 1 K'+1,...,k dependent vectors on the first k” vectors.

910

For each vector, j = k'+1,... k, define the dependence
number as the largest / such that Z;is dependent upon Z.

Consider each j = 1,...,k" one by one in the increasing order.

920
Fixing c;fixes all the v.Z;for each j having dependence number i.
Choose a non-zero ¢, so that none of v.Z fixes to O
for each | hawng dependence numBer .

Choice can be made by considering k- different values of c..

930
Output
* C,...,C,

FIG. 9
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MULTICASTING R<=C SYMBOLS PER UNIT TIME
FROM THE SOURCE TO EVERY RECEIVER

A Rate R <= C, a Set of Symbols X, ..., X, to Multicast, 1000
A Directed Acyclic Graph ¢=(V,E) o? nodes and (unit-capacity) edges,
e A Source Node sin YV,
* N Receiver Nodes r,, ..., ryin V,
 An Encoding Vector f(e) on each Edge e, and
* A Decoding Matrix ¢(r;) at each Receiver r,.
. , 1005
Add new node s'and new edges e_,,...,e  from s'to source node s.
On each new edge e 1015
Set Y(e ) = X,
Next Edge
For each remaining
edge e (in topological
order from s) 1030
1025 Let v = tail(e) denote the node that e is leaving.
Let e,,...,e, denote the edges entering v.
Compute on edge e Y(e,)
Y(e)=[B(e) - Bile)]
Y(e
1035 (%)

Next Edge
1045

1040 Let e,,...,e5 denote the edges entering r.
Compute:
X, €.(r) - Exr(n) | Y(e)
1 050 XR ERI (7}) " SRR(’:') Y(eR)
1055

Output:

¢ Symbols X, ..., X, recovered at each receiver

FIG. 10
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SYSTEM AND METHOD FOR COMPUTING
LOW COMPLEXITY ALGEBRAIC
NETWORK CODES FOR A MULTICAST
NETWORK

BACKGROUND

1. Technical Field

The 1nvention 1s related to automatically optimizing net-
work coding, and 1n particular, to a system and method for
performing network coding at nodes in the network along
transmission paths between senders and recetvers for increas-
ing an amount of information that can be reliably broadcast
from a sender to a collection of receivers through the network.

2. Related Art

In general, a multicast network can be described as a net-
work with directed edges. There are a number of existing
schemes for routing network tlows 1n an attempt to optimize
the capacity of such networks.

For example, one conventional scheme has demonstrated
that 11 coding 1s allowed at internal nodes 1n a network, then
the multicast capacity 1s 1n general higher than 1f no such
coding 1s allowed. Further, this scheme has also demonstrated
the existence of multicast codes that would achieve a natural
upper bound on a multicast capacity by applying a max-tlow
min-cut theorem to the network between a sender and a num-
ber of recervers. Unfortunately, the results offered by this
scheme depend on random coding arguments without provid-
ing any construction techniques for practical multicast codes.

Another fairly recently offered scheme for coding acyclic
networks has demonstrated a connection between algebraic
geometry and network coding. This network coding scheme
examined the performance of codes where nodes are allowed
to group together incoming bits 1nto blocks of a predeter-
mined length, m. The resulting symbols are then treated as
clements 1n a finite field having a size o1 2™. This scheme then
performs a linear combination on the symbols 1n the finite
field to produce outgoing symbols which are elements 1n a
finite field. Decoding at recerver nodes 1s also a linear opera-
tion over the finite field on the incoming symbols. This
scheme also provides techniques for examining multicast
scenarios, such as, for example, certain edge failure patterns
may occur, networks with delay, and other special encoding
scenar1os (such as when all sources wish to transmat all their
information to all sinks 1n the network).

However, this scheme for coding acyclic networks has
several drawbacks. For example, where N represents a num-
ber of receivers 1n the network and C represents a cutset
capacity of the network, the solution to the multicast problem
requires a lield size q for the network codes to be larger then
NC. This number quickly becomes impractically large for
arithmetic implementation as the size of N and C increase.
Further, the resulting codes would involve “flooding” the
network, thereby likely using more network edges than would
otherwise be necessary for the same or greater network capac-
ity.

Therefore, what 1s needed 1s a system and method for
coding networks that overcomes the disadvantages of the
alorementioned schemes. For example, such a system and
method should provide construction techniques for practical
multicast codes. Further, these multicast code construction
techniques should limit the complexity of network coding,
even on large networks, such that any arithmetic computa-
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2

tions are feasible. Finally, the resulting network codes should
avold flooding of the network 1n order to optimize capacity.

SUMMARY

A “multicast network code constructor,” or simply “net-
work code constructor,” as described herein, provides a sys-
tem and method for facilitating network based coding 1n a
multicast environment by constructing efficient multicast net-
work codes for optimizing network tlows, thereby increasing
reliable network throughput. In general, the network codes
are used to process incoming data at each node on a byte-by-
byte level to produce outgoing packets to each neighboring
node 1n the multicast network. The network code constructor
provides for multicast network coding, or simply “network
coding,” in which arithmetic operations can occur 1n any
finite field with more than N-1 elements, where N represents
the number of recervers 1n the network. Further, the complex-
ity of arithmetic employed by the network code constructor 1s
independent of the network capacity, and dependent only on
the number of receivers 1n the network. In addition, in one
embodiment, multicast network codes are restricted to the
portion of the network obtained by a union of unicast flows
from a sender node to each receiver node to produce codes

which do not flood the network excessively, and thus have an
associated lower design complexity.

The multicast networks described herein are understood to
be defined as networks with directed edges that are assumed
to be error-iree, with a single sender of information s wishing
to transmit the same information to N receivers R={r,,
r,, . .. Int. However, it should be noted that while the
descriptions of the network code constructor provided herein
are explained 1n the context of an analysis of multicast net-
works over directed acyclic graphs with zero-delay edges, the
ideas described herein are easily extensible to robust network
codes, more general encoding scenarios, and networks with
delays.

The network code constructor provides an eificient coding,
process in which arithmetic operations can occur 1n any finite
field with more than N-1 elements. Thus the complexity of
arithmetic 1s independent of the capacity of the network, and
dependent only on the number of recetvers. The coding
design process described herein provides a solution to a mul-
ticast network coding problem, wherein the complexity of the
solution 1s dominated by the time complexity of running a
maximum flow algorittm N times, plus ON(N+C)’IEl)
operations over any finite field with more than N-1 elements,
where E represents the number of edges.

In general, the network code constructor can be simply
described as a system and method for computing a linear
network code. Computing the network code 1s accomplished
by first computing flows between at least one sender and two
Or more receivers given capacities on each network edge.
Next, given the computed tlows, network node coetlicients
are then computed directly from the computed flows to pro-
vide an efficient and computationally inexpensive network 1s
coding, relative to conventional network coding schemes.

In particular, the network code constructor facilitates net-
work based coding 1n a multicast environment by determinming
elficient codes for optimizing network flows. This process
begins by using known parameters of the network, including,
for example, information describing a sender, S, receivers, r,
and each internal node 1n the network, along with the tlow
capacity (edges) of each of these network elements. These
parameters are then used to reduce the network to a form that
1s more conducive to analysis. In particular, the network 1s
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reduced to a network whose edges have unit capacities by
replacing each edge having a capacity ¢ with ¢ edges having
unit capacity.

Following this reduction of the network, a conventional
max-flow algorithm 1s used to determine the multicast capac-
ity C from the sender to the recervers. Then, given this mul-
ticast capacity C, along with the known network parameters,
the network code constructor constructs multicast network
codes by computing a tlow of rate R=C from the sender to
cach receiver, and from these tlows directly computes encod-
ing vectors and decoding matrices for transmitting symbols
from the sender to the receirvers across the network, and then
decoding those symbols at each receiver.

In addition to the just described benefits, other advantages
of the system and method for automatically determining effi-
cient codes for optimizing network tlows will become appar-
ent from the detailed description which follows hereinafter
when taken 1n conjunction with the accompanying drawing,
figures.

DESCRIPTION OF THE DRAWINGS

The specific features, aspects, and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accompa-
nying drawings where:

FIG. 1 1s a general system diagram depicting a general-
purpose computing device constituting an exemplary system
for automatically facilitating network based coding 1n a mul-
ticast environment by determining efficient codes for opti-
mizing network flows.

FIG. 2 1illustrates an exemplary architectural diagram
showing exemplary program modules for automatically
facilitating network based coding in a multicast environment
by determiming efficient codes for optimizing network flows.

FIG. 3 1illustrates an exemplary system flow diagram for
automatically reducing a network with mteger edge capaci-
ties to a network with unit edge capacities.

FIG. 4 1llustrates an exemplary system flow diagram for
automatically determining a multicast capacity of a network.

FI1G. 5 illustrates an exemplary system tlow diagram of an
initialization stage for automatically designing a code for a
network.

FIG. 6 illustrates an exemplary system flow diagram of an
encoder design stage for automatically designing a code for a
network.

FIG. 7 1llustrates an exemplary system flow diagram of a
decoder design stage for automatically designing a code for a
network.

FIG. 8 1llustrates an exemplary system flow diagram for
automatically computing encoding vectors for every edge of
a multicast network.

FIG. 9 illustrates an exemplary system flow diagram for
automatically choosing a linear combination of vectors for
use 1 a greedy algorithm utilized by the network code con-
structor.

FIG. 10 1llustrates an exemplary system flow diagram for
automatically multicasting symbols from a source to every
receiver using network coding generated by the network code

constructor, as illustrated 1n FIG. 3 through FI1G. 9.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following description of the preferred embodiments
of the present invention, reference 1s made to the accompa-
nying drawings, which form a part hereof, and in which 1s
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4

shown by way of illustration specific embodiments 1n which
the mvention may be practiced. It 1s understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the present inven-
tion.

1.0 Exemplary Operating Environment:

FIG. 1 1llustrates an example of a suitable computing sys-
tem environment 100 on which the invention may be imple-
mented. The computing system environment 100 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents 1llustrated 1n the exemplary operating environment 100.

The 1mvention 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to,
personal computers, server computers, hand-held, laptop or
mobile computer or communications devices such as cell
phones and PDA’s, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the
above systems or devices, and the like.

The invention may be described 1n the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc., that perform particular tasks or implement particu-
lar abstract data types. The invention may also be practiced in
distributed computing environments where tasks are per-
tformed by remote processing devices that are linked through
a communications network. In a distributed computing envi-
ronment, program modules may be located 1n both local and
remote computer storage media including memory storage
devices. With reference to FIG. 1, an exemplary system for
implementing the ivention includes a general-purpose com-
puting device 1n the form of a computer 110.

Components of computer 110 may include, but are not
limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components
including the system memory to the processing unit 120. The
system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
By way of example, and not limitation, such architectures
include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA ) bus, Enhanced ISA (EISA) bus,

Video Electronics Standards Association (VESA) local bus,
and Peripheral Component Interconnect (PCI) bus also

known as Mezzanine bus.

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
volatile and nonvolatile removable and non-removable media
implemented 1n any method or technology for storage of
information such as computer readable instructions, data
structures, program modules, or other data.

Computer storage media includes, but 1s not limited to,
RAM, ROM, EEPROM, flash memory, or other memory
technology; CD-ROM, digital versatile disks (DVD), or other

optical disk storage; magnetic cassettes, magnetic tape, mag-
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netic disk storage, or other magnetic storage devices; or any
other medium which can be used to store the desired infor-
mation and which can be accessed by computer 110. Com-
munication media typically embodies computer readable
instructions, data structures, program modules or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of 1ts characteristics set or changed 1n such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, RF, infrared, and
other wireless media. Combinations of any of the above
should also be included within the scope of computer read-
able media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, 1s typically stored in ROM 131. RAM 132 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory interface such as iterface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and illustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s 1llustrated as storing operating
system 144, application programs 145, other program mod-
ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
mimmum, they are different copies. A user may enter com-
mands and information into the computer 110 through nput
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball, or touch pad.

Other mmput devices (not shown) may include a micro-
phone, joystick, game pad, satellite dish, scanner, radio
recetver, and a television or broadcast video receiver, or the
like. These and other input devices are often connected to the
processing unit 120 through a user input interface 160 that 1s
coupled to the system bus 121, but may be connected by other
interface and bus structures, such as, for example, a parallel
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port, game port, or a universal serial bus (USB). A monitor
191 or other type of display device 1s also connected to the
system bus 121 via an interface, such as a video interface 190.
In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral
interface 195.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device, or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been illustrated 1n FIG. 1. The logical connec-
tions depicted 1n FIG. 1 include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.

When used 1mn a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be 1nternal or external, may be connected to the system bus
121 via the user mput interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

The exemplary operating environment having now been
discussed, the remaining part of this description will be
devoted to a discussion of the program modules and processes
embodying a system and method for automatically determin-
ing eificient codes for optimizing network flows.

2.0 Introduction:

A “multicast network code constructor,” or simply a “net-
work code constructor,” as described herein, provides a sys-
tem and method for facilitating network based coding 1n a
multicast environment by computing efficient multicast net-
work codes for optimizing network tlows, thereby increasing
reliable network throughput. In general, the multicast net-
work codes are used to process incoming data at each node on
a byte-by-byte level to produce outgoing packets to each
neighboring node in the multicast network. The network code
constructor provides for multicast network coding, or simply
“network coding,” 1n which arithmetic operations can occur
in any fimite field with more than N-1 elements, where N
represents the number of receivers 1in the network. Further, the
complexity of arithmetic employed by the multicast network
code constructor 1s independent of the network capacity, and
dependent only on the number of receivers in the network. In
addition, in one embodiment, multicast network codes are
restricted to the portion of the network obtained by a union of
unicast flows from a sender node to each recerver node to
produce codes which do not flood the network excessively,
and thus have an associated lower design complexity.

The multicast networks described herein are understood to
be defined as networks with directed edges that are assumed
to be error-iree, with a single sender of information s wishing
to transmit the same information to N receivers R={r,,
r,, ... .Iyvt). However, it should be noted that while the
descriptions of the network code constructor provided herein
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are explained 1n the context of an analysis of multicast net-
works over directed acyclic graphs with zero-delay edges, the
ideas described herein are easily extensible to robust network
codes, more general encoding scenarios, and networks with
delays.

The network code constructor provides an etficient coding,
process in which arithmetic operations can occur in any finite
field with more than N-1 elements. Thus the complexity of
arithmetic 1s independent of the capacity of the network, and
dependent only on the number of recervers. The coding
design process described herein provides a solution to a mul-
ticast network coding problem, wherein the complexity of the
solution 1s dominated by the time complexity of running a
maximum flow algorithm N times, plus O(N(N+C)’|El)
operations over any finite field with more than N-1 elements,
where E represents the number of edges.

In general, the network code constructor can be simply
described as a system and method for computing a linear
network code. Computing the multicast network code 1s
accomplished by first computing flows between at least one
sender and two or more receivers given capacities on each
network edge. Next, given the computed flows, network node
coellicients are then computed directly from the computed
flows to provide an efficient and computationally inexpensive
network coding, relative to conventional network coding
schemes.

2.1 System Overview:

In general, the network code constructor operates by com-
puting network codes for a known network, having senders
and receivers of known flow capacity. The following section
briefly describes the general operation of the multicast net-
work code constructor 1n terms of an architectural flow dia-
gram that illustrates general functional elements of the net-
work code constructor.

2.2 System Architecture:

The processes summarized above are illustrated by the
general system diagram of FIG. 2. In particular, the system
diagram of FIG. 2 illustrates interrelationships between pro-
gram modules for implementing a “multicast network code
constructor” for facilitating network based coding 1n a mul-
ticast environment by computing efficient multicast codes for
optimizing network flows. As shown 1n FIG. 2, the multicast
network 1s presented as a directed acyclic graph (DAG) 200
having zero-delay edges. However, as described 1n detail
below, the 1deas described herein are easily extensible to
robust network codes, more general encoding scenarios, and
networks with delays.

As 1illustrated by FIG. 2, a network code constructor for
computing eificient multicast codes for optimizing network
flows begins by inputting known parameters of the network
200 into a network parameter mput module 210. These
parameters include information describing the sender, S, each
receiver, R, and R, each internal node 1n the network, and
cach edge 1n the network along with capacities on each edge.
The network parameter input module 210 then provides these
parameters to a network reduction module 220. The network
reduction then reduces the network to a form that 1s more
conducive to analysis. In particular, the network & 200 is
reduced to a network whose edges have unit capacities by
replacing each edge having a capacity ¢ with ¢ edges having
unit capacity.

Following the reduction of the network, a network capacity
module 230 uses a conventional max-flow algorithm to deter-
mine a maximum tlow C, from the sender to each recetver R ..
Themulticast capacity C of the network 1s the minimum value
of these maximum flows, 1.e., C=min, C,. Given a transmis-
sion rate R less than or equal to this multicast capacity C, the
next step 1s to compute encoding vectors and decoding matri-
ces for transmitting symbols at rate R from the sender the
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receivers across the network, and then decoding those sym-
bols at each recerver. These codes are computed by a network
coding module 240 given the network parameters and the
transmission rate R. Once computed, these codes 250 are
stored for use 1n transmitting, coding and decoding symbols
on the network 200.

3.0 Operation Overview:

The above-described program modules are employed 1n a
multicast network code constructor for facilitating network
based coding 1n a multicast environment by computing etfi-
cient codes for optimizing network flows. The following sec-
tions provide a detailed operational discussion of exemplary
methods for implementing the aforementioned program
modules. In particular, the following description provides a
discussion of initial definitions and background for explain-
ing the network code constructor. Following these definitions
and background, several theorems underlying the implemen-
tation of the network code constructor are provided for pur-
poses ol explanation. Finally, an overall summary of the
system 1s presented in terms of a general system flow dia-
gram.

3.1 Definitions:

The following discussion provides a description of defini-
tions and assumptions used i implementing the network
code constructor with respect to an acyclic network. As noted
above, the descriptions of the network code constructor
described herein are explained 1n the context of an analysis of
multicast networks over directed acyclic graphs with zero-
delay edges. A network 1s called cyclic 11 1t contains directed
cycles; otherwise it 1s called acyclic.

In particular, 1n the following discussion, a network 1s
represented by a directed acyclic graph (DAG) ¢=(V,E) with
a vertex set V and edge set E. All edges are directed, and
multiple edges are allowed between two vertices. The vertex
which 1s at the head of an edge e shall be denoted by head(e),
and the vertex at the tail by tail(e). The in-degree of a vertex
v 1s defined as the number of edges €' such that head (e')=v,
and 1s denoted by 1'(v). The set of edges incoming to a vertex
v 1s the set of all edges e such that head(e)=v, and the incom-
ing edges are denoted by {e,”"(v),e,”(V)er,, (v)}. Each
edge ¢ € E 1s assumed to have integer edge capacity and be
delay-free. Note that as 1s well understood by those skilled 1n
the art, by choosing a suificiently large umt of time, any
network can be approximated to an arbitrary degree of accu-
racy by a network with edges having integer capacities.

For purposes of explanation, the following discussion
describes the network code constructor 1in multicast networks,
1.€., networks that have a single source vertex s and N recerver
vertices or nodes R={r,.r,, ... r,}. Statistically, at every unit
of time 1, the source vertex s produces R binary random
variables {b, },_,™ such that {b,,} are independently and
indistinguishably distributed (1.1.d.) with Bernoulli(12) for all
ie{0,1,...},andj&E{1,2,...,R}. Further, for every group
of m time units {im,im+1, . . ., im+m-1} the network codes

described herein group together the m bits {b, J,bfm+ e e e s
b,,em_1,} t0 Obtain R symbols {X, } _,“ inafinite field, IF m,
where m 1s some 1nteger whose value will be fixed later. In
addition, 1n order to simplily the notation 1n the following
discussion, each edge 1s broken up into parallel edges with the
unmit capacity of 1 bit per unit time. However, it should be
appreciated by those skilled 1n the art that the network coding
methods described herein are equally applicable to any
capacity of U bits per unit time. Therefore over m time unaits,
cach edge of the network has the capacity to transmit m bits of
information, or equivalently, 1 symbol from the finite field
IF ;.

Therefore, 1n view of the preceding discussion, the network
coding problem can be described as involving the transmis-
sion of the {X, J}FIR symbols 1n m consecutive time units
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10,1, ..., m-1} over the edges of the network, to replicate
1Xob-1" symbols at vertex v for every vertex v € R. The
identical process 1s then used for each successive block of m
time units. Therefore, in order to again sunphfy the notation
for purposes of dlseussmn the time 1ndex, 1, will be dropped
from the notation such that symbols are denoted as 13Xt -1

Further, again for purposes of explanation, it 1s assumed] that
all edges are synchronized with respect to symbol timing, and

that edges {e_,,e_,, ... .,e_x} are appended to the network
such that head(e_;)=s for all je€ {1.2, ..., R}.

Thus, a SymbelY(e ;) transmitted over edge e_,1s denoted
by the symbel X Further the symbol transmitted over any
other edge ¢ 1n the network, denoted by Y(e), 1s a function
only of the symbols on edges incoming to tail(e). Therefore,
for each edge e, a I'(tail(e))-length combination vector 1s
defined as B(e)=(B,(€).B2(): - - - » Briairien(©)) to be associ-
ated with e. These combination vectors, ((e), represent
encoding vectors for each edge of the network. The network
G 1s said to be a IF,»-linear network if for all edges e € E, the
symbol Y(e) on an edge ¢ € E can be written as:

Yie)= ﬁ(E)(Y(Ef”(t&ﬂ(E)) Y(e,"(tail(e)), .
@ (tail(e)))”

(e [ (tail
Eqgn. 1

for some encoding vector 3(e) whose entries are elements of
IF,n, where e, (V), ..., er, " (v) denote the edges incoming
to a vertex v. These vectors [3(e) can be taken to be time-
varying or time-invariant, and the network 1s accordingly
either a “time-varying”’ or “time-mnvariant” network. The fol-
lowing discussion concentrates on time invariant networks
for purposes of explanation; however, the multicast network
code constructor 1s clearly not limited to time-1nvariant net-
works, as 1t can easily be applied to time-varying networks.

Furthermore, each edge ¢ 1s associated with an R-length
representation vector n(e), such that

(el tailie)) Eqn. 2

n(ey (tail(e)))
nie) = le) 2

\ W(Eﬁmi.{(e}} (tail(e)))

In addition, for each j € {1,2, ..., R}, n(e_,) is initialized
as an R- length vector with 1 1n the 1 & pesmen and 0 every-
where else. Consequently, because of the directed acyclic
nature of &, this mitialization makes m(e) well defined for
cach e €N. Further, by using this definition n(e), 1t can be
seen that if the symbol Y(e_;) being transmitted over edge e_,
equals the symbol X , then the symbol being transmitted over
edge e equals

Yey(e)(X, X, . .., X))t Eqn. 3

Thus, the representation vector n(e) on edge € shows how the
symbol Y(e) on edge e 1s represented 1n terms of the original
source symbols.

Further, for each recerver r,, R distinct I'(r,)-length decod-
ing vectors {e(r;, j)},_,” are defined to be associated with r,.
The entries of €(r,,1) are elements of IF,». Again, for purposes
ol explanation, the following discussion 1s restricted to the
case where decoding operations also involve only linear com-
binations of the incoming symbols, as 1llustrated by Equation
(4). However, as should be appreciated by those skilled 1n the
art, the network code constructor described herein 1s also
applicable to non-linear combinations of the mcoming sym-

bols.

X(r, y=e(r, N(Xle, ™ (), Y(e," (7)), . ..
(r)"

,Y{e l"(raff(e))m
Egn. 4
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For a given network &, the multicast network coding prob-
lem 1s defined as a 4-tuple (&,s, R,R). Further, it 1s desired to
choose appropriate 3(e) and (r,,)) so that the symbols can be
decoded perfectly, 1.e., X(r,, j)=X, for each receiver r,
& R and for each block of m consecutive time units. If such
B(e) and e(r,,)) exist 1n a suitably chosen field IF,», then the
network & 1s said to be “IF,»-linearly solvable with multicast
rate R”, and the 3(e) and &(r,, ) comprise the solution.

Next, for the communication network &, a cut between two
vertices v and v' 1s defined as a partition of the vertex set V into
two sets S and S=V-S such that vE S and v' € S°. The value
V(S) of the cut 1s defined to be equal to the number of edges
going from S to S°.

3.2 Theorems:

The following paragraphs describe several theorems that
are utilized 1n formulating the dertvation of algebraic network
codes as provided by the network code constructor described
herein.

3.2.1 Theorem 1—Min-Cut Max-Flow:

The well known conventional “Min-Cut Max-Flow theo-
rem” 1s described by L. R. Ford, Jr., and D. R. Fulkerson in
“Maximal Flow Through a Network”, Canadian Journal of
Mathematics, 8, pp. 99-404, 1956. This Min-Cut Max-Flow
theorem guarantees that for N=1, (that 1s, 1f there 1s only one
recerver r, in the network) the network problem 1s solvable 1f
and only 11 R 1s less than or equal to C,, the minimum value of
all cuts between s and r,. In particular, the Min-Cut Max-Flow
theorem 1n network coding states that the network problem
(G.,s,r,R) 1s solvable if and only it R=C=ming ¢, V(S).

A number of low time-complexity schemes have been
devised based on the Min-Cut Max-Flow theorem for finding
solutions to network coding problems. In general, such
schemes are commonly referred to as “maximum tlow algo-
rithms.” A number of these maximum flow schemes are
described by: R. K. Ahuja, T. I. Magnanti, and J. B. Orlin, 1n
“Some Recent Advances 1n Network Flows™, STAM Review,
vol. 33, pp. 173-219, 1991. The network code constructor
described herein makes use of such a maximum flow algo-
rithm 1n a pre-processing stage.

Fort example, 1n a conventional maximum flow algorithm,
a directed path P={e.e,, . .., e, } between s and r, comprises
an ordered set of edges from E such that tail(e,)=s,
head(e, )=r,, and head(e,)=tail(e,, ). A set of C edge-disjoint
directed paths P, between s and r, comprises C directed paths
{P ,} between s and r, such that no two paths share any edge
in common, although sharmg of vertices 1s allowed. Conven-
tional maximum flow algorithms provide a means of finding
C, edge-disjoint directed paths between s and r,. In other
words, these conventional maximum flow algorithms are
used to find a solution for the network 1n which every coetfi-
cient 1n all the p(e) and all the €(r,,1) are erither O or 1.

3.2.2 Theorem 2—Network Multicast Theorem:

For the multicast network coding problem, let C be the
minimum over all 1 and all cuts between s and r,, that 1s,

ViS) Eqn. 3

C'=min min
i SiseS,nest

In accordance with the conventional network multicast
theorem described by R. Ahlswede, N. Ca1, S.-Y. R. L1, and R.
W. Yeung, in “Network Information Flow”, IEEE Transac-
tions on Information Theory, I'T-46, pp. 1204-1216, 2000, the
multicast network coding problem (&,s, R,R) 1s solvable if
and only 1f R=C. One direction of the network multicast
theorem (solvability of the network implies R=C) 1s a direct
consequence of the conventional Min-Cut Max-Flow theo-
rem. The other direction requires more work. Proofs of this
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conventional theorem are provided by R. Ahlswede, N. Cax,
S.-Y. R. L1, and R. W. Yeung, “Network Information Flow”,

[EEE Transactions on Information Theory, I'T-46, pp. 1204-
1216, 2000; and by R. Koetter, and M. Medard, 1n “An Alge-
braic Approach to Network Coding”, presented at INFO-
COM 2002 (http://www.mit.edu/people/medard/pub.htm).

3.2.3 Theorem 3—Network Multicast Algorithm:

A conventional network multicast algorithm 1s described
by R. Koetter, and M. Medard, 1n “An Algebraic Approach to
Network Coding”, presented at INFOCOM 2002 (http://ww-
w.mit.edu/people/medard/pub.htm). In that description,
Koetter, and Medard explain that the multicast network cod-
ing problem (&,s, ®,R), with R=C, is “IF,»-linearly solv-
able” with multicast rate R if m=[log,(NC+1)]|.

While the network multicast algorithm described by Koet-
ter and Medard 1s useful, a reduction 1n the field size, as
accomplished by the network code constructor, as described
herein serves to increase network throughput without flood-
ing the network.

3.2.4 Theorem 4—Improved Network Multicast Algorithm:

The network code constructor described herein provides an
improved network multicast algorithm that provides for mul-
ticast network coding 1in which arithmetic operations can
occur 1n any finite field with more than N-1 elements, where
N represents the number of receivers in the network.

In particular, as described 1n detail below, the network code
constructor described herein demonstrates that the network
coding problem (&,s, R,.R), with R=C (Theorems 1 and 2), is
“IF ,»-linearly solvable” with multicast rate R if m=[log,N].
This 1s a significantly smaller field size than has been dem-
onstrated by any other conventional method. Clearly the
advantages ol a smaller field size include decreased compu-
tational requirements, fewer symbols, and greater network
throughput.

Thus, the remainder of this description of the network code
constructor assumes R=C(Theorems 1 and 2) and that m
equals [log,NI. In particular, Let the flow to 1, P={P, ;} -
be a set consisting of R edge-disjoint directed paths P,
between s and r,. A network flow N(R) between s and R 1s
defined as the union of the edges in the flows to each of the
receivers, i.e., N(R)=1e € E:3P, .e € P, }. The directed
acyclic nature of & induces a total order<on the edges 1n
N(R) such that for any edges ¢ and €', head(e)=tail(e") implies
e<e'.

3.3 Multicast algorithm for Zero Delay Directed Acyclic

Graphs:

In view of the definitions and theorems provided above, the
processes utilized by the network code constructor can now
be described. In particular, the following paragraphs describe
the multicast network code design computed by the network
code constructor in terms of algorithm inputs, algorithm out-
puts, preprocessing, calculation of encoding vectors [3(e) for
every edge ¢ of the multicast network, and calculation of
decoding vectors €(r,,1) for decoding symbols multicast from
the sender to each recerver. In general, the encoding vectors
comprise a multicast network encoder, and the decoding vec-
tors comprise a multicast network decoder. The multicast
network encoder and the multicast network decoder are col-
lectively referred to as a “multicast network coder.” Further,
the term “multicast network code” 1s used to refer to the
collection of encoding vectors on each edge, and decoding
matrices at each recerver.

3.3.1 Code Design:

The 1input needed by the network code constructor 1s sim-
ply the aforementioned 4-tuple (&,s, B,R), namely a DAG &,
labeled with edge capacities, the sender node s, recetver
nodes R, and the multicast rate R. As described in detail
below, given this 4-tuple 1nput, the network code constructor
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outputs encoding vectors [3(e) for every edge e 1in the network,
along with decoding vectors {e(r,,j)},_,” for use in multicast-
ing symbols from the sender and decoding those symbols at
cach recetver.

As 1llustrated by FIG. 3, the network & 1s a DAG having
known nodes and edges 300, with integer capacities on each
edge. The first step 1n determining codes for the network 1s to
reduce the network to a form that 1s more conducive to analy-
s1s. In particular, the network & is reduced to anetwork whose
edges have unit capacities by replacing each edge having a
capacity ¢ with ¢ edges having unit capacity 310, and output
320 for use 1n determining network codes.

Next, any conventional low time-complexity maximum
flow algorithm, as noted above in Section 3.2.1, 1s run N times
(once for each receiver node) to obtain a network tflow N (R)
between the sender s and the set of recervers R. In particular,
as 1llustrated by FIG. 4, the network & 400 having ¢ edges
with unit capacity output as illustrated by FIG. 3, 1sused as in
input for determining the multicast capacity of the network.
Specifically, for each receiver node r,, a conventional max-
flow algorithm 1s used to find the max-tlow C, from the sender
node s, to r, 420. After the max-tflow C, each receiver node r,
1s computed 420, 1 1s incremented for selecting the next
receiver 430.

This process (steps 410 through 430) repeats until all N
receiver nodes have been processed. At that time, the multi-
cast capacity C of the network between s and & 1s determined
by simply 1dentitying the minimum ofthe C, values computed
for each of the N recerver nodes 440. This minimum of the C,
values 1s then output 450 as the multicast capacity C of the
network between s and &.

3.3.2 Computing Encoding Vectors:

(Given the network & with unit capacity edges, and the
multicast capacity C of the network between s and R, the next
step 1s to choose a transmission rate R=C, and to compute a
flow P, consisting of R edge-disjoint paths P, ;& P, from s to
cachr, in R. Note that the resulting network tlow A (R) will
restrict the network code to utilize only edges in N/ (R), rather
than possibly all edges 1n E. The next step 1s then to determine
encoding vectors, [3(e,), and decoding vectors, n(e,), for the
multicast network. In general, this 1s accomplished by finding
B(e,) and n(e,) fort = {1, ..., FR)I}. Ateachstept, a
frontier edge set for receiver r, at step t 1s defined as an ordered
subset F,® of R edges from P, such that the j edge is the
edge e, in the i path P, ; € P, with the largest t' less than or
equal to t. A frontier edge set matrix for recerver r, at step t 1s
an RxR matrix F,"” whose rows are the representation vectors
n(e,) for the edges in F,*.

Therefore for each step t, there are k (not necessarily dis-
tinct) edges {e,.e,, . . . .6, in the frontier edge sets
{F,0,F, Y, F, P}, such that at step t the network
code constructor replaces the edges {eiljefz,, .. ,e, | in the
frontier edge sets in which they appeared with et, to obtain the
updated frontier edge sets. The network code constructor then
calculates for €, an encoding vector, 3(e,), and Equation (2) 1s
used to obtain the vector n(e,). The frontier edge set matrices
{F, "YF, @D F,“ Y} are also updated by replacing the
vectors ine,)m(e,). .M (e, )} withn(e,). In particular, the
encoding vector, B(Zei) 1s chosen to be any combination vector
so that

Vic{1,2, ... N}, rank(F ,©)=R

Eqgn. 6

The step-counter t1s then incremented by 1 and this procedure
repeats until t=| A/(R)|. Once this procedure has been com-
pleted, each frontier edge set F,!! A/¥Y consists only of edges
¢ such that head(e)=r,, and consequently, all encoding vec-
tors, 3(e), have been determined.

Note that for purposes of explanation, a proot that (e,)’s
can be chosen to satisfy Equation (6) 1s provided in the fol-
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lowing paragraphs, along with a more detailed explanation of
the computation of the encoding vectors, p(e).

In particular, the existence of {3(e)’s that satisty Equation
(6) 1s demonstrated in accordance with the following discus-
sion. Specifically, for alli € {1,2, ..., k} let M, be arbitrary
non-singular nxn matrices over the ﬁnlte field IF . Further, for
alli€ {1,2,...,k}, let v, be some row vector of M,.Let L be
any subspace ef (IF )" containing the span ot {Vl,, S
Finally, for all i € {l 2,...,k},let S, be the linear span of all
the row vectors of M, exeept v, 1.e. S =span{rows(M,)-v, }.

Given the above deﬁnitions it 1S shewn below that 1t k=q,
then there exists v € L such that for all i € 11,2, k}
S ov=(IF )" S}?emﬁcally, it should be noted that L UI S,

z

equals L - U LNS)), and that by using a counting argu-
ment on the set L-U_* (LNS)) the required result is
obtained.

In particular, let d(L) be the dimension of the vector space
L. Therefore, the number of vectors in L equals q”*L’. For
eachi € {1,2, ..., k}, the dimension of the vector space
(LNS,) 1s strictly less than d(L), since L contains at least one
vector, v,, which 1s not contained 1n S,. Therefore, for each 1 &
11,2, ..., k} the number of vectors in LNS, equals at most

d(L) 1 In addition, each LM, contains the zero vector, and
therefere the total number of vectors in U._,*(£LNS,) is no
more thank(q”L’~'-1)+1. Since k=q, this quantity is strictly
less than the number of vectors in £, q”L’. Therefore
|L-U._,*S |>0, which implies the existence of v € L such
that v % S, for anyi€ {1,2,...,k}. This observation provides
the de81red result. In fact, the converse 1s also true, 1n the sense
that it 1s possible to construct g+1 subspaces S, such that
J._ 'S =(IF . » and therefore there 1s no vector v with the
desired properties.

Further, by extension, a corollary to the above proof 1s
provided to show that forall e € N (R), there exists a 3(e) such
that Equation (6) 1s satisfied. In particular, set n=R and q=2".

Letedges {e, e, ,€, } be the edges 1n the frontier edge sets
{F, Y F, ) )) .‘F (=11 "which are replaced at step

thye,. ThenZM =F (=1 ferJEi_(1 i,,...,1,}. Finally,let L be

the span of {n(eI (tall(ef)))}
Given the above proofs, and general description of the

computation of the encoding vectors, [3(e,), an algorithm on
the order O((R+r)’r) is provided for finding B(e,)’s for any
edge e, €& N((R). Specifically, letv,, S, L,d(L), and S, be as
defined 1n the preceding paragraphs. Then, given inputs of
row vectors {v.} _.*and (R-1)xR matrices {S.} _ %, outputs
of row vectors v are computed by the multicast network
encoder suchthatveE L, v&S, foranyic{1,2,. k} along,
with row vector p=(p.p3,, . . . ,[p,) such that V_ZI FBv.

In particular, let L be a d(L)xR matrix whose rows ferm a
basis for L. Foreachi €{1,2, .. .,k}, it is possible (by row
operations on L. and the matrix S,) to obtain the (d(L)-1)xd
(L) matrix B, whose rows form a basis for LM S, 1n the
coordinate system given by the rows of L. For each 1, a
d(L)-length column vector z, 1s i1dentified, called the zero
vectorotf LM S, in(IF )", such that for any vectory' in the span
of the rows of B,, y'z,”/=0. To obtain such a vector, row
operations on are perfermed on B, until it contains the
(d(L)-1)x(d(LL)-1) 1dentity sub-matrix and a (d(L)-1)-
length column vector z'-z, then equals the row vector
obtained by adjoining the element 1 to -z, i.e., z=(-z,",1).

A d(L)-length row vector vy is then identified such that

- ks

yz=0 forany i € {1,2, .. Eqn. 7

and an R-length vector v=yL is identified in L such that v &
LNS forany1 € 1,2, ..., k. Given such a v, 3, 1s easily
computed by a process ol Gaussian elimination. A vector
Y=(¥1, Y2 - - - » Yar) satistying Equation (7) can be obtained
via a “greedy algorithm™ as described below for use 1n com-

puting {3..
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3.3.3 Greedy Algorithm:

A “greedy algorithm™ for computing the vector y=(v,,
Yar - - - s YacLy) satisfying nquatien (7) operates by first
denoting a kxd(L£) matrix whose i” row vector is z,” by Z.
Without loss of generality, let the first rank(Z) rows of Z be
linearly independent, and denote this rank(Z)xd(L) sub-ma-
trix by Z.,. Further, denote the matrix consisting of the remain-

ing rows of Z by Z 5. Therefore 7, can be written as the matrix
product TZ,, for some (k-rank(Z))xrank(7Z) matrix T. The
greedy algorithm described herein computes a rank(Z)-length
column vector ¢ such that any vector y satisfying Z,y’'=c
satisfies Equation (7).

In the first step of the greedy algorithm some arbitrary
value ¢,=0 (such as, for example, ¢,=1) 1s chosen. Now there
are two possibilities—either the rank(Z)=1, or 1t 1s greater
than 1 (1t cannot be zero, since all the row vectors of Z are
non-zero). If rank(Z)=1, ¢ 1s assigned the value (1). If rank
(Z)>1, more work 1s needed to calculate ¢. For notational
convenience the i row vector of the matrix T is denoted by
(T),, and the (i,j)” element by (T), ;- Consider all row vectors
(T), of T which have non-zero elements only 1n the first ctr
positions, and denote them by the superscript ctr, as (1),
where ctr 1s a counter that 1s 1nitialized to 2. The greedy
algorithm proceeds inductively in the variable ctr and at each
step of ctr computes a constant, c_,, € IF,», such that

Cry

(Zf )cﬂ“y = Cr:rr# 0 Eq_ﬂ 8

1s true. To choose this value c_,, it 1s noted that

L'l"ff'—

> (D)@, yT

 J=1

Egn. 9
(ZD)ﬂrryT 0 < (Z:’)erry *+ - (T)z Cl¥

ctr—1

& (Z))gyy # (1), ;},Z (T); ;¢ = i

where the d, ., are some constants in IF,». But since rank
(Z)>1, there are at most k-2 row vectors in 7Z,. However,
since K=q=2", there are at most 22 different values of d, ,,
for a fixed value of ctr . Therefore there exists at leastonec_,.
such that (7)), y'=c_, does not contradict Equation (8). This
process 1s continued until ctr=rank(Z), at which point under-
determined linear equations Z,y'=(c,, C,, . . . , cmﬂk(z))T =C.
are produced. Therefore choosing any pseudo-inverse Z, " of
7, and evaluating Z,”'c’ gives a y’ such that the column
vector Zy” has no zero elements.

3.3.4 Computing Decoding Vectors:

After computing the encoding vectors, p(e), as described
above, the decoding vectors, €(r,,1), are then computed as
described below. In particular, for alli€ {1,2, ..., N}, j &€
1,2, . . . R}, €(r,,j) is chosen as the j* row of the matrix
(F,! V¥~ This definition is well-defined since by assump-
tion, as discussed above in Section 3.3.1, the frontier edge set
matrices are invertible. Therefore, for any receiver r;:

3
(Y(el () Egn. 10

| YEeso)

(X0, 1)

X(r;, 2)
| = (FINGRI,

X, R Y (e (ri)
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X, )
X7
NiRIh. -1 MN(R
= (FIVRIL RONRIN|
\ XB
(X )
X2
\ AB /

where the equalities follow from the definitions of the decod-
ing and representation vectors described herein.

3.4 System Operation:

The processes described above are illustrated in the
sequence of system flow diagrams provided as FIG. 5 through
FIG. 10. This processes depicted in these figures are provided
for purposes of illustration, and are intended merely to 1llus-
trate one way of implementing the network code constructor.
Clearly, 1n light of the description provided herein, there are a

number of ways for computing codes for a multicast network,

and the network code constructor 1s not intended to be limited
to the processes 1llustrated by FIG. 5 through FIG. 10.

3.4.1 Computing the Network Code:

As illustrated by FIG. §, 1n computing codes for multicast
networks, the first step 1s to provide several inputs that define
the multicast network to the network code constructor. As
illustrated by FIG. §, these inputs 500 to the network code
constructor include a directed acyclic graph &, which has
been reduced to unit capacity edges (see FIG. 3 and associ-
ated discussion). In addition, the mputs to the network mul-
ticast coder also include a transmission rate R that is less than
or equal to the maximum multicast capacity C of the multicast
network (see FIG. 4 and associated discussion). Finally, the
inputs to the network multicast coder include a known source
node s, and known receiver nodes r, of the multicast network.

Given these mputs, the first step 1s to imitialize the network
code constructor as illustrated by the steps shownin FI1G. 5. In
particular, once the alorementioned inputs have been pro-
vided, the first step 1s to create a new node denoted by s', and
new edges denotedbye_,,...,e_,froms'to the known source
node s 505. Next, for each edge 510, e_,, an R-length repre-
sentation vector n(e_;) (where, as described above, R repre-
sents the transmission rate) 1s set equal to the R-dimensional
row vector, with 1 in the i, and 0 otherwise 515. After n(e_ )
is set for each edge, e_, j 1s incremented for selecting the next
edge 520. In other words, foreachj € {1,2, ..., R}, n(e_,) is
initialized as an R-length vector with 1 in the j* position and
0 everywhere else. As noted above, because of the directed
acyclic nature of &, this initialization makes n(e) well defined
for cach e € N. This process (steps 510 through 520) repeats
until all j edges for s' have been processed.

Next, for each recerver 525, r,, a conventional tlow algo-
rithm 1s used to compute a flow of magnitude R (1.e., R
edge-disjoint paths) from s' to r, 530. After the flow 1s com-
puted 330 for each receiver r,, 1 1s incremented for selecting
the next receiver 335. This process (steps 525 through 535)
repeats until all 1 recervers have been processed. Next, any
edges not in the flow are simply discarded 540. In other
words, any node having excess capacity will have edges that
are not utilized. These unutilized edges are discarded 540 for
purposes of computing multicast network codes. Finally, the
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remaining edges, €, . . ., €, are ordered topologically from
s 545. This step completes the mnitialization stage of the net-
work code constructor.

As 1llustrated by FIG. 6, the process continues (see box A
(550) in FIG. 5 and FIG. 6) by computing encoding vectors
B(e,) for the network code constructor 1n an “encoder design
stage.” First, the total number of edges T representing the
edges, €,, . .., e, computed 1n the mitialization stage, 1s used
as a counter 600 for computing the encoding vectors [3(e,) for
each edge in a nested loop. In particular, for each t={1,
2,...,T} 600, a counter k is initialized to zero 602. This
counter k serves to keep track of the number of recervers
whose tlows use edge e,. Next, for each receiver r, 605, the
processes for computing the aforementioned frontier edge set
for each recerver are initialized 610 by defining P, ; as the i
path (j=1, ..., R) i the tlow to r;; defining ¢, ; as the edge e,
in P, , with the largest t'=t; and defining F,”={e, |, ..., e, z}
as the “frontier edge set” for receiver r, at step t.

Next, a determination 615 1s made as to whether the current
et is in the frontier edge set, F,'”, i.e., e ~e, s+ for some j*. If
e, is in F,'” then, as illustrated in box 620, the counter k is
incremented by 1 to indicate that the current edge e, 1s used by
the current receiver r,. Further, if e, is in F,"”, then v,=m(e"),
where €' is the predecessor of e, .. in path P, .; further, S,={n
(ef,z‘): tt n(ei;‘*‘—l): n(eig$+l): P n(ez‘,R)}: where {Vk}u Sk
1s a linearly independent set of vectors. Then, whether or not
et is in F,'”, 1 is incremented for selecting the next receiver
625. This process (steps 603 through 625) repeats until all 1
receivers for the current edge t have been processed.

Next, as 1llustrated 1n box 630, a linear combination of
Vi, ..., Vv, 1s chosen 630 such that 1 1s not 1n the span of any
S.,...,S,, where {n} U S, is a linearly independent set of
vectors for 1=1, . . . , k. Note that this process for choosing a
linear combination of v, . . ., v, 630 1s illustrated in greater
detail with respect to FIG. 8, as described below. Next, as
illustrated 1n box 635, n(e,) 1s set equal to n, and p(e,) 1s set
equal to (3,, . . ., p,). Then, after setting n(e,) and 3(e,) 6385,
t 1s incremented for selecting the next edge 640. This process
(steps 600 through 640) repeats until all T edges have been
processed. This step completes the encoder design stage of
the network code constructor.

As 1llustrated by FIG. 7, the process continues (see box B
(645) 1n FIG. 6 and FIG. 7) 1n a “decoder design stage™ by
computing a matrix of decoding vectors €(r,) at each recerver
r, and outputting these decoding vectors along with a reduced
directed acyclic graph (representing the multicast network)
having an encoding vector, [3(e) on each edge. First, for each
receiver r; 700, €(r,) 1s determined by computing 710 a corre-
sponding 1nverse matrix of decoding vectors €(r;) as 1llus-
trated by Equation 11 which follows from Equation 10 as
described above 1n Section 3.3.2:

‘ni(er) - mrlen) 1 Egn. 11

e(ri) =

mier) - nrler).

This process loops while incrementing 720 the current

receiver r, until all receivers have been processed. Once all of
the recetvers have been processed (700 through 720), then the
network code constructor outputs 730 the decoding vectors
e(r;) along with a reduced directed acyclic graph (represent-
ing the multicast network) having an encoding vector, p(e) on
cach edge.
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3.4.2 Choosing a Linear Combination of Vectors:

As noted above with respect to Box 630 of FIG. 6, FIG. 8
illustrates the process for choosing a linear combination of
Vi, ...,Vv.suchthat nisnotinthe spanofany S,, ..., S,,
where {m} U S, is a linearly independent set of vectors for
=1, ...,k

In particular, as illustrated by FIG. 8, the linear combina-
tion of v,, . . ., v, 1s chosen by first imnputting the R-dimen-
sional row vector v, and the set of R-1 R-dimensional vectors
S for 1=1, . .., k 800. Next, denoting by L the vector space
spanned by v, for1=1, . . . , k, the set of vectors v, 1s computed
for1=1, ..., K, spanning L, where k' 1s less than or equal to k
810. In the next step, forj=1, ..., kavector Z;1s computed by
Gaussian elimination in L such that for any vector y in S,
y.S~0 (Box 820).

Once the vector Z, has been computed 820, the next step 1s
to use this information to find a vector v in L such that v.Z =0

for 1=1, .. ., k 830. Further, in finding this vector vin L 1t 1s
assumed that vectors Z, j=1, ..., k", are linearly independent
and that all other Z,, j=k"+1, . . . , k, can be written as linear

combinations of these vectors. In the next step (Box 840), v is
determined by finding a linear combination of vectors ¢, for
1=1,...,k" by solving a system of linear equations denoted
by v.Z=c, tor j=1, . . ., k". Note that the solution to this
equation may not be unique, and that one of the solutions may
be calculated by Gaussian elimination. Finally, once this sys-
tem of linear equations has been solved 840, an output of k
coeflicients 3,, . . . , P, and the R-dimensional vector
n=2,_ v, 1s provided. This output 1s then provided to Box
625 of FIG. 6 as noted above.

In addition, the step illustrated by Box 840 (finding a linear
combination of vectors ¢; forj=1, ..., k") 1s turther described
with respect to FIG. 9. In particular, as illustrated by FIG. 9,
finding a linear combination of vectors ¢, for j=1, . . ., k"
begins by inputting the linearly independent vectors Z.,,
1=1,...,k" and Z, j=k"+1, . . ., k dependent vectors on the
first k" vectors 900.

Next, for each vector, 1=k"+1, . . ., k, a dependence number
1s defined as the largestisuch that Z;1s dependent upon Z, 910.
Then, as 1llustrated by Box 920, for each =1, . . . , k", ¢, 1s
fixed, thereby fixing all of the v.Z, for each j having a depen-
dence number 1. Further, a non-zero ¢, 1s then chosen so that
none of the v.Z, fixes to zero for each j having a dependence
number 1. This choice 1s easily made by simply considering
k-k" different values of c, to identity the proper selection of
cach c,. Having made this selection 920, c,, . . ., ¢, 1s output
930. As noted above, this output 1s provided to Box 840 of
FIG. 8.

3.5 Multicasting Symbols from the Sender to Every Receiver:

Once the aforementioned encoding vector and decoder
matrix have been computed for the multicast network, then
they can be used for transmitting symbols across the network
from the sender to be decoded by each recerver. This process

1s 1llustrated by FIG. 10.

In general, as 1llustrated by FIG. 10, the multicast network
coder (1.e., the encoder and decoder) allows for the efficient
multicasting of a set of symbols from the source to every
receiver 1n a multicast network. The 1mputs used to produce
this multicasting include a rate R=C, a set of symbols
X,,..., X, to be multicast, a directed acyclic graph 6=(V,E)
of nodes and (unit-capacity) edges, a source node s in V, N
recetvernodesr,, ..., I 10V, an encoding vector 3(e) on each
edge e, and a decoding matrix &(r,) at each receiver r; (Box
1000). Given these mnputs 1000, the next step 1s to create anew
node denoted by s', and new edges denoted by e_,, ..., e ,
from s' to the known source node s 1005. Next, for each new
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edge e_; 1010, an input symbol Y(e_)) 1s set equal to X . This
process 1s repeated for each new edge 1020 until all new edges
have been processed.

Then, 1n topological order from s for each remaining edge
¢ 1025,Y(e) 1s computed on edge ¢ 1030 by defining v=tail(e)
as denoting the node that e 1s leaving, and defining e, ..., e,
as denoting the edges entering v. Given these definitions, the
computation of Y(e) 1030 1s accomplished by evaluating the
following expression, dertved from Equation (1):

Y(ep) | Eqn. 12

Y{e)=[pile) --- Brle)]

 Yle)

This process (1025 through 1035) i1s repeated for each
remaining edge 1035 until all of the remaining edges have
been processed, thereby encoding the input symbol Y(e_))
being multicast by the sender.

Next, for each receiver, r; 1040, the symbols X, ..., X, are
computed 1045 by evaluating the following expression,
derived from Equation 4:

Egn. 13

ey () e e ] Yier) ]

| Spy(ri) - epplri) Il Yieg) |

This process (1040 through 1045) i1s repeated for each
recerver, 1, 1050, until all of the recetvers have been pro-
cessed.

Finally, having computed the symbols X, . .., X, at each
receiver 1045 those symbols are output 1055, thereby com-
pleting the multicast from the sender to all of the receivers by
having decodes the symbol multicast from the sender to all of
the receivers.

In conclusion, 1t should again be noted that although the
network code constructor described herein 1s presented in
terms of a low complexity process for computing multicast
codes for networks 1n an information theoretically optimal
manner, the 1deas described herein are easily extensible for
obtaining algebraic codes over small finite fields for more
general networks, networks with delays and robust networks.

The foregoing description of the mvention has been pre-
sented for the purposes of illustration and description. It1s not
intended to be exhaustive or to limit the mvention to the
precise form disclosed. Many modifications and variations
are possible 1n light of the above teaching. Further, it should
be noted that any or all of the atorementioned alternate
embodiments may be used 1n any combination desired to
form additional hybrid embodiments of the audio challenger
described herein. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:
1. A system for computing a network code, comprising:

a network having a sender node, one or more interior
nodes, and one or more receiver nodes, each node having
one or more edges connecting to one or more nterior
nodes 1n the network;

means for computing a set of linear combination coetfi-
cients for each edge entering each node, each set of
linear combination coelficients representing an encod-
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ing vector for each edge for encoding symbols transmit-
ted along each corresponding edge;

wherein each symbol provides a symbolic representation
ol one or more encoded bits of data, and wherein each
symbol belongs to a finite library of symbols;

means for computing a decoding vector for each edge
ex1iting each interior network node from the linear com-
bination coellicients of the edges entering each node,
wherein each decoding vector 1s used for decoding sym-
bols transmitted along each corresponding edge;

means for computing decoding matrices for each recerver
node of the network from the decoding vectors; and

means for constructing a network code for at least a portion
of the network, including the sender node, each interior
node, and one or more of the receiver nodes, from the
corresponding linear combination coetlicients, the cor-
responding decoding vectors and the corresponding
decoding matrices.

2. The system of claim 1 further comprising means for
allowing each receiver node to use a corresponding one of the
decoding matrices to decode data transmitted from the sender
node, to the receiver node across a plurality of edges of the
network between the sender node and the receiver node.

3. The system of claim 1 wherein computing the linear
combination coetlicients further includes means for ensuring
that the encoding vectors for the symbols transmitted across
edges on a cut between the sender and each recerver are full
rank, such that the rank of each encoding vector 1s the same as
the smallest dimension of that vector.

4. The system of claim 1 wherein a size of the finite library
of symbols 1s independent of the rate of a rate of computed
flows between the network nodes.

5. The system of claim 1 further comprising an 1nitializa-
tion stage performed prior to computing the set of linear
combination coeflicients, wherein a representation of the net-
work 1s reduced to a network with edges between interior
nodes having unit capacities by replacing each edge having a
capacity ¢ with ¢ edges having unit capacity.

6. The system of claim 5 wherein the initialization stage
turther comprises:

a determination of whether each edge having unit capacity
1s within tlows computed between the sender node and
the receiver nodes; and

topologically ordering any edges within the computed
flows from the sender node to the one or more recerver
nodes.

7. The system of claim 6 wherein the topologically ordered
edges are used for computing the sets of linear combination
coellicients representing each encoding vector.

8. The system of claim 6 wherein the topologically ordered
edges are used for computing the decoding matrices.

9. A computer-implemented process, including computer
executable mnstructions stored on a physical computer-read-
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able medium, for computing a network code for a network
including at least one sender, a plurality of internal nodes and
at least one receiver, comprising the steps of:

computing a set ol one or more linear combination coelli-
cients for each interior network node and the at least one
sender, wherein each set of linear combination coeffi-
cients represents a corresponding encoding vector for
encoding symbols exiting a corresponding one of the
sender and the internal nodes;

computing decoding vectors for symbols exiting each inte-
rior network node from the linear combination coeffi-
cients corresponding to each interior network node;

computing decoding matrices for each receiver from the
decoding vectors of all internal nodes of the network;
and

constructing a network code from the linear combination
coellicients, the decoding vectors and the decoding
matrices.

10. The computer-implemented process of claim 9 further
comprising allowing each receiver to use a corresponding one
of the decoding matrices to decode data transmitted across a
path through one or more of the interior nodes between the at
least one sender and the at least one receiver.

11. The computer-implemented process of claim 9 wherein
computing the linear combination coetlicients further
includes ensuring that the encoding vectors for symbols
transmitted across edges on a cut between the at least one
sender and each receirver are full rank, such that the rank of
cach encoding vector 1s the same as the smallest dimension of
that vector.

12. The computer-implemented process of claim 9 further
comprising an initialization stage performed prior to comput-
ing the set of linear combination coelfficients, wherein a rep-
resentation of the network 1s reduced to a network with edges
between interior nodes having unit capacities by replacing
cach edge having a capacity ¢ with ¢ edges having unit capac-
ity.

13. The computer-implemented process of claim 12
wherein the mitialization stage further comprises:

a determination of whether each edge having unit capacity
1s within flows computed between the at least one sender
and the at least one receiver; and

topologically ordering any edges within the computed
flows from the at least one sender to the at least one
recelver.

14. The computer-implemented process of claim 13
wherein the topologically ordered edges are used for comput-
ing the sets of linear combination coelficients representing
cach encoding vector.

15. The computer-implemented process of claim 13
wherein the topologically ordered edges are used for comput-
ing the decoding matrices.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

