US007574435B2
a2 United States Patent (10) Patent No.: US 7,574,435 B2
Anglin et al. 45) Date of Patent: Aug. 11, 2009
(54) HIERARCHICAL STORAGE MANAGEMENT 2005/0091226 Al 4/2005 Lin et al.
OF METADATA 2005/0125419 Al 6/2005 Mizutani et al.
2005/0160096 Al 7/2005 Lin et al.
(75) Inventors: Matthew Joseph Anglin, Tucson, AZ 2005/0165735 Al 7/2005 Linetal.
(US):, David Maxwell (331111011:J TUCSO'H’ 2007/0055680 Al1* 3/2007 Statchukccovveennnnnnn. 707/100
AZ (US)
OTHER PUBLICATIONS

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) U.S. Patent Application entitled “Hierarchical Storage Management
Using Dynamic Tables of Contents and Sets of Tables of Contents”,

(*) Notice: Subject to any disclaimer, the term of this IBM, U.S: Appl. No. 10/299,266, filed Nov. 19, 2002, by_inventors
patent is extended or adjusted under 35 M.J. Anglin, D.M. Cannon, M.A. Haye, M.A. Kaczmarski and D.P.

U.S.C. 154(b) by 286 days. Warren, Jr.

* cited by examiner
(21) Appl. No.: 11/381,499

Primary Examiner—Wilson Lee

(22) Filed: May 3, 2006 Assistant Examiner—Belinda Xue
(74) Attorney, Agent, or Firm—IJanaki Davda; Konrad
(65) Prior Publication Data Raynes & Victor LLP
US 2007/0260592 Al Nov. 8, 2007 (57) ABSTRACT
(51) Int. CL.
GO6F 17/30 (2006.01) Provided are techniques for accessing information. A partial
(52) US.Cl oo, 707/4; 707/1; 707/100; key index is created, wherein the partial key index includes
707/3 one or more partial key index (PKI) entries, wherein each PKI
(58) Field of Classification Search None entry 1dentifies a portion of a metadata object, wherein the

metadata object includes metadata entries, each of which
corresponds to an associated data object. The partial key
(56) References Cited index is used to locate one or more PKI entries, wherein each

U S PATENT DOCUMENTS of the one or more PKI entries correspondsito one or more
data objects in one of the one or more composite objects. Each

See application file for complete search history.

6,738,790 Bl 5/2004 Klein et al. of the one or more PKI entries 1s used to retrieve location

6,915,307 Bl 7/2005 Mattis et al. information of metadata 1n a metadata object for each of the
2003/0088593 Al 5/2003 Stickler one or more composite objects. The metadata from each
2004/0098363 Al 52004 Anglin et al. metadata object is loaded into a database using the location
2004/0210571 Al* 10/2004 Shin ...cccvvevviiviiinenennnnnnn. 707/3 nformation.
2004/0210572 Al 10/2004 Shin
2005/0071308 Al 3/2005 Wedel et al.
2005/0080823 Al* 4/2005 Collins ..oevvvvvirvinnnnn.n. 707/200 18 Claims, 10 Drawing Sheets

1100
User Client Station{s) 102 \ Administrator Station(s) 112 \

108 1i20 118

' STORAGE MANAGEMENT SUBSYSTEM |
Storage Management Server 130

Hierarchical System
140

Other
Component(s) 150

j

Storage Hierarchy 180

Composite Metadata
Object(s) 182 Object(s) 184

Database 17

U.S. Patent Aug. 11, 2009 Sheet 1 of 10 US 7,574,435 B2

100

User Client Station(s) 102 Administrator Station(s) 112

STORAGE MANAGEMENT SUBSYSTEM

Storage Management Server 130

Hierarchical System
140

Other
Component(s) 150

190

Storage Hierarchy 180

Datapase 170 Composite Metadata
Object(s) 182 Object(s) 184

I I N D D D D D D D D D D D D D D D B B D D B D DN _______________________________J

U.S. Patent Aug. 11, 2009 Sheet 2 of 10 US 7,574,435 B2

Database 1/0

Partial Key Index Metadata 202

(PKI) 200
for each metadata
object

(loaded from
metadata objects)

Tables 204

FIG. 2

U.S. Patent Aug. 11, 2009 Sheet 3 of 10 US 7,574,435 B2

300

LOCATION IN LENGTH OF DATA
OFFSET IN COMPOSITE OBJECT OBJECT IN
METADATA (OFFSET INTO COMPOSITE
OBJECT PATH OBJECT NAME | TYPE OF DATA | COMPOSITE OBJECT) OBJECT

0 [[\ J[Deby| o0 | w
0 [\ [et | Ae [@m0 | @
101 | \dosuments | project1 | Drectoy | 460|100
61 0
Directory | 680 100

201 \documents

™o

\pl’OjBCﬂ file 100 /80
Moot :
-II-_II_-II__II_
documents . .
2970 | \oroject] File 850 50
\documents -
\documents . .
ol K o
3020 | \OUTENS | g g0y 1020
eee¢ | = e®s | = wess | e®e | = ee®» | ese
3970 | \documents | g, il 1040 30
\project? o | e

\documents
\project?

\documents
\project3

\documents
\project3

39390 1070 130

data Directory

4001 file 300 File 1200 23

4020 file 301 File 1225 2()

4970 \documents

\project3 file) rile 1275 10

FIG. 3

U.S. Patent Aug. 11, 2009 Sheet 4 of 10 US 7,574,435 B2

400

Beginning Location | Ending Location
Directory (Offset in Metadata | (Offset in Metadata
Object) Object)

0w

\documents\project 3 4001 5000

FIG. 4

U.S. Patent Aug. 11, 2009 Sheet 5 of 10 US 7,574,435 B2

-
"

U.S. Patent Aug. 11, 2009 Sheet 6 of 10 US 7,574,435 B2

Composite object is b0
created.

I S B S B B B B B B B B B B D S

602 604

Metadata object is createdas | Partial Key Index (PKI) Is
an index to composite object. created for metadata object.

FIG. 6

U.S. Patent

Aug. 11, 2009

Receive user input selecting
a directory in one or more
composite objects.

102

Yes

Metadata already
loaded?

704 No

Check Partial Key Indexes to
locate one or more PKI entries,
where each PKI entry
corresponds to the selected
directory in one of the
composite objects.

/06

Use each PKI entry to retrieve
location information of
metadata in metadata object
for each corresponding
composite object.

/08

Load metadata for the selected
directory in each metadata

object into database using the
location information.

/10

Display data objects In
selected directory to user.

Sheet 7 of 10

/100

Yes 712

Recelve
indication to expand
a directory?

Indication to perform
another action on one
or more selected data
objects?

Pertorm action on one or
more selected data objects.

/18

Perform other processing.

FIG. 7

US 7,574,435 B2

U.S. Patent Aug. 11, 2009 Sheet 8 of 10 US 7,574,435 B2

Recelve request to
restore one or more
data objects.

Use loaded metadata to
identify location of one or more
data objects.

Copy one or more data objects
to specified destination.

U.S. Patent Aug. 11, 2009 Sheet 9 of 10 US 7,574,435 B2

Delete composite 900
object.

Delete corresponding
metadata object for 302
that composite object.

Delete corresponding partial
key Index for the deleted
metadata object.

FlG. 9

U.S. Patent Aug. 11, 2009 Sheet 10 of 10 US 7,574,435 B2

1000
Computer Architecture
Memory
Elements 1004
1020 .
Processor(s) Operating
1002 System 1005
Computer
Program(s)
1006
/0 Network
Controller(s) Adapter(s)
1010 1008

Input Device Output Device Storage
1012 1014 1016

FIG. 10

US 7,574,435 B2

1

HIERARCHICAL STORAGE MANAGEMENT
OF METADATA

BACKGROUND

1. Field

Embodiments of the invention relate to hierarchical storage
management of metadata, such as database entries.

2. Description of the Related Art

A storage management application provides a repository
for computer information that i1s backed up, archived,
migrated, or otherwise stored from client computers in a
computer network. The repository may be a storage hierarchy
linked to a storage management server and may store data
objects, such as files and directories. The storage hierarchy
typically includes one or more levels of data storage media
that correspond to the accessibility of the stored data. For
example, one level may include a number of direct access
storage devices (DASD’s) that provide relatively fast access
to stored data. Another level may include a plurality of
sequential access storage devices that provide slower access
to data, but typically are more cost effective as measured by
the data storage capacity per storage device cost.

Some conventional approaches store individual data
objects 1n a storage hierarchy, which provides a high degree of
management granularity, but requires substantial storage
management overhead. In other words, each of the data
objects can be accessed, retrieved, moved, or otherwise
manipulated independent of all other data objects. The price
for management at this level can be significant 1n that a
storage management server must maintain a database that
tracks each of the individual data objects. Thus, the storage
management server database may require a prohibitive stor-
age capacity in order to store all of the metadata associated
with all of the data objects. Additionally, the overall operation
complexity may be considerably greater in order to provide
the management granularity.

Another approach in managing data objects within a stor-
age hierarchy employs composite objects that contain mul-
tiple data objects aggregated into a single operable storage
object. That 1s, a composite object may be described as an
object that contains multiple files, directories, databases, or
other data objects. An example of a composite object 1s an
object that represents the backup of an entire file system at a
particular point 1n time. Such a composite object may contain
all of the data objects 1n an entire file system. A backup of the
file system, instead of creating numerous data objects and
corresponding metadata object entries 1in the database, may be
tully contained 1n a single composite object for which only
one database entry 1s made 1n the storage management server
database. Storing the entire composite object as a single
object may enable fast backup/restore of all data in the com-
posite object. Management of this data 1s also simplified
because the storage management server deals with a single
object.

Such a composite object, whether created for backup pur-
poses or other storage management purposes, 1s commonly
referred to as an 1mage. The backup 1image created in this
scenar1o contains all of the data objects from the file system
and may be stored as a single object 1n the storage hierarchy,
such as on magnetic tape.

The use of 1mages in a storage hierarchy may greatly
reduce the management complexity in that the storage man-
agement server may manipulate all of the data objects 1n a
single 1mage as a single object. Storing the data objects as a
single 1mage may also enable more rapid backup and restore
operations on the data within the image.

10

15

20

25

30

35

40

45

50

55

60

65

2

The storage management server may store the data objects
in one or more storage locations or storage pools and uses a
database for tracking information about the stored data
objects, including their attributes and location 1n the storage
pools. A storage pool may be described as one or more storage
media, such as disks and tapes, that are assigned as a group for
storage of data. A typical storage pool may correspond to a
particular type of data, user group or department, or other
grouping criteria.

Some systems collect and store metadata relating to indi-
vidual objects within the composite object and make this
metadata accessible without requiring that the composite
object be read. This allows metadata to be accessed and
displayed so individual files may be queried for retrieval.
Metadata for individual objects within the composite object
might include the fully qualified name of a data object, a size,
a time stamp, and a location within the composite object.

Following are two general approaches for managing metadata
of individual objects within composite objects.

In one approach, metadata information may be stored 1n a
storage management server database for fast access 1n search-
ing and retrieving any individual object from any composite
object. However, the amount of database space required
increases as more and more composite objects are stored,
which may degrade database performance. Storing all meta-
data for every composite object 1n the database would also
introduce etliciency when the composite object needs to be
deleted, as this would require that every metadata object entry
for that composite object also be deleted.

In another approach, the metadata for all objects within the
composite object can be stored within a single metadata
object, which 1s stored 1n the storage hierarchy. The metadata
object thus contains an index of the location and attributes for
objects (normally files and directories) in the composite
object. The index information 1s stored in the metadata object
and associated with the composite object so database space 1s
not required for the metadata. The metadata object may be
created at the time the composite object 1s stored, or can be
created by scanning the contents of the composite object after
storage 11 the composite object has embedded information
that describes 1ts contents. A drawback of this approach 1s that
accessing ol idividual metadata object entries can be very
slow.

Thus, there 1s a need 1n the art for improved hierarchical
storage management of metadata to reduce database size and
allow faster query response time.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

Provided are a method, computer program product, and
system for accessing information. A partial key index 1s cre-
ated, wherein the partial key index includes one or more
partial key index (PKI) entries, wherein each PKI entry 1den-
tifies a portion of a metadata object, wherein the metadata
object includes metadata entries, each of which corresponds
to an associated data object. The partial key 1index 1s used to
locate one or more PKI entries, wherein each of the one or
more PKI entries corresponds to one or more data objects in
one of the one or more composite objects. Each of the one or
more PKI entries 1s used to retrieve location information of
metadata 1n a metadata object for each of the one or more

US 7,574,435 B2

3

composite objects. The metadata from each metadata object
1s loaded 1nto a database using the location information.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FI1G. 1 1llustrates a representative hierarchical data storage
management system 100 through or in conjunction with
which embodiments may be employed.

FI1G. 2 1llustrates details of a database in accordance with
certain embodiments.

FI1G. 3 1llustrates sample metadata 1n the form of metadata
object entries included in a metadata object for a composite
object 1n accordance with certain embodiments.

FIG. 4 illustrates sample PKI entries included 1n a partial
key index in accordance with certain embodiments.

FIG. § 1llustrates an example data storage hierarchy of a
storage management subsystem in accordance with certain
embodiments.

FIG. 6 1llustrates logic for creating a partial key index in
accordance with certain embodiments.

FI1G. 7 1llustrates logic for providing access to composite
objects 1n accordance with certain embodiments.

FIG. 8 illustrates logic for restoring one or more data
objects 1n accordance with certain embodiments.

FI1G. 9 1llustrates logic for deleting a partial key index in
accordance with certain embodiments.

FI1G. 101llustrates a system architecture that may be used in
accordance with certain embodiments.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings which form a part hereof and which
illustrate several embodiments of the mvention. It 1s under-
stood that other embodiments may be utilized and structural
and operational changes may be made without departing from
the scope of the invention.

FIG. 1 illustrates a representative hierarchical data storage
management system 100 through or in conjunction with
which embodiments may be employed. The system 100 gen-
erally consists of one or more user client stations 102, one or
more administrator stations 112, and a storage management
subsystem 120.

The user client stations 102 are electronically connected to
the storage management subsystem 120 via a communica-
tions channel 108. The user client stations 102 provide a user
with access to the storage management subsystem 120.

The admuinistrator stations 112 are electronically con-
nected to the storage management subsystem 120 via a com-
munications channel 118. The administrator stations 112 may
also be connected directly to the storage management sub-
system 120 where proximity and function permit. The admin-
istrator stations 112 are configured to admimister and monitor
the functionality and processing of the storage management
subsystem 120.

The storage management subsystem 120 1s configured to
store data and manage the stored data according to requests
from the user client stations 102 and the administrator sta-
tions 112. The storage management subsystem 120 includes a
storage management server 130 that 1s operationally coupled
to a database 170 and a storage hierarchy 180 via a commu-
nications channel 190. The storage hierarchy 180 includes a
hierarchy of one or more storage devices (e.g., direct access
storage devices (DASD) and magnetic tapes). Also, zero or
more composite objects 182 and zero or more metadata

10

15

20

25

30

35

40

45

50

55

60

65

4

objects 184 may be stored 1n the storage hierarchy 180. The
communications channel 190 may be a storage area network
(SAN), a small computer system 1nterface (SCSI), or alter-
nately may be similar to the communications channels 108
and 118. The storage management server 130 includes a
hierarchical system 140 and may include one or more other
components 150.

The storage management server 130 illustrated may be a
commercially available storage server or may be a compila-
tion of compatible equipment configured to manage the data
storage within the storage hierarchy 180.

Each communication channel 108, 118, 190 may com-
prise, for example, a network, such as, for example, a peer-
to-peer network, spoke and hub network, Storage Area Net-
work (SAN), a Local Area Network (LAN), Wide Area
Network (WAN), the Internet, an Intranet, etc. Alternatively,
cach commumnication channel 108, 118, 190 may include a
wired network system, such as conductive wires or busses,
fiber optic cables, or other physical structures suitable for
conducting an electronic signal between network system
components. In other embodiments, each communications
channel 108, 118, 190 may include a wireless connection
between network system components or a combination of
wired and wireless components. Additionally, each commu-
nications channel 108, 118 may include means for connecting
geographically distinct user stations 102 and/or administrator
stations 112 with storage management subsystem 120, such
as the internet using a customary transmission protocol like
TCP/IP. Moreover, each communications channel 108, 110,
190 may also include a proprietary subsystem in part or whole
similar 1n function to the internet.

The database 170 may comprise, for example, an array of
storage devices, such as Direct Access Storage Devices
(DASDs), Justa Bunch of Disks (JBOD), Redundant Array of
Independent Disks (RAID), virtualization device, efc.

FIG. 2 1illustrates details of database 170 in accordance
with certain embodiments. The database 170 includes an
index 200 for each metadata object 184 stored 1n the storage
hierarchy 180, each of which, 1n turn, represents an index into
a composite object 182 stored in the storage hierarchy 180.
Each index 200 in the database 170 contains a partial set of
keys for entries 1n the metadata object 184, along with posi-
tion information indicating where corresponding metadata 1s
located 1n the metadata object 184. Metadata 202 represents
metadata loaded from one or more metadata objects 184 1nto
the database. This index 200 will be referred to herein as a
partial key index (PKI) 200. The partial key index 200
includes one or more partial key index (PKI) entries, wherein
cach PKI entry identifies a portion of a metadata object,
wherein the metadata object includes metadata entries, each
of which corresponds to an associated data object. In certain
embodiments, the PKI 200 for each metadata object 184 1s
stored 1n a separate, permanent table 1n the database 170. The
database 170 also includes metadata 202 that 1s loaded from
one or more metadata objects 184 in the storage hierarchy
180. Each metadata object 184 may be described as contain-
ing metadata (1.e., a metadata object entry) for each data
objectin a corresponding composite object 182. Additionally,
the database 170 includes tables 204.

In certain embodiments, the tables 204 include at least one
table for composite objects 182, at least one table for meta-
data objects 184, and at least one table for partial key indexes.
In alternative embodiments, there may be fewer tables or
these tables may be combined in any manner.

Table A 1s a sample table for composite objects 182, where
the ellipses indicate that other fields may be included 1n the
table:

US 7,574,435 B2

TABLE A
Identifier of Owner of Storage Reference to
Composite Data Location Corresponding
Object Metadata
Object

The “Reference to Corresponding Metadata Object” col-
umn 1n Table A 1s used to identify and access a corresponding,
metadata object 184 corresponding to a composite object 182.

Table B 1s a sample table for metadata objects, where the
cllipses indicate that other fields may be included 1n the table:

TABLE B
Identifier Owner Storage Reference to Reference to
of Metadata ofdata Location Corresponding Corresponding
Object Partial Key Composite
Index Object

The “Reference to Corresponding Partial Key Index” col-
umn 1n Table B 1s used to identily and access a partial key
index 200 corresponding to a metadata object 184. The “Ret-
erence to Corresponding Composite Object” column 1n Table

B 1s used to identily and access a composite object 182
corresponding to a metadata object 184.

Table C 1s a sample table for partial key indexes, where the
cllipses indicate that other fields may be included 1n the table:

TABLE C
Identifier of PKI entries for
Metadata Corresponding
Object Metadata
Object

Tables 204 may be used to 1dentily, for a partial key index,
a corresponding metadata object 184 and corresponding com-
posite object 182.

FI1G. 3 1llustrates sample metadata 1n the form of metadata
object entries included 1 a metadata object 300 for a com-
posite object 182 1n accordance with certain embodiments.
Metadata object 300 1s an example of a metadata object 184.
Each metadata object entry 1n the metadata object 300 is
associated with one data object 1n the composite object 182.
Each metadata object entry includes the following fields of
metadata: an offset in the metadata object, a path, an object
name, a type of data, location in a composite object (oifset
into composite object), and length of a data object 1n the
composite object. For example, for the metadata entry at
offset zero (*0"), there 1s no path, the object name 1s “V’, the
type of data 1s Directory, the location 1n the composite object
1s at oifset zero, and the length of the data object 1s 100. The
cllipses i FIG. 3 indicate that there may be other entries,
which are not shown. The metadata in the metadata object 300
1s stored by directory, and metadata object entries for data
objects 1 the same directory are contiguous. In certain
embodiments, the metadata object 300 1s stored outside the
database (e.g., as a file on disk storage for fast access).

FI1G. 4 illustrates sample PKI entries included 1n a partial
key index 400 for the metadata object 300 in accordance with
certain embodiments. Each PKI entry includes the following
fields: Directory, Beginning Location (Offset in Metadata
Object), and Ending Location (Offset in Metadata Object).
There 1s a PKI entry for each separate directory 1dentified 1n
the metadata object entries for metadata object 300.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. S5 illustrates an example storage hierarchy 180 of a
storage management subsystem 120 in accordance with cer-
tain embodiments. In the data storage hierarchy, diagram-
matically “higher” data storage media and devices corre-
spond to faster accessibility to stored data. Specifically, this
illustration includes high-speed data storage media and
devices at the “top” levels 502 and 504 of the hierarchy. For
example, level 502 might include a direct access storage
device (DASD) such as a high-speed magnetic disk drive. In
certain embodiments, the top level 502 may even include the
database 170 of FIG. 1. Level 5304 might include storage
media and devices similar to those 1n level 502, but of slower
access speeds.

In the i1llustrated embodiment, level 506 includes multiple
optical disks and one or more corresponding optical disk
drives. Once again, these storage media devices represent
access times slower than the devices illustrated 1n levels 502
and 504.

Levels 508 and 510 represent the slowest access times for
all of the media types and devices shown in the 1llustrated
storage hierarchy. These levels 508 and 510 might include
sequential access storage devices such as magnetic tape
media and drives.

The storage hierarchy 1s also very helpiul to illustrate the
cost structure of the various media types and devices within
the hierarchy 122. In particular, the “bottom™ levels 510 and
508 of the diagram represent the least costly storage imple-
mentation per data unit while the “top” levels 502 and 504
represent the most costly data storage schemes. From this 1t 1s
apparent and not unexpected that the storage media devices
that offer the fastest data access times are also typically the
most expensive to implement for a given amount of data
storage capacity.

FIG. 6 illustrates logic for creating a partial key index 200
in accordance with certain embodiments. Control begins at
block 600 with a composite object 182 being created. The
composite object 182 may be stored 1n the storage hierarchy
180. In block 602, a metadata object 184 1s created as an index
to the composite object 182. The metadata object 184 may be
stored 1n the storage hierarchy 180. In block 604, the partial
key mndex 200 1s created by the hierarchical system 140 for the
metadata object 184. This partial key index 200 may be stored
in the database 170. For example, when a metadata object 184
1s organized by directory, the partial key index 200 may be
created by scanning the metadata object 184 to identily direc-
tories, along with their beginning and ending locations (1.¢.,
ollsets in metadata object 184). In certain embodiments, the
partial key index 200 may be created concurrently with cre-
ation of the metadata object 184, while, 1n certain embodi-
ments, the partial key index 200 may be created subsequent to
creating the metadata object 184. The dashed lines from
blocks 600 and 602 to block 604 are intended to represent
these alternative embodiments.

In certain embodiments, a Graphical User Interface (GUI)
1s used to display files and directories within one or more
composite objects 182. With the GUI, a user 1s able to navi-
gate within a file system that includes the files and directories
by expanding directories.

FIG. 7 illustrates logic for providing access to composite
objects 182 1n accordance with certain embodiments. Control
begins at block 700, with the hierarchical system 140 receiv-
ing user iput selecting a directory (1.¢., an example of a data
object) 1n one or more composite objects 182. For example, a
composite object may be generated for a file system each day
of the week, so, for one week, there may be seven composite
objects, each of which includes a copy of the directory. In
block 702, the hierarchical system 140 determines whether

US 7,574,435 B2

7

metadata that may be used to display data objects in the
selected directory 1s already loaded 1n database 170. If the
metadata 1s already loaded, processing continues to block
710, otherwise, processing continues to block 704. In block
704, the hierarchical system 140 checks the partial key
indexes 200 to locate one or more PKI entries, where each
PKI entry corresponds to the selected directory in one of the
composite objects 182. For example, 11 there are seven com-
posite objects, as many as seven PKI entries may be located.

In block 706, the hierarchical system 140 uses each PKI entry
to retrieve location information of metadata 1n a metadata
object 184 for each corresponding composite object 182. For
example, for seven PKI entries for seven composite objects,
location information of metadata from seven metadata
objects 1s retrieved. In block 708, the hierarchical system 140
loads the metadata 202 for the selected directory in each
metadata object 184 into the database 170 (e.g., from the
storage hierarchy 180) using the location information. In
block 710, the hierarchical system 140 displays data objects
in the selected directory to the user. The displayed data
objects may be any combination of files and additional direc-
tories (1.€., sub-directories).

In block 712, the hierarchical system 140 determines
whether an indication to expand a directory has been
received. If so, processing loops back to block 700, otherwise,
processing continues to block 714. In block 714, the hierar-
chical system 140 determines whether an 1ndication to per-
form another action (1.¢., other than expanding a directory) on
one or more selected data objects has been recerved. If so,
processing continues to block 716, otherwise, processing,
continues to block 718. That 1s, a user may select one or more
displayed data objects and an action to be performed on those
selected data objects. Embodiments are applicable to any
action that may be performed on a data object, such as a
directory or file. As an example, the user may select one or
more files and request access to those files, 1n which case, the
hierarchical system 140 uses the loaded metadata to access
and display information about the files 1n the selected direc-
tory for each composite object 182. As further examples, the
action may be to delete one or more data objects, to restore
one or more data objects or to perform virus scanning on one
or more objects. In block 716, the hierarchical system 140
performs the action on the one or more selected data objects.
From block 716, processing continues to block 718. In block
718, the hierarchical system 140 performs other processing
(e.g., waiting for user mput, and, based on the user iput,

processing may loop back to block 700 or 714 from block
718).

Thus, as a directory 1s expanded, the hierarchical system
140 checks the PKI 200 for each of one or more composite
objects 182 to locate corresponding PKI entries, 1f any, for
cach composite object 182. From the PKI entries, the hierar-
chical system 140 locates the corresponding metadata (i.e.,
metadata object entries) i each of the metadata objects and
loads that metadata into, for example, a temporary table of the
database 170. In certain embodiments, 1f there are metadata
object entries from multiple metadata objects 184, these
entries may be merged within the temporary table so the user
can view multiple 1nstances of objects 1n the directory of
interest. In certain embodiments, loaded metadata 1s retained
in the database 170 for some time specified by a policy, after
which the temporary table 1s automatically removed to con-
serve space 1n the database 170. However, the PKI entries 1n
the partial key indexes 200 are retained for as long as the
composite objects 182 with which they are associated are
stored.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 8 illustrates logic for restoring one or more data
objects 1n accordance with certain embodiments. Control
begins at block 800 with the hierarchical system 140 rece1v-
ing a request to restore one or more data objects. In block 802,
the hierarchical system 140 uses loaded metadata 202 to
identify the location of the one or more data objects to be
restored. In block 804, the hierarchical system 140 copies one
or more data objects to a specified destination (e.g., specified

with the restore request). In situations 1n which the relevant
metadata 202 has not been loaded into the database 170, the
hierarchical system 140 uses a technique similar to one

described 1in FIG. 7 to load the metadata 202.

FIG. 9 illustrates logic for deleting a partial key index 200
in accordance with certain embodiments. Control begins at
block 900 with a composite object 182 being deleted. In block
902, a corresponding metadata object 184 1s deleted. In block
904, a corresponding partial key index 200 1s deleted by the
hierarchical system 140. In certain embodiments, the pro-
cessing of blocks 900, 902, 904 is performed under a single

database transaction to preserve referential integrity.

With embodiments, space within the database 170 1s con-
served. The total database space required for a PKI 1s much
smaller than the space required for all metadata object entries
from a corresponding metadata object 184. Moreover, meta-
data 202 1s loaded as needed (e.g., as a directory 1s expanded)
into the database 170, so a small portion of the metadata of
one or more metadata objects 184 may be loaded at a given
time.

In addition, with embodiments, response time 1s improved.
Because metadata 202 1s loaded into the database 170 as
needed, the hierarchical system 140 responds more quickly
than 11 all the entries 1n one or more metadata objects 184 had
to be loaded before the metadata could be used.

Furthermore, because PKI entries are stored as permanent
database entries 1n certain embodiments, they persist even 1f
the storage management server 130 1s restarted.

Also, embodiments provide efficient deletion of metadata.
If a composite object 182 1s deleted (e.g., via policy or
through explicit admimstrative action), the corresponding
partial key index 200 1s identified and deleted. This 1s possible
because the PKI entries for the composite object 182 are
located 1n a distinct database table and are few in number
compared to all metadata object entries for the composite
object 182. The metadata object 184 corresponding to the
deleted composite object 182 1s also deleted easily.

Certain embodiments use a partial key index for etficient
handling of metadata for composite objects 182. Although
examples herein may have referred to accessing metadata
associated with composite objects 182 that may be viewed
with a GUI, embodiments are applicable for hierarchical stor-
age management of other database information for which
database records with common keys may be accessed at a
same time. In such embodiments, database entries are moved
from the database 170 and stored 1n a separate file (1.e., a form
of ametadata object 184). The database 170 contains a partial
key index 200 containing partial keys and position informa-
tion within the file. The partial key index 1s used for rapidly
locating and loading information into the database 170 on
demand by accessing the file.

US 7,574,435 B2

9

Thus, embodiments provide optimized hierarchical stor-
age management of partial key index entries in the database
170 to mimimize database size and achieve fast query
response time.

ADDITIONAL EMBODIMENT DETAILS

The described operations may be implemented as a
method, computer program product or apparatus using stan-
dard programming and/or engineering techniques to produce
soltware, firmware, hardware, or any combination thereof.

Each of the embodiments may take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software ele-
ments. The embodiments may be implemented 1n software,
which includes but 1s not limited to firmware, resident soft-
ware, microcode, etc.

Furthermore, the embodiments may take the form of a
computer program product accessible from a computer-us-
able or computer-readable medium providing program code
for use by or 1n connection with a computer or any 1nstruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium may be any
apparatus that may contain, store, communicate, propagate,
or transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The described operations may be implemented as code
maintained 1n a computer-usable or computer readable
medium, where a processor may read and execute the code
from the computer readable medium. The medium may be an
clectronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. Examples of a computer-readable medium
include a semiconductor or solid state memory, magnetic
tape, a removable computer diskette, a rigid magnetic disk, an
optical disk, magnetic storage medium (e.g., hard disk drives,
floppy disks, tape, etc.), volatile and non-volatile memory
devices (e.g., a random access memory (RAM), DRAMs,
SRAMSs, a read-only memory (ROM), PROMs, EEPROMs,
Flash Memory, firmware, programmable logic, etc.). Current

examples of optical disks include compact disk—read only
memory (CD-ROM), compact disk—read/write (CD-R/W)

and DVD.

The code implementing the described operations may fur-
ther be implemented in hardware logic (e.g., an integrated
circuit chip, Programmable Gate Array (PGA), Application
Specific Integrated Circuit (ASIC), etc.). Still further, the
code implementing the described operations may be imple-
mented 1n “transmission signals”, where transmission signals
may propagate through space or through a transmission
media, such as an optical fiber, copper wire, etc. The trans-
mission signals in which the code or logic 1s encoded may
turther comprise a wireless signal, satellite transmission,
radio waves, infrared signals, Bluetooth, etc. The transmis-
s1on signals 1n which the code or logic 1s encoded 1s capable
of being transmitted by a transmitting station and recerved by
a recerving station, where the code or logic encoded 1n the
transmission signal may be decoded and stored 1n hardware or
a computer readable medium at the receiving and transmitting
stations or devices.

A computer program product may comprise computer use-
able or computer readable media, hardware logic, and/or
transmission signals in which code may be implemented. Of
course, those skilled 1n the art will recognize that many modi-
fications may be made to this configuration without departing
from the scope of the embodiments, and that the computer

10

15

20

25

30

35

40

45

50

55

60

65

10

program product may comprise any suitable information
bearing medium known 1n the art.

The term logic may include, by way of example, software,
hardware, firmware, and/or combinations of software and
hardware.

Certain implementations may be directed to a method for
deploying computing infrastructure by a person or automated
processing 1ntegrating computer-readable code into a com-
puting system, wherein the code 1n combination with the
computing system 1s enabled to perform the operations of the
described implementations.

The logic of FIGS. 6, 7, 8, and 9 describes specific opera-
tions occurring in a particular order. In alternative embodi-
ments, certain of the logic operations may be performed 1n a
different order, modified or removed. Moreover, operations
may be added to the above described logic and still conform
to the described embodiments. Further, operations described
herein may occur sequentially or certain operations may be
processed in parallel, or operations described as performed by
a single process may be performed by distributed processes.

The illustrated logic of FIGS. 6, 7, 8, and 9 may be imple-
mented 1n soitware, hardware, programmable and non-pro-
grammable gate array logic or 1n some combination of hard-
ware, soltware, or gate array logic.

FIG. 10 1llustrates a system architecture 1000 that may be
used 1n accordance with certain embodiments. Client stations
102, administrator stations 112, and/or storage management
server 130 may implement system architecture 1000. The
system architecture 1000 1s suitable for storing and/or execut-
ing program code and includes at least one processor 1002
coupled directly or indirectly to memory eclements 1004
through a system bus 1020. The memory elements 1004 may
include local memory employed during actual execution of
the program code, bulk storage, and cache memories which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution. The memory elements
1004 include an operating system 1005 and one or more
computer programs 1006.

Input/Output (I/0) devices 1012, 1014 (including but not
limited to keyboards, displays, pointing devices, etc.) may be
coupled to the system either directly or through intervening
I/O controllers 1010.

Network adapters 1008 may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through interveming private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters 1008.

The system architecture 1000 may be coupled to storage
1016 (e.g., anon-volatile storage area, such as magnetic disk
drives, optical disk drives, a tape drive, etc.). The storage 1016
may comprise an internal storage device or an attached or
network accessible storage. Computer programs 1006 1n stor-
age 1016 may be loaded mto the memory elements 1004 and
executed by a processor 1002 1n a manner known 1n the art.

The system architecture 1000 may include fewer compo-
nents than illustrated, additional components not 1llustrated
herein, or some combination of the components 1llustrated
and additional components. The system architecture 1000
may comprise any computing device known in the art, such as
a mainirame, server, personal computer, workstation, laptop,
handheld computer, telephony device, network appliance,
virtualization device, storage controller, etc.

The foregoing description of embodiments of the invention
has been presented for the purposes of illustration and
description. It 1s not intended to be exhaustive or to limait the

US 7,574,435 B2

11

embodiments to the precise form disclosed. Many modifica-
tions and variations are possible 1n light of the above teaching.
It1s intended that the scope ol the embodiments be limited not
by this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a
complete description of the manufacture and use of the com-
position of the embodiments. Since many embodiments may
be made without departing from the spirit and scope of the
embodiments, the embodiments reside in the claims herein-
alter appended or any subsequently-filed claims, and their
equivalents.
What 1s claimed 1s:
1. A computer-implemented method for accessing infor-
mation, comprising:
storing a composite object 1n a storage hierarchy using a
processor of a computer with memory, wherein the com-
posite object includes data objects comprising directo-
ries and files:
storing a metadata object 1n the storage hierarchy, wherein
the metadata object is an index to the composite object in
the storage hierarchy, wherein the metadata object
includes metadata entries, wherein each metadata entry
corresponds to an associated directory 1n the composite
object and includes an offset 1n the metadata object, a
path, an object name, a type of data, a location 1n the
composite object, and a length of the associated data
object 1n the composite object;
creating a partial key index 1n a database for the metadata
object 1n the storage hierarchy, wherein the partial key
index includes one or more partial key index (PKI)
entries, wherein each PKI entry identifies a portion of
the metadata object and includes a beginning location in
the metadata object and an ending location 1n the meta-
data object, wherein the PKI index is created by scan-
ning the metadata object to 1dentity the directories; and
1n response to recerving a request from a user selecting a
directory that is 1n the composite object,
determining whether metadata that 1s to be used to dis-
play data objects 1n the selected directory 1s already
loaded; and
in response to determining that the metadata 1s not
already loaded,
using the partial key index to locate one or more PKI
entries, wherein each of the one or more PKI entries
corresponds to the selected directory;
using each of the one or more PKI entries to retrieve
location information of the metadata for the
selected directory 1n the metadata object for the
composite object;
loading the metadata for the selected directory from
the metadata object in the storage hierarchy into the
database using the location information to locate
the metadata 1n the metadata object;
displaying one or more data objects associated with
the loaded metadata;
recerving an indication to perform an action on one or
more selected data objects that are displayed; and
performing the action, wherein, when the action 1s to
restore the one or more selected data objects, per-
forming;
using the loaded metadata to 1dentity a location of
cach of one or more of the data objects to be
restored; and
copying the one or more data objects to a specified
destination.
2. The method of claim 1, wherein each of the one or more
metadata object entries 1dentifies an associated data object.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

3. The method of claim 1, wherein the data object 1s a
directory.

4. The method of claim 1, further comprising:

recerving an indication to expand a directory.

5. The method of claim 1, wherein the action 1s to view the
one or more selected data objects.

6. A computer-implemented method for accessing infor-
mation, comprising:

creating a composite object including one or more data

objects using a processor ol a computer with memory,
wherein the composite object 1s stored 1n a storage hier-
archy;
creating a metadata object, wherein the metadata object 1s
an 1ndex to the composite object, and wherein the meta-
data object includes metadata entries, each of which
corresponds to an associated data object in the compos-
ite object and 1includes an offset in the metadata object, a
path, a type of data, a location 1n the composite object,
and a length of the associated data object 1n the compos-
ite object, wherein the metadata object 1s stored 1n the
storage hierarchy, wherein metadata 1n the metadata
object 1s stored by directory, and wherein the metadata
entries for data objects 1n a same directory are contigu-
ous;
creating a partial key index in a database, wherein the
partial key index includes one or more partial key index
(PKI) entries, wherein each of the one or more PKI
entries 1dentifies a portion of the metadata object, and
wherein each of the one or more PKI entries corresponds
to one or more data objects in the composite object,
wherein the partial key index is created by scanning the
metadata object to 1dentity directories and beginning
locations and ending locations of the directories,
wherein the partial key index 1s used to load portions of
the metadata in the metadata object from the storage
hierarchy 1nto the database;
using the partial key index to locate one or more PKI
entries, wherein each of the one or more PKI entries
corresponds to one or more data objects 1n one of the one
Or more composite objects;

using each of the one or more PKI entries to retrieve loca-
tion information of the metadata in the metadata object
for each of the one or more composite objects;

loading the metadata from each metadata object into a

database using the location information, wherein the
metadata 1s used to access the data object;

displaying one or more data objects associated with the

loaded metadata;

recerving an indication to perform an action on one or more

selected data objects that are displayed; and

performing the action, wherein, when the action 1s to

restore the one or more selected data objects, perform-

ng:

using the loaded metadata to 1dentity a location of each
ol one or more of the data objects to be restored; and

copying the one or more data objects to a specified
destination.

7. A computer program product comprising a computer
readable storage medium including a computer readable pro-
gram, wherein the computer readable program when
executed by a processor on a computer causes the computer
to:

store a composite object in a storage hierarchy, wherein the

composite object includes data objects comprising
directories and files:

store a metadata object 1n the storage hierarchy, wherein

the metadata object 1s an index to the composite object in

US 7,574,435 B2

13

the storage hierarchy, wherein the metadata object
includes metadata entries, wherein each metadata entry
corresponds to an associated directory 1n the composite
object and 1ncludes an offset 1n the metadata object, a
path, an object name, a type of data, a location 1n the
composite object, and a length of the associated data
object 1n the composite object;
create a partial key index 1n a database for the metadata
object 1n the storage hierarchy, wherein the partial key
index includes one or more partial key index (PKI)
entries, wherein each PKI entry identifies a portion of
the metadata object and includes a beginning location in
the metadata object and an ending location in the meta-
data object, wherein the PKI index is created by scan-
ning the metadata object to 1dentity the directories; and
1in response to receiving a request from a user selecting a
directory that 1s 1n the composite object,
determine whether metadata that 1s to be used to display
data objects 1 the selected directory is already
loaded; and
in response to determining that the metadata 1s not
already loaded,
use the partial key index to locate one or more PKI
entries, wherein each of'the one or more PKI entries
corresponds to the selected directory;
use each of the one or more PKI entries to retrieve
location information of the metadata for the
selected directory in the metadata object for the
composite object;
load the metadata for the selected directory from the
metadata object 1n the storage hierarchy into the
database using the location information to locate
the metadata 1n the metadata object;
display one or more data objects associated with the
loaded metadata;
recerve an 1ndication to perform an action on one or
more selected data objects that are displayed; and
perform the action, wherein, when the action 1s to
restore the one or more selected data objects, per-
forming:

using the loaded metadata to 1dentify a location of

cach of one or more of the data objects to be
restored; and

copying the one or more data objects to a specified
destination.

8. The computer program product of claim 7, wherein each
of the one or more metadata object entries 1dentifies an asso-
ciated data object.

9. The computer program product of claim 7, wherein the
data object 1s a directory.

10. The computer program product of claim 7, wherein the
computer readable program when executed on a computer
causes the computer to:

receive an indication to expand a directory.

11. The computer program product of claim 7, wherein the
action 1s to view the one or more selected data objects.

12. A computer program product comprising a computer
readable storage medium including a computer readable pro-
gram, wherein the computer readable program when
executed by a processor on a computer causes the computer
to:

create a composite object including one or more data

objects, wherein the composite object 1s stored 1n a
storage hierarchy;

create a metadata object, wherein the metadata object 1s an

index to the composite object, and wherein the metadata
object includes metadata entries, each of which corre-

L

5

10

15

20

25

30

35

40

45

50

55

60

65

14

sponds to an associated data object in the composite
object and 1ncludes an offset 1n the metadata object, a
path, a type of data, a location 1n the composite object,
and a length of the associated data object in the compos-
ite object, wherein the metadata object 1s stored 1n the
storage hierarchy, wherein metadata 1n the metadata
object 1s stored by directory, and wherein the metadata
entries for data objects 1n a same directory are contigu-
ous;

create a partial key index 1n a database, wherein the partial
key index includes one or more partial key index (PKI)
entries, wherein each of the one or more PKI entries
identifies a portion of the metadata object, and wherein
cach of the one or more PKI entries corresponds to one
or more data objects 1n the composite object, wherein the
partial key index is created by scanning the metadata
object to identily directories and beginning locations
and ending locations of the directories, wherein the par-
tial key imndex 1s used to load portions of the metadata in
the metadata object from the storage hierarchy into the

database:

use the partial key index to locate one or more PKI entries,
wherein each o the one or more PKI entries corresponds
to one or more data objects 1n one of the one or more
composite objects;

use each of the one or more PKI entries to retrieve location
information of the metadata in the metadata object for
cach of the one or more composite objects;

load the metadata from each metadata object into a data-
base using the location information, wherein the meta-
data 1s used to access the data object;

display one or more data objects associated with the loaded
metadata;

recerve an indication to perform an action on one or more
selected data objects that are displayed; and

perform the action, wherein, when the action 1s to restore
the one or more selected data objects, performing:

using the loaded metadata to 1dentily a location of each
of one or more of the data objects to be restored; and

copying the one or more data objects to a specified
destination.

13. A system for accessing information, comprising:
a Processor;
a memory; and

hardware logic performing operations, the operations com-
prising:
storing a composite object 1 a storage hierarchy,

wherein the composite object includes data objects
comprising directories and files;

storing a metadata object in the storage hierarchy,
wherein the metadata object 1s an 1index to the com-
posite object 1n the storage hierarchy, wherein the
metadata object includes metadata entries, wherein
cach metadata entry corresponds to an associated
directory in the composite object and includes an
offset 1n the metadata object, a path, an object name,
a type of data, a location 1n the composite object, and
a length of the associated data object in the composite
object;

creating a partial key index 1n a database for the meta-
data object 1n the storage hierarchy, wherein the par-
tial key index includes one or more partial key index
(PKI) entries, wherein each PKI entry identifies a
portion of the metadata object and includes a begin-
ning location 1n the metadata object and an ending

US 7,574,435 B2

15

location 1n the metadata object, wherein the PKI index
1s created by scanning the metadata object to 1dentify
the directories; and
1n response to recerving a request from a user selecting a
directory that 1s 1n the composite object,
determining whether metadata that 1s to be used to
display data objects 1n the selected directory 1s
already loaded; and
in response to determiming that the metadata 1s not
already loaded,
using the partial key imndex to locate one or more
PKI entries, wherein each of the one or more PK1
entries corresponds to the selected directory;
using each of the one or more PKI entries to retrieve
location information of the metadata for the
selected directory in the metadata object for the
composite object;
loading the metadata for the selected directory
from the metadata object in the storage hierarchy
into the database using the location information
to locate the metadata 1n the metadata object;
displaying one or more data objects associated with
the loaded metadata;
receiving an indication to perform an action on one
or more selected data objects that are displayed;
and
performing the action, wherein, when the action 1s
to restore the one or more selected data objects,
performing:
using the loaded metadata to 1dentity a location
of each of one or more of the data objects to be
restored; and

copying the one or more data objects to a speci-
fied destination.

14. The system of claim 13, wherein each of the one or
more metadata object entries identifies an associated data
object.

15. The system of claim 13, wherein the data object 1s a
directory.

16. The system of claim 13, wherein the operations further
comprise:
receiving an indication to expand a directory.

17. The system of claim 13, wherein the action 1s to view
the one or more selected data objects.

18. A system for accessing information, comprising:
a Processor;
a memory; and

hardware logic performing operations, the operations com-
prising;:

10

15

20

25

30

35

40

45

16

creating a composite object including one or more data
objects, wherein the composite object 1s stored 1n a
storage hierarchy;

creating a metadata object, wherein the metadata object
1s an 1ndex to the composite object, and wherein the
metadata object includes metadata entries, each of
which corresponds to an associated data object 1n the
composite object and includes an oifset in the meta-
data object, a path, a type of data, a location 1n the
composite object, and a length of the associated data
object 1n the composite object, wherein the metadata
object 1s stored in the storage hierarchy, wherein
metadata in the metadata object 1s stored by directory,
and wherein the metadata entries for data objects 1n a
same directory are contiguous;

creating a partial key index in a database, wherein the
partial key index includes one or more partial key
index (PKI) entries, wherein each of the one or more
PKI entries identifies a portion of the metadata object,
and wherein each of the one or more PKI entries
corresponds to one or more data objects 1n the com-
posite object, wherein the partial key index 1s created
by scanning the metadata object to identity directories
and beginning locations and ending locations of the
directories, wherein the partial key mdex 1s used to
load portions of the metadata in the metadata object
from the storage hierarchy into the database;

using the partial key index to locate one or more PKI
entries, wherein each of the one or more PKI entries
corresponds to one or more data objects 1n one of the
one or more composite objects;

using each of the one or more PKI entries to retrieve
location information of the metadata 1n the metadata
object for each of the one or more composite objects;

loading the metadata from each metadata object 1into a
database using the location information, wherein the
metadata 1s used to access the data object;

displaying one or more data objects associated with the
loaded metadata:

receiving an indication to perform an action on one or
more selected data objects that are displayed; and

performing the action, wherein, when the action 1s to
restore the one or more selected data objects, perform-
ng:
using the loaded metadata to 1dentify a location of

cach of one or more of the data objects to be
restored; and

copying the one or more data objects to a specified
destiation.

	Front Page
	Drawings
	Specification
	Claims

