US007571165B2

a2 United States Patent (10) Patent No.: US 7,571,165 B2
Eigemann et al. 45) Date of Patent: Aug. 4, 2009
(54) METHOD AND SYSTEM FOR PROVIDING 6,023,706 A * 2/2000 Schmucketal. 707/200
LOCKING BEHAVIOR 6,101,508 A * 82000 Wolffccoevvvnvrvnnnn.. 709/223
6,721,739 B1* 4/2004 Mende et al. ..oooeveven...... 707/8
(75) Inventors: Sven-Eric Eigemann, Sandhausen (DE); 2003?0204534 Aj: 10/{2003 HOFemlz:,n et ::11‘1 707ﬁ200
o _ 2004/0133607 Al* 7/2004 Miloushev et al. ... 707/200
g.f’lier llf"hle" %.eﬂi‘ﬂ?l Eggg Jens 2004/0167932 Al* 82004 Edmonds 707/200
peReatlet, WIEsIot 2004/0189439 Al* 9/2004 CaNSino ..eevvevevereee... 340/5.2
. - 2005/0038834 Al* 2/2005 Souderetal. 707/203
(73) Assignee: SAP AG, Walldort (DE) 2005/0246389 A1* 11/2005 Shah etal. ..oooo.oe...... 707/200
) | | o | 2006/0059205 Al* 3/2006 Shahetal.coo.......... 707/200
(*) Notice: Subject to any disclaimer, the term of this 2006/0101081 Al* 5/2006 Linetal.ccoccovnr..... 707/200
patent 1s extended or adjusted under 35 2007/0219999 A1* 9/2007 Richeyetal. 707/8
U.S.C. 154(b) by 262 days. 2007/0288890 Al* 12/2007 Wells wovvvevevereeereren.. 717/113

(21) Appl. No.: 11/540,266 * cited by examiner

Primary Lkxaminer—Don Wong
Assistant Examiner—Kim T Nguyen
(74) Attorney, Agent, or Firm—Kenyon & Kenyon LLP

(22) Filed: Sep. 28, 2006

(65) Prior Publication Data
US 2008/0082534 A1 Apr. 3, 2008 (57) ABSTRACT
(51) Inmt. Cl. A method includes receiving by a first application an input
GO6F 17/30 (2006.01) from a user; performing a service by the second application,
(52) US.CL .., 707/8; 707/3; 707/101; the service related to the input received by the first applica-
| | 707/20(; tion; obtaining a log ot all data locks set by the second appli-
(58) Field of Classification Search 707/3 cation while performing the service, wherein the log indicates

a data lock object and a data lock argument for each data lock

707/8, 101, 200 . . .
set by the second application; and setting a generic lock
having an associated generic lock object and a generic lock
(56) References Cited argument, wherein the generic lock argument indicates the
data lock object and the data lock argument. In one embodi-
U.s. PAIENT DOCUMENTS ment, the a unique checksum 1s created, using an algorithm,

See application file for complete search history.

5,809,527 A * 9/1998 Cooperetal. 711/133 for every service response.
5,832,508 A * 11/1998 Shermanetal. 707/200
5,835,764 A * 11/1998 Plattetal.ooeon..... 718/101 24 Claims, 5 Drawing Sheets
Second Session Third Session
o T T
304 304
B M ¥ S R N AT Second
— — Application
408~] | | [420 s08~] | | | 420 pplication)
................ 1 — L (Lock
_ s] - A:' _ .4 o i:l _ Tracking)
- 306 o 306
428~ - ‘%308 428" | L *%432
J— ——3 [1} R ¥ L] (Execution
3 ‘CTOB — : M f T T Controller)
404~ ! BRI U AN - - [aed
-2 S B | (First
T_\ ""'f“‘“ 04 "' /T =] - Application)
u 302 o ; 302 o 3 _//
- . First Session §
% | (RRRRE - > Time
Data Data
Lock Lock
N S

Generic Lock

U.S. Patent Aug. 4, 2009 Sheet 1 of 5 US 7,571,165 B2

108 112

Execution Second

Application

Application Controller

User
|npUt and 116
Output Database
FIG. 1
212 208 204
1 .
> Processor Input Device
220

U.S. Patent Aug. 4, 2009 Sheet 2 of 5 US 7,571,165 B2

Receiving by a First Application an Input
from a User

304

Performing a Service by a Second Application,
the Service Related to the Received Input

306

Obtaining a Log of All Data Locks Set by the
Second Application while Performing the Service

308

Setting a Generic Lock Having a Generic Lock
Argument Indicating a Data Lock Object and a Data
Lock Argument of a Data Lock Indicated in the Log

FIG. 3

US 7,571,165 B2

Sheet 3 of 5

Aug. 4, 2009

U.S. Patent

¥ Ol

¥007 OLBUSK)

3007 3007
ejeq ejeq

AW
uoISSag)sli4

c0t

(uoneoijddy
}Sdi4)

v

-,

<
I
N
<

vev-

]
|
|
'
'
\
!
'
'
i
l
'
!
!
'
[
i
'
i
)
!
!
I
J
I
I
'

L e s he Sk vler ol e A el L - wslk s s sl miy B L el ik wibh e we e -

(19]|04JU0D
uonnaaxy) |

(Bunyoea
%007)

L R L TE FE T ST T T T T T T

-b-lu-h—-n—u—'—u-—--hﬂ-u--u-u-n — e o o o - s s — . SEy e WE WS N S aem s We o amm s e
-—-----—---’-“---------- minle A wks whe e e ol e e W — - o - o . . _-— . . e -

(uoneoijddy
pPU0D38g)

shin wmik hh - ol - - - - - A S S A A A S S ol e ke

UoISSaS paIy L UOISS8S pu0dag

U.S. Patent Aug. 4, 2009 Sheet 4 of 5 US 7,571,165 B2

300\‘

404\T

Invoke Service Call

Promote Optimistic e

Locks to Exclusive

Save Data

504
o
Ye

510 508
Yes
?
No
408

Call Service

308

Get New Locks and
Merge with EXxisting
Ones

506
Raise Error N
Message
S

FIG. 5

U.S. Patent Aug. 4, 2009 Sheet 5 of 5 US 7,571,165 B2

300 ™
404

Invoke Service Call
408 '

Call Service

606
Calculate
Fingerprint

608

Difference
Between Previous

Call
?

Yes

610

Update Fingerprint

612

Raise Error
Message

614

FIG. 6

US 7,571,165 B2

1

METHOD AND SYSTEM FOR PROVIDING
LOCKING BEHAVIOR

BACKGROUND INFORMATION

Services provided by a computing system may include any
type of functionality provided by the system and may be
implemented at least 1n part by software applications of the
system. For example, a particular service may include a busi-
ness functionality and may be implemented by an application
which includes business logic to perform the business func-
tionality. Generally speaking, legacy applications exist which
have become outdated 1n some aspect, but which may still
implement services which remain useful. For example, the
user interface of a legacy application may have become out-
dated, but the service it implements may still be useful. One
approach to using the services of legacy applications includes
developing a new application which reuses the services of the
legacy application but which updates the outdated aspects.

One problem associated with this approach 1s that it may be
difficult to integrate the existing locking behavior of legacy
applications into a locking behavior of a new application.
Applications typically lock data, in some manner, while the
data 1s being modified by a particular user in order to prevent
a different user from accidentally modifying an incorrect
version ol the data. However, a new application which reuses
a service of a legacy application may do so only intermait-
tently, and thus locks set by the legacy application may not be
suificient 1n a temporal sense to provide locking behavior for
a process of the new application. Thus, some type of new
locking behavior associated with the new application may be
desirable. Furthermore, 1t may be unknown exactly what type
of'locking behavior 1s implemented by the legacy application,
and thus 1t may be desirable that any new locking behavior
associated with the new application be developed, and be
useable, without detailed knowledge of the locking behavior
of the legacy application. Moreover, the locking behavior of
legacy applications may not implement some aspects of data
locking that have been developed 1n the mnterim between the
development of the legacy application and the development
of the new application. Thus, 1t may be desirable to provide a
new locking behavior associated with a new application with
an updated or different aspect than was implemented 1n the
locking behavior of the legacy application.

BRIEF DESCRIPTION OF THE DRAWINGS

So that features of the present invention can be understood

in detail, a description of the mnvention can be had by refer-
ence to embodiments, some of which are 1illustrated in the
appended drawings. It 1s to be noted, however, that the
appended drawings illustrate only particular embodiments of
the invention and are therefore not to be considered limiting,
of 1ts scope, for the mvention may admit to other equally
elfective embodiments.

FIG. 1 1s a schematic diagram depicting one embodiment
ol a software.

FIG. 2 1s a schematic diagram depicting one embodiment
ol a computing environment.

FIG. 3 1s a flow chart depicting a schematic representation
of one embodiment of a method.

FI1G. 4 15 a tlow diagram depicting another schematic rep-

resentation of one embodiment of the method depicted in
FIG. 3.

FI1G. 5 15 a flow chart depicting a schematic representation
of at least part of one embodiment of the method depicted 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3, the embodiment of the method depicted in FIG. 5
including providing optimistic generic locking behavior.
FIG. 6 1s a tlow chart depicting a schematic representation
ol at least part of one embodiment of the method depicted 1n
FIG. 3, the embodiment of the method depicted in FIG. 6

including a hashing functionality.

DETAILED DESCRIPTION

Embodiments are related to providing a generic locking
behavior associated with a first application which utilizes a
service performed by a second application. FIG. 1 depicts one
embodiment of a software 100. The exemplary embodiment
of the software 100 depicted in FIG. 1 comprises a {first
application 104, an execution controller 108 and a second
application 112. The first application 104 1s capable of receiv-
ing an input from a user, and communicating with the execu-
tion controller 108. The execution controller 108 1s capable of
communicating with both the first application 104 and the
second application 112. The second application 112 1s
capable of performing a service. The performing of the ser-
vice by the second application optionally includes accessing
the database 116. In one embodiment, the execution control-
ler 108 1s also capable of accessing the database 116. In one
embodiment, the first application 104 1s a relatively newer
application and the second application 112 1s a relatively
older application, 1.e., a legacy application. For example, the
first application 104 can be developed to update some unde-
sirable or outmoded aspect of the second application 112. In
one embodiment, the first application 104 provides a user
interface that 1s updated relative to a user interface of the
second application 112. Other embodiments of the software
100 also exist.

In one embodiment, the software 100 depicted 1n FIG. 1
corresponds to the software architecture described i U.S.
patent application Ser. No. 11/441,463, to Stefan Eliner etal.,
filed Apr. 25, 2006, entitled “Mapping a New User Interface
onto an Existing User Interface,” which 1s hereby incorpo-
rated by reference 1n 1ts entirety.

The software 100 depicted 1n FIG. 1 runs 1n, and 1s part of,
a computing environment 200. FIG. 2 depicts an exemplary
embodiment of the computing environment 200. The com-
puting environment 200 comprises an iput device 204, a
processor 208, a memory 212 and a communication line 216.
The memory 212 further comprises data 220 and the software
100, which are stored in the memory 212 at least at some
moment in time. The mput device 204 optionally comprises at
least one of: a keyboard, a mouse, a voice activated controller,
an optical controller, an infrared controller, or other suitable
input device. The memory 212 optionally comprises at least
one of: a random access memory, a disk storage memory, or
other suitable memory. The software 100 comprises com-
puter program instructions which may be accessed and
executed by the processor 208. The software 100 1s 1mple-
mented 1 any suitable software language such as, for
example, Java, C, C++, etc. The data 220 optionally com-
prises data which accessible by or integral to the database
116.

The memory 212, processor 208 and input device 204 are
connected together, and communicate with each other, by
means of the communication line 216. In one embodiment,
the communication line 216 comprises a system bus, and the
computing environment 200 comprises a single computer. In
another embodiment, the communication line 216 comprises
a network element, and the computing environment 200 com-
prises a distributed computing environment. In one embodi-
ment 1n which the computing environment 200 1s distributed,

US 7,571,165 B2

3

the memory 212, processor 208 and input device 204 are
optionally distributed across different locations. In one
embodiment in which the computing environment 200 1is
distributed, the computing environment 200 optionally com-
prises a plurality of some or all of the memory 212, the
processor 208 and the mput device 204. Other configurations
of the computing environment 200 are also possible.

FIG. 3 depicts a schematic representation of one embodi-
ment of a method 300. The method of FIG. 3 1s merely one
way ol carrying out the various embodiments described
herein, since variations of the embodiment of the method 300
depicted 1n FIG. 3 are possible.

Additionally, FIG. 4 depicts another schematic represen-
tation of one embodiment of the method 300 depicted 1n FIG.
3. The schematic representation FIG. 4 may be useful to
turther understand embodiments of the method 300 depicted
in FIG. 3, and contains additional visual elements, such as
arranging the various steps of the method 300 according to a
time axis, and also visually organizing elements of the
method 300 discussed below.

In one embodiment, as depicted 1n FIG. 1, the method 300
begins at step 302. At step 302, an mput from the user 1s
received at the first application 104. The receiving 1n step 302
optionally comprises the user entering the input using the
input device 204. For example, 1n one embodiment, the first
application 104 comprises a graphical user interface, and the
user enters the input by manipulating elements of the graphi-
cal user interface. In one embodiment, the first application
104 1s capable of individually assuming a plurality of differ-
ent states, each state comprising a specific visual configura-
tion of the graphical user interface, including the wvisual
arrangement of graphical elements and specific data dis-
played by the state. The recerved input optionally changes the
state of the first application 104. The receiving 1n step 302
may also comprise receiving alphanumerical data from the
user, or recerving a command from the user. In one embodi-
ment, the first application 104 does not comprise business
logic related to implementing a service.

In one embodiment of the method 300, step 304 15 per-
formed after step 302. At step 304, a service 1s performed by
the second application 112. The service can include any type
ol functionality capable of being provided by the second
application 112 running in the computing environment 200.
For example, 1n one embodiment the service comprises some
type of business functionality. Many different types of busi-
ness functionalities are envisioned, including, for example,
interacting with customers or clients, maintaining employee
data, etc. Exemplary business services include generating a
customer order for a product, changing the customer order,
deleting the customer order, etc. Other types of services are
also possible, including services that are not related to busi-
nesses. In one embodiment, the second application 112 com-
prises logic which defines rules for performing the service.
For example, the second application 112 optionally com-
prises business logic which defines the rules for performing a
service related to business functionality.

In one embodiment, the service performed by the second
application 112 comprises accessing the database 116. The
database 116 optionally comprises both data and computer
program 1nstructions. Accessing the database 116 by a com-
ponent of the software 100 typically comprises forming a
communication link between the component and the database
116. The communication link, which has a particular duration
over time, between the component and the database 116 1s
known as a session. A particular session 1s usually associated
with a particular user. Different embodiments of sessions are
possible. For example, in one embodiment, a particular ses-

10

15

20

25

30

35

40

45

50

55

60

65

4

sion comprises a communication link between the second
application 112 and the database 116. In another embodi-
ment, a particular session comprises a communication link
between the execution controller 108 and the database 116. In
one embodiment, the database 116 comprises components
that provide a server fTunctionality, and the execution control-
ler 108 and the second application 112 each comprise com-
ponents that provide a client functionality relative to the
server functionality. In such a client-server embodiment, the
communication link of the session comprises a link between
a server and a client.

In one embodiment of the method 300, the first application
104 1s associated with a first session and the second applica-
tion 112 1s associated with a second session. The first and
second sessions are both associated with the user. In one
embodiment, the first session comprises a first communica-
tion link ivolving the execution controller 108, and the sec-
ond session comprises a second communication link involv-
ing the second application 112, the second communication
link being a different communication link than the first com-
munication link. In one embodiment, the first session com-
prises a first communication link involving the execution
controller 108 and the database 116, and the second session
comprises a second communication link involving the second
application 112 and the database 116, the second communi-
cation link being a different communication link than the first
communication link. In one embodiment, the first session
comprises a first communication link involving the execution
controller 108 and a server, and the second session comprises
a second communication link involving the second applica-
tion 112 and a server, the second communication link being a
different communication link than the first communication
link. In one embodiment, the server may be regarded as part
of the database 116.

In one embodiment, the performing of the service 1n step
304 comprises executing a plurality of commands by the
second application 112 to perform the service. The service 1s
related to the imnput recerved by the first application 104, but 1s
not limited to a one-to-one correspondence between input
commands received by the first application 104 and com-
mands executed by the second application 112 to perform the
service. For example, the input received by the first applica-
tion 104 may comprise a single input command, such as for
example, save, print, or modity, etc., but the performing of the
related service by the second application 112 may comprise
executing a plurality of commands.

In one embodiment 1n which the method 300 1s 1mple-
mented using the software 100 depicted in FIG. 1, the execu-
tion controller 108 acts as an intermediary between the first
application 104 and the second application 108. For example,
in one embodiment, the method 300 comprises the first appli-
cation 104 invoking the service (see step 404 1n FIG. 4) from
the second application 112 through the execution controller
108. The mvoking 404 of the service through the execution
controller 108 1s 1n response to the receiving 1n step 302. That
1s, the first application 104 receives the input from the user
and communicates information related to the mput to the
execution controller 108 to invoke 404 the service from the
second application 112. The execution controller 108 then
requests 408 the service from the second application 112 in
response to the mvoking 404.

The performing of the service 1n step 304 comprises setting,
412 at least one data lock by the second application 112. Data
locks are typically set by applications to synchronize access
to data for a plurality of users. For example, data locks can
prevent different users from accidentally modifying an imncor-
rect version of data, or to prevent multiple users from modi-

US 7,571,165 B2

S

tying the same data at the same time. For example, a data lock
can deny write access to specific data for a second user while
a first user (1.e. the user discussed thus far) 1s granted write
access to the specific data. During the performing of step 304,
the at least one data lock 1s set 412 by the second application
112 to prevent other users (e.g. the second user) from modi-
fying at least some of the data involved in the performing of
the service at step 304. The setting 412 of the data lock also
grants the first user write access to the specific data. Upon
completing the performance of the service by the second
application at step 304, the at least one data lock that was set
during the performance of the service 1s deleted 416.

In one embodiment, the data locks set 412 by the second
application 112 are at least partially implemented by the
database 116. In one embodiment, the data locks set 412 by
the second application 112 are at least partially implemented
by a server in communication with the second application
112. For example, in one embodiment, the data locks set 412
by the second application 112 are at least partially imple-
mented by a server functionality that 1s part of the database
116. In one embodiment, setting 412 of data locks comprises
storing information 1n a memory location globally accessible
to relevant portions of the software 100 that may potentially
be modifying the data.

A specific data lock set 412 by the second application 112
involves a data lock object and a data lock argument. The data
lock object indicates a portion of the data 220 that may be
involved in the data locking. In one embodiment, the data lock
object indicates a database table. In another embodiment, the
data lock object indicates both the database table and a key
field of the database table. The data lock object can optionally
indicate a plurality of database tables. The data lock object
can also optionally indicate a plurality of key fields of the
database table. The data lock argument indicates specific data
locked by the data locking functionality. In one embodiment,
the data lock argument indicates a specific value of a key field
of the database table, and thus, 1n such an embodiment, the
data lock argument indicates which subset of the rows of the
database table, specified by the data lock object, are to be
locked. In one embodiment, the specific value of the data lock
argument 1s a specific value of the key field indicated by the
data lock object. In another embodiment, the specific value of
the data lock argument 1s a value of a primary key field that 1s
known to the database 116, but not necessarily indicated by
the data lock object.

The performing of the service in step 304 returns 420 a first
result by the second application 112 to the execution control-
ler 108. In one embodiment, the execution controller 108
returns 424 a second result, based on the first result, to the first
application 104. In another embodiment, the first and second
results comprises output data.

In one embodiment of the method 300, step 306 15 per-
tormed after step 304. At step 306, a log 1s obtained of all data
locks set 412 by the second application 112 during the per-
forming of the service at step 304. For each data lock set 412
by the second application 112, the log indicates the corre-
sponding data lock object and data lock argument. At step
306, the method 300 obtains at least one specific data lock
object and at least one specific data lock argument related to
at least one specific data lock that was set 412 by the second
application 112 during the performing of the service at step
304. In one embodiment, the method 300 obtains a plurality
of specific data lock objects and a plurality of specific data
lock arguments of a corresponding plurality of specific data
locks that were set 412 by the second application 112 during
the performing of the service at step 304.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment in which the method 300 1s 1mple-
mented using the software 100 depicted 1n FIG. 1, the method
300 comprises enabling 428, by the execution controller 108,
tracking of the data locks set 412 by the second application
112. The enabling 428 by the execution controller 108 1s 1n
response to the invoking 404 of the service by the first appli-
cation 104; and the requesting 408, by the execution control-
ler 108, of the service from the second application 112 1is
performed after the enabling 428 ofthe tracking of data locks.
In one embodiment, the enabling 428 of the tracking of data
locks 1s performed by the execution controller 108. In one
embodiment, the enabling 428 of the tracking of data locks 1s
performed by the execution controller 108 1n combination
with a global resource available to the software 100 1n the
computing environment 200, such as a server with which
components of the software 100 are capable of communicat-
ing. For example, 1n one embodiment, the enabling 428 com-
prises the execution controller 108 communicating with a
soltware component of a server managing data locks. In one
embodiment, such a server can be considered as a part of the
database 116.

In one embodiment of the method 300, step 308 1s per-
tformed after step 306. At step 308, a generic lock 1s set. The
generic lock provides a generic locking behavior for a process
conducted by the first application 104 approprate to, for
example, the context of the first application 104 using ser-
vices provided by the second application 112. The generic
locking accommodates intermittent use of the services of the
second application 112 and its data locking behavior. In one
embodiment, the generic locking behavior can also provide
locking behavior functionality which 1s enhanced or different
relative to the data locking behavior of the second application
112.

The generic lock has an associated generic lock object and
a generic lock argument. The generic lock 1s more general
than the data lock and can lock different types of functional-
ities. The generic lock object indicates a type of the generic
locking functionality. For example, in one embodiment, the
generic lock object indicates that the generic lock object locks
against the use of data locks. The generic lock argument
indicates a specific target of the generic locking functionality.
For example, 1n one embodiment, the generic lock argument
indicates a specific data lock to lock. In the method 300, the
value of the generic lock argument of the generic lock set
during the setting at step 308 indicates the specific data lock
object and the specific data lock argument of the at least one
specific data lock obtained from the log of data locks at step
306. In one embodiment, the setting of step 308 sets a generic
lock corresponding to at least one data lock set 412 by the
second application 112 during the performing of the service
at step 304. In one embodiment, the setting of step 308 sets a
generic lock for each data lock set 412 by the second appli-
cation 112 during the performing of the service at step 304.

One functionality of the generic lock 1s to prevent the
setting of other data locks having the specific data lock object
and the specific data lock argument, obtained from the log at
step 306, by other users while the first user 1s conducting an
ongoing process 1n the first application 104. For example, 1n
one embodiment, the first application 104 individually
invokes 404 a plurality of services from the second applica-
tion 112 over a period of time, and the second application 112
1s used 1n an eflectively stateless manner. Using the second
application 1n an effectively stateless manner comprises: 1ni-
tiating an instance of the second application 112 1n response
to a service request 408 (e.g., thus also 1n response to the
invoking 404 of the service by the first application 104
through the execution controller 108), executing all com-

US 7,571,165 B2

7

mands within the second application 112 necessary to per-
form the service, and then terminating the instance of the
second application 112 before responding to any other ser-
vice requests (1.e., additional invocations 404 of services of
the second application 112 by the first application 104
through the execution controller 108). Thus, when used 1n an
clifectively stateless manner, the second application 112 1ni-
tiates, performs a service, and then terminates relatively
quickly. It 1s not kept running once the service has been
performed. Without the generic locking provided by the
method 300, invoking 404 a plurality of services of the second
application 112 individually over a period of time would
result 1n undesirable gaps 1n data locking provided by the
second application 112 between the individual performances
of the services when the second application 112 1s not run-
ning. During these gaps, during which the data locking pro-
vided by the second application 112 would be inactive, a
second user, without the generic locking provided by the
method 300, could undesirably modily data involved in the
ongoing process being conducted by the first user via the first
application 104.

The generic locking provided by the method 300 provides
a solution for these undesirable gaps 1 data locking coverage.
The generic locking provides locking behavior to the com-
bined use of the first application 104 and the second applica-
tion 112 that prevents the second user from undesirably modi-
tying the data during the ongoing process being conducted by
the first user. The generic lock 1s able to perform this func-
tionality in part because the generic lock argument indicates
the specific data lock and specific data lock argument
obtained from the data lock log at step 306, and as such is able
to prevent other users from setting data locks having this
specific data lock object and specific data lock argument.

The functionality of the generic data lock may be further
understood through the use of the following pseudocode. For
example, 1n one embodiment, the following data lock 1s set by
the second application 112 during the performing of the ser-
vice at step 304:

object_ 1 (argument_ 1).

In the example, the setting at step 308 would then set the
following generic lock:

object_ 2 (object__ 1, argument_ 1).

Thus, 1n the example, argument 2 indicates both object_ 1
and argument__1. In this way, the setting of the generic lock

locks against another user using the specific data lock
obtained from the data lock log at step 306.

In one embodiment, the setting of the generic lock 1s per-
formed by the execution controller 108. In another embodi-
ment, the setting of the generic lock 1s performed by the
execution controller 108 in combination with a global
resource available to the software 100 1n the computing envi-
ronment 200, such as a server with which applications of the
software 100 are capable of communicating. For example, 1n
one embodiment, the setting of the generic lock comprises the
execution controller 108 communicating with a server man-
aging data locks. Such a server can be considered as a part of
the database 116. In another embodiment, the setting of the
generic lock 1s indicated 1n a memory accessible by all
instances of the first application 104 running 1n any session,
and 1n one version of such an embodiment, the memory
comprises a random access memory.

In one embodiment 1n which the method 300 1s 1mple-
mented using the software 100 depicted in FIG. 1, the first
application 104 and the execution controller 108 are associ-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ated with the first session, and the second application 112 and
at least part of the lock tracking are associated with the second
session. This exemplary delineation of instances of software
applications and tasks between the first and second sessions
can be further understood by the graphical depiction of FIG.
4. As depicted 1in FIG. 4, the first application 104 runs,
receives the mput at step 302, and ivokes 404 the service
through the execution controller 108 1n association with the
first session. Additionally, the setting of generic locks of step
308 occurs 1n association with the first session, for example
by the execution controller 108 as shown 1n FIG. 4. The
second application 112 performs the service, and sets 412

data locks 1n association with a session different than the first
session (1.e. the second session, a third session or other ses-
sions). As 1s depicted 1n FIG. 4, in one embodiment, some
aspect of the tracking of data locks occurs 1n association with
the second session. Furthermore, for each separately invoked
service, the second application 112 performs the service and
sets data locks 1n association with different sessions.

For example, 1n the embodiment depicted in FIG. 4, two
separate services are invoked 404 through the execution con-
troller 108, one resulting 1n a performance of a particular
service 1n association with a second session, and the other
resulting in a performance of a particular service 1n associa-
tion with a third session. As 1s depicted 1n FIG. 4, the second
session ends before the third session begins. FIG. 4 also
depicts graphically along the timeline the relative durations of
the data locks set by the second application 112 1n association
with the second and third sessions, and the generic locks setin
association with the first session. The generic lock can be seen
in FIG. 4 to cover at least part of the interim between the
second session and the third session. In one embodiment, this
interim 1s part of an ongoing process related to the first appli-
cation 104. Thus, in the embodiment of the method 300
depicted 1n FIG. 4, the first, second and third sessions are all
associated with the first user, and the second and third ses-
sions end before the first session. In the depicted embodi-
ment, the method 300 further comprises deleting 416 the data
lock set 1n the second session betfore deleting 432 the generic
data lock, and setting 412 a second data lock 1n association
with the third session before deleting 432 the generic data
lock.

In one embodiment, the generic lock 1s an optimistic lock
and the data lock set by the second application 112 1s an
exclusive data lock. One advantage to such an embodiment 1s
that the generic locking behavior provided by the method 300
provides upgraded locking functionality relative to the data
locking behavior of the second application 112. For example,
the second application 112 1s optionally a legacy application
that only provides exclusive locking behavior, and 1t may be
desirable to upgrade that behavior to provide optimistic lock-
ing behavior. An exclusive lock 1s associated with a specific
user, grants write access to specific data for that specific user,
and prevents other users from being granted write access to
that specific data. An optimistic lock 1s also associated with a
specific user, but grants a non-exclusive reservation on write
access to the specific data for that specific user, and does not
prevent other users from also being granted other non-exclu-
s1ve reservations on write access to the specific data. An
optimistic lock 1s capable of being converted to an exclusive
lock for the specific user, at which point the converting can-
cels any other optimistic locks on the specific data associated
with other users. In one embodiment, the second application
112 1s not capable of setting optimistic locks, and the method
300 thereby associates optimistic locking behavior with the
service performed by the second application.

US 7,571,165 B2

9

FIG. 5 depicts one scenario mvolving at least part of an
embodiment of the method 300 1n which the generic locks
which are set by the method 300 are optimistic locks. The
embodiment of the part of the method 300 depicted 1n FIG. 5
may overlap parts of the embodiment of the method 300
depicted 1n FIG. 3, and provide more detail in some aspects.
As depicted i FIG. 5, at step 404 a service from the second
application 112 1s invoked through the execution controller
108 by the first application 104 for the first user. The scenario
depicted in FIG. 5 accommodates the possibility that the first
application 104 has previously invoked other services
through the execution controller 108 as part of an ongoing,
process for the first user, and that optimistic locks may have
been previously set 1n relation to the ongoing process. The
depicted embodiment of the method 300 performs step 504
alter step 404. At step 504, the execution controller 108
checks to make sure that all previously set optimistic locks
associated with the ongoing process in the first application
104 are still available as optimistic locks to the ongoing
process. If not, that means that some other process, possibly
involving another user, has converted one of the previously
set optimistic locks to an exclusive lock, and the optimistic
lock previously set by the method 300 for the first user has
been lost. In such an event, not all of the previously set
optimistic locks still exist and the depicted embodiment of the
method 300 proceeds to step 506 and raises an error message
alerting the first user.

If all the previously set optimistic locks still exist, the
depicted embodiment of the method 300 proceeds to step 508.
At step 508, the execution controller 108 determines 1f the
service invoked at step 404 involves saving data. IT1t does, the
depicted embodiment of the method 300 proceeds to step 510.
At step 510, the method 300 promotes the optimistic generic
locks associated with the data to be saved to exclusive generic
locks. This will also cancel any other optimistic generic locks
associated with the specific data that may have been set by
other users, such as by other users also using the first appli-
cation 104. The depicted embodiment of the method 300
proceeds to step 408 after steps 510, and also upon a negative
determination at step 508. At step 408, the execution control-
ler 108 requests the service from the second application 112
which was invoked by the first application 104 at step 404.
The depicted embodiment of the method 300 proceeds to step
308 after step 408. At step 308, the execution controller 108
sets any new generic locks that were obtained by the data lock
log (at step 306, depicted 1n FIG. 3, for example). Step 308 of
the method 300 optionally also comprises merging any new
generic locks set at the step with any other generic locks
previously set by the method 300 and associated with, for
example, the ongoing process involving the first user and the
first application 104.

In one embodiment, the method 300 accommodates the
possibility that not all users may be using the first application
104 to access the services of the second application 112. For
example, there may be a second user who directly 1nitiates an
instance of the second application 112 without using the first
application 104 and the execution controller 108. In such a
scenario, the second user may undesirably bypass the generic
locking behavior provided by the method 300. For example,
in one embodiment, it 1s the execution controller 108 which
attempts to set a generic lock at step 308, and 11 such an
attempt 1s denied because another user already has some type
of exclusive lock on the data involved, the execution control-
ler 108 will alert the first user. However, 1f a second user
directly accesses the second application 112, the execution
controller 108 will not provide the generic locking behavior
tor the second user, and will thus also not be able to deny the

10

15

20

25

30

35

40

45

50

55

60

65

10

first user a generic lock 11 the second user has set an exclusive
lock on to the data by directly accessing the second applica-
tion 112. To accommodate this scenario, one embodiment of
the method 300 provides a checksum functionality to attempt
to determine if data has been modified by bypassing the
generic locking behavior.

For every service request with a fixed position within a
series ol service requests, providing the same input data
should return the same output data. If for a subsequent service
request, the same output data 1s not returned for the same
input data, the service 1s either not deterministic or data has
changed and the second application 112 1s working on out-
dated data. Thus, in one embodiment, the execution controller
108 creates a unique checksum, using an algorithm, for every
service response. In one embodiment, the execution control-
ler 108 uses a hashvalue algorithm to create the unique check-
sum. For example, an MD5 hashvalue algorithm, which has a
fairly acceptable collision probability, can be used to generate
the checksum. The algorithm 1s used to generate a checksum
based on the mput and output data, relative to the execution
controller 108, related to the service request 408. 11 the series
ol service requests 408 1s re-executed, the execution control-
ler 108 compares the stored checksum for every service
request 408 with the newly calculated one. If both checksums
are equal, the execution controller 108 assumes that no data
was changed in the meantime. If both checksums are not
equal, data has changed. As all services are etfectively state-
less, the data has to be changed on the database 116 and the
user 1s working with outdated data. The execution controller
108 1s able to i1dentify the service and 1ts position within the
series ol services and raise a corresponding message to the
first application 104 or the first user. The first application 104
can ask the first user to re-read data, continue anyway or
cancel the first application 104.

FIG. 6 depicts one scenario mvolving at least part of an
embodiment of the method 300 1n which the method 300
includes the checksum functionality. The embodiment of the
part of the method 300 depicted 1n FIG. 6 may overlap parts
of the embodiment of the method 300 depicted 1n FIG. 3, and
provide more detail 1n some aspects. As depicted in FIG. 6, at
step 404 a service from the second application 112 1s invoked
404 by the first application 104. The depicted embodiment of
the method 300 proceeds to step 408 after step 404. At step
408, the service 1s requested 408 from the second application
112 by the execution controller 108. The depicted embodi-
ment of the method 300 proceeds to step 606 after step 408. At
step 606, the checksum based on the mput and output data
related to the service 1s calculated. The depicted embodiment
of the method 300 proceeds to step 608 after step 606. At step
608, the method 300 determines 1f there 1s a difference
between the checksum of the just-requested performance of
the service 1n relation to the requested performance of the
service most immediately-previous to the just-requested per-
formance. If the determination 1s positive, the depicted
embodiment of the method 300 proceeds to step 610 after step
608. At step 610, the method 300 updates the checksum of the
just-requested service. The depicted embodiment of the
method 300 proceeds to step 612 after step 610. At step 612,
the execution controller 108 raises an error message to the
first user indicating that the checksum has changed. If the
determination 1s negative at step 608, the depicted embodi-
ment of the method 300 proceeds to step 614. At step 614, the
method 300 continues without raising an error message, for
example allowing the first user to continue with the ongoing
process 1n the first application 104.

In one embodiment, the software 100 comprises computer
program instructions, which when executed by the processor

US 7,571,165 B2

11

208, enable the performance of the method 300. For example,
the computer program instructions of the software 100
optionally enable the automatic performance of the method
300. In one embodiment, the software 100 comprises com-
puter program instructions, which when executed by the pro-
cessor 208, and receive mput from a user such as a human
operator, enable the performance of the method 300. For
example, the computer program instructions of the software
100 optionally provide a human operator with the ability to
manage and provide input to the performance of the method
300. In one embodiment, a computer readable medium com-
prises the computer program instructions of the software 100,
which when executed by the processor 208, enable the per-
formance of the method 300. In one embodiment, a system
comprises means to perform each of the steps of the method
300. For example, 1n one embodiment, the means to perform
cach of the steps of the method 300 comprise elements of the
computing environment 200.

Further embodiments are also possible, which are the result
of variously combiming steps, elements or embodiments
described herein. For example, further embodiments may
comprise an altered order of the steps of the method 300
described herein, the result of which may be an embodiment
particularly suited to a specific purpose or implementation. In
another example, embodiments of the method 300 may
include or exclude optional steps. Further embodiments,
which would be discernable based on the disclosure of the
present Application, are also possible.

What 1s claimed 1s:
1. A method, comprising;:
receiving by a first application an input from a user;

performing a first service by a second application on the
input recerved by the first application;

obtaining a log of all data locks set by the second applica-
tion while performing the first service, wherein the log
indicates a data lock object and a data lock argument for
cach data lock set by the second application; and

setting a generic lock having an associated generic lock
object and a generic lock argument, wherein the generic
lock argument 1ndicates the data lock object and the data
lock argument of at least one data lock set by the second
application,

wherein the generic lock 1s set after performance of the first
service by the second application and before a perfor-
mance of a second service by the second application, the
generic lock remaining set until after the performance of
at least the second service by the second application,
such that the generic lock remains set during a time
period between the performance of the first and second
services by the second application during which the
second application 1s not executing.

2. The method of claim 1, wherein the first application 1s
associated with a first session and the second application 1s
associated with a second session, the first session comprising
a first communication link to a database, the second session
comprising a second communication link to the database, the
second communication link being a different communication
link than the first communication link, the first and second
sessions being associated with the user.

3. The method of claim 1, further comprising;

invoking, by the first application through an execution
controller, the first service from the second application;

cnabling, by the execution controller, tracking of the data
locks set by the second application, wherein the enabling
1s 1n response to the mvoking; and

10

15

20

25

30

35

40

45

50

55

60

65

12

requesting, by the execution controller, the first service
from the second application, wherein the requesting 1s 1n
response to the invoking and performed after the
enabling,

wherein the setting of the generic lock 1s by the execution
controller, and

wherein the first application and the execution controller

are associated with a first session, and the second appli-
cation 1s associated with a second session.

4. The method of claim 1, further comprising:

setting at least one data lock by the second application;

executing a plurality of commands by the second applica-
tion to perform the first service;

returning, by the second application, a result of the per-
formed first service, wherein the result includes output
data; and

deleting the at least one set data lock.

5. The method of claim 1, wherein the setting of the generic
lock 1s indicated in a memory accessible by all instances of
the first application associated with any session, the memory
comprising a random access memory.

6. The method of claim 1,

wherein the data lock 1s an exclusive data lock associated
with the user, the exclusive lock granting write access to
specific data for the user, the exclusive lock preventing
other users from being granted write access to the spe-
cific data;

wherein the generic lock 1s an optimistic lock associated

with the user, the optimistic lock granting a non-exclu-
s1ve reservation on write access to the specific data for
the user, the optimistic lock not preventing other users
from being granted other non-exclusive reservations on
write access to the specific data;

wherein the optimistic lock 1s capable of being converted to

an exclusive lock, the converting comprising canceling,
any other optimistic locks on the specific data by other
users.

7. The method of claim 6, wherein the second application
1s not capable of setting optimistic locks, the method thereby
associating optimistic locking behavior with the services per-
formed by the second application.

8. The method of claim 6, wherein the first application and
the generic lock are associated with a first session, the second
application and the data lock are associated with a second
session, the first and second sessions being associated with
the user, the second session ending before the first session,

the method further comprising:

deleting the data lock before deleting the generic data lock;

and

setting a second data lock betfore deleting the generic data

lock, the second data lock being set by an instance of the
second application associated with a third session, the
third session being associated with the user.
9. The method of claim 3, wherein the second application
1s used 1n an elfectively stateless manner, the effectively
stateless manner comprising:
imitiating the second application 1n response to the mvok-
ing of the first service by the first application; and

terminating the second application before invoking any
other services from the second application by the first
application.

10. The method of claim 3, further comprising:

generating, by the execution controller, a checksum based
on the input received by the first application and an
output generated by performing the first service by the
second application;

US 7,571,165 B2

13

associating the checksum with the first service and storing

the associated checksum;

invoking the second service by the first application, and

performing the service second by the second applica-
tion;

generating, by the execution controller, a second checksum

based on the input and output associated with the imnvok-
ing and performing of the second service; and
comparing the second checksum to the first checksum.

11. A computer readable storage medium comprising com-
puter instructions, which when executed by a processor per-
form a method, the method comprising:

receiving by a first application an input from a user;

performing a first service by a second application on the

input received by the first application;
obtaining a log of all data locks set by the second applica-
tion while performing the first service, wherein the log
indicates a data lock object and a data lock argument for
cach data lock set by the second application; and

setting a generic lock having an associated generic lock
object and a generic lock argument, wherein the generic
lock argument 1ndicates the data lock object and the data
lock argument of at least one data lock set by the second
application,
wherein the generic lock 1s set after performance of a first
service by the second application and before a perfor-
mance of a second service by the second application, the
generic lock remaiming set until after the performance of
at least the second service by the second application,
such that the generic lock remains set during a time
period between the performances of the first and second
services by the second application during which the
second application 1s not executing.
12. The computer readable storage medium of claim 11,
wherein the first application 1s associated with a first session
and the second application 1s associated with a second ses-
s10m, the first session comprising a first communication link to
a database, the second session comprising a second commu-
nication link to the database, the second communication link
being a different communication link than the first commu-
nication link, the first and second sessions being associated
with the user.
13. The computer readable storage medium of claim 11, the
method further comprising:
invoking, by the first application through an execution
controller, the first service from the second application;

cnabling, by the execution controller, tracking of the data
locks set by the second application, wherein the enabling
1s 1n response to the mvoking; and

requesting, by the execution controller, the first service

from the second application, wherein the requesting 1s 1n
response to the invoking and performed after the
enabling,

wherein the setting of the generic lock 1s by the execution

controller, and

wherein the first application and the execution controller

run 1n a first session, and the second application runs 1n
a second session.

14. The computer readable storage medium of claim 11, the
method further comprising;

setting at least one data lock by the second application;

executing a plurality of commands by the second applica-

tion to perform the first service;

returning, by the second application, a result of the per-

formed first service, wherein the result includes output
data; and

deleting the at least one set data lock.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

15. The computer readable storage medium of claim 11,
wherein the setting of the generic lock 1s indicated 1n a
memory accessible by all instances of the first application
associated with any session, the memory comprising a ran-
dom access memory.

16. The computer readable storage medium of claim 11,

wherein the data lock 1s an exclusive data lock associated

with the user, the exclusive lock granting write access to
specific data for the user, the exclusive lock preventing,
other users from being granted write access to the spe-
cific data;

wherein the generic lock 1s an optimistic lock associated

with the user, the optimistic lock granting a non-exclu-
s1ve reservation on write access to the specific data for
the user, the optimistic lock not preventing other users
from being granted other non-exclusive reservations on
write access to the specific data;

wherein the optimistic lock 1s capable of being converted to

an exclusive lock, the converting comprising canceling,
any other optimistic locks on the specific data by other
users.

17. The computer readable storage medium of claim 16,
wherein the second application 1s not capable of setting opti-
mistic locks, the method thereby associating optimistic lock-
ing behavior with the service performed by the second appli-
cation.

18. The computer readable storage medium of claim 17,
wherein the first application and the generic lock are associ-
ated with a first session, the second application and the data
lock are associated with a second session, the first and second
sessions being associated with the user, the second session
ending before the first session,

the method further comprising:

deleting the data lock before deleting the generic data lock;

and

setting a second data lock betfore deleting the generic data

lock, the second data lock being set by an instance of the
second application associated with a third session, the
third session being associated with the user.
19. The computer readable storage medium of claim 13,
wherein the second application 1s used 1n an effectively state-
less manner, the eflectively stateless manner comprising;:
imitiating the second application 1n response to the mvok-
ing of the first service by the first application; and

terminating the second application before invoking any
other services from the second application by the first
application.

20. The computer readable storage medium of claim 13,
further comprising:

generating, by the execution controller, a checksum based

on the input received by the first application and an
output generated by performing the first service by the
second application;

associating the checksum with the first service and storing,

the associated checksum;

invoking the second service by the first application, and

performing the service second by the second applica-
tion;

generating, by the execution controller, a second checksum

based on the mnput and output associated with the imvok-
ing and performing of the second service; and
comparing the second checksum to the first checksum.

21. The method of claim 1, wherein the generic lock is set
by an execution controller to prohibit other users and appli-
cations that access the database through the execution con-
troller, other than the user using the first application to invoke

US 7,571,165 B2

15

the second application, from being granted write access to
data indicated by the at least one data lock obtained from the
log.

22. The method of claim 21, further comprising;:

receiving a plurality of mnputs at the first application from
the user:;

performing a plurality of services by the second applica-
tion based on the plurality of mputs; and

setting the generic lock during a time period between the
performing of individual services of the plurality of
services during which the second application does not
execute.

23. The method of claim 1, further comprising: performing,
the first and second services by the second application, each
service accessing a database without accessing the database
through an execution controller, the services first and second
being temporally displaced from each other such that the
second application only executes imtermittently and does not
execute 1n time periods between performing the first and
second services;

wherein the setting of the generic lock 1s by the execution
controller, the generic lock preventing a different user of
the first application and any user of a third application
that accesses the database through the execution control-
ler from being granted write access to the data indicated
by at least one logged data lock indicating the data lock
object and data lock argument.

24. A method, comprising:

receiving a plurality of inputs from a user at a first appli-
cation;

communicating a plurality of requests from the first appli-
cation to an execution controller to request the execution

5

10

15

20

25

30

16

controller to control a second application to perform a
plurality of services based on the received inputs;

performing the plurality of services by the second applica-

tion, each service accessing a database without access-
ing the database through an execution controller, the
plurality of services being temporally displaced from
cach other such that the second application only
executes intermittently and does not execute in time
periods between performing individual services of the
plurality of services;

obtaining a log of data locks set by the second application

while performing the first of the services, the log includ-
ing at least one logged data lock indicating correspond-
ing data in the database that was locked by the second

application to deny other applications write access to the
data; and

setting a generic lock by the execution controller, the

generic lock preventing a different user of the first appli-
cation and any user of a third application that accesses
the database through the execution controller from being
granted write access to the data indicated by the at least
one logged data lock,

wherein the generic lock 1s set after performance of a first

of the plurality of services by the second application and
before a performance of a second of the plurality of
service by the second application, the generic lock
remaining set until after the performance of at least the
second of the plurality of service by the second applica-
tion, that the generic lock remains set during a time
period between the performances of the first and second
of the plurality of services by the second application
during which the second application is not executing.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

