US007565544B1
12y United States Patent (10) Patent No.: US 7.565.544 B1
Eatough et al. 45) Date of Patent: Jul. 21, 2009

(54) SYSTEMS AND METHODS FOR VERIFYING (56) References Cited

THE TRUSTWORTHINESS OF A FILE
COMPRISING COMPUTER INSTRUCTIONS

(75) TInventors: David A. Eatough, Herriman, UT (US);
Alan B. Butt, Orem, UT (US)

(73) Assignee: LANDesk Software, Inc., South Jordan,
UT (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 831 days.

(21) Appl. No.: 11/098,719

(22) Filed: Apr. 4, 2005
(51) Int.CL
GO6F 9/00 (2006.01)
(52) US.CL ...l 713/176; 713/161; 713/163;
713/180
(58) Field of Classification Search 713/176,

713/161, 165, 180
See application file for complete search history.

100 \

Script 7

e

2

Comment Section 126

| Signature 724 |

U.S. PATENT DOCUMENTS

7/2001 Nabahi
1/2003 Shafron et al.

6,266,811 Bl
2003/0014479 Al

Primary Examiner—Thomas Peeso
(74) Attorney, Agent, or Firm—Austin Rapp & Hardman

(57) ABSTRACT

An exemplary method involves recerving a request to process
a file comprising computer istructions. The file may be a
script, a source code file, a binary file, etc. The method also
involves 1dentifying a digital signature embedded 1n com-
ments within the file. The method also mvolves attempting to
validate the digital signature. If the digital signature 1s vali-
dated, the file 1s processed. If the digital signature i1s not
validated, the file 1s not processed. The file may include
multiple digital signatures. When this occurs, the file may be
processed only 1f all of the multiple digital signatures are
validated. Alternatively, the file may be processed 1f any of the
multiple digital signatures are validated.

40 Claims, 10 Drawing Sheets

Managed Node 704

Administrative System 702

Management Application

Management Agent 174

11z

Management Server 1

Database 7108

Other Components 17

=cript Validator
116

Certificate
| 118

Script Engine 120

1 Ol

US 7,565,544 B1

0L Siusuodwon Jaylo

—
o
=
90 esegele
. 02T suibu3 110 or SRR
- oLl 90 JoAIDS Juswabeuey
2 9]EJUB])
9Ll >TT
m joyeplieA 1duos uoneolddy juswabeuey
|
- FL L 1Usby juswabeue
~ ddated A COJ Wo)SAS 2ABASIUILIPY
M £ 9PON pabeue == 51neubis

g7 [U0I1109S Juswwon

22) 1duas

/ 001

U.S. Patent

US 7,565,544 B1

¢ Old

- vee Jore bee 2€2

m | I 1 1 | 1 1 |

7 OVEOMEONUbYBENY.LYeAIDTIBYaIMYBZdyOD LIAIN 0761ED80 2NEUBIS 8vaD WY w— 0ET

o " SPUBWIWOD 31} ydeqg s.—8¢¢
222

U.S. Patent

¢ Ol

US 7,565,544 B1

L 1d110S 8y] $5920.d J0U S80p aulbus 1d1Ig 1d119S 8] $9559820.d suibus 1duog

ON SO\
—
y—
= ¢ POIEPIIBA
&7,
>
= 20 1d1I0S BY] Ul pappaquus
< aJnjeubis |e)IbIp sy} ssijijuapl Jojepl|eA 1diiog
ON
&N
M w®\f
g
~ 2 P31eanusuIne uonoauuod SepA
=
p—

¢0¢ 1d1I0S B $S820.d 0] 1S8nbal B 8AI809Y

U.S. Patent

00¢

20¢E

G Ol

eS

P CS 9Es
ﬁ|\J } }Nwm

US 7,565,544 B1

OYEOMEONUDYBANY 1 #BAIDTIBYaIMYBZdYOO IAIIN HO@I00Y OIS # w_—0ES

" *SPUBWWO [|IBUS ~_~— 8¢S

=

S

s ys/uia/ i#

= . / 22S
V Ol

2

~ yey 9ty VeV

. "

m | 1 1 | _ﬂlj_ V

OVEOMEONUbNBENY L #BAIDTIBYGIMYBZdy DD LIAIIN 06LED8D OIS # w— 0Eh

"SPUBWIWIOD [|BUS n_— 8CF

ﬂ/ CCv

US/UIQ/ i#

U.S. Patent

\

aa

= n

3 8 Ol

I g

2 aye8 44 ByCQ .

—/-.,. ! | ' ! N

P _ _

- {{-' OvaomeonubiBanNy1yer0I0yamyBzdyOo BAIN — }} #e_— 058

"SPUBWIWOD [|IBUS . 8¢8

] ‘9|4 US/ula/ i#

—

o

- 4 129

> ——— €.

> “ R w

= OVAOMEOMUDYOGNY L yeAIDT 0 dImyDBZdyOD 1IAIIN OIS #w —0€2

*'SPUBWIWIOD [|BUS ~_—— 8¢ L

us/uIq/ i#
9 Ol
vZ9 99 VE9 oo
| I | | l w

OVE0MBONUDIBENY LEAID T ByaIMyBzdy OO LIAIIN 0¥6LEDBD-OIS- # y_— 09

Jul. 21, 2009

*SPUBWIWOI ||8ys s _— 8¢9

Us/ulg/ i#

U.S. Patent

/ ¢C8

/ ¢Cl

/ ¢CY

6 Old

US 7,565,544 B1

0Z6 @uIbuz 1dloS

—
e
= 576 826 Aumn
S S1E0NIIB) JuswnaoQ aJeH
D
-
= 9l6

lojeplea 1duos

716 Juaby Juswabeue

- P26 84njeubls
= 706 SPON pabeuepy
2 076 ejeq
" Juswingo aJaH
—

076 UOIJ0ag Juswiwos

756 SPUBLIWOY

26 1dlIos

U.S. Patent

016 sjusuodwon
1BYIO

806
aseqeje

906
JBAJI9S JUswabeuey

ZL6
uoledl|ddy Juswsbeue

206 Wa)sAg sAnesisIuILpY

/ 006

US 7,565,544 B1

Sheet 7 of 10

Jul. 21, 2009

U.S. Patent

HMBN=! N3Y

==BIAQN[Z+EZAMOGU/DINOUADIMI0DWHISIDAADN L BIBIDZXH / w NI
SOze|IsNSNyIZeHIuI+1gAdmzzwD 09D MgEX bAMIUNdYSANYE/THNAI LD LOMX BT +HHADIESSO m NI
ddZSNONYADUIZAULUNOSNILAZQBOAGIAANSSWXZADDZE 1 Al XSUO/OYAMINOT IS AHOIUYO DY Y VA m NI

v. .. NE
010l 22018 d9duadO ®@ ¥SSANV :uoIsispA WIY

-------------------------J

.................. uv 1X] 86BSSaW:0 mab
9¢01 0G0 8101 o0 10|

I Lo Lo .

_ 1vY m-_ _Lﬁ abesSSalD, o-_“n_oﬁ___ J- mm@_o__.coom_o oxa-dBdp| _
IIIIIIIIIIIIIIIIIIII]

H_u,qmoamo_v_%v_@mzﬁ_wmzom_?\m_aqmma,qooto___\,__ _ovmvmowo_ _eamcm_w @qmo_ __>_m_w_ _f\..omS

l 1 | 1 | |
R) GRS | G | G
201 901 €01 Ze01

)

¢C0l

V0l Ol

..... JOVSSIAN d9d ANT-—-- INTH
S9Q0= N3Y
==0IQNI/+£Zz¢2Z¢MIgesgIrc0owWgIsOvAASH LBSED .22 NTY
SOAIrAOraIMrasra:aisiispwooeoorgeX /e mMundysSdinyg/ddcasesorMsusunMsaMsip++ N3
APNAAQIMODWHISAbAADY | BieROAGIAAINSEWXZADDZE 1 AAPSISAPIP/+1rasyIrariadarprvyy N3Y
AT
22018 dOdusdD @ ¥S8dNVYT :UOISIBA NI

..... JOVSSIN dOd NIDIF-—- NTH
..... JOVSSAN d9d AN3I-—--- NIH
coOMN= INTY
==D4pSA4SAZMSAASIASOTAQALFPIPSSSADAADY | BIFFEZXHY NTY
atursaMiaadaralameaasozersiNsNyageH3aul+S4aarg+ypiApgeeagle AWSPWXpAPSZE 1 adl INTH
egq/SNONFADUIZAULUNOSNIAZQROAGIAANSRWXZADDZE 1 agyXsUo/Qv!+Iasisy/a/aaMariey NI
NEb
22018 d9dusdO ® %S8aNVT :UoIsiaA AT

e IOVSSIN dOd NIDIg-—-- AT
..... JOVSSIAN d9d ANT-—--- INTY
HMGN= INTH
==BJANIL+EZAMOGU/DNOUAQIMO0DWHISODAADYM L BIBIDZXH . INTY
SOzeIsNSNFIZeHIV|+1aAdMZZWHORIDMgeX . BArIUNdYSANY/THNAY LD LOMXBINIT+HHADSESSO WY
g9/SNONFADUIZAULUNOQSN1AZQBOAGIAAINSBWXZADDZE 1 AgY/XSUO/OVAMA0TGSAHOIUYODOVYYYSdA NTY
AT
22018 dOduadO @ 4S8NV :UOISIBA NI

..... JOVSSdIN d9d NID3d-——- INdd

1X)3'88JYi\n:0 adA)

1X) OMI\\.D adA)

X1 abessawi\:2 adA)

%- 0%, 9xa1oesxadid

US 7,565,544 B1

<
a¥
~&
-
—

Sheet 8 of 10

Jul. 21, 2009

SJUBWINO0P Pappagwa au) Aedsip pue 10eaxs NIM
veeol

U.S. Patent

<
I
o
-
—

!
' VOOl

/

US 7,565,544 B1

Sheet 9 of 10

Jul. 21, 2009

U.S. Patent

9L Ll

vLLL

437"

OLL1

8011

Q011

POLL

¢0ll

Ll OIld

3|1} B O] Blep JusWwnoop alay
pa1dAudsp ‘passalduiodap syl Sajlum All[IIN JUBWNDI0P SJ8H

B1BP JUaWnoop aJay ayj sidAioap AN Juswnaop slsy

B1EP 1USUWINJ0P aJay ay] sassaidwodap Ajljnn jusuinaop alaH

o|l} YIJEQ
o) WOJ} B]EP JUSWNIOP alay 9y} speaJ AJljiin juswnoop aJaH

AN Juswnaop alday ay) sayosune| auibus 1d1IoS

9|} YIEeqQ
ay] sassa00.d aulbus 1dLos ‘palepl|ea ale (s)aineubis J

9|} Ydleq
aU] Ul (s)alnjeubis ajepljeA 0] sydwane Jojepl|ea 1diuog

5|1} yoyeq ay) ssa00.4d 0} 1sanbal 9A19093

Q0L 1L

US 7,565,544 B1

Sheet 10 of 10

Jul. 21, 2009

U.S. Patent

Gl
19]]0J1U0N)
Aeldsi

gLzl Aeidsiq

LLC} 921naQ
gleilal

T0Z [921A8(Q bunndwon

£0c!t
10SS920.4

60< |
92I1A8(] 1nAU|

/0c | @9ElSlU|
‘W0

GOcZ L Mows

US 7,565,544 B1

1

SYSTEMS AND METHODS FOR VERIFYING
THE TRUSTWORTHINESS OF A FILE
COMPRISING COMPUTER INSTRUCTIONS

TECHNICAL FIELD

The present invention relates generally to computer system
administration. More specifically, the present nvention
relates to systems and methods for efficiently performing
tasks related to maintaining and supporting computer sys-
tems.

BACKGROUND

Computer and communication technologies continue to
advance at a rapid pace. Indeed, computer and communica-
tion technologies are involved in many aspects of a person’s
day. Computers commonly used include everything from
hand-held computing devices to large multi-processor com-
puter systems.

Computers are used in almost all aspects of business,
industry and academic endeavors. More and more homes are
using computers as well. The pervasiveness of computers has
been accelerated by the increased use of computer networks,
including the Internet. Most companies have one or more
computer networks and also make extensive use of the Inter-
net. The productivity of employees often requires human and
computer interaction. Improvements in computers and soit-
ware have been a force for bringing about great increases in
business and industrial productivity.

Maintaining and supporting computer systems 1s 1mpor-
tant to anyone who relies on computers. Whether a computer
or computing device 1s in a home or at a business, at least
some maintenance and/or support 1s often needed. For
example, sometimes there are problems with computer hard-
ware. In addition, computer hardware 1s often upgraded and
replaced with new components. Similarly computer software
1s also frequently upgraded or replaced. New computer hard-
ware and software 1s continually being integrated 1nto sys-
tems across the world.

Installing new computer hardware and/or software, or f1x-
ing problems with existing systems, may cause down-time
during which the business or individual operates at a dimin-
ished level. Most individuals and businesses try to mimmize
computer problems so as to avoid down-time.

When a business or individual 1s trying to decide whether
to make a change to a computer system, the concern about
down-time may outweigh the cost of the installation or
change in influencing the decision. The professional com-
puter service industry which carries out and supports 1nstal-
lations and upgrades has been rapidly expanding. However,
even with such computer professional support, the threat of
such down-time coupled with the costs of such professional
Services 1s a concern.

As corporate performance and end-user productivity have
become increasingly dependent on computers, computer sup-
port personnel are continuously under pressure to accomplish
more with existing or reduced stail head counts. They are also
under pressure to perform tasks as efliciently as possible
which may include mimmizing etffects to existing computer
systems and networks.

As shown from the above discussion, there 1s a need for
systems and methods that will improve the ability to manage
and support computer systems. Improved systems and meth-
ods may enable a person performing computer support to
work more efficiently and accomplish more in less time.

10

15

20

25

30

35

40

45

50

55

60

65

2

Benefits may be realized by providing increased functionality
to assist 1n computer maintenance and support.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will become
more fully apparent from the following description and
appended claims, taken 1n conjunction with the accompany-
ing drawings. Understanding that these drawings depict only
exemplary embodiments and are, therefore, not to be consid-
ered limiting of the invention’s scope, the exemplary embodi-
ments of the mvention will be described with additional
specificity and detail through use of the accompanying draw-
ings in which:

FIG. 1 1illustrates an exemplary system in which some
embodiments may be practiced;

FIG. 2 illustrates an exemplary script that may be used;

FIG. 3 illustrates an exemplary method that may be per-
formed by various components 1n the managed node when a
request to process a script 1s recerved;

FIG. 4 illustrates another example of a script that may be
used;

FIG. 5 illustrates another example of a script that may be
used;

FIG. 6 illustrates another example of a script that may be
used;

FIG. 7 illustrates another example of a script that may be
used;

FIG. 8 illustrates another example of a script that may be
used;

FIG. 9 1llustrates another exemplary system in which some
embodiments may be practiced;

FIG. 10 1llustrates another exemplary script that may be
used;

FIG. 10A illustrates another exemplary script that may be
used:;

FIG. 11 illustrates an exemplary method that may be per-
formed by the various components 1n the managed node when
a request to process a batch file 1s recerved; and

FIG. 12 1s a block diagram 1illustrating the major hardware
components typically utilized 1n a computer system.

DETAILED DESCRIPTION

A method for veritying the trustworthiness of a file com-
prising computer instructions 1s disclosed. The method
involves recerving a request to process a file comprising coms-
puter instructions. The file may be a script, a source code file,
a binary file, etc. A script validator 1dentifies a digital signa-
ture that 1s embedded in comments within the file. The script
validator attempts to validate the digital signature. If the
digital signature 1s validated, the script validator processes the
file. If the digital signature 1s not validated, the script validator
does not process the file.

In some embodiments, the script validator also determines
whether a connection through which the request i1s recerved 1s
authenticated. In such embodiments, the script validator may
perform the step of attempting to validate the signature only 1
the connection 1s not authenticated.

In some embodiments, the file may comprise multiple digi-
tal signatures. In such embodiments, the script validator may
attempt to validate all of the multiple digital signatures, and
the file may be processed only 1t all of the multiple digital
signatures are validated. Alternatively, the file may be pro-
cessed 1f any of the multiple digital signatures are validated.

The method may be performed by a managed node 1n a
computer network. In such embodiments, the request to pro-

US 7,565,544 B1

3

cess the file may be received from an administrative system
for the computer network. Alternatively, the request may be
received from an original equipment manufacturer system.

A computer system that 1s configured to implement a
method for verifying the trustworthiness of a file comprising
computer mstructions 1s also disclosed. The computer system
includes a processor, and memory 1n electronic communica-
tion with the processor. Instructions are stored 1n the memory.
The instructions are executable to implement a method that
involves recerving a request to process a file comprising coms-
puter instructions. The method also involves i1dentifying a
digital signature embedded in comments within the file. The
method also 1nvolves attempting to validate the digital signa-
ture. It the digital signature 1s validated, the file 1s processed.
If the digital signature 1s not validated, the file 1s not pro-
cessed.

A computer-readable medium comprising executable
istructions for implementing a method for verifying the
trustworthiness of a file comprising computer instructions 1s
also disclosed. The method 1nvolves receiving a request to
process a lile comprising computer mstructions. The method
also 1volves 1dentitying a digital signature embedded 1n
comments within the file. The method also 1nvolves attempt-
ing to validate the digital signature. If the digital signature 1s
validated, the file 1s processed. If the digital signature 1s not
validated, the file 1s not processed.

A file that 1s configured to allow verification of the file by
a validator on a computer system 1s also disclosed. The file
includes computer instructions. In some embodiments, the
file may be a script. The file includes a signature comment
line. A comment indicator 1s provided at the beginning of the
signature comment line. A signature tag 1s provided within
the signature comment line. A digital signature 1s provided
within the signature comment line. In some embodiments,
multiple digital signatures may be provided. In some embodi-
ments, a certificate 1dentifier 1s provided within the signature
comment line.

A method for ssmplitying the process of recerving updates,
or new soltware, for a computer system 1s disclosed. The
method mvolves a script engine receiving a request to process
a script that comprises here document data. The script may be
a batch file, and the here document data may be binary file
data. The script engine receives the script, and processes the
script. In response to processing the script, the script engine
launches a here document utility. The here document utility
reads the here document data from the script and writes the
here document data to a file.

In some embodiments, 1n response to processing the script,
the here document utility may decrypt the here document
data. The here document utility may, alternatively or 1n addi-
tion, decompress the here document data.

The method may additionally involve a script validator
identifying a digital signature 1n the script. The script valida-
tor may attempt to validate the digital signature. In some
embodiments, the script engine processes the script only 1t the
digital signature 1s validated.

Alternatively, the method may 1nvolve the script validator
identifying multiple digital signatures in the batch file. The
script validator may attempt to validate all of the multiple
digital signatures. In some embodiments, the script engine
processes the batch file only 1t all of the multiple digital
signatures are validated. Alternatively, the script validator
may attempt to validate at least one of the multiple digital
signatures, and the script engine may process the batch file 11
any of the multiple digital signatures are validated.

The method may be performed by a managed node 1n a
computer network. In such embodiments, the request may be

10

15

20

25

30

35

40

45

50

55

60

65

4

received from an administrative system for the computer
network. Alternatively, the request may be received from an
original equipment manufacturer system.

A computer system that 1s configured to implement a
method for simplifying the process of recerving updates, or
new soltware, for a computer system 1s also disclosed. The
computer system includes a processor, and memory in elec-
tronic communication with the processor. The computer sys-
tem also imncludes a script engine and a here document utility.
Instructions are stored in the memory. The 1nstructions are
executable to implement a method that involves the script
engine receving a request to process a script that comprises
here document data. The script engine receives the script. The
script engine processes the script. In response to processing,
the script, the script engine launches the here document util-
ity. The here document utility reads the here document data
from the script and writes the here document data to a file.

A computer-readable medium comprising executable
istructions for implementing a method for simplitying the
process of recerving updates, or new solftware, for a computer
system 1s also disclosed. The method involves a script engine
receiving a request to process a script that comprises here
document data. The script engine receives the script. The
script engine processes the script. In response to processing,
the script, the script engine launches the here document util-
ity. The here document utility reads the here document data
from the script and writes the here document data to a file.

A script that simplifies the process of updating a computer
system 1s also disclosed. The script includes here document
data. The script also includes a launch command that instructs
a script engine to launch a here document utility. The script
also includes an input command that instructs the here docu-
ment utility to read the here document data from the script.
The script also includes an output command that instructs the
here document utility to write the here document data to a file.

Various embodiments of the invention are now described
with reference to the Figures, where like reference numbers
indicate 1dentical or functionally similar elements. It will be
readily understood that the embodiments of the present inven-
tion, as generally described and illustrated in the Figures
herein, could be arranged and designed 1n a wide variety of
different configurations. Thus, the following more detailed
description of several exemplary embodiments of the present
invention, as represented in the Figures, 1s not intended to
limit the scope of the mmvention, as claimed, but 1s merely
representative of the embodiments of the invention.

The word “exemplary” 1s used exclusively herein to mean
“serving as an example, instance, or illustration.” Any
embodiment described herein as “exemplary” 1s not neces-
sarily to be construed as preferred or advantageous over other
embodiments. While the various aspects of the embodiments
are presented 1n drawings, the drawings are not necessarily
drawn to scale unless specifically indicated.

Those skilled 1n the art will appreciate that many features
of the embodiments disclosed herein may be implemented as
computer software, electronic hardware, or combinations of
both. To clearly illustrate this interchangeability of hardware
and software, various components will be described generally
in terms of their functionality. Whether such functionality 1s
implemented as hardware or software depends upon the par-
ticular application and design constraints imposed on the
overall system. Skilled artisans may implement the described
functionality 1n varying ways for each particular application,
but such implementation decisions should not be interpreted
as causing a departure from the scope of the present invention.

Where the described functionality 1s implemented as com-
puter software, those skilled 1n the art will recognize that such

US 7,565,544 B1

S

soltware may include any type of computer instruction or
computer executable code located within a memory device
and/or transmitted as electronic signals over a system bus or
network. Software that implements the functionality associ-
ated with components described herein may comprise a
single mstruction, or many instructions, and may be distrib-
uted over several different code segments, among different
programs, and across several memory devices.

FI1G. 1 illustrates an exemplary system 100 1n which some
embodiments may be practiced. An administrative computer
system 102 1s connected to a computer network (not shown),
such as a corporate local area network (LAN). The adminis-
trative system 102 1s used to manage other computer systems
that are also connected to the computer network. These other
computer systems will be referred to herein as “managed
nodes.” For simplicity, only a single managed node 104 1s
shown 1n the system 100 of FIG. 1. Of course, the systems 1n
which embodiments disclosed herein are practiced may
include many additional managed nodes.

The admimstrative system 102 includes a management
server 106. The management server 106 may include a data-
base 108 of information. The management server 106 may
also include various other components 110 that are config-
ured to perform tasks such as scheduling, handling alerts, and
so forth. An example of a management server 106 that may be

used with embodiments disclosed herein 1s the core server for
the LANDesk® Management Suite.

The administrative system 102 also includes a manage-
ment application 112. The management application 112 may
be used to perform various tasks related to the management of
the computer network, such as remote control, software dis-
tribution, software license monitoring, operating system
imaging and migration, I'T asset management, problem reso-
lution, and so forth. As part of performing these tasks, the
management application 112 may connect to the manage-
ment server 106 and query the management server 106 for
information. An example of a management application 112

that may be used 1s the console application for the
LANDesk® Management Suite.

To enable a user of the administrative system 102 to per-
form management tasks via the management application 112,
the managed node 104 includes a management agent 114. The
management agent 114 performs management-related tasks
in response to requests from the management application 112.

Scripts are frequently used to carry out management-re-
lated tasks. As used herein, the term “script” may refer to a
shell script, a batch file, a program written in a scripting
language (e.g., JavaScript, Perl, Python, etc.), and so forth. A
user of the administrative system 102 may create a script that,
when executed, will carry out certain management-related
tasks. The script may then be sent to the management agent
114 on the managed node 104. The management agent 114
passes the script to a script engine 120 for execution.

It may not be desirable for the script engine 120 to execute
every script that 1t recerves. Some scripts may contain mali-
cious code that 1s intended to perform destructive actions on
the managed node 104 and/or elsewhere on the computer
network. Therefore, when the management agent 114
receives a script, 1t would be beneficial for the management
agent 114 to be able to verity the trustworthiness of the script
betore the script 1s executed.

In the illustrated embodiment, this functionality 1s
achieved with a script validator 116 that 1s included 1n the
management agent 114. In general terms, the script validator
116 determines whether scripts that the management agent
114 recerves are trustworthy and should be executed.

10

15

20

25

30

35

40

45

50

55

60

65

6

Scripts that are sent to the managed node 104 may include
one or more digital signatures that may be used to verify the
trustworthiness of the script. For example, FIG. 1 shows a
script 122 being sent from the management application 112
on the admimstrative system 102 to the management agent
114 on the managed node 104. A digital signature 124 1s
embedded 1n a comment section 126 of the script 122. In
addition, one or more trusted certificates 118 are stored on the
managed node 104. The script validator 116 determines
whether the signature 124 1n the script 122 was created by
using a private key that corresponds to one of the trusted
certificates 118. It 1t was, then the script 122 1s executed. If
not, then the script 122 1s not executed. Additional details
about various embodiments of the script validator 116 will be
provided below.

FIG. 2 1llustrates an exemplary script 222 that may be used.
The script 222 shown 1n FIG. 2 15 a batch file 222. The batch
file 222 includes one or more batch file commands 228.

The batch file 222 also includes a signature comment line
230. The signature comment line 230 begins with a comment
indicator 232. The specific comment indicator that 1s used
depends on the type of script that 1s being used. In the 1llus-
trated embodiment, the comment indicator 232 1s REM,
which 1s the comment indicator for Windows/DOS batch
files.

The signature comment line 230 also includes a signature
tag 234. In the illustrated embodiment, the signature tag 234
1s the string CBAR signature. (CBAS stands for Common
Bootstrap Agent, version 8, which 1s an example of a man-
agement agent 114 that may be used.) The signature tag 234
1s located toward the beginning of the comment line 230, right
after the comment indicator 232. In alternative embodiments,
the signature tag may be located at the end of the signature
comment line, or at both the beginning and the end of the
signature comment line.

The signature comment line 230 also includes a certificate
identifier 236 and a digital signature 224. The certificate
identifier 236 identifies the certificate 118 that 1s associated
with the private key that was used to create the digital signa-
ture 224. In the i1llustrated embodiment, the certificate 1den-
tifier 236 1s a hash for the certificate 118, 1.e., the result of
applying a hash algorithm to the certificate 118.

The digital signature 224 1s created by calculating a digest
of the contents of the batch file (using a hash algorithm such
as SHA-1 or MD?3) and encrypting the digest of the batch file
222 using the private key that 1s associated with the certificate
118 corresponding to the certificate identifier 236. All com-
ponents of the script 222 that will be evaluated by the script
validator 116 are encrypted. The digital signature 224 does
not 1include the signature data 1tself, 1.e., the signature com-
ment line 230 1s not part of the data that 1s used to create the
digital signature 224. Other comments and end of line char-
acters may be part of the data that 1s encrypted to create the
digital signature 224. Alternatively, other comments and end
of line characters may be 1gnored when the digital signature
224 1s created.

FIG. 3 illustrates an exemplary method 300 that may be
performed by various components 1n the managed node 104
when a request to process the script 222 1s received 302. The
script validator 116 determines 304 whether the request to
process the script 222 comes from an authenticated connec-
tion. I1 so, the script engine 120 processes 306 the script 222.

I1 the request to process the script 222 does not come from
an authenticated connection, the script validator 116 1dent-
fies 308 the digital signature 224 embedded in the script 222.
This may be accomplished by searching for the signature tag
234 within the script 222.

US 7,565,544 B1

7

The script validator 116 attempts 310 to validate the digital
signature 224 that was 1dentified 1n step 308. In some embodi-
ments, this imvolves 1dentifying which of the trusted certifi-
cates 118 has a hash that corresponds to the hash 236 included
in the signature comment line 230. A digest 1s calculated on
the contents of the batch file using the same method as was
originally used. The digital signature 224 stored 1n the batch
file 1s decrypted using the identified certificate 236. The
decrypted digest 1s then compared with the calculated digest.
I1 these digests match, then the digital signature 224 has been
validated. If these strings do not match, then the digital sig-
nature 224 has not been validated.

If the script validator 116 1s able to validate the digital
signature 224, then the script engine 120 processes 306 the
script 222. However, 1f the script validator 116 does not
validate the digital signature 224, then the script engine 120
does not process 312 the script 222.

In some embodiments, scripts that are sent to the manage-
ment agent 114 may include multiple digital signatures.
When the management agent 114 receives a script that
includes multiple digital signatures, the script engine 120
may be configured so that 1t does not process the script unless
the script validator 116 has validated all of the digital signa-
tures 1n the script. Alternatively, the script engine 120 may be
configured so that 1t processes the script 1f the script validator
116 1s able to validate any of the digital signatures in the
script.

FIG. 4 1llustrates another example of a script 422 that may
beused. The script 422 shown 1n FI1G. 4 1s a shell script typical
of Unix, Linux, and Mac OS X systems. The shell script 422
includes one or more shell commands 428 and a signature
comment line 430. The signature comment line 430 includes
a comment indicator 432, a signature tag 434, a certificate
identifier 436, and a digital signature 424. The comment
indicator 432 1s the pound sign (#), which i1s the comment
indicator for a shell script. The signature tag 434 1s the string
S1G.

FI1G. 5 1llustrates another example of a script 522 that may
be used. The script 522 shown 1n FIG. 5 15 a shell script 522.
The shell script 522 includes one or more shell commands
528 and a signature comment line 530. The signature com-
ment line 530 includes a comment indicator 532, a signature
tag 534, a certificate 1dentifier 336, and a digital signature
524. The certificate 1dentifier 536 1s the name of the file 1n
which the certificate corresponding to the key with which the
digital signature 524 was created.

FI1G. 6 1llustrates another example of a script 622 that may
be used. The script 622 shown 1n FIG. 6 15 a shell script 622.
The shell script 622 1includes one or more shell commands
628 and a signature comment line 630. The signature com-
ment line 630 includes a comment indicator 632, a signature
tag 634, a certificate 1dentifier 636, and a digital signature
624. The signature tag 634 is the string ---SI1G---.

FIG. 7 illustrates another example of a script 722 that may
be used. The script 722 shown 1n FIG. 7 1s a shell script 722.
The shell script 722 includes one or more shell commands
728 and a signature comment line 730. The signature com-
ment line 730 includes a comment indicator 732, a signature
tag 734, and a digital signature 724. However, the signature
comment line 730 does not include a certificate 1dentifier.

FI1G. 8 1llustrates another example of a script 822 that may
be used. The script 822 shown 1n FIG. 8 15 a shell script 822.
The shell script 822 includes one or more shell commands
828 and a signature comment line 830. The signature com-
ment line 830 imncludes a comment indicator 832 and a digital
signature 824. The signature comment line 830 also includes
a signature tag, which includes a prefix 834a that 1s located 1n

10

15

20

25

30

35

40

45

50

55

60

65

8

front of the digital signature 824 and a suilix 83456 that i1s
located after the digital signature 824. The prefix 834a 1s the
string {{--. The suffix 8345 is the string--}}.

The techmques described above may be applied to other
types of files that include computer instructions. For example,
sometimes source code files are sent to another computer
system (e.g., a managed node) where they are compiled and
executed. One or more digital signatures may be embedded 1n
comments within the source code files. A source code vali-
dator, similar to the script validator described above, may be
provided to verily the trustworthiness of the source code file
before compiling and executing 1t. Similar techmques may
also be applied to binary files.

FIG. 9 illustrates another exemplary system 900 1n which
some embodiments may be practiced. As belore, the system
900 includes an administrative system 902 1n electronic com-
munication with a managed node 904. The administrative
system 902 includes a management application 912 and a
management server 906. The management server 906 may
include a database 908 and other components 910. The man-
aged node 904 includes a management agent 914, which
includes a script validator 916. The managed node 904 also
includes a script engine 920 and one or more trusted certifi-
cates 918. A script 922 that 1s sent to the managed node 904
includes a digital signature 924 embedded in a comment
section 926 of the script 922. These components function
similarly to the corresponding components shown 1n FIG. 1
and described in connection therewith.

Sometimes, a user of the administrative system 902 wants
to update the managed node 904 by installing one or more
files on the managed node 904. The files to be installed may be
new files, or newer versions of files that have previously been
installed on the managed node 904. One way to install files on
the managed node 904 1s to send the managed node 904 a
script that includes a set of commands to download a file from
a specified location. When the script engine 920 processes the
script, this set of commands 1s executed and the files are
downloaded to the managed node 904.

Another possibly more convenient way to install files on
the managed node 904 is to embed the file(s) to be installed
directly 1in a script that 1s sent to the managed node 904.
Commands may be included 1n the script that cause these
file(s) to be 1installed on the managed node 904 when the script
1s processed. This procedure eliminates the need for the man-
aged node 904 to download the files.

In some operating systems, this latter approach may be
facilitated by a here document command. A here document
command 1nstructs the script engine 920 to read a specified
portion of the script. The portion of the script that 1s read 1s
referred to as a “here document.” Advantageously, the here
document data that i1s included 1n a script does not have to
conform to the syntax of the scripting language. In addition,
commands may be included in the script that cause the script
engine to write the here document data to a file. Thus, the here
document command provides a convenient way for binary
files to be embedded within a script 1n such a way that the
binary file data 1s read from the script and written to a file
when the script 1s processed.

For example, consider the following series of commands
which may be included 1in a Linux or Unix shell script:

<<end>filename
binary file_data
end

The command <<end 1s a here document command. It
instructs the script engine 120 to read binary_file data (i.e.,

US 7,565,544 B1

9

the binary file that has been embedded in the script). The
command >filename 1nstructs the script engine 120 to write
binary_file data to filename.

Some types of script engines do not support here document
commands. For example, Windows/DOS-based script
engines do not support here document commands. Thus,
binary files may not be embedded 1n batch files (1.e., Win-
dows/DOS-based scripts) using here document commands,
as described above. Accordingly, there 1s a need for a way to
be able to embed binary file(s) 1n certain types of scripts (e.g.,
batch files) 1n such a way that the embedded binary file data
may be read from the script and written to a file when the
script 1s processed. This would provide a convenient way for
a user ol an administrative system 902 to install files on a
managed node 904, as described above.

In the 1illustrated embodiment, this functionality 1s
achieved with a here document utility 938 that 1s included
within the management agent 914. Here document data 940 1s
embedded within the comment section 926 of the script 922.
The here document data 940 may be binary file data, or 1t may
be another type of data. In addition, various commands 942
are included 1n the script 922. These commands 942, when
executed, cause the here document utility 938 to be launched,
and 1nstruct the here document utility 938 to extract the here
document data 940 from the script 922 and write the here
document data 940 to a file on the managed node 904. Addi-
tional details about various embodiments of the script 922 and
the here document utility 938 will be provided below.

FIG. 10 1llustrates an exemplary script 1022 that may be
used. The script 1022 1s a Windows/DOS batch file 1022. The
script 1022 1ncludes a signature comment line 1030. The
signature comment line 1030 1s formatted similarly to the
signature comment lines discussed above. In particular, the
signature comment line 1030 includes a comment 1ndicator
1032, a signature tag 1034, a certificate 1dentifier 1036, and a
digital signature 1024.

Here document data 1040 1s embedded within the batch file
1022. The here document data 1040 that 1s shown in FIG. 10
1s a message. However, 1n alternative embodiments the here
document data 1040 may be a binary file, or another type of

data. The here document data 1040 1s included 1n a comments
section 1026 of the batch file 1022. In other words, each line

ol the here document data 1040 1s prefixed with REM, which
1s the comment 1ndicator for Windows/DOS batch files. The
here document data 1040 1s compressed and encrypted. The

compressed, encrypted here document data 1040 1s included
in the batch file 1022 1n the form of ASCII-armored text.

The batch file 1022 includes a command 1044 to launch the
here document utility 938. This command 1044 may be
referred to herein as a launch command 1044. In the 1llus-
trated embodiment, the here document utility 938 i1s an 1imple-
mentation of OpenPGP called 1dpgp.exe.

The batch file 1022 also includes several commands that
are provided to the here document utility 938 once 1t has been
launched. For example, the batch file 1022 includes a com-
mand 1046 for the here document utility 938 to read the here
document data 1040 from the batch file 1022, to decompress
it, and to decrypt 1t. This command may be referred to herein
as an 1input command 1046.

The batch file 1022 also includes a command 1048 to write
the decompressed, decrypted here document data 1040 to a
specific file, namely c¢:\message.txt. This command may be
referred to herein as an output command 1048.

The comment lines ‘REM ----- BEGIN PGP MES-
SAGE----- “and ‘REM----- END PGP MESSAGE----" are the
beginning and ending sentinels for the here document. The
comment lines between these two lines contain the com-

10

15

20

25

30

35

40

45

50

55

60

65

10

pressed and perhaps encrypted data encoded in a base 64
format. Base 64 format 1s used to insure that no unacceptable
(binary) characters are included in the script 1022. Such
binary characters can cause unexpected results when the
script engine 920 processes the script 1022,

The ‘REM’ portion of the comment lines 1s 1gnored when
converting the here document data 1040 back into 1ts original
format. Multiple here documents can be stored 1n the script
1022, each being delimited with the sentinel lines. When this
1s done, a mechamism to distinguish between the documents
may be used. This can be as simple as using the position (or
order) of the individual documents in the file. Alternatively,
additional comments could be used to indicate a filename.
Alternatively still, a label of some sort could be used to
indicate which document to use.

The batch file 1022 also includes a command 1050 which
tells the script engine 920 that the input 1s a batch file 1022,
This tells the script engine 920 to 1ignore everything outside of
the beginning and ending sentinels, and to also 1gnore the
‘REM’ at the beginming of each line within the sentinels.
Without the command 1050, the script engine 920 may
assume that all data within the sentinels 1s part of the base 64
encoded data. In a batch file 1022 the ‘REM’ causes the script
engine 920 to ignore the lines containing the here document
data 1040. The command 10350 1s particular to the 1llustrated
embodiment.

The “%0” parameter 1dentifies the file that contains the
encoded ‘here’ document. All other parameters are particular
to the illustrated embodiment. The other information can
either be inferred or extracted from the PGP data. More spe-
cifically, the PGP standard supports putting the filename 1n
the literal data packet. It 1s also possible that the application
could assume a well-known batch file location.

FIG. 10A 1llustrates another exemplary script 1022 A that
may be used. This script 1022A includes three here docu-
ments, namely a first here document 1040A, a second here
document 1042A, and a third here document 1044A. Each
here document 1040A, 1042A, 1044A has 1ts file name
embedded into the PGP literal data packet, so a single call
may be used to extract all three documents. The filenames 1n
this example (message.txt, two.txt, and three.txt) are embed-
ded 1n the document and so the order of the PGP messages 1s
not important.

FIG. 11 1llustrates an exemplary method 1100 that may be
performed by the various components 1n the managed node
904 when a request to process the batch file 1022 1s recerved
1102. The script validator 916 attempts 1104 to validate the
digital signature 1024 1n the batch file 1022, as described
previously. If the signature 1024 1s validated, the script engine
920 processes 1106 the batch file 1022.

As the batch file 1022 1s processed, the script engine 920
processes the launch command 1044 in the batch file 1022. In
response to processing the launch command 1044, the script
engine 120 launches 1108 the here document utility 938.
The input command 1046 1n the batch file 1022 1s provided
to the here document utility 938. In response to processing the
input command 1046, the here document utility 938 reads
1110 the here document data 1040 from the batch file 1022,
decompresses 1112 1t, and decrypts 1114 1t.

The output command 1048 1n the batch file 1022 is pro-
vided to the here document utility 938. In response to pro-
cessing the output command 1048, the here document utility
938 writes 1116 the decompressed, decrypted here document
data 1040 to a file on the managed node 904.

The embodiments of the script validator and the here docu-
ment utility described herein have been included within a
management agent that 1s runming on a managed node. How-

US 7,565,544 B1

11

ever, embodiments of the script validator and/or here docu-
ment utility may be used 1n a wide variety of other operating
environments. For example, the script validator and/or here
document utility may be included in a computer system that
receives updates from an original equipment manufacturer
(OEM). The script validator may be used to verily the trust-
worthiness of scripts that 1t recerves from the OEM, as
described above. The here document utility may be used to
enable the OEM to embed binary files 1n scripts that are sent
to the computer system, as described above.

Although some embodiments have been described 1n terms
of a script being sent from one computer to another, the
techniques disclosed herein may also be applicable to scripts
that are used locally. For example, if an application running,
under a lesser privileged user account needed to do something
at a system level account, the application could send a signed
script to 1tself. This signed script may have been downloaded
from another system (e.g., an administrative system) earlier.

FI1G. 12 1s a block diagram illustrating the major hardware
components typically utilized 1n a computer system 1201,
such as an administrative system and/or a managed node. The
illustrated components may be located within the same physi-
cal structure or in separate housings or structures.

The computer system 1201 includes a processor 1203 and
memory 1205. The processor 1203 controls the operation of
the computer system 1201 and may be embodied as a micro-
processor, a microcontroller, a digital signal processor (DSP)
or other device known in the art. The processor 1203 typically
performs logical and arithmetic operations based on program
instructions stored within the memory 1205.

As used herein, the term memory 1205 1s broadly defined
as any electronic component capable of storing electronic
information, and may be embodied as read only memory
(ROM), random access memory (RAM), magnetic disk stor-
age media, optical storage media, flash memory devices 1n
RAM, on-board memory included with the processor 1203,
EPROM memory, EEPROM memory, registers, etc. The
memory 1205 typically stores program instructions and other
types of data. The program 1nstructions may be executed by
the processor 1203 to implement some or all of the methods
disclosed herein.

The computer system 1201 typically also includes one or
more commumnication interfaces 1207 for communicating,
with other electronic devices. The communication interfaces
1207 may be based on wired communication technology,
wireless communication technology, or both. Examples of
different types of communication interfaces 1207 include a
serial port, a parallel port, a Universal Serial Bus (USB), an
Ethernet adapter, an IEEE 1394 bus interface, a small com-
puter system interface (SCSI) bus interface, an infrared (IR)
communication port, a Bluetooth wireless communication
adapter, and so forth.

The computer system 1201 typically also includes one or
more mput devices 1209 and one or more output devices
1211. Examples of different kinds of mput devices 1209
include a keyboard, mouse, microphone, remote control
device, button, joystick, trackball, touchpad, lightpen, etc.
Examples of different kinds of output devices 1211 include a
speaker, printer, etc. One specific type of output device which
1s typically included 1n a computer system 1s a display device
1213. Dasplay devices 1213 used with embodiments dis-
closed herein may utilize any suitable 1image projection tech-
nology, such as a cathode ray tube (CRT), liquid crystal
display (LCD), light-emitting diode (LED), gas plasma, elec-
troluminescence, or the like. A display controller 1215 may
also be provided, for converting data stored in the memory

10

15

20

25

30

35

40

45

50

55

60

65

12

1205 1nto text, graphics, and/or moving 1images (as appropri-
ate) shown on the display device 1213.

Of course, FIG. 12 1llustrates only one possible configura-
tion of a computer system 1201. Those skilled 1n the art will
recognize that various other architectures and components
may be utilized.

Those of skill 1in the art would understand that information
and signals may be represented using any of a variety of
different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical fields
or particles, or any combination thereof.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer soltware, or combinations of both. To clearly 1llus-
trate this interchangeability of hardware and software, vari-
ous 1llustrative components, blocks, modules, circuits, and
steps have been described above generally 1n terms of their
functionality. Whether such functionality 1s implemented as
hardware or soitware depends upon the particular application
and desi1gn constraints imposed on the overall system. Skilled
artisans may implement the described functionality 1n vary-
ing ways for each particular application, but such implemen-
tation decisions should not be interpreted as causing a depar-
ture from the scope of the present invention.

The various 1illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific mtegrated circuit (ASIC), a field pro-
grammable gate array signal (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative, the
processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, one Or more miCroprocessors 11 Conjunc-
tion with a DSP core, or any other such configuration.

The steps of amethod or algorithm described 1n connection
with the embodiments disclosed herein may be embodied
directly 1in hardware, 1n a software module executed by a
processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium 1s
coupled to the processor such the processor can read infor-
mation from, and write information to, the storage medium.
In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an ASIC. The ASIC may reside 1n a user terminal. In the
alternative, the processor and the storage medium may reside
as discrete components 1n a user terminal.

The methods disclosed herein comprise one or more steps
or actions for achieving the described method. The method
steps and/or actions may be interchanged with one another
without departing from the scope of the present invention. In
other words, unless a specific order of steps or actions 1s
required for proper operation of the embodiment, the order

US 7,565,544 B1

13

and/or use of specific steps and/or actions may be modified
without departing from the scope of the present invention.
While specific embodiments and applications of the
present invention have been illustrated and described, 1t 1s to
be understood that the mvention 1s not limited to the precise
configuration and components disclosed herein. Various
modifications, changes, and variations which will be apparent
to those skilled in the art may be made in the arrangement,
operation, and details of the methods and systems of the
present invention disclosed herein without departing from the

spirit and scope of the invention.

What 1s claimed 1s:

1. A method for verifying the trustworthiness of a file
comprising computer istructions, the method comprising:

receiving a request to process the file;

identifying a digital signature embedded in comments

within the file;

attempting to validate the digital signature;

if the digital signature 1s validated, processing the file; and

if the digital signature 1s not validated, not processing the

file.

2. The method of claim 1, wherein the file 1s a script.

3. The method of claim 1, wherein the file 1s a source code
file.

4. The method of claim 1, wherein the file 1s a binary file.

5. The method of claim 1, further comprising determining,
whether a connection through which the request 1s received 1s
authenticated, and wherein the step of attempting to validate
the signature 1s only performed if the connection 1s not
authenticated.

6. The method of claim 1, wherein the file comprises mul-
tiple digital signatures.

7. The method of claim 6, wherein the method comprises
attempting to validate all of the multiple digital signatures,
and wherein the file 1s processed only 11 all of the multiple
digital signatures are validated.

8. The method of claim 6, wherein the file 1s processed it
any of the multiple digital signatures are validated.

9. The method of claim 1, wherein the method 1s performed
by a managed node 1n a computer network, and wherein the
request 1s recerved from an administrative system for the
computer network.

10. The method of claim 1, wherein the request 1s recerved
from an original equipment manufacturer system.

11. A computer system configured for veritying the trust-
worthiness of a file comprising computer instructions, the
computer system comprising;

a Processor;

memory in electronic communication with the processor;

instructions stored 1n the memory, the 1nstructions being

executable to:

receive a request to process the file;

identify a digital signature embedded 1n comments
within the file;

attempt to validate the digital signature;

if the digital signature 1s validated, process the file; and

if the digital signature 1s not validated, not process the
file.

12. The computer system of claim 11, wherein the file 1s a
script.

13. The computer system of claim 11, wherein the file
comprises multiple digital signatures.

14. A computer-readable medium stored on a storage
medium, the computer-readable medium comprising execut-
able instructions for veritying the trustworthiness of a file
comprising computer instructions, the instructions being
executable to:

10

15

20

25

30

35

40

45

50

55

60

65

14

recetve a request to process the file;

identity a digital signature embedded 1n comments within

the file;

attempt to validate the digital signature;

11 the digital signature 1s validated, process the file; and

11 the digital signature 1s not validated, not process the file.

15. The computer-readable medium of claim 14, wherein
the file 1s a script.

16. The computer-readable medium of claim 14, wherein
the file comprises multiple digital signatures.

17. A file that 1s configured to allow venfication of the file
by a validator on a computer system, the file comprising:

computer mnstructions;

a signature comment line;

a comment 1ndicator at the beginning of the signature com-

ment line;

a signature tag within the signature comment line; and

a digital signature within the signature comment line.

18. The file of claim 17, wherein the file 1s a script.

19. The file of claim 17, further comprising a certificate
identifier within the signature comment line.

20. The file of claim 17, further comprising multiple digital
signatures.

21. A method for simplifying the process of receiving
updates, or new soltware, for a computer system, comprising;:

a script engine receving a request to process a script that

comprises here document data;

the script engine receiving the script;

the script engine processing the script;

in response to processing the script, the script engine

launching a here document utility, and the here docu-
ment utility reading the here document data from the
script and writing the here document data to a file.

22. The method of claim 21, wherein the script 1s a batch
file.

23. The method of claim 21, wherein the here document
data 1s binary file data.

24. The method of claim 21, further comprising, in
response to processing the script, the here document utility
decrypting the here document data.

25. The method of claim 21, further comprising, in
response to processing the script, the here document utility
decompressing the here document data.

26. The method of claim 21, further comprising:

a script validator identifying a digital signature in the

script; and

the script validator attempting to validate the digital signa-

ture, wherein the script engine processes the script only
if the digital signature 1s validated.

277. The method of claim 21, further comprising:

a script validator identitying multiple digital signatures 1n

the batch file; and

the script validator attempting to validate all of the multiple

digital signatures, wherein

the script engine processes the batch file only 11 all of the

multiple digital signatures are validated.

28. The method of claim 21, further comprising:

a script validator identitying multiple digital signatures 1n

the batch file; and

the script validator attempting to validate at least one of the

multiple digital signatures, wherein the script engine
processes the batch file 1f any of the multiple digital
signatures are validated.

29. The method of claim 21, wherein the method is per-
formed by a managed node in a computer network, and
wherein the request 1s received from an administrative system
for the computer network.

US 7,565,544 B1

15

30. The method of claim 21, wherein the request 1s recerved
from an original equipment manufacturer system.

31. A computer system that 1s configured for simplifying
the process of recerving updates, or new soltware, for a com-
puter system, the computer system comprising:

a Processor;

memory 1n electronic communication with the processor;

a script engine;

a here document utility;

instructions stored 1n the memory, the 1nstructions being

executable to:

receive by the script engine a request to process a script
that comprises here document data;

receive the script by the script engine;

process the script by the script engine; and

in response to processing the script, launch by the script
engine the here document utility, the here document
utility reading the here document data from the script
and writing the here document data to a file.

32. The computer system of claim 31, wherein the script 1s
a batch file.

33. The computer system of claim 31, wherein the here
document data 1s binary file data.

34. The computer system of claim 31, further comprising a
script validator, and wherein the instructions are further
executable to:

identify by the script validator a digital signature in the

script; and

attempt to validate by the script validator the digital signa-

ture, wherein the script engine processes the script only
if the digital signature 1s validated.

35. A computer-readable medium stored on a storage
medium, the computer-readable medium comprising execut-

5

10

15

20

25

30

16

able instructions for simplifying the process of receiving
updates, or new soitware, for a computer system, instructions
being executable to:
recetve by a script engine a request to process a script that
comprises here document data;
recerve the script by the script engine;
process the script by the script engine;
in response to processing the script, launch by the script
engine a here document utility, the here document utility
reading the here document data from the script and writ-
ing the here document data to a file.
36. The computer-readable medium of claim 35, wherein
the script 1s a batch file.
37. The computer-readable medium of claim 35, wherein
the here document data 1s binary file data.
38. The computer-readable medium of claim 35, wherein
the 1nstructions are further executable to:
identily by a script validator a digital signature in the script;
and
attempt by the script validator to validate the digital signa-
ture, wherein the script engine processes the script only
if the digital signature 1s validated.
39. A script that simplifies the process of updating a com-
puter system, comprising: here document data;
a launch command that instructs a script engine to launch a
here document utility;
an iput command that istructs the here document utility
to read the here document data from the script; and
an output command that instructs the here document utility
to write the here document data to a file.
40. The script of claim 39, wherein the here document data
1s binary file data.

	Front Page
	Drawings
	Specification
	Claims

