US007565492B2
a2 United States Patent (10) Patent No.: US 7.565,492 B2
Mckeen et al. 45) Date of Patent: Jul. 21, 2009
(54) METHOD AND APPARATUS FOR 2004/0268094 Al* 12/2004 Abdallahet al. 712/221
PREVENTING SOFTWARE SIDE CHANNEL
ATTACKS FOREIGN PATENT DOCUMENTS
EP 0856797 Al 8/1998

(75) Inventors: Francis X. Mckeen, Portland, OR (US);
Leena K. Puthivedath, Beaverton, OR OTHER PUBLICATIONS
(US); Ernie Brickell, Portland, OR

(US): James B. Crossland, Banks, OR Ostvik, Dag A., et al., “Cache Attacks And Countermeasures: The

Case of AES (Extended Version)”, (Retrieved on Sep. 13, 2008)

(US) http://www.wisdom.weizmann.ac.il/{tromer/papers/cache.pdf,
_ _ Department of Computer Science and Applied Mathematics,
(73) Assignee: Intel Corporation, Santa Clara, CA Weizmann Institute of Science, Rehovot, Isarael, (Nov. 20, 2005), 25
(US) pages.

Page, D., “Partittoned Cache Architecture As A Side-Channel
(*) Notice: Subject to any disclaimer, the term of this Defence Mechanism”, (Retrieved on Jan. 20, 2008), http://citeseer.

patent 1s extended or adjusted under 35 ist.psu.edu/chache/papers/cs2/433/http:zSzzSzeprint.iacr.

U.S.C. 154(b) by 288 days. orgzSz2005z8z280.pdt/page05partitioned.pdf, Department of Com-
puter Science, Umiversity of Bristol, Merchant Venturers Buildings,
(21) Appl. No.: 11/513,871 Woodland Road, Bristol, BS8 IUB, United Kingdom, (Aug. 2005),
. No.: .
pp. 1-14.
(22) Filed: Aug. 31, 2006 * cited by examiner
(65) Prior Publication Data Primary Examiner—Reginald G Bragdon

Assistant Examiner—Aracelis Ruiz

US 2008/0059711 Al Mar. 6, 2008 (74) Attorney, Agent, or Firm—1L. Cho

(51) Int.Cl.

GO6F 12/00 (2006.01) (57) ABSTRACE
(52) US.CL e, 711/129; 711/133 A method for managing a cache is disclosed. A context switch
(58) Field of Classification Search 711/129, is identified. It is determined whether an application running
o _ 711/133 after the context switch requires protection. Upon determin-
See application file for complete search history. ing that the application requires protection the cache is par-
(56) References Cited titioned. According to an aspect of the present invention, a
partitioned section of the cache 1s completely over written
U.S. PATENT DOCUMENTS with data associated with the application. Other embodiments
6,094,720 A * 7/2000 Mannccoccove...... 71425 are described and claimed.
6,157,986 A * 12/2000 WIttc.coviiiiiinininnnn... 711/118
6,295,580 B1* 9/2001 Sturges etal. 711/129 21 Claims, 6 Drawing Sheets
'
IDENTIFY CONTEXT
SWITCH

201

UNPARTITION
CACHE
502

e

APPLICATION
REQUIRES PROTECTION?

203

PARTITION
CACHE

S04

WRITE CACHE WITH
DATA FROM APPLICATION
205

EXECUTE
APPLICATION
506

U.S. Patent Jul. 21, 2009 Sheet 1 of 6 US 7,565,492 B2

PROCESSOR
100

101)y
CPU BUS
110
BRIDGE/MEMORY
CONTROLLER MEMORY
113
11
|0 BUS
120
NETWORK | |[DISPLAY DEVICE BUS
CONTROLLER CONTROLLER BRIDGE
121 122 123
10 BUS
130
DATA | INPUT | AUDIO
STORAGE INTERFACE CONTROLLER
131 132 133

FIG. 1

US 7,565,492 B2

Sheet 2 of 6

Jul. 21, 2009

U.S. Patent

200 \

wifilly " PRIFF SE——n

Main memory

Cache

FIG. 2

U.S. Patent Jul. 21, 2009 Sheet 3 of 6 US 7,565,492 B2

300 A —
\ CONTEXT
SWITCH UNIT
320

APPLICATION
ANALYSIS UNIT
CACHE '
| MANAGEMENT
MANAGER —
310 PARTITION
—_ UNIT
340

EXCEPTION
UNIT

350

FIG. 3

U.S. Patent Jul. 21, 2009 Sheet 4 of 6 US 7,565,492 B2

-l
400
"

Flags

a0 7/ 420/

FIG. 4

U.S. Patent Jul. 21, 2009 Sheet 5 of 6 US 7,565,492 B2

IDENTIFY CONTEXT
SWITCH
501

UNPARTITION
CACHE

—

502

APPLICATION NO

REQUIRES PROTECTION?
503

YES

PARTITION
CACHE

WRITE CACHE WITH

DATA FROM APPLICATION
I 505

EXECUTE
l APPLICATION
206

FIG. S

U.S. Patent Jul. 21, 2009 Sheet 6 of 6 US 7,565,492 B2

NEW PAGE
TABLE ACCESSED?
601

YES

PAGING AND
PROTECTION MODES
ACTIVE? 603

GENERATE NOTIFICATION
THAT CONTEXT SWITCH
OCCURED 602

EXTENDED
DATA ACCESSED?
604

NO

FIG. 6

US 7,565,492 B2

1

METHOD AND APPARATUS FOR
PREVENTING SOFTWARE SIDE CHANNEL
ATTACKS

FIELD

An embodiment of the present mvention relates to cache
management. More specifically, an embodiment of the
present invention relates to a method and apparatus for pre-
venting software side channel attacks.

BACKGROUND

Software side channel attacks use meta information avail-
able 1n various system components to deduce what another
process 1s computing. Attacks in this space have been used to
find encryption keys and user passwords. Software side chan-
nel attacks may be based on inter-process leakage through the
state of a CPU’s memory cache. The leakage may reveal
memory access patterns, which can be used for cryptanalysis
of cryptographic primitives that employ data-dependent table
lookups. The attacks may allow an unprivileged process to
attack other processes running in parallel on the same proces-
sor, despite partitioning methods such as virtual memory
protection, sandboxing, and virtualization.

One known type of software side channel attack program
displaces all the data 1n an un-partitioned cache by writing to
every location 1n the cache. After a context switch, a program
using sensitive data, such as cryptographic keys, may dis-
place certain lines 1n the cache depending on the value of the
key being used 1n the program. After another context switch,
the software side channel attack program may identify which
of the lines 1n the cache have been displaced and determine
the value of the sensitive data.

One approach used to prevent software side channel
attacks required implementing a separate cache system for
cach logical processor. This required additional silicon area
which was costly. Other approaches used to prevent software
side channel attacks imvolved having the cache flushed after
context switches and having the cache turned off. These

approaches negatively impacted performance of applications
which was undesirable.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of embodiments of the present
invention are illustrated by way of example and are not
intended to limit the scope of the embodiments of the present
invention to the particular embodiments shown.

FIG. 1 illustrates an exemplary computer system imple-
menting an embodiment of the present invention.

FIG. 2 illustrates a cache and memory according to an
exemplary embodiment of the present invention.

FIG. 3 1s a block diagram of a cache management unit
according to an exemplary embodiment of the present mnven-
tion.

FIG. 4 15 a block diagram of a page table according to an
exemplary embodiment of the present invention.

FI1G. 5 1s a tlow chart 1llustrating a method for managing a
cache according to an exemplary embodiment of the present
ivention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a flow chart illustrating a method for determining,
a context switch according to an exemplary embodiment of
the present invention.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific nomenclature 1s set forth to provide a thorough
understanding of embodiments of the present invention. It
will be apparent to one skilled in the art that specific details in
the description may not be required to practice the embodi-
ments of the present invention. In other instances, well-
known circuits, devices, and programs are shown 1n block
diagram form to avoid obscuring embodiments of the present
invention unnecessarily.

FIG. 11s a block diagram of an exemplary computer system
100 implementing an embodiment of the present invention.
The computer system 100 includes a processor 101 that pro-
cesses data signals. The processor 101 may be a complex
instruction set computer microprocessor, a reduced instruc-
tion set computing microprocessor, a very long instruction
word microprocessor, a processor implementing a combina-
tion of istruction sets, or other processor device. FIG. 1
shows the computer system 100 with a single processor. How-
ever, 1t 1s understood that the computer system 100 may
operate with multiple processors. According to one embodi-
ment of the present invention, a single package may include
multiple processors with hardware threaded processor cores
on each chip. The processor 101 1s coupled to a CPU bus 110
that transmits data signals between processor 101 and other
components 1n the computer system 100.

The computer system 100 includes a memory 113. The
memory 113 may be a dynamic random access memory
device, a static random access memory device, read-only
memory, or other memory device. The memory 113 may store
instructions and code represented by data signals that may be
executed by the processor 101. A bridge memory controller
111 1s coupled to the CPU bus 110 and the memory 113. The
bridge memory controller 111 directs data signals between
the processor 101, the memory 113, and other components in
the computer system 100 and brldges the data signals
between the CPU bus 110, the memory 113, and a first IO bus
120. A cache memory 102 resides 1nside processor 101 that
stores data signals stored in memory 113. The cache 102
speeds access to memory by the processor 101 by taking
advantage of its locality of access. In an alternate embodi-
ment of the computer system 100, the cache 102 resides
external to the processor 101.

A cache management unit 103 resides 1n the processor 101
according to an exemplary embodiment of the present inven-
tion. The cache management unit 103 manages the cache 102
to prevent software side channel attacks. According to an
embodiment of the computer system 100, the cache manage-
ment unit 103 1dentifies a context switch. A context switch
refers to when the processor 101 switches from executing one
application to a second application. In one embodiment, each
of the applications may be on a separate thread. The cache
management unit 103 determines whether an application run-
ning requires protection. The cache management unit 103
may partition the cache 102 1n response to determining that
the application requires protection. According to one embodi-
ment, partitioming a cache 1solates one or more sections of a
cache for thread allocation. The cache may be partitioned to
include an even number of sections to allocate to threads
supported by each logical processor. The cache management
umit 103 may alternatively or in addition effectuate com-

US 7,565,492 B2

3

pletely over writing a partitioned section of the cache or an
entire un-partitioned cache completely with data associated
with the application.

The first 10 bus 120 may be a single bus or a combination
of multiple buses. The first 10 bus 120 provides communica-
tion links between components 1n the computer system 100. A
network controller 121 1s coupled to the first IO bus 120. The
network controller 121 may link the computer system 100 to
a network of computers (not shown) and supports communi-
cation among the machines. A display device controller 122 1s
coupled to the first 10 bus 120. The display device controller
122 allows coupling of a display device (not shown) to the
computer system 100 and acts as an interface between the
display device and the computer system 100.

A second 10 bus 130 may be a single bus or a combination
of multiple buses. The second 10 bus 130 provides commu-
nication links between components in the computer system
100. A data storage 131 1s coupled to the second 10 bus 130.
The data storage 131 may be a hard disk drive, a floppy disk
drive, a CD-ROM device, a tflash memory device or other
mass storage device. An input interface 132 1s coupled to the
second 10 bus 130. The mput interface 132 may be, for
example, a keyboard and/or mouse controller or other mput
interface. The mput interface 132 may be a dedicated device
or can reside i another device such as a bus controller or
other controller. The input interface 132 allows coupling of an
input device to the computer system 100 and transmaits data
signals from an mput device to the computer system 100. An
audio controller 133 1s coupled to the second 10 bus 130. The
audio controller 133 operates to coordinate the recording and
playing of sounds and 1s also coupled to the IO bus 130. A bus
bridge 123 couples the first IO bus 120 to the second 10 bus
130. The bus bridge 123 operates to builer and bridge data
signals between the first 10 bus 120 and the second 10 bus
130.

FI1G. 2 1llustrates a cache 200 and memory 250 according to
an embodiment of the present invention. The cache 200 may
be used to represent the cache 102 (shown in FIG. 1) and the
memory 250 may be used to represent the memory 113
(shownin FI1G. 1). According to an embodiment of the present
invention, the cache 200 1s a set-associative memory cache. In
this embodiment, cache 200 includes storage cells called
cache lines, each having B bytes. The cache 200 1s organized
into S cache sets, each having W cache lines. The overall
cache 200 includes S*W*B bytes. The cache 200 holds cop-
ies of aligned blocks of B bytes in memory 250 which may be
referred to as memory blocks. According to one embodiment,
the data in the cache may be the only valid copy of the data i
a write 1s performed by a processor. When a cache miss
occurs, a full memory block 1s copied into one of the cache
lines. Each memory block may be cached only 1n a specific
cache set. Specifically, the memory block starting at address
a may be cached only in the W cache lines belonging to cache
set [a/B] mod S. Thus, the memory blocks are partitioned 1n S
classes, where the blocks 1n each class contend for the cache
lines 1n a single cache set. It should be appreciated that other
cache systems may also be used to implement the cache 102
and the memory 113.

FI1G. 3 1s a block diagram of a cache management unit 300
according to an exemplary embodiment of the present mnven-
tion. The cache management unit 300 may be implemented as
the cache management umt 103 shown in FIG. 3. The cache
management unit 300 includes a cache management manager
310. The cache management manager 310 1s coupled to and
transmits information between the components 1n the cache
management unit 300.

10

15

20

25

30

35

40

45

50

55

60

65

4

The cache management unit 300 includes a context switch
unit 320. The context switch unit 320 identifies a context
switch when a processor 1s switching from running a first
application to a second application. According to an embodi-
ment of the cache management unmit 300, the context switch
unmt 320 identifies a context switch by determining when a
page table 1s being accessed. In one embodiment, the context
switch unit 320 determines when a different page table 1s
being accessed by detecting a write to a page table register in
the processor such as the CR3 register in processors manu-
factured by Intel Corporation. The context switch unit 320
may 1dentity a context switch by determining when a paging
and protection modes are activated. In one embodiment, the
context switch unit 320 determines when paging and protec-
tion modes are activated by detecting access to a paging and
protection mode register in the processor such as the CR0
register in processors manufactured by Intel Corporation. The
context switch unit 320 may identity a context switch by
determining when extended data 1s being accessed. Extended
data may include data associated with an application which
was saved the last time the processor was running the appli-
cation before a context switch. In one embodiment, the con-
text switch umt 320 determines when extended data 1s being
accessed by determiming when a FXRSTOR instruction 1s
being executed. It should be appreciated that the context
switch unit 320 may 1dentily a context switch using other
procedures.

The cache management unit 300 includes an application
analysis unit 330. The application analysis unit 330 deter-
mines whether an, application being run by the processor
requires protection from side channel attacks. An application
may require protection 1f 1t processes or accesses sensitive
data. For example, a program that perform encryption/de-
cryption or a program that manages electronic mail may be
applications that require protection. The application analysis
unit 330 may determine whether an application being run by
the processor requires protection by accessing a page table
entry associated with the application and reading a protection
bit. If the protection bit 1s set, a determination may be made
that the application requires protection. According to an
embodiment of the present invention, the protection bit in the
page table may be set directly by the application or by an
operating system directed by the application.

The cache management unmit 300 includes a partition unit
340. The partition unit 340 manages the cache among appli-
cations run by the processor. According to an embodiment of
the cache management unit 300, the partition unit 340 may
partition the cache in response to the application analysis unit
330 determining that an application being run by the proces-
sor after a context switch requires protection. By partitioning
the cache, the cache management unit 300 allows a section of
the cache to be 1solated for the use of a single application and
prevents other applications from detecting which of the lines
in the cache have been displaced and determining values of
sensitive data. It should be appreciated that the partition unit
340 may partition the cache using any appropriate partition-
ing technique. According to an embodiment of the cache
management unit 300, the partition unit 340 may un-partition
a cache or leave a cache un-partitioned in response to the
application analysis unit 330 determining that an application
run by processor after a context switch does not require pro-
tection.

The cache management unit 300 includes an exception unit
350. The exception unit 350 may generate an exception to
prompt completely over writing a section of the cache with
data associated with the application upon determining that the
processor 1s beginning to run the application after a context

US 7,565,492 B2

S

switch. It should be appreciated that the section of the cache
written to may be the entire cache. Alternatively, 1f the cache
has been partitioned, the section of the cache written to may
be a partitioned section of the cache. According to an embodi-
ment of the cache management unit 300, the exception unit
350 prompts the over writing of the section of the cache with
all the code associated with the application. The exception
unit 350 may also prompt the over writing of the section of the
cache with code from the application that has been 1dentified
as being sensitive 1n nature. Alternatively, the exception unit
350 may prompt the over writing of the section of the cache
with a random subset of code from the application. It should
be appreciated that the exception unit 350 may be prompting,
an exception handler to over write the cache. The exception
handler may reside in the application or other location. By
over writing the cache entirely with code/data associated with
the application betfore the application has started or resumes
execution, any information about the nature of the applica-
tion’s program flow based on data access patterns will be
removed. By displacing all of the data previously written by a
software side channel attack program from the cache and
prefetching data to be used by the application i a fixed
pattern, there 1s no mnformation for the software side channel
attack program to use.

The cache management unit 300 may partition a cache
and/or prompt writing a section of the cache completely with
data associated with the application after a context switch.
This allows memory access patterns from an application to be
made 1nvisible to other applications and protects the data
stored 1n the cache from snooping. The cache management
unit 300 makes the access pattern invisible by prefetching
some or all of the data before the application begins or
resumes execution. According to one embodiment, the appli-
cation does not generate any cache misses and the access
pattern meta data 1s removed since both used and unused data
are prefetched.

According to an embodiment of the present mmvention
where the cache management umt 300 1s implemented in
hardware, the cache management manager 310, context
switch unit 320, application analysis unit 330, partition unit
340, and exception unit 350 all reside on a single semicon-
ductor substrate. It should be appreciated the cache manage-
ment unit 300 or components of the cache management unit
300 may also be implemented in software, or a combination
of hardware and software.

FI1G. 4 1s a block diagram of a page table 400 according to
an exemplary embodiment of the present invention. The page
table 400 1includes a first section 410 for storing a plurality of
page table entries (PTEs). The page table entries may include
virtual addresses to physical addresses mapping. The page
table 400 includes a second section 420 for storing tlags and
other information about the page. According to an embodi-
ment of the page table 400, the second section 420 may
include one or more bits that may be set for indicating a state
or status of a page table entry. In this embodiment, one of the
bits 401 may be designated as a protection bit to indicate that
an application associated with the address 1s to be protected.

It should be appreciated that the page table 400 may be
implemented using one or more directories and/or tables and
that the mapping a virtual address to a physical address may
involve translating an address though a number of intermedi-
ate layers. For example, a virtual address may be 1n the form
of a guest linear address. The guest linear address may be
translated to a guest physical address before being translated
to a host physical address, which 1s the physical address.
According to an embodiment of the present invention, the
page table 400 may reside 1n a processor. It should be appre-

10

15

20

25

30

35

40

45

50

55

60

65

6

ciated that the page table may be implemented on other com-
ponents 1n a computer system.

FIG. 5 1s a flow chart illustrating a method for managing a
cache according to an exemplary embodiment of the present
invention. At 501, a context switch 1s identified. According to
an embodiment of the present invention, a context switch
occurs when a processor switches from executing a first appli-
cation to a second application.

At 502, the cache 1s un-partitioned. According to an
embodiment of the present invention, if the cache i1s already
un-partitioned, 1t 1s left 1n the un-partitioned state.

At 503, 1t 1s determined whether the application requires
protection. According to an embodiment of the present inven-
tion, a page table entry corresponding to the application 1s
checked for 1ts protection bit when the program begins or
resumes execution. If the protection bit 1s active, 1t 1s deter-
mined that the application requires protection and control
proceeds to 504. I the protection bit 1s 1nactive, it 1s deter-
mined that the application does not require protection and
control proceeds to 506.

At 504, the cache 1s partitioned. Partitioning a cache allows
a section of the cache to be 1solated for the use of a single
application and prevents other applications from detecting
which of the lines 1n the cache have been displaced and
determining values of sensitive data. It should be appreciated
that the cache may be partitioned using any appropriate par-
titioning technique.

At 505, a partitioned section of the cache corresponding to
the application 1s completely over written with data. Accord-
ing to an embodiment of the present invention, all of the code
or data associated with the application 1s written nto the
partitioned section of the cache. Alternatively, data from the
application that has been identified as being sensitive 1n
nature may be written into the partitioned section of the
cache. Alternatively, a random subset of code or data from the
application may be written into the partitioned section of the
cache.

According to an embodiment of the present invention, the
cache 1s not partitioned at 504. In this embodiment, the entire
cache instead of just a partitioned section of the cache 1s over
written with data as described at 505. According to an
embodiment of the present invention, the partitioned section
ol the cache 1s not over written with data as described at 505.
In this embodiment, control proceeds to 506 from 504.

At 506, the application 1s allowed to be executed. Control
returns to 501 to 1dentily a context switch.

It should be appreciated that a context switch may also
include switching between execution of software threads
within a same application. According to an embodiment of
the present invention, the procedures described with refer-
ence to FIG. 5 may be modified to include determining
whether a software thread requires protection at 503, parti-
tioning a cache to be 1solated for the use of a single software
thread at 504, and completely overwriting the section of
cache used for the software thread at 505.

FIG. 6 1s a flow chart illustrating a method for determining,
a context switch according to an exemplary embodiment of
the present invention. At 601, 1t 1s determined whether a new
page table 1s being accessed. According to one embodiment,
determining when a page table 1s being accessed 1s achieved
by detecting a write to a page table register such as the CR3
register 1n processors manufactured by Intel Corporation. If 1t
1s determined that a new page table 1s being accessed, control
proceeds to 602. IT i1t 1s determined that the page table 1s not
being accessed, control proceeds to 603.

At 602, a notification 1s generated to indicate that a context
switch has occurred.

US 7,565,492 B2

7

At 603, 1t 1s determined whether paging and protection
modes are activated. According to one embodiment, deter-
mimng when paging and protection modes are activated 1s
achieved by detecting access to a paging and protection mode
register 1n the processor such as the CR0 register in proces-
sors manufactured by Intel Corporation. If 1t 1s determined
that paging and protection modes are activated, control pro-
ceeds to 602. If 1t 1s determined that paging and protection
modes are not activated, control proceeds to 604.

At 604, 1t 1s determined whether extended data 1s being
accessed. According to one embodiment, determining
whether extended data 1s being accessed 1s achieved by deter-
miming when a FXRSTOR 1nstruction 1s being executed. If 1t
1s determined that extended data 1s being accessed, control
proceeds to 602. If 1t 1s determined that extended data 1s not
being accessed, control returns to 601.

FIGS. 5 and 6 are flow charts illustrating methods accord-
ing to exemplary embodiments of the present invention.
Some of the techniques illustrated in these figures may be
performed sequentially, 1n parallel or 1n an order other than
that which 1s described. It should be appreciated that notall of
the techniques described are required to be performed, that
additional techniques may be added, and that some of the
illustrated techniques may be substituted with other tech-
niques.

Embodiments of the present invention may be provided as
a computer program product, or software, that may include an
article of manufacture on a machine accessible or machine
readable medium having instructions. The instructions on the
machine accessible or machine readable medium may be
used to program a computer system or other electronic
device. The machine-readable medium may include, but 1s
not limited to, floppy diskettes, optical disks, CD-ROMs, and
magneto-optical disks or other type of media/machine-read-
able medium suitable for storing or transmitting electronic
instructions. The techniques described herein are not limited
to any particular software configuration. They may find appli-
cability in any computing or processing environment. The
terms “machine accessible medium” or “machine readable
medium”™ used heremn shall include any medium that 1s
capable of storing, encoding, or transmitting a sequence of
instructions for execution by the machine and that cause the
machine to perform any one of the methods described herein.
Furthermore, 1t 1s common 1n the art to speak of software, 1n
one form or another (e.g., program, procedure, process, appli-
cation, module, unit, logic, and so on) as taking an action or
causing a result. Such expressions are merely a shorthand
way ol stating that the execution of the software by a process-

ing system causes the processor to perform an action to pro-
duce a result.

In the foregoing specification embodiments of the inven-
tion has been described with reference to specific exemplary
embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the embodi-
ments of the invention. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than
restrictive sense.

What 1s claimed 1s:
1. A method for managing a cache, comprising;:
identifying a context switch;

determining whether an application running after the con-
text switch requires protection;

partitioning the cache 1n response to determining that the
application requires protection; and

5

10

15

20

25

30

35

40

45

50

55

60

65

8

executing the application without partitioning the cache in
response to determining that the application does not
require protection.

2. The method of claim 1, further comprising completely
over writing a partitioned section of the cache with data
associated with the application prior to an execution of the
application.

3. The method of claim 2, wherein completely over writing,
the partitioned section of the cache with data associated with
the application comprises writing all the code associated with
the application 1nto the partitioned section of the cache.

4. The method of claim 2, wherein completely over writing,
the partitioned section of the cache with data associated with
the application comprises writing code from the application
that has been 1dentified as being sensitive 1n nature into the
partitioned section of the cache.

5. The method of claim 2, wherein completely over writing
the partitioned section of the cache with data associated with
the application comprises randomly writing a subset of code
from the application 1nto the partitioned section of the cache.

6. The method of claim 1, wherein 1dentifying the context
switch comprises determining when a new page table 1s being
accessed.

7. The method of claim 1, wherein 1dentifying the context
switch comprises determining when a write to page table
register 1s being written to.

8. The method of claim 1, wherein identifying the context
switch comprises determining when paging and protection
modes are activated.

9. The method of claim 1, wherein 1dentifying the context
switch comprises determining when a paging and protection
mode register 1s being accessed.

10. The method of claim 1, wherein 1dentifying the context
switch comprises determining when extended data 1s being
accessed.

11. The method of claim 1, wherein 1dentifying the context
switch comprises determining when a FXRSTOR 1nstruction
1s being executed.

12. The method of claim 1, wherein determining whether
an application running requires protection comprises deter-
mining whether a protection bit 1n a page table entry associ-
ated with the application 1s set.

13. A machine accessible storage medium including
sequences of instructions, the sequences ol instructions
including instructions which when executed cause the
machine to perform:

identilying a context switch;

determining whether an application running aiter the con-

text switch requires protection;

partitioning the cache 1n response to determining that the

application requires protection; and

executing the application without partitioning the cache 1n

response to determining that the application does not
require protection.

14. The machine accessible storage medium of claim 13,
further comprising instructions which when executed causes
the processor to further perform completely over writing a
partitioned section of the cache with data associated with the
application prior to an execution of the application.

15. The machine accessible storage medium of claim 13,
wherein identifying the context switch comprises determin-
ing when a new page table 1s being accessed.

16. A cache management unit implemented 1n hardware,
comprising;

a context switch unit to 1dentily a context switch;

an application analysis unit to determine whether an appli-

cation requires protection; and

US 7,565,492 B2
9 10

a partition unit to partition a cache upon determining that 20. The cache management unit of claim 16, wherein the
the application requires protection and to leave the cache context switch unit determines when extended data 1s being
unpartitioned to allow the application to execute in the accessed.
unpartitioned cache in response to determining that the 21. A computer system, comprising:
application does not require protection. 5 a processor,

17. The cache management unit of claim 16, further com- a cache; and | | |
prising an exception unit to generate an exception to prompt a cache management unit that includes a context switch
completely over writing a partitioned section of the cache unit to identity a context switch, an application analysis
with data associated with the application prior to an execution unit to determine whether an application requires pro-

of the application. 10 tection, and a partition unit to partition a cache upon
determining that the application requires protection and
to leave the cache unpartitioned to allow the application
to execute in the unpartitioned cache in response to
determining that the application does not require protec-
15 tion.

18. The cache management unit of claim 16, wherein the
context switch unit determines when a new page table 1s being
accessed.

19. The cache management unit of claim 16, wherein the
context switch unit determines when paging and protection
modes are activated. ok ok &k

	Front Page
	Drawings
	Specification
	Claims

