12 United States Patent

Muppala

US007554983B1

(10) Patent No.: US 7,554,983 B1

(54)

(75)
(73)

(%)

(21)
(22)

(1)

(52)
(58)

(56)

PROBING HOSTS AGAINST NETWORK
APPLICATION PROFILES TO FACILITATE
CLASSIFICATION OF NETWORK TRAFFIC

Inventor: Suresh Muppala, Cupertino, CA (US)
Assignee: Packeteer, Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 684 days.
Appl. No.: 11/019,501

Filed: Dec. 20, 2004

Int. CI.

HO4L 1228 (2006.01)

HO4L 12/56 (2006.01)

US.Cl o, 370/392; 370/410
Field of Classification Search 370/392,

370/410
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,363,056 B1* 3/2002 Beigietal. 370/252

50

22

Traffic
Classification
Engine

Host Probing
Module

135

Flow
Database

140

\ Measurement
Engine

75

Application Trafiic Management

.z‘ . Device . ’

Network Device Application
Processor

45) Date of Patent: Jun. 30, 2009
6,628,938 B1* 9/2003 Rachabathunietal. ... 455/456.3
6,690.918 B2* 2/2004 Ewvansetal. 455/41.2
7,154,416 B1* 12/2006 Savagec.cocevvvnnnnnen. 341/51
7,155,502 B1* 12/2006 Gallowayetal. 709/223
7,224,679 B2* 5/2007 Solomonetal. 370/338
7,292,531 B1™* 11/2007 Hil ...covvvvveniinnn..... 370/230.1
7,296,288 B1* 11/2007 Hudletal. ...cccceenveeeo...... 726/2
7324447 B1* 1/2008 Mortordccoeeneeen...n. 370/231

2003/0185210 A1* 10/2003 McCormack 370/392

* cited by examiner

Primary Examiner—Edan Orgad

Assistant Examiner—Blanche Wong
(74) Attorney, Agent, or Firm—Baker Botts L.L.P.

(57) ABSTRACT

Methods, apparatuses and systems directed to a network trat-
fic classification mechanism that probes hosts against one or
more network application profiles to facilitate identification
of network applications corresponding to data flows travers-
ing a network.

23 Claims, 10 Drawing Sheets

130

94
138
Management
Information Base
134

Host
Database

Administrator

150

Interface

U.S. Patent Jun. 30, 2009 Sheet 1 of 10 US 7,554,983 B1

40a

22a

21a 71b

44

-
P =
—
—

Ll

U.S. Patent Jun. 30, 2009 Sheet 2 of 10 US 7,554,983 B1

50

21
130

1 Application Traffic Management

f . Device
79 Network Device Application
Processor
9?2
Flow Control
Module

Packet

Processor
96
Traffic
Classification 138
Inti tion Base
Host Probing rHOTIALIon Bas
Module
135
134
Database Database
140 | L0
Measurement Administrator
Engine Interface
76

Fig. 2

U.S. Patent Jun. 30, 2009 Sheet 3 of 10 US 7,554,983 B1

Receive 102
Packet

110

112

Response to Yes Pass Packet Pointer
HOSI; Probe? to Host Probing
| Module

104

106

Construct
Flow Object
108

Update Flow
Object Attributes

Pass Packet Pointer to

Trafhic Classification
Engine 114
116
Record Measurement
Variables
118

Pass Packet Pointer to Flow
Control Module

g, 3

U.S. Patent Jun. 30, 2009 Sheet 4 of 10 US 7,554,983 B1

Traffic
Classification
142
Packet Point
acket Pointer 154
144

Yes Pass Packet and Flow

Host Probing Object Pointers to

Flag Set?

Fig. 4 o

Host Probing Module

146
Pass Packet to Service
Type Identification
Module(s)
148

Appl. Level
Service Id

[dentified?

Yes

No

150 152

Service Lype
[dentification P]_.(S)]e:,tjll;{olill:a
Module(s) Done? hiaa

Pass Packet to Traffic 156
Class Configuration for

Identification of Traffic
Class

U.S. Patent Jun. 30, 2009 Sheet 5 of 10 US 7,554,983 B1

Traffic
Classitication

Recelve
Packet Pointer

New Data
Flow?

Pass Packet and Flow
Object Pointers to

Host Probmg Module

Pass Packet to Traltic
Classification Engine

for Service Id and Traffic

Class Identificati .
ass Identification Flg__ 4 A

194

Appl.-Level Stop Other Service

Service Id Type Identification
[dentified? Processes

No

U.S. Patent Jun. 30, 2009 Sheet 6 of 10 US 7,554,983 B1

Recelve Yes 165
Packet Pointer |

W/

Host
162 Pointer

164

Inspect Flow Probing Already
Object and Packet Started/Done
Attributes for Flow?
166

No

Host Probe

Patterns
Available?

No

168
Pattern = Ist
Available Pattern
170
Compose & Send
Probe Packet to
End Host(s)
No 172
182
Response Response Pattern = Next
Timed Our? Received? Available Pattern
Yes
\ 176 Yes

178 180

Return Remaining

Available

Patterns?

No

Does Response
Yes Match Pattern?

Application-Level
Service Id

Fig, 5 o4 Ne

Return No Service

Id Found

U.S. Patent

Jun. 30, 2009 Sheet 7 of 10 US 7,554,983 B1
Pl -- Probe Packet
Packet Info
Flags: 0x00
Status: 0x01
Packet Length: 170
Timestamp: 13:47:09.797938000 08/11/2004
Ethernet Header
Destination: 00:0C:41:8A:1C:10
source: 00:04:23:64:2C:A4
Protocol Type: 0x0800 IP
IP Header - Internet Protocol Datagram
version: 4
Header Length: 5 (20 bytes)
Differentiated Services:%00000000
0000 00.. Default
..X. Reserved
.. .X Reserved
Total Length: 152
Identifier: 13198
Fragmentation Flags: %000
0.. Reserved
. 0. May Fragment
. .0 Last Fragment
Fragment Offset: 0 (0 bytes)
Time To Live: 128 702
Protocol: 17 UDP
Header Checksum: O0x6D3E
Source IP Address: 192 .168 01
Dest. IP Address:
UDP - Usexr Datagram Protoco
Source Port: 41431
Destination Port:
Length: 132
UDP Checksum: 200 OXA727 204
Application Layer
Data Area:
*.,.Vy5....... E. 02 ES5 A8 F5 8D 25 AB S5F 49 2C 14 C5 9B 54
;..,..F...B. 73 B5 25 5E 9D 2E 6B 2F AQ 3A C6 00 58 B2 C2 47
..... R.......... 2A 38 EA Bl AA D9 3E 42 4F 23 DA 17 2B 2B AF 8B
........ #.k.3 BC OF 36 25 9F AE AE 38 7B 3B 92 46 FD 91 8F 03
.0o.V?2...n.%.. AF 4B 96 S9A 06 ES5 6F 3E FB B9 S5F 95 9F 6C 2A 8B
o.T.8o..K...dJd 96 23 74 E3 DE F8 66 96 1A 33 D2 CE 05 B9 D1 FC
e e g e e e e /3 FF 25 91 8A AB 38 33 05 3B ES 8D 07 BE 37 8E BF
O..cchb....Gu 96 BA 4F 83 83 82 B7 56 32 1F C7 A4

FCS - Frame Check Sequence

FCS:

- 0xB1l55480A Calculated

Fig. 6A

U.S. Patent Jun. 30, 2009 Sheet 8 of 10 US 7,554,983 B1

P2 - Response (Type: Fixed Data)

Packet Info

Flags: 0x00
Status: 0x00
Packet Length: 64
Timestamp: 13:47:09.915190000 08/11/2004
Ethernet Header
Destination: 00:04:23:64:2C:A4
source: 00:0C:41:8A:1C:10
Protocol Type: 0x0800 IP
IP Header - Internet Protocol Datagram
Version: 4
Header Length: 5 (20 bytes)

Differentiated Services:%00000000
0000 00.. Default
.. X. Reserved
...X Reserved

Total Length: 39
Identifier: 30735
Fragmentation Flags: %000
0.. Reserved
.0. May Fragment
. .0 Last Fragment

Fragment Offset: 0 (0 bytes)

Time To Live: 106

Protocol: 17 UDP

Header Checksum: Ox3F2E

Source IP Address: 132.205.82.174

Dest. IP Address: 192.168.1.101
UDP - User Datagram Protocol

Source Port: 19653

Destination Port: 41431

Length: 19

UDP Checksum: 206 0xD966
Application Layer

Data Area:

P 07 43 AA EB A0 33 13 038 DC
Extra bytes

Number of bytes: -

....... 00 00 00 00 00 00 0O

FCS - Frame Check Sequence

FCS OxE8991AD0O Calculated

Fg. 6B

U.S. Patent Jun. 30, 2009 Sheet 9 of 10 US 7,554,983 B1
P11l -- Probe Packet
Packet Info
Flags: 0x00
Status: 0x00
Packet Length: 170
Timestamp: 13:56:47.072424000 08/11/2004
Ethernet Header
Destination: 00:0C:41:8A:1C:10
Source: 00:04:23:64:2C:A4
Protocol Type: 0x0800 IP
IP Header - Internet Protocol Datagram
Version: 4
Header Length: S (20 bytes)
Differentiated Services:%00000000
- 0000 00.. Default
. .X. Reserved
. . . X Reserved
Total Length: 152
Identifier: 13198
Fragmentation Flags: %000
0.. Reserved
. 0. May Fragment
.. 0 Last Fragment
Fragment Offset: 0 (0 bytes)
Time To Live: 128 209
Protocol: 17 UDP
Header Checksum: Ox82AL
Source IP Address: «l’
Dest. IP Address: 192.168.1.100
UDP - User Datagram Protocol
source Port: | 41431
Destination Port: 65020
Length: 132
UDP Checksum: 200 0x0B5F
Application Layer
Data Area:
*, . Vy5....... E. 02 E5 A8 F5 8D 25 AB 5F 49 2C 14 C5 SB 54
;e.,..F...B. 25 BE 9D 2E 6B 2F A0 3A Cé6 00 58 B2 C2 47
..... R.......... 2A 38 EA Bl AA D9 3E 42 4F 23 DA 17 2B 2B AF 8B
........ #.k.] BC OF 36 25 9F AE AE 38 7B 3B 92 46 FD 91 8F 03
o.V? n.%.. AF 4B 96 9A 06 ES5 6F 3E FB B9 5F 95 9F 6C 2A 8B
o.T.80..K...dJ 9¢ 23 74 E3 DE F8 66 96 1A 33 D2 CE 05 BS D1 FC
N IV Ziveeeoo FF 25 91 8A AB 38 33 05 3B E9 8D 07 BE 37 8E BF
©..ccb....Gu 96 BA 4F 83 83 82 B7 56 32 1F C7 A4
FCS - Frame Check Sequence
FCS: 0x2A289748 Calculated

Fig. 6C

U.S. Patent Jun. 30, 2009 Sheet 10 of 10 US 7,554,983 B1

P12 - Response (Type: Response with SrcIP)

Packet Info

Flags: 0x00
Status: 0x00
Packet Length: 64
Timestamp: 13:56:47.080097000 08/11/2004
Ethernet Header
Destination: 00:04:23:64:2C:A4
source: 00:CO:FOQ:7A:3D:AE
Protocol Type: 0x0800 IP
IP Header - Internet Protocol Datagram
Version: 4
Header Length: 5 (20 bytes)

Differentiated Services:%00000000
0000 00.. Default
. .X. Reserved
. . .X Reserved

Total Length: 39
Identifier: 64139
Fragmentation Flags: %000
0.. Reserved
. 0. May Fragment
. .0 Last Fragment

Fragment Offset: 0 (0 bytes)

Time To Live: 128

Protocol: 17 UDP

Header Checksum: O0xBC20

Source IP Address: 192.168.1.100

Dest. IP Address: 192.168.1.101
UDP - User Datagram Protocol

sSource Port: 65020

Destination Port: 41431

Length: 19 208

UDP Checksum: 200 0x4aDFB

>0 A8 01 65788 F2 C4 29

N G 00 59 4D 53 47 00 OC
FCS - Frame Check Sequence
FCS: 0x90403E32 Calculated

Fig. 6D

Extra bytes
Number of bytes:

Application Layer
Data Area:
* . ..y.h2D. Q07

US 7,554,983 Bl

1

PROBING HOSTS AGAINST NETWORK
APPLICATION PROFILES TO FACILITATE
CLASSIFICATION OF NETWORK TRAFFIC

CROSS-REFERENCE TO RELATED
APPLICATIONS AND PATENTS

This application makes reference to the following com-
monly owned U.S. patent applications and patents, which are
incorporated herein by reference 1n their entirety for all pur-

poses:
U.S. patent application Ser. No. 08/762,828 now U.S. Pat.

No. 5,802,106 1n the name of Robert L. Packer, entitled
“Method for Rapid Data Rate Detection 1n a Packet Commu-
nication Environment Without Data Rate Supervision;”

U.S. patent application Ser. No. 08/970,693 now U.S. Pat.
No. 6,018,516, in the name of Robert L. Packer, entitled
“Method for Minimizing Unneeded Retransmission of Pack-
ets 1n a Packet Communication Environment Supporting a
Plurality of Data Link Rates;”

U.S. patent application Ser. No. 08/742,994 now U.S. Pat.
No. 6,038,216, 1in the name of Robert L. Packer, entitled
“Method for Explicit Data Rate Control in a Packet Commu-
nication Environment without Data Rate Supervision;”

U.S. patent application Ser. No. 09/977,642 now U.S. Pat.
No. 6,046,980, 1in the name of Robert L. Packer, entitled
“System for Managing Flow Bandwidth Utilization at Net-
work, Transport and Application Layers 1n Store and Forward
Network:”

U.S. patent application Ser. No. 09/106,924 now U.S. Pat.
No. 6,115,357, in the name of Robert L. Packer and Brett D.
Galloway, entitled “Method for Pacing Data Flow 1n a Packet-
based Network;”

U.S. patent application Ser. No. 09/046,776 now U.S. Pat.
No. 6,205,120, in the name of Robert L. Packer and Guy
Riddle, entitled “Method for Transparently Determining and

Setting an Optimal Minimum Required TCP Window Size;”
U.S. patent application Ser. No. 09/479,356 now U.S. Pat.

No. 6,285,658, 1n the name of Robert L. Packer, entitled
“System for Managing Flow Bandwidth Utilization at Net-
work, Transport and Application Layers 1n Store and Forward
Network:”

U.S. patent application Ser. No. 09/198,090 now U.S. Pat.
No. 6,412,000, in the name of Guy Riddle and Robert L.
Packer, entitled “Method for Automatically Classiiying Trat-
fic 1n a Packet Communications Network;”

U.S. patent application Ser. No. 09/198,051, 1n the name of
Guy Riddle, entitled “Method for Automatically Determining
a Traflic Policy 1n a Packet Communications Network;”

U.S. patent application Ser. No. 09/206,772, now U.S. Pat.
No. 6,456,360, 1in the name of Robert L.. Packer, Brett D.
Galloway and Ted Thi, entitled “Method for Data Rate Con-
trol for Heterogeneous or Peer Internetworking;”

U.S. patent application Ser. No. 09/710,442, 1in the name of
Todd Krautkremer and Guy Riddle, entitled “Application
Service Level Mediation and Method of Using the Same;”

U.S. patent application Ser. No. 10/015,826 1n the name of
Guy Riddle, entitled “Dynamic Tunnel Probing 1n a Commu-
nications Network:;”

U.S. patent application Ser. No. 10/039,992, 1n the name of
Michael J. Quinn and Mary L. Laier, entitled “Method and
Apparatus for Fast Lookup of Related Classification Entities
in a Tree-Ordered Classification Hierarchy;”

U.S. patent application Ser. No. 10/108,083, in the name of
Wei-Lung Lai, Jon Eric Okholm, and Michael J. Quinn,
entitled “Output Scheduling Data Structure Facilitating Hier-
archical Network Resource Allocation Scheme:”

10

15

20

25

30

35

40

45

50

55

60

65

2

U.S. patent application Ser. No. 10/178,617, in the name of
Robert E. Purvy, entitled “Methods, Apparatuses and Sys-
tems Facilitating Analysis of Network Device Performance;”

U.S. patent application Ser. No. 10/155,936 now U.S. Pat.
No. 6,591,299, in the name of Guy Riddle, Robert L. Packer,
and Mark Hill, entitled “Method For Automatically Classity-
ing Traflic With Enhanced Hierarchy In A Packet Communi-
cations Network;”

U.S. patent application Ser. No. 10/236,149, 1n the name of
Brett Galloway and George Powers, entitled “Classification
Data Structure enabling Multi-Dimensional Network Tratfic
Classification and Control Schemes:”

U.S. patent application Ser. No. 10/334,467, in the name of
Mark Hill, entitled “Methods, Apparatuses and Systems
Facilitating Analysis of the Performance of Network Trailic
Classification Configurations;”

U.S. patent application Ser. No. 10/453,345, 1n the name of
Scott Hankins, Michael R. Morford, and Michael J. Quinn,
entitled “Flow-Based Packet Capture;”

U.S. patent application Ser. No. 10/676,383 1n the name of
Guy Riddle, entitled “Enhanced Flow Data Records Includ-
ing Traific Type Data;”

U.S. patent application Ser. No. 10/720,329, 1n the name of
Weng-Chin Yung, Mark Hill and Anne Cesa Klein, entitled
“Heuristic Behavior Pattern Matching of Data Flows 1n
Enhanced Network Traffic Classification;”

U.S. patent application Ser. No. 10/812,198 1n the name of
Michael Robert Morford and Robert E. Purvy, entitled
“Adaptive, Application-Aware Selection of Diflerentiated
Network Services;”

U.S. patent application Ser. No. 10/843,185 1n the name of
Guy Riddle, Curtis Vance Bradiord and Maddie Cheng,
entitled “Packet Load Shedding;” and

U.S. patent application Ser. No. 10/938,435 1n the name of
Guy Riddle, entitled “Classification and Management of Net-
work Trailic Based on Attributes Orthogonal to Explicit
Packet Attributes.”

FIELD OF THE INVENTION

The present ivention relates to computer networks and,
more particularly, to methods, apparatuses and systems
directed to a network traffic classification mechanism that
probes hosts against network application profiles to facilitate
identification of network applications.

BACKGROUND OF THE INVENTION

Enterprises have become increasingly dependent on com-
puter network infrastructures to provide services and accom-
plish mission-critical tasks. Indeed, the performance, secu-
rity, and efficiency of these network infrastructures have
become critical as enterprises increase their reliance on dis-
tributed computing environments and wide area computer
networks.

To facilitate monitoring, management and control of net-
work environments, a variety ol network devices, applica-
tions, technologies and services have been developed. For
example, certain data flow rate control mechanisms have been
developed to provide a means to control and optimize eifi-
ciency of data transfer as well as allocate available bandwidth
among a variety of business enterprise functionalities. For
example, U.S. Pat. No. 6,038,216 discloses a method for
explicit data rate control 1n a packet-based network environ-
ment without data rate supervision. Data rate control directly
moderates the rate of data transmission from a sending host,
resulting 1n just-in-time data transmission to control inbound

US 7,554,983 Bl

3
traific and reduce the inefficiencies associated with dropped
packets. Bandwidth management devices allow for explicit
data rate control for tlows associated with a particular traflic
classification. For example, U.S. Pat. No. 6,412,000, above,
discloses automatic classification of network traific for use 1n
connection with bandwidth allocation mechanmisms. U.S. Pat.
No. 6,046,980 discloses systems and methods allowing for
application layer control of bandwidth utilization 1n packet-
based computer networks. For example, bandwidth manage-
ment devices allow network administrators to specily policies
operative to control and/or prioritize the bandwidth allocated
to individual data flows according to traffic classifications. In
addition, certain bandwidth management devices, as well as
certain routers, allow network administrators to specily
aggregate bandwidth utilization controls to divide available
bandwidth into partitions. With some network devices, these
partitions can be configured to provide a minimum bandwidth
guarantee, and/or cap bandwidth, as to a particular class of
traill

1c. An administrator specifies a traflic class (such as F'TP
data, or data flows involving a specific user or network appli-
cation) and the size of the reserved virtual link—i.e., mini-
mum guaranteed bandwidth and/or maximum bandwidth.
Such partitions can be applied on a per-application basis
(protecting and/or capping bandwidth for all traffic associ-
ated with a network application) or a per-user basis (control-
ling, prioritizing, protecting and/or capping bandwidth for a
particular user). In addition, certain bandwidth management
devices allow administrators to define a partition hierarchy by
configuring one or more partitions dividing the access link
and further dividing the parent partitions into one or more
child partitions.

Furthermore, network security i1s another concern, such as
the detection of computer viruses, as well as prevention of
Demal-of-Service (DoS) attacks on, or unauthorized access
to, enterprise networks. Accordingly, firewalls and other net-
work devices are deployed at the edge of such networks to
filter packets and perform various operations in response to a
security threat. In addition, packet capture and other network
data gathering devices are often deployed at the edge of, as
well as at other strategic points 1n, a network to allow network
administrators to monitor network conditions, to evaluate
network performance, and to diagnose problems.

Many of the systems and technologies discussed above
incorporate or utilize tratfic classification mechanisms to per-
form their respective Tunctions. Identification of traffic types
associated with data flows traversing a network generally
involves the application of matching criteria or rules to
explicitly presented or readily discoverable attributes of indi-
vidual packets, or groups of packets, against an application
signature which may comprise a protocol identifier (e.g.,
TCP,HTTP, UDP, MIME types, etc.), aportnumber, and even
an application-specific string of text in the payload of a
packet. Indeed, the rich Layer 7 classification functlonahty of
Packetshaper® bandwidth management devices offered by
Packeteer®, Inc. of Cupertino, Calif. 1s an attractive feature
for network administrators, as i1t allows for accurate 1dentifi-
cation ol a variety of application types and, thus, granular
momtorlng and control of network tratfic.

An increasing number of network applications, however,
employ data compression, encryption technology, and/or pro-
prietary protocols that obscure or prevent 1dentification of
various application-specific attributes, often leaving well-
known port numbers as the only basis for classification. In
fact, as networked applications become increasingly com-
plex, data encryption and/or compression has become a
touted security or optimization feature. Indeed, data encryp-
tion addresses the concern of security and privacy 1ssues, but

10

15

20

25

30

35

40

45

50

55

60

65

4

it also makes 1t much more difficult for intermediate network
devices, such as network monitors and bandwidth managers,
to 1dentity the applications that employ them. In addition,
traffic classification based solely on well-known port num-
bers can be problematic, especially where a network applica-
tion uses dynamic port number assignments or ncorrectly
uses a well-known port number, leading to misclassification
of the data tflows. In addition, classifying such encrypted
network tratfic as unknown (or encrypted) and applying a
particular rate or admission policy to unknown traffic classes
undermines the granular control otherwise provided by band-
width management devices and, further, may cause legiti-
mate, encrypted tratfic to sufler as a result.

Furthermore, the increasing adoption of standardized com-
munications protocols also presents challenges to network
traffic classification mechanisms. The increasing use of Web
services networking protocols, for instance, makes granular
classification of network traffic more difficult, since the data
flows corresponding to a variety of different web services
applications all use the same standard web services and other
network protocols, such as HI'TP, SMTP, NNTP, SOAP,
XML and the like. For example, a Web service typically
allows a consuming application to access the service using
one to a plurality of different bindings based on standard
network protocols, such as HI'TP and SMTP. Accordingly,
the packet headers in the messages transmitted to the web
service, as well as the packet headers associated with any
response, across a wide variety of web services will typically
include less meaningful information in the lower layers of the
headers associated with the network communication protocol
stack. For example, as discussed above, a well-formed SOAP
message using an HT'TP binding will typically identify port
number 80, the well-known port number for HTTP traiffic. As
a result of this standardization, 1t will become increasingly
difficult to ensure that critical network services are protected
and rogue services, which also employ Web service network-
ing protocols, are restricted as the differentiation between
services and applications moves up the network communica-
tions protocol stack. Moreover, as the information that dis-
tinguishes one Web service from another moves up the pro-
tocol stack, it becomes more difficult to configure the
matching attributes required to classily each Web service.

Traffic classification mechanisms have to adapt to address
these circumstances. For example, U.S. application Ser. No.
10/938,435 discloses network traffic classification mecha-
nisms that classily network traific based on the behavioral
attributes of the data tlows. U.S. application Ser. No. 10/720,
329 discloses the classification of data flows based on heu-
ristic behavior pattern matching. These classification mecha-
nisms differ from traditional classification mechanisms
which classily traific based on explicitly presented attributes
of individual data packets.

In light of the foregoing, a need 1n the art exists for meth-
ods, apparatuses and systems that facilitate the classification

of network tratfic. Embodiments of the present mvention
substantially fulfill this need.

SUMMARY OF THE

INVENTION

The present invention provides methods, apparatuses and
systems directed to a network traific classification mecha-
nism that probes hosts against one or more network applica-
tion profiles to facilitate 1dentification of network applica-
tions corresponding to data flows traversing a network.
Probing hosts against one or more network application pro-
files 1s useful to classily network traflic 1n many instances
where explicitly presented attributes of the packets are

US 7,554,983 Bl

S

obscured or insuilicient to identify a network application,
such as 1) i1n the case of encrypted network tratfic, 2) where
the network application does not have a known or unique
application signature revealed in the packets, 3) where the
packets are transmitted from a proprietary application where
the header format 1s unknown, and 4) a large amount of
memory would be otherwise required to store information
from previous packets in a given flow for subsequent classi-
fication. Host probing can be executed concurrently with
other traflic classification operations, or when other traflic
classification operations have failed to identily a network

application.

DESCRIPTION OF THE

DRAWINGS

FI1G. 1 1s afunctional block diagram 1llustrating a computer
network system architecture in which an embodiment of the
present invention may operate.

FIG. 2 1s a functional block diagram illustrating the func-
tionality of a network device, according to one implementa-
tion of the present invention, including host probing function-
ality.

FI1G. 3 1s aflow chart diagram showing a method, according
to one 1mplementation of the present mvention, directed to
processing and classitying data tflows.

FIG. 4 1s a flow chart diagram illustrating operation of a
network tratfic classification engine, according to one imple-
mentation of the present invention.

FIG. 4A 1s a flow chart diagram 1llustrating operation of a
network traffic classification engine, according to another
implementation of the present invention.

FIG. 5 1s a flow chart diagram showing operation of a host
probing module according to one implementation of the
present invention.

FIGS. 6 A thru 6D 1llustrate the attributes of probe packets
and responses, according to an implementation of the present
invention.

DESCRIPTION OF PREFERRED
EMBODIMENT(S)

FIGS. 1 and 2 illustrate an exemplary network environment
in which an embodiment of the present invention operates. Of
course, the present invention can be applied to a variety of
network architectures. FIG. 1 illustrates, for didactic pur-
poses, a network 50, such as wide area network, interconnect-
ing a first enterprise network 40, supporting a central operat-
ing or headquarters facility, and a second enterprise network
40a, supporting a branch office facility. Network 50 may also
be operably connected to other networks, such as network
405, associated with the same administrative domain as net-
works 40, 40a, or a different administrative domain. As FIG.
2 shows, the first network 40 interconnects several TCP/IP
end systems, including client devices 42 and server device 44,
and provides access to resources operably connected to com-
puter network 50 via router 22 and access link 21. Access link
21 1s a physical and/or logical connection between two net-
works, such as computer network 50 and network 40. The
computer network environment, including network 40 and
network 50 1s a packet-based communications environment,
employing TCP/IP protocols, and/or other suitable protocols,
and has a plurality of interconnected digital packet transmis-
s10n stations or routing nodes. First network 40, and networks
40a it 405, can each be a local area network, a wide area
network, or any other suitable network.

As FIGS. 1 and 2 illustrate, application traffic management
device 130, in one implementation, 1s deployed at the edge of

5

10

15

20

25

30

35

40

45

50

55

60

65

6

network 40. In one implementation, application traific man-
agement device 130 1s operative to classily and manage data
flows traversing access link 21. However, the traflic classifi-
cation functionality according to the present invention can be
integrated 1nto a variety of network devices, such as proxies,
firewalls, packet capture or network monitoring equipment,
VPN servers, web services network gateways or brokers, and
the like.

As FIG. 2 1llustrates, network application traffic manage-
ment device 130, in one implementation, comprises network
device application processor 75, and first and second network
interfaces 71, 72, which operably connect application traffic
management device 130 to the communications path between
router 22 and network 40. Network device application pro-
cessor 75 generally refers to the functionality implemented
by application traific management device 130, such as net-
work monitoring or reporting, application traflic manage-
ment, and the like. In one embodiment, network device appli-
cation processor 75 1s a combination of hardware and
soltware, such as a central processing unit, memory, a system
bus, an operating system, device drivers, and one or more
soltware modules implementing the functions performed by
application traffic management device 130, as well as the
coordinated traffic classification functionality described
herein. For didactic purposes, application traific management
device 130 1s configured to manage network tratfic traversing
access link 21. The above-identified patents and patent appli-
cations, incorporated by reference herein, disclose various
functionalities and features that may be incorporated into
application traific management devices according to various
implementations of the present invention.

In one embodiment, first and second network interfaces 71,
72 are the hardware communications interfaces that receive
and transmit packets over the computer network environ-
ment. In one implementation, first and second network inter-
taces 71, 72 reside on separate network interface cards oper-
ably connected to the system bus ol application traffic
management device 130. In another implementation, first and
second network interfaces reside on the same network inter-
face card. In addition, the first and second network interfaces
71, 72 can be wired network interfaces, such as Ethernet
(IEEE 802.3) interfaces, and/or wireless network interfaces,
such as IEEE 802.11, BlueTooth, satellite-based interfaces,
and the like. As FIG. 2 illustrates, application trailic manage-
ment device 130, 1n one embodiment, includes persistent
memory 76, such as a hard disk drive or other suitable
memory device, such writable CD, DVD, or tape drives. In
other 1mplementations, application ftraific management
device 130 can include additional network interfaces, beyond
network interfaces 71 and 72, to support additional access
links or other functionality. Furthermore, U.S. application
Ser. No. 10/843,185 provides a description of the operation of
various modules, such as network interface drivers, and data
structures for receiving into memory and processing packets
encountered at network interfaces 71, 72.

As FIG. 2 illustrates, network device application processor
75, 1n one 1mplementation, includes a packet processor 92,
flow control module 94, and traific classification engine 96.
Network device application processor 75, 1n one implemen-
tation, further comprises host database 134, flow database
135, measurement engine 140, management information
base 138, and administrator interface 150. In one embodi-
ment, the packet processor 92 1s operative to process data
packets, such as detecting new data flows, parsing the data
packets for various attributes (such as source and destination
addresses, and the Like) and storing packet attributes 1n a
butler structure, and maintaining one or more tflow variables

US 7,554,983 Bl

7

or statistics (such as packet count) in connection with the data
flows and/or the source/destination hosts. The traffic classi-
fication engine 96, as discussed more fully below, 1s operative
to classity data flows based on one or more attributes associ-
ated with the data flows. Trallic classification engine 96, 1n
one 1mplementation, stores traffic classes associated with
data flows encountered during operation of application traflic
management device 130, as well as manually created traific
classes configured by a network administrator, 1n a hierarchi-
cal trafhic class structure. In one embodiment, traffic classifi-
cation engine 96 stores trailic classes, 1n association with
pointers to traific management policies or pointers to data
structures defining such traffic management policies. Traifl

IC
classification engine 96, 1n one implementation, 1s supported
by a plurality of service type identification modules that clas-
s11y network trailic 1to a variety of protocols, services and
network applications, as discussed more fully below. As FIG.
2 further 1llustrates, traflic classification engine 96 comprises
host probing module 97 which 1s operative to probe end hosts
corresponding to data flows and classify the data flows based
on the observed responses of the probed end hosts. In one
implementation, flow control module 94 1s operative to apply
bandwidth utilization controls to data flows traversing the
access link 21 in the mmbound and/or outbound directions.

As discussed above, 1 one implementation, network
device application processor 73 further comprises measure-
ment engine 140, management information base (MIB) 138,
and administrator interface 150. Management information
base 138 1s a database of standard and extended network
objects related to the operation of application traific manage-
ment device 130. Measurement engine 140 maintains mea-
surement and statistical data relating to operation of applica-
tion tratfic management device 130 to allow for monitoring of
bandwidth utilization and network performance across access
link 21 with respectto a plurality of bandwidth utilization and
other network statistics on an aggregate and/or per-tratlic-
class level.

Adminstrator interface 150 facilitates the configuration of
application traific management device 130 to adjust or
change operational and configuration parameters associated
with the device. For example, administrator interface 150
allows administrators to select identified traffic classes and
associate them with traffic management policies. Administra-
tor interface 150 also displays various views associated with
a hierarchical traffic classification scheme and allows admin-
istrators to configure or revise the hierarchical traffic classi-
fication scheme. Administrator interface 150 can provide a
command line interface and/or a graphical user interface
accessible, for example, through a conventional browser on
client device 42.

A.1. Packet Processing,

As discussed above, packet processor 92, 1n one implemen-
tation, 1s operative to detect new data tlows, mstantiate data
structures associated with the flows and parse packets to
identify packet attributes, such as source and destination
addresses, port numbers, etc., and populate one or more fields
in the data structures. In one embodiment, when packet pro-
cessor 92 encounters a new data flow 1t stores the source and
destination IP addresses contained 1n the packet headers 1n
host database 134. Packet processor 92 further constructs a
control block (flow) object 1n flow database 135 including
attributes characterizing a specific flow between two end
systems, such as source and destination port numbers, efc.
Other tlow attributes 1n the flow object may include applica-
tion specific attributes gleaned from layers above the TCP
layer, such as codec 1dentifiers for Voice over IP calls, Citrix
database identifiers, and the like. Packet processor 92 also

10

15

20

25

30

35

40

45

50

55

60

65

8

stores meta imformation relating to the received packets 1n a
packet bulfer—a memory space, typically in dynamic ran-
dom access memory (DRAM), reserved for packets travers-
ing application traffic management device 130. In one
embodiment, the packets are stored 1n the packet buil

er with
a wrapper including various information fields, such as the
time the packet was received, the packet flow direction (in-
bound or outbound), and a pointer to the flow object corre-
sponding to the flow of which the packet 1s a part.

In typical network deployments, the majority of data tlows
are generally TCP or UDP tlows. However, any suitable trans-
port layer tlow can be recognized and detected. As discussed
more fully below, in one embodiment, flows are i1dentified
based on the following flow attributes: 1) source IP address,
2) destination IP address, 3) source port number, 4) destina-
tion port number, and 35) protocol (derived from the “proto-
col” field in IPv4 headers, and the “NextHeader” field in IPv6
headers). One skilled in the art will recognize that flows can
be 1dentified 1n relation to a varniety of attributes and combi-
nations of attributes. In addition, methods for determiming
new data flows and assigning packets to existing data tflows
are well known 1n the art and also depend on the particular
transport layer protocol employed. For a TCP flow, for
example, packet processor 92 can determine a new data flow
by detecting SYN, SYN/ACK, and/or ACK packets. How-
ever, a new data flow, depending on the network protocol
associated with the flow, can simply be a data flow for which
there 1s no corresponding flow object. For example, with UDP
and GRE flows (where there 1s no explicit connection or
handshake mechanmism, such as SYN packets), a new tlow 1s
recognized by associating the source and destination
addresses and port numbers to the flow and the flow type (e.g.,
UDP, GRE, etc.). Accordingly, when a UDP packet identifies
a new address/port pair, the attributes discussed above are
stored 1n a data structure along with the time of last packet. A
new UDP flow between the same address/port pairs can be
determined by comparing the last packet time to a threshold
value (e.g., 2 minutes). If the difference between the time of
the last packet and the time of the current packet i1s greater
than the threshold, the current packet 1s deemed part of a new
flow. In another implementation, a background and/or sepa-
rate process can periodically compare the last packet times
associated with a flow to a threshold period of time and deem
the flow terminated 1f the last packet time 1s beyond the
threshold period of time. The termination of TCP connections
1s typically detected by identifying FIN packets; however, the
timeout mechanisms discussed above can be used 1n situa-
tions where a FIN packet 1s not detected.

In one embodiment, a control block (tlow) object contains
a tlow specification object including such attributes as point-
ers to the “inside” and “outside” IP addresses 1n host database
134, as well as other tflow specification parameters, such as
inside and outside port numbers, service type (see below),
protocol type and other parameters characterizing the data
flow. In one embodiment, such parameters can include infor-
mation gleaned from examination of data within layers 2

through 7 of the OSI reference model. U.S. Pat. Nos. 6,046,
980 and U.S. Pat. No. 6,591,299, as well as others 1incorpo-
rated by reference herein, disclose classification of data flows
for use 1n a packet-based communications environment.
FIGS. 1 and 2 1llustrate the concept associated with inside and
outside addresses, where network interface 71 1s the “inside”
network interface and network interface 72 1s the “outside”
network interface. As discussed above, in one embodiment, a
flow specification object includes an “inside” and “outside™
address relative to application traific management device

130. See FIG. 1. Fora TCP/IP packet, packet processor 92 can

US 7,554,983 Bl

9

compute the inside and outside addresses based on the source
and destination network addresses of the packet and the direc-
tion of the packet tflow. Still turther, packet processor 92 can
also 1dentity which host 1s the client and which host 1s the
server for a given data flow and store this information in the 5
flow specification or control block object. The 1dentification

of a server or client 1n a given transaction generally depends

on the network protocols employed by the hosts. For
example, 1n TCP flows, a client mitiates a transaction by
transmitting a SYN packet to iitiate a TCP connection. 10
Application traflic management device 130 can detect the
SYN packet and note the source network address of the
packet as the client host, and the destination address as the
server host. One of ordinary skill in the art will recognize how

to 1dentily clients and servers in connection with other net- 15
working protocols.

In one embodiment, packet processor 92 creates and stores
control block objects corresponding to data flows 1n flow
database 135. In one embodiment, control block object
attributes include a pointer to a corresponding flow specifi- 20
cation object, as well as other flow state parameters, such as
TCP connection status, timing of last packets 1n the nbound
and outbound directions, speed information, apparent round
trip time, packet count, etc. Control block object attributes
turther include at least one traflic class identifier (or pointer(s) 25
thereto) associated with the data flow, as well as policy
parameters (or pointers thereto) corresponding to the identi-
fied traflic class. In one embodiment, control block objects
turther include a list of traffic classes for which measurement
data (maintained by measurement engine 140) associated 30
with the data flow should be logged. In one embodiment, to
facilitate association of an existing control block object to
subsequent packets associated with a data flow or connection,
flow database 135 further maintains a control block hash table
including a key comprising a hashed value computed from a 35
string comprising the iside IP address, outside IP address,
inside port number, outside port number, and protocol type
(e.g., TCP, UDP, etc.) associated with a pointer to the corre-
sponding control block object. According to this embodi-
ment, to 1dentily whether a control block object exists for a 40
given data flow, packet processor 92 hashes the values 1den-
tified above and scans the hash table for a matching entry. I
one exists, packet processor 92 associates the pointer to the
corresponding control block object with the packets 1n the
data flow. 45

Packet processor 92, in one implementation, maintains
certain data 1n host database 134 that support the classifica-
tion of data tlows based on behavioral attributes of the end
systems associated with the flows. U.S. application Ser. No.
10/938,435 describes some of the data flow metrics that can 50
be maintained in host database 134, according to an embodi-
ment of the present invention. For example, packet processor
92. in one embodiment, maintains, inter alia, for each IP
address 1) the number of concurrent connections (Conn); 2)
the current data flow rate (Curr rate); and 3) the average bits 55
per second (bps) over a one minute interval (1 Min avg). In
addition, 1n one implementation, host database 134 maintains
for each host address the following fields: 4) the number of
new flows or connections for which the host s a client over the
last minute; 5) the number of new flows or connections for 60
which the host 1s a server over the last minute; and 6) the
number of failed flows corresponding to a given host. In some
implementations, host database 134 may also be configured
to maintain: 7) the number of current or existing TCP (or other
handshake-oriented protocol) connections for which the host 65
1s a client; 8) the number of current UDP (or other similar
protocol) connections for which the host 1s a client; 9) the

10

number of current or existing TCP (or other handshake-ori-
ented protocol) connections for which the host 1s a server; and
10) the number of current UDP (or other similar protocol)
connections for which the host 1s a server. As discussed
above, packet processor 92 1s operative to 1dentily new data
flows, as well as the termination of existing data flows, and
updates the statistics 1dentified above as data tlows traverse
network device. As discussed below, traffic classification
engine 96, 1n one implementation, 1s operative to access these
values, as well as other data structures (e.g., flow database
135) to classify a data flow. In one embodiment, a process
executing in the packet processing path, for example, can
collect the raw data at periodic intervals for subsequent evalu-
ation by other processes or modules, such as traffic classifi-
cation engine 96.

In addition, administrator interface 150 may also access the
host database and display 1ts current state to a network admin-
istrator. In one implementation, administrator interface 150
allows various views of the information 1n host database 134
sorted (1n ascending or descending order) based on one of the
selected data fields of the database. Administrator interface
150, 1n one implementation, 1s also operative to facilitate
configuration of a traffic class based on one or more attributes
maintained by the host database 134. For example, adminis-
trator interface 150 may allow a user to select one or more
entries (as well as one or more data fields) i host database
134 and use the values corresponding to the selected entries
and data fields to configure a traific class. For example,
administrator interface 150 can compute the minimum values
for each data field across the selected entries and use them as
the basis for matching attributes 1n a traffic class.

A.2. Tratlic Classification Engine

Traffic classification engine 96 1s operative to inspect pack-
cts 1n data flows, and apply matching rules corresponding to
a plurality of traflic classes. Trailic classification engine 96, 1n
one 1mplementation, comprises a plurality of service type
identification modules, each of which correspond to a set of
service types. Each service type identification module ana-
lyzes one or more packets 1n a given data flow to attempt to
identify a service type corresponding to the flow. A service
type, 1n one implementation, can be a network protocol, a
service, or a network-application. For example, one service
type identification module can correspond to a network appli-
cation, such as Citrix®, while another service type 1dentifi-
cation module can be dedicated to detecting Oracle® or Post-

greSQL database traffic. Still other service type identification
modules can classity HTTP flows, FTP flows, ICMP flows,

RTP flows, NNTP, SMTP, SSL, DICOM and the like. In one
implementation, traffic classification engine 96 passes point-
ers to recewved packets to each service type i1dentification
module, which then inspect the packets stored in the builer
memory. In one implementation, each service type i1dentifi-
cation module has an associated packet count threshold (in
the aggregate, packets from server to client, or client to
server) after which 1t no longer attempts to classify a data
flow. In one implementation, the packet count threshold wilt
vary across the service type identification modules. For
example, a service type identification module dedicated to
classitying Citrix® trailic may be able to classily a data flow
with certainty after three packets. In many instances, appli-
cation traflic management device 130 may have to encounter
more than one packet corresponding to a data flow in order to
finally classity the data flow. For example, the mitial TCP
handshake packets may only reveal IP address, port numbers
and protocol 1dentifiers. While this information may be sui-
ficient to identity HT'TP traffic, for example, additional pack-
ets (such as data packets) may reveal a more specific network

US 7,554,983 Bl

11

application, such as an accounting application or peer-to-peer
file sharing application, that utilizes HT'TP. Accordingly, 1n
one implementation, each service type identification module
responds to recetving a pointer to a packet by 1) reporting a
matching service type identifier and the desire to inspect more
packets 1n the flow (to possibly identily a more specific ser-
vice type 1dentifier); 2) reporting a matching service type and
no 1nterest 1n mspecting subsequent packets in the tflow; 3)
reporting no matching service type identifier and the desire to
inspect more packets in the flow; and 4) reporting no match-
ing service type and no interest i ispecting subsequent
packets 1n the tlow.

To allow for identification of service types (e.g., F1TP,
HTTP, etc.), tratiic classification engine 96, in one embodi-
ment, 1s supported by one to a plurality of service identifica-
tion tables 1n a relational database that allow for identification
of a particular service type (e.g., application, protocol, etc.)
based on the attributes of a particular data flow. Of course,
other suitable data structures can be used to support the 1den-
tification of service types, such as a set of hard-coded 1nstruc-
tions, an XML file, and the like. In one embodiment, a ser-
vices table mcluding the following fields: 1) service ID, 2)
service aggregate (if any), 3) name of service, 4) service
attributes (e.g., portnumber, outside IP address, etc.), and a 5)
default bandwidth management policy. A service aggregate
encompasses a combination of individual services (each
including different matching criteria, such as different port
numbers, etc.) corresponding to the service aggregate. When
application traific management device 130 encounters a new
flow, the service type identification modules of traffic classi-
fication engine 96 analyze the data flow against the service
attributes 1n their respective services tables to 1dentily a ser-
vice ID corresponding to the flow. In one embodiment, traific
classification engine 96 may i1dentily more than one service
ID associated with the flow. In this instance, traffic classifi-
cation engine 96 associates the more/most specific service 1D
to the flow. For example, network traific associated with a
peer-to-peer file sharing service may be 1dentified according,
to a network protocol, such as TCP or HI'TP tratfic, as well as
higher level, application-specific tratfic types such as the
actual file sharing application itself (e.g., Napster, Morpheus,
etc.). In this mstance, tratfic classification engine 96 associ-
ates the flow with the most specific service ID. As a further
example, an RTSP application data flow can be further clas-
sified to RTSP-Broadcast or RISP-REALNET-TCP 1n the
middle of the tlow after a particular signature 1n the packets 1s
encountered. In one i1mplementation, traific classification
engine 96 writes the identified service type ID 1nto the control
block (tlow) object corresponding to the data flow.

As discussed more fully below, service type identification,
in one 1implementation, 1s a preliminary operation to the clas-
sification of a data flow according to the hierarchical traffic
classification scheme configured by a network administrator.
For example, a traffic class maintained by traffic classification
engine 96 may be configured to include matching rules based
on the service IDs 1n the services table. For example, a match-
ing rule directed to HTTP traffic may simply refer to the
corresponding service 1D, as opposed to the individual
attributes that the service type 1dentification modules uses to
initially identify the service. This implementation allows for
a variety ol hierarchical traffic classification configurations,
such as the configuration of child traffic classes that further
classity HTTP traific on the basis of a network application, a
range of IP addresses, and the like.

Still further, the service type identifiers can correspond to a
specific network application (e.g., Napster, Citrix, NetlQ),
Oracle, Skype, etc.) and more generally to network protocols

10

15

20

25

30

35

40

45

50

55

60

65

12

or services, such as IP, TCP, HTTP, SOAP, XML, UDP, FTP,
SMTP, FTP, UDP, etc. As discussed more fully below, 1n one
implementation, traffic classification engine 96 triggers
operation of host probing module 97 for a given data flow, 1
a service type identifier corresponding to a network applica-
tion (as opposed to a protocol or service) 1s not 1dentified
within a threshold number of packets.

A traffic class comprises a set of matching rules or
attributes allowing for logical grouping of data flows that
share the same characteristic or set of characteristics. In one
implementation, the matching rules can correspond to the
service type 1dentifiers discussed above, as well as other data

flow attributes, such as the network intertace on which the
packets are recerved by application traffic management
device, whether the server 1s the mside or outside host (see
above), non-standard and standard port numbers, host IP
address or subnet, MAC address, application-specific strings,
diffserv codes, MPLS tags, VLLAN tags, and the like. In one
embodiment, each traffic class has at least one attribute defin-
ing the criterion(ia) used for identitying a specific traific
class. In one implementation, the attributes defining a given
traffic class can be based on explicitly presented attributes of
one or more packets corresponding to a data flow (as dis-
cussed above), or be based on behavioral attributes of the end
systems associated with the flow. The U.S. patent applica-
tions 1dentified above disclose various network tratfic classi-
fication mechanisms that can be incorporated mto embodi-
ments of the present invention. For example, a traffic class can
be defined by configuring an attribute defining a particular IP
address or subnet. Of course, a particular traific class can be
defined 1n relation to a plurality of related and/or orthogonal
data flow attributes. U.S. Pat. Nos. 6,412,000 and 6,591,299,
and U.S. patent application Ser. No. 10/039,992 describe
some of the data flow attributes that may be used to define a
traffic class, as well as the use of hierarchical classification
structures to associate traific classes to data tlows. In one
embodiment, application traific management device 130
includes functionality allowing for classification of network
traffic based on information from layers 2 to 7 of the OSI
reference model. Application traific management device 130
can be configured to include matching rules that define a
plurality of network applications commonly found 1n enter-
prise networks, such as database applications, Citrix® flows,
ERP applications, and the like. As discussed below, the
matching rules or attributes for a tratfic class may be based on
various types ol node behavior, such as the number of con-
current connections of the iside or outside host.

In one embodiment, application traific management device
130 1s configured to include a predefined set of traific classes
based upon a knowledge base gleaned from observation of
common or known traffic types on current networks. Appli-
cation traific management device 130, in one embodiment,
also allows an administrator to manually create a traific class
by specilying a set of matching attributes. As discussed
above, administrator interface 150, in one embodiment,
allows for selection of a traffic class and the configuration of
traffic management policies for the selected traffic class.
Administrator interface 150, 1n one embodiment, also allows
for the selection and arrangement of traific classes into hier-
archical reference trees. In one embodiment, traffic classifi-
cation engine 96 also stores tratlic classes added by the traffic
discovery module. Furthermore, as discussed below, applica-
tion traffic management device 130 may also include traffic
class discovery functionality that automatically adds traflic
classes to traflic classification engine 96 1n response to data
flows traversing the device. Automatic network traific discov-

US 7,554,983 Bl

13

ery and classification (see below) 1s disclosed in U.S. Pat.
Nos. 6,412,000, 6,457,051, and 6,591,299, which are incor-
porated herein by reference.

Traffic classification engine 96, in one implementation,
stores traflic classes associated with data tlows that traverse
access link 21. Traflic classification engine 96, 1n one
embodiment, stores the traific classes and corresponding data
(e.g., matching rules, policies, partition pointers, etc.) related
to each traffic class in a hierarchical tree. This tree 1s orga-
nized to show parent-child relationships—that 1s, a particular
traffic class may have one or more subordinate child traffic
classes with more specific characteristics (matching rules)
than the parent class. For example, at one level a traffic class
may be configured to define a particular user group or subnet,
while additional child traific classes can be configured to
identify specific application traific associated with the user
group or subnet. U.S. application Ser. No. 10/334,467/, as well
as other patents and patent applications identified above, dis-
close how traffic classification engine 96 traverses the hier-
archical tree to match a data tlow to a leat traflic class node.

In one embodiment, the root tratfic classifications are “/In-
bound” and */Outbound” data flows. Any data flow not
explicitly classified 1s classified as “/Inbound/Default” or
“/Outbound/Detault”. The “LocalHost” traffic class corre-
sponds to packets and data flows destined for application
traific management device 130, such as requests for stored
measurement data, traific class mapping packets, or device
configuration changes. In one embodiment, traific classifica-
tion engine 96 attempts to match to a leatf traffic class node
before proceeding to remaining traific class nodes in the
hierarchical configuration. It a traffic class 1s found, the traific
classification engine 96 stops the 1nstant search process and
returns the identified tratfic classification. Of course, one
skilled 1n the art will recogmize that alternative ways for
traversing the hierarchical traffic class configuration can be
implemented. For example, traffic classification engine 96
may be configured to traverse all tratfic class nodes at a given
level before proceeding to lower levels of the traflic classifi-
cation tree.

In one embodiment, administrator interface 150 displays
the traffic class tree and allows for selection of a traffic class
and the configuration of bandwidth utilization controls for
that traflic class, such as a partition, a policy, or acombination
thereol. Administrator interface 150 also allows for the
arrangement of traffic classes into a hierarchical classification
tree. Application traflic management device 130 further
allows an administrator to manually create a traific class by
specilying a set of matching rules and, as discussed below,
also automatically creates traific classes by monitoring net-
work traflic across access link 21 and classifying data flows
according to a set of criteria to create matching rules for each
traffic type. In one embodiment, each traffic class node
includes a traffic class identifier; at least one traffic class
(matching) attribute; at least one policy parameter (e.g., a
bandwidth utilization control parameter, a security policy
parameter, etc.), a pointer field reserved for pointers to one to
a plurality of child traffic classes. In one embodiment, trailic
classification engine 96 implements a reference tree classifi-
cation model wherein separate tratlic classification trees can
be embedded 1n traffic class nodes of a given traffic classifi-
cation tree. U.S. application Ser. No. 10/236,149, icorpo-

rated by reference herein, discloses the use and implementa-
tion of embeddable reference trees.

A.2.a. Automatic Traflic Classification

In one implementation, network device application proces-
sor 73 further includes a traflic discovery module (not shown)
that analyzes data flows for which no matching traific class

e

10

15

20

25

30

35

40

45

50

55

60

65

14

was found in traific classification engine 96. The traffic dis-
covery module, in one embodiment, 1s operative to apply
predefined sets of matching rules to 1dentity a traffic class
corresponding to non-matching data flows. In one implemen-
tation, the traflic discovery module operates on data flows
classified as either /Inbound/Default or Outbound/Default. In
one embodiment, the traflic discovery module 1s configured
to mclude a predefined set of traffic classes based upon a
knowledge base gleaned from observation of common or
known trailic types on current networks. As with the classi-
fication of data flows against the traffic class configuration
hierarchy, automatic traific discovery can be based, at least in
part, on the service type i1dentifiers determined by traific
classification engine 96 (see above). In one embodiment, the
traffic discovery module creates traific classes automatically
in response to data flows traversing bandwidth management
device 130 and stores such traflic classes 1n tratfic classifica-
tion engine 96. Automatic traific classification 1s disclosed in
U.S. Pat. Nos. 6,412,000, 6,457,051, and 6,591,299, which
are incorporated herein by reference.

As discussed above, the traific discovery module applies
one or more traffic discovery thresholds when deciding
whether to present or add newly discovered tratfic classes. In
one embodiment, the traific discovery module must detect a
minimum number of data flows within a predefined period for
a given tralfic type before 1t creates a traffic class in traffic
classification engine 96. In one embodiment, such discovered
traffic classes are, by default, attached to or associated with
either the “/Inbound/Autodiscovered/” or *“/Outbound/ Auto-
discovered/” bandwidth control category, as appropriate. As
discussed below, administrator interface 150 allows for con-
figuration of bandwidth controls for auto-discovered traffic
classes. In one embodiment, auto-discovered traffic classes
are automatically assigned predefined bandwidth utilization
controls. U.S. patent application Ser. No. 09/198,051, incor-
porated by reference herein, discloses automatic assignment
of bandwidth utilization controls for discovered ftraflic
classes. Furthermore, as discussed above, the tratfic discov-
ery module 1s operative to dynamically adjust one or more
traffic discovery thresholds depending on at least one
observed parameter or attribute, such as the rate of discover-
ing new tratfic classes relative to the number of data flows.

In one implementation, the traific discovery module auto-
matically adds newly discovered traffic classes to traffic clas-
sification engine 96, which are presented to the network
administrator with manually configured and/or previously
discovered traffic classes. In an alternative embodiment, the
traffic discovery module may save the newly discovered trai-
fic classes 1n a separate data structure and display them sepa-
rately to a network administrator. The list may be sorted by
any well-known criteria such as: 1) most “hits” during a
recent interval, 2) most recently-seen (most recent time {irst),
3) most data transtferred (bytes/second) during some interval,
or a moving average. The user may choose an interval length
or display cutoil point (how many i1tems, how recent, at least
B bytes per second, or other thresholds). The network man-
ager may then take some action (e.g. pushing a button) to
select the traffic types she wishes to add to the classification
tree.

A.2.b. Orthogonal Attribute Classification

As discussed in U.S. application Ser. No. 10/938,435, trai-
fic classification engine 96, 1n one implementation, supports
matching rule predicates that correspond to various condi-
tions, such as node behavior and path metrics, which are
orthogonal to explicit packet attributes. In some implemen-
tations, this allows for a bandwidth management scheme that
can classity data tlows relative to the observed behavior of

[,

US 7,554,983 Bl

15

either one of, or both, the end systems or nodes associated
with a data flow and can apply appropnate policies to the
flows. In one implementation, the matching rule predicates
for node behavior are based on statistics maintained by host
database 134 (see above), such as the numbers of currently
active tlows (in the aggregate or with respect to a certain
protocol, such as TCP or UDP) and rate of new flows. In other
implementations, additional or alternative matching rule
predicates can be created based on network path metrics, such
as observed round-trip time, packet exchange time, normal-
1zed network delay, server delay, total delay, and/or current
transmission rate (bps). U.S. application Ser. No. 10/812,198
discloses the computation of how these metrics can be com-
puted. Computation of packet exchange time 1s disclosed in
U.S. application Ser. No. 09/710,442. Other characteristics
ort_’logonal to packet attributes that one could use to classily
traflic are current CPU utilization or the inbound or outbound
link utilizations. For example, data flows can be classified
based on the CPU utilization or load placed on application
traffic management device 130, access link 21 and/or even
router 22 (by polling 1ts 111terface via SNMP, for example), as
opposed to the behavior of the corresponding end systems or
explicit packet attributes of a given flow. In one implementa-
tion, the matching rules, traific classes, and policies can be
created once and continue to carry out their objectives with-
out any reconfiguration of traffic classification engine 96.
Still further, these orthogonally-based predicates may be
combined with matching rules that operate on attributes of the
packets themselves (see above) to achieve a variety of objec-
tives.

The following provides matching rule predicates, accord-
ing to one implementation of the invention, that can be used 1n
connection with configuration commands entered 1n a com-
mand line or web-based interface:

1) client-flow-rate:<low>-<high>: This command speci-
fies a range for the number of new flows or connections
for which the host 1s a client over the last minute. This
predicate can be applied to mside and/or outside hosts
relative to application traific management device 130
(see Section A.l., above). The rates are specified in
flows-per-minute (FPM) or you may use “unlimited” for
the <high> value.

2) server-flow-rate:<low>-<high>: This command speci-
fies a range for the number of new flows or connections
for which the host 1s a server over the last minute. This
predicate can be applied to inside and/or outside hosts

3) failed-flow-rate:<low>-<high>: This command speci-
fies a range for the number of failed flows or connections
for which a host 1s a client. For TCP flows, a failed flow
can be detected when a RST packet 1s transmitted 1n
response to a SYN packet, or whenno responsetoa SYN
packet 1s received after a threshold period of time.

4) tcp-tlows:<low>-<high>: This command specifies a
range of the number of current TCP tlows for a host.

5) udp-flows:<low>-<high>: This command specifies a
range of the number of current UDP flows for a host.

A.2.c. Host Probing Module

FIG. 4 illustrates the coordinated operation of the service
type 1dentification modules (discussed above) of traffic clas-
sification engine 96 and host probing module 97. In one
implementation, packet processor 92, after 1t has processed a
packet passes a pointer to the packet in the buifer, which the
traffic classification engine 96 recerves (142). In the imple-
mentation shown, 1f the host probing flag has not been set
(144), traffic classification engine 96 passes the packet to one
or more service type identification modules (146). As dis-
cussed above, each service type 1dentification module ana-

10

15

20

25

30

35

40

45

50

55

60

65

16

lyzes the packet, and possibly data fields 1n the tlow object, to
identify a service type for the flow. As discussed above, each
service type identification module limits 1ts analysis to the
first P packets 1n a flow (in the aggregate, 1n the server-to-
client direction, or the client-to-server direction) before either
identifying a service type or reporting that no service type was
identified. In one implementation, the threshold packet count,
P, may vary across the service type identification modules. As
FIG. 4 illustrates, 1f none of the service type i1dentification
modules 1dentifies a network-application-level service type
(such as, Cytrix, Oracle, Napster, etc.) (148) after alt have
completed inspection of the packets in a given data flow
(150), traific classification engine 96 sets the host probing
flag 1n the flow object corresponding to the data flow (152).
Traffic classification engine 96 then processes the packet
against the hierarchical tratlic class configuration to classity
the data flow (156). As FIG. 4 1llustrates, when the host
probing flag 1s set (144), the packet and flow object pointers
are passed to host probing module 97, which probes an end-
host associated with the flow to potentially identify a traffic
class (see below).

FIG. 5 1llustrates the process tlow, according to one imple-
mentation of the present mnvention, directed to probing a host
according to one or more available host patterns 1n order to
identily a network application. In one implementation, host
probing module 97, when 1mvoked as to a given data flow,
operates 1n a separate process from packet processor 92,
traffic classification engine 96 and tflow control module 94 to
ensure that packet through-put 1s not substantially atfected.
As FIG. 5 1llustrates, when host probing module 97 receives
a pointer to a packet 1n a data flow (162), it inspects the packet
and flow object attributes to 1dentity the host(s) to be probed
and, 1n some 1mplementations, the location of the client and/
or server relative to application traflic management device
130 (164). This may be useful to determine the availability of
any host probe patterns that can be used to potentially classity
the data flow (166). For example, one or more host probe
patterns may be limited to clients located to the “inside” of
application traific management device 130 (1n other words, to
clients connected to network 40 1n the implementation 1llus-
trated 1n FIGS. 1 and 2). Host probing module 97 may also
climinate certain host probe patterns from consideration for a
given data flow based on other flow attributes, such as source
and/or destination port numbers, protocol identifiers, and the
like. In one implementation, host probing module 97 then
determines whether host probing has already started or com-
pleted for the tlow (163). In addition, 1f there are no available
host probe patterns, host probing module 97 returns a “no
service 1d found” message to traffic classification engine
(184). Otherwise, host probing module 97 selects the first
available host probing pattern (168), and composes and trans-
mits a probe packet to an end host according to the first probe
pattern (170). If a response 1s recerved (172) before 1t times
out (174), host probing module 97 compares the response to
the probe pattern. If a match 1s found, host probing module 97
returns a service type i1dentifier corresponding to the 1denti-
fied network application (178). Otherwise, host probing mod-
ule 97 repeats the probing process for all remaining available
host probe patterns, 11 any (180, 182).

Other implementations are possible. As FIG. 4A 1llus-
trates, traific classification engine 96, 1n one implementation,
can 1nvoke host probing module for each new data tlow (192).
In such an implementation, host probing module 97 operates
concurrently with the service type 1dentification modules dis-
cussed above. As FI1G. 4A also 1llustrates, 1n one implemen-
tation, once an application-level service type 1s 1dentified all
other service type 1dentification processes are stopped for the

US 7,554,983 Bl

17

same data flow. For example, the processes implemented by
host probing module 97 are stopped, 11 a service type 1denti-
fication module 1dentifies an application-level service type,
and vice versa.

Probing hosts against one or more network application
profiles 1s useful to classily network tratfic in many instances
where explicitly presented attributes of the packets are
obscured or insuflicient to identify a network application,
such as, but not limited to, 1) the case where the network
traffic 1s encrypted, 2) where the network application does not
have a known or sufliciently-unique application signature
revealed 1n the packets, 3) where the packets are transmitted
from a proprietary application where the header format is
unknown, and 4) a large amount of memory would be other-
wise required to store information from previous packets in a
given flow for subsequent classification.

A.2.c.1. Probe Packets (t Host Probe Patterns

A host probe pattern can include a variety of information
detailing how a host 1s probed to identily a given network
application. A host probe pattern, 1n one implementation, can
specily the parameters by which host probing module 97
emulates a peer 1n a peer-to-peer network application. In
another implementation, a host probe pattern can specily how
to emulate a client in a traditional server-client network appli-
cation. In yet another implementation, a host probe pattern
can specily how to emulate a server 1n a server-client network
application. A host probe pattern, for example, may specity
connection parameters, such as the transport layer connection
to be used, whether encryption and/or tunneling 1s used, eftc.
In addition, the host probe pattern may also specily the con-
figuration of one or more probe packets, as well as the con-
figuration of an expected response. Probe packets can be sent
to either source or destination host of the flow or both. In one
implementation, the IP address and port numbers correspond-
ing to one of the end hosts involved 1n the tlow are used for the
destination fields of the probe packet, while an IP address and
a port number of application traific management device 130
from a range of port numbers dedicated to host probing are
used 1n the source fields. To transmit the probe packet, host
probing module 97, 1n one implementation, creates a socket
and then writes the probe packet to the socket, which waits for
a response. In one implementation, host probing module 97
can select choose the same transport protocol (e.g., TCP,
UDP) as that seen 1n the flow, or a different transport protocol
based on any relevant information in the packet or control
block object.

The data payload of the probe packet may contain user-
specified, fixed data, or can be dynamically generated by
using a predetermined algorithm. In one implementation, the
data inserted in the payload, whether statically or dynami-
cally defined, 1s based on a heuristic evaluation and analysis
of actual or stmulated sessions between end hosts employing
the particular network application corresponding to the host
probe pattern. In one implementation, the data payload 1s a
copy of a payload from a packet captured in a previous active
or simulated session. After constructing the IP and TCP/UDP
headers and application data for the probe packet, host prob-
ing module 97 computes the IP and protocol checksums for
the probe packet.

After host probing module 97 creates a probe packet, in one
implementation, 1t 1nitiates a connection to the target end
host. For example, host probing module 97 can attempt to
initiate a TCP connection or an encryption handshake with
the network application on the target end host. After estab-
lishing a successiul connection, host probing module 97 then
transmits the probe packet to the target end host. Of course, 1
the UDP transport protocol 1s used, connection setup 1s not

10

15

20

25

30

35

40

45

50

55

60

65

18

required. In one implementation, host probing module 97
maintains state information for each probe packet in order to
identily responses, 11 any, transmitted by the target end host.
In addition, as discussed above, host probing module 97 may
probe both end hosts associated with a given data flow and
examine the responses, i any, 1n an attempt to identily the
network application corresponding to the data flow.

A.2.c.2. Responses to Probe Packets

Probe responses, 1f any, will be generated by the applica-
tion residing on the target end host and transmitted back to
application traific management device 130. Using the state
information maintained 1in connection with the probe packets,
host probing module 97 matches the probe response to the
transmitted probe packet and compares the response with one
or more expected response signatures 1dentified 1n the host
probe pattern. The expected response signatures can be static
or dynamically generated based on a response template cor-
responding to the host probe pattern. I the response matches
a response signature, host probing module 97 returns the
service type identifier corresponding to the identified network
application. Otherwise, host probing module 97, in one
implementation, repeats the process for any remaining avail-
able host probe patterns. In one implementation, host probing
module 97 can use mformation gleaned from a previous,
unsuccessiul probe sequence to eliminate one or more of the
remaining host probe patterns from application to a given data
tlow.

As discussed above, the network application of the target
host may respond to probe packets in different manners
depending on the state of the network application, executed
on a target end host, at any given instance. To address these
circumstances, the host probe pattern corresponding to the
network application may include multiple response signa-
tures or profiles, some of which may be statically defined,
while others are dynamically defined. FIGS. 6A thru 6D
illustrate examples of probe packets and probe responses
according to one implementation of the present mvention.
FIG. 6 A illustrates attributes of a probe packet designed to
detect whether an end host 1s running a peer-to-peer, VOIP
application. As FIG. 6 A illustrates, host probing module 97
uses the IP address and port number of the target end host, as
detected 1n the packets traversing application traffic manage-
ment device 130, as the destination address 202 and port
number 204, respectively. FI1G. 6B illustrates the attributes of
a probe response that could be expected from a Skype peer.
Still further, FIG. 6C illustrates the attributes of a probe
packet transmitted to a second host, using a different IP
address-port number pair. F1G. 6D illustrates the attributes of
a response to the probe packet from a Skype peer. Note that,
in both cases, the first two bytes 206 of the payload of the
probe packet are copied into the first two bytes ol the response
packet payloads. In addition, note that the third byte 1n the
response payload changes from a 0x02 to Ox07 between the
probe packet and the response. Note, however, that the
response transmitted by the second host (FIG. 6D) also
includes the IP address 209 (see FI1G. 6C) of the application
traffic management device 130 that transmitted the probe
packet 1n the payload of the response (see FIG. 6D, 208).
From an evaluation of these probe responses, two response
profiles or signatures can be developed. According to a first
response profile, a probe response can be validated based on
the first two data bytes 206 1n the payload. According to a
second response profile, a probe response can be validated
based on the appearance of the IP address 208 in the payload
alter the third byte. Of course, other attributes can also be
used as well. One of skill 1n the art will recognize how to
develop response profiles or signatures by probing a variety of

US 7,554,983 Bl

19

hosts implementing a given network application, recording
responses, and analyzing the responses for unique attributes
or behaviors to develop a response signature or profile for use
in connection with the present invention.

A.2.c.3. Configuration Parameters and Additional Options

Host probing module 97 can feature a variety of config-
urable parameters. For example, using administrator inter-
face 150, a user can specily, for example, 1) when host prob-
ing should be initiated, 2) the number of probe packets to send
according to a given host probe pattern before declaring no
match, 3) how long to wait for a probe response before send-
ing the next probe packet, 4) a list of hosts (by IP address) that
should be excluded from probing, and 5) a list of hosts (by IP
address, subnet or interface) where probing 1s preferred. One
skilled 1n the art will recognize that a variety of configuration
options are possible and that the foregoing 1s merely 1llustra-
tive.

In some implementation, host probing module 97 can use
the mnformation obtained from probing one target end host to
aid 1n the classification of data flows from other end hosts, or
subsequent data tlows associated with the same host. For
example, host probing module 97 can be configured to save an
IP address and port number pair 1n association with an 1den-
tified service type. If a subsequent flow, having the same IP
address and port number pair 1s encountered, host probing
module 97 returns the associated service type 1n lieu of per-
forming an additional probe. In one implementation, host
probing module 97 can re-1initiate a probe of the host based on
the staleness of this information.

In addition, host probing module 97 can be configured to
prioritize the selection of a given target host based on
observed behaviors, such as the number of current connec-
tions, rate ol new connections, etc. For example, a large
number of current connections may indicate the possibility of
a super-host 1n a peer-to-peer application. In some nstances,
probing a super-host may be more informative than probing a
host having less activity associated with 1t.

A.3. Flow Control Module

As discussed above, flow control module 94 applies band-
width utilization controls (and, in some embodiments, other
policies) to data flows traversing access link 21. The above-
identified patents and patent applications describe the opera-
tion of, and bandwidth utilization controls, implemented or
supported by flow control module 94. Application tratfic
management device 130, however, can also be configured to
implement a variety of different policy types, such as security
policies, admission control policies, marking (diffserv,
VLAN, etc.) policies, redirection policies, caching policies,
transcoding policies, and network address translation (NAT)
policies. Of course, one of ordinary skill 1n the art will rec-
ognize that other policy types can be incorporated into
embodiments of the present invention. The functionality of
flow control module 94, in one implementation, can be con-
ceptually segregated into three main tasks: 1) allocation of
bandwidth to individual flows, 2) enforcement of bandwidth
allocations, and 3) monitoring of actual bandwidth utilization
to provide feedback to subsequent bandwidth allocations.

Allocation of bandwidth 1s primarily influenced by three
main factors: 1) the number of concurrent flows and their
respective traific classifications; 2) the overall or aggregate
bandwidth utilization control scheme configured by the net-
work administrator (such as the capacity of the access link,
the partitions that have been configured, configured rate poli-
cies, and the like), and 3) the respective target rates corre-
sponding to the individual flows. U.S. application Ser. No.
10/810,785 and U.S. Pat. Nos. 5,802,106 and 6,205,120,

incorporated by reference above, disclose methods for deter-

10

15

20

25

30

35

40

45

50

55

60

65

20

mining target rates for data flows for use in bandwidth allo-
cation decisions. As discussed above, a user can select a given
traffic class and specily one or more bandwidth utilization
controls for the traffic class. A bandwidth utilization control
for a particular traffic class can comprise an aggregate band-
width utilization control, a per-flow bandwidth utilization
control, or a combination of the two (see Sections
A3.a. i« A3.b.). The combination of bandwidth utilization
controls across the traffic classes defines an aggregate band-
width utilization control scheme.

Flow control module 132 can use any suitable functionality
to enforce bandwidth allocations known 1n the art, including,
but not limited to class-based queuing, weighted fair queuing,
class-based weighted fair queuing, Committed Access Rate
(CAR) and “leaky bucket” techniques. Flow control module
132, in one implementation, may incorporate any or a subset
of the TCP rate control functionality described 1n the cross-
referenced U.S. patents and/or patent applications set forth
above for controlling the rate of data flows.

A.3.a. Aggregate Bandwidth Utilization Control

An aggregate bandwidth utilization control operates to
manage bandwidth for aggregate data flows associated with a
traffic class. An aggregate bandwidth utilization control can
be configured to essentially partition the available bandwidth
corresponding to a given access link. For example, a partition
can be configured to protect a network traffic class by guar-
anteeing a defined amount of bandwidth and/or limit a net-
work trailic class by placing a cap on the amount of band-
width a traffic class can consume. Such partitions can be fixed
or “burstable.” A fixed partition allows a traffic class to use 1n
the aggregate a defined amount of bandwidth. A fixed parti-
tion not only ensures that a specific amount of bandwidth wall
be available, but 1t also limits data flows associated with that
traffic class to that same level. A burstable partition allows an
aggregate traflic class to use a defined amount of bandwidth,
and also allows that traffic class to access additional unused
bandwidth, 11 needed. A cap may be placed on a burstable
partition, allowing the traffic class to access up to a maximum
amount of bandwidth, or the burstable partition may be
allowed to potentially consume all available bandwidth
across the access link. Partitions can be arranged 1n a hierar-
chy—that 1s, partitions can contain partitions. For example,
the bandwidth, or a portion of the bandwidth, available under
a parent partition can be allocated among multiple child par-
titions. In one embodiment, at the highest level, a partition
exists for all available outbound bandwidth, while another
partition exists for all available inbound bandwidth across the
particular access link. These partitions are then sub-dividable
to form a hierarchical tree. For example, an enterprise
employing static partitions may define a static partition for a
PeopleSoit software application traific class, and sub-divide
this parent partition into a large burstable child partition for its
human resources department and a smaller burstable child
partition for the accounting department. U.S. patent applica-
tion Ser. No. 10/108,085 includes a discussion of methods for
implementing partitions, as well as novel solutions for imple-
menting partitions arranged i a hierarchical allocation
scheme.

In one embodiment, a partition 1s created by selecting a
traffic class and configuring a partition for 1t. As discussed
above, configurable partition parameters include 1) minimum
partition size (1n bits per second); 2) whether 1t 1s burstable
(that 1s, when this option 1s selected, 1t allows the partition to
use available excess bandwidth; when the option i1s not
selected the partition has a fixed size); and 3) maximum
bandwidth to be used when the partition bursts. For example,
a network administrator may configure a partition for data

US 7,554,983 Bl

21

flows associated with suspicious users to limit the effect of the
network traffic associated with them on utilization of access
link 21.

A.3.b. Per-Flow Bandwidth Utilization Controls

Flow control module 132 1s also operative to enforce per-
flow bandwidth utilization controls on traffic across access
link 21. Whereas aggregate bandwidth utilization controls
(e.g., partitions, above) allow for control of aggregate data
flows associated with a traific class, per-tlow bandwidth uti-
lization controls allow for control of individual data flows. In
one embodiment, flow control module 132 supports different
bandwidth utilization control types, including, but not limited
to, priority policies, rate policies, and discard policies. A
priority policy determines how individual data flows associ-
ated with a traffic class are treated relative to data flows
associated with other tratfic classes. A rate policy controls the
rate of data tlows, for example, to smooth bursty traific, such
as HTTP traific, 1n order to prevent a TCP end system from
sending data packets at rates higher than access link 21
allows, thereby reducing queuing in router buifers and
improving overall efficiency. U.S. patent application Ser. No.
08/742,994, now U.S. Pat. No. 6,038,216, incorporated by
reference above, discloses methods and systems allowing for
explicit data rate control 1n a packet-based network environ-
ment to improve the efficiency of data transters. Similarly,
U.S. Pat. No. 6,018,516, incorporated by reference above,
methods and systems directed to mimmizing unneeded
retransmission of packets 1n a packet-based network environ-
ment. A rate policy can be configured to establish a minimum
rate for each flow, allow for prioritized access to excess avail-
able bandwidth, and/or set limits on total bandwidth that the
flow can consume. A discard policy causes flow control mod-
ule 132 to discard or drop data packets or flows associated
with a particular traffic class. Other policy types include
redirection policies where an 1inbound request designating a
particular resource, for example, 1s redirected to another
Server.

A.4. Overall Process Flow

FI1G. 3 illustrates the overall process flow, according to one
implementation of the present nvention, directed to the
operation of application traffic management devices 130. In
one embodiment, packet processor 92 recetves a data packet
(FIG. 3, 102) and determines whether the packet 1s a response
to a probe packet transmitted by host probing module 97
(110). If so, packet processor 92 passes a pointer to the packet
in the butler to host probing module 97. Otherwise, packet
processor 92 determines whether tlow database 133 contains
an existing control block object corresponding to the data
flow (104) (see Section A.1., supra). If no control block object
corresponds to the data packet, packet processor 92 con-
structs a control block object including attributes character-
izing the data flow, such as source address, destination
address, etc. (106) (see above). In one embodiment, packet
processor 92 analyzes the source and destination IP addresses
in the packet header and scans host database 134 for matching
entries. If no matching entries exist, packet processor 92
creates new entries for the source and destination IP
addresses. As discussed above, 1n one embodiment, a control
block object contains a flow specification object including
such attributes as pointers to the “inside” and “outside” IP
addresses 1n host database 134, as well as other flow specifi-
cation parameters, such as inside and outside port numbers,
protocol type, pointers to variable-length information 1n a
dynamic memory pool, and other parameters characterizing
the data flow.

As FIG. 3 illustrates, packet processor 92 updates, for
existing data flows, attributes of the tlow object in response to

10

15

20

25

30

35

40

45

50

55

60

65

22

the packet such as the packet count, last packet time, and the
like. Packet processor 92 can also perform other operations,
such as analyzing the packets for connection state informa-
tion. For example, packet processor 92 can inspect various
TCP flags to determine whether the recerved packet 1s part of
anew data flow or represents a change to an existing data flow
(such as the first data packet after the TCP handshake). Meth-
ods for determining new data tlows and assigning packets to
existing data flows are well known 1n the art and also depend
on the particular transport layer protocol employed. For a
TCP packet, packet processor 92 can determine a new data
flow by detecting SYN and/or SYN/ACK packets. However,
a new data flow can simply be a data flow for which there 1s no
corresponding control block object in tlow database 135. In
addition, with UDP and GRE flows (where there 1s no explicit
connection mechanism, such as SYN packets), a new tlow 1s
recognized by associating the source and destination
addresses and port numbers to the flow and the flow type (e.g.,
UDP, GRE, etc.). Accordingly, when a UDP packet identifies
a new address/port pair, the attributes discussed above are
stored 1n a data structure along with the time of last packet. A
new UDP flow between the same address/port pairs can be
determined by comparing the last packet time to a threshold
value (e.g., 2 minutes). If the difference between the time of
the latest packet and the time of the last packet 1s greater than
the threshold, the new packet 1s deemed part of a new flow. In
another embodiment, a separate process monitors the last
packet times associated with UDP, GRE and similar flow
types to detect termination of a given flow.

As FIG. 3 illustrates, packet processor 92 then passes a
pointer to the packet, in one implementation, to tratfic clas-
sification engine 96, which operates as discussed above to
classity the data flow. As FIG. 3 illustrates, application tratfic
management device 130 may also perform other operations in
response to arrival of the packet. For example, measurement
engine 140 may record certain measurement variables on an
aggregate or per-traific class basis (116). Lastly, the packet 1s
passed to flow control module 134 (118), which performs
flow control operations on the data packets.

Lastly, although the present invention has been described
as operating in connection with end systems and networks
employing the TCP, IP and Ethernet protocols, the present
invention has application 1n computer network environments
employing any suitable transport layer, network layer and
link layer protocols. Moreover, other system architectures are
possible. For example, the host probing functionality
described above can be implemented on a separate network
device. Still further, the host probing functionality discussed
above can be implemented as scripts executed by an embed-
ded runtime environment. U.S. application Ser. Nos. 10/178,
617 and 10/812,198 discloses the use of embedded runtime
environments and scripts 1n application traffic management
devices. Accordingly, the present invention has been
described with reference to specific embodiments. Other
embodiments of the present invention wilt be apparent to one
of ordinary skill in the art. It 1s, therefore, intended that the
claims set forth below not be limited to the embodiments
described above.

What 1s claimed 1s:
1. An apparatus facilitating network traffic classification,
comprising;
a memory for bullering packets corresponding to data
flows traversing a network path;
a packet processor operative to

associate the buffered packets with corresponding data
flows:

US 7,554,983 Bl

23

parse explicit attributes of at least one packet associated
with the data flows 1nto corresponding flow objects;
a traific classification engine operative to
compare the flow objects to a plurality of traffic types,
and

if the comparison finds a matching traffic type in the
plurality of traific types, associate the data flow with

the matching traific type; and
a host probing module operative, as to a selected data tlow
between a first host and a second host, to

generate and transmit a probe packet to the first host;
receive a response to the probe packet;

compare the response to a profile corresponding to a
network application; and

associate the data tlow with an identifier corresponding
to the network application, 11 the response matches the
profile.

2. The apparatus of claim 1 wherein the host probing mod-
ule operates 1n connection with a plurality of profiles each
corresponding to a respective network application; and
wherein the host probing module 1s operative to select a
profile from the plurality of profiles based on attributes of at
least one packet in the selected data tlow.

3. The apparatus of claim 2 wherein each profile defines
attributes of a probe packet and attributes of an expected
response to the probe packet.

4. The apparatus of claim 2 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a peer 1n a peer-to-peer network
application.

5. The apparatus of claim 2 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a client 1n a server-client network
application.

6. The apparatus of claim 2 wherein at least one profile 1n
the plurality of profiles defines parameters by which the host
probing module emulates a server 1n a server-client network
application.

7. The apparatus of claim 1 wherein the traffic classifica-
tion engine 1s operative to classily the data flows based on
attributes of the packets 1n the data flows.

8. The apparatus of claim 7 wherein the host probing mod-
ule 1s operative to abort classification of the data flow 11 the
traflic classification engine 1dentifies the data flow as match-
ing a network application.

9. The apparatus of claim 8 wherein the traffic classifica-
tion engine 1s operative to abort classification of the data tflow
if the host probing module identifies the data flow as matching
a network application.

10. A method for classifying network traffic, comprising:

detecting a data flow comprising at least one packet trans-
mitted between a first host and a second host;

classitying, based on attributes of the at least one packet,
the data tlow 1nto a traffic class selected from a plurality
of traffic classes:

if, after encountering a threshold number of packets in the
data flow, the traflic class i1dentified 1n the classitying
step does not correspond to a network application, then
generating and transmitting a probe packet to the {first

host;

receiving a response to the probe packet;
comparing the response to a profile corresponding to a
network application; and

associating the data flow with a traffic class correspond-
ing to the network application, 1f the response
matches the profile.

10

15

20

25

30

35

40

45

50

55

60

65

24

11. The method of claim 10 further comprising selecting
the profile from a plurality of profiles based on attributes of at
least one packetin the selected data flow, wherein each profile
in the plurality of profiles corresponds to a respective network
application.
12. The method of claim 11 wherein each profile defines
attributes of the probe packet and attributes of an expected
response to the probe packet.
13. The method of claim 12 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a peer in a peer-to-peer network
application.
14. The method of claim 12 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a client 1n a server-client network
application.
15. The method of claim 12 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a server 1n a server-client network
application.
16. A method for classitying network traflic, comprising:
detecting a data flow comprising at least one packet trans-
mitted between a first host and a second host:

classitying, based on attributes of at least one packet of the
data flow, the data flow 1nto a traffic class selected from
a plurality of traific classes;

selecting a profile from a plurality of profiles based on

attributes of at least one packet the data flow, wherein

cach profile 1n the plurality of profiles corresponds to a
respective network application;

generating and transmitting a probe packet according to the
selected profile to the first host;

receving a response to the probe packet;
comparing the response to the selected profile; and

associating the data flow with an identifier corresponding,
to the network application associated with the selected
profile, 11 the response matches the selected profile;

stopping the classitying step 1f a network application 1s
associated with the flow; and

aborting the recerving, comparing and associating steps 1
the classitying step vields a traflic class corresponding to
a network application.

17. An apparatus facilitating network traffic classification,
comprising;
a memory for buflering packets corresponding to data
flows traversing a network path;

a packet processor operative to

associate the buffered packets with corresponding data
flows:

a host probing module operative, as to a selected data tlow
between a first host and a second host, and 1n connection
with a plurality of profiles each corresponding to a
respective network application, to

select a profile from the plurality of profiles based on
attributes of at least one packet 1n the selected data
flow, wherein each profile defines attributes of a probe
packet and attributes of an expected response to the
probe packet;

generate and transmit a probe packet to the first host;
receive a response to the probe packet;

compare the response to the selected profile correspond-
ing to a network application; and

associate the data flow with an identifier corresponding
to the network application, 11 the response matches the
selected profile.

US 7,554,983 Bl

25

18. The apparatus of claim 17 wherein at least one profile 1n
the plurality of profiles defines parameters by which the host
probing module emulates a peer 1n a peer-to-peer network
application.

19. The apparatus of claim 17 wherein at least one profile in
the plurality of profiles defines parameters by which the host

probing module emulates a client 1n a server-client network
application.

20. The apparatus of claim 17 wherein at least one profile in
the plurality of profiles defines parameters by which the host
probing module emulates a server 1n a server-client network
application.

10

26

21. The apparatus of claim 17 further comprising a traffic
classification engine operative to classity the data flows based
on attributes of the packets in the data tlows.

22. The apparatus of claim 21 wherein the host probing
module 1s operative to abort classification of the data flow 11
the traffic classification engine identifies the data flow as
matching a network application.

23. The apparatus of claim 22 wherein the traffic classifi-
cation engine 1s operative to abort classification of the data
flow 11 the host probing module identifies the data flow as
matching a network application.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

