12 United States Patent

Bethune et al.

US007551182B2

US 7,551,182 B2
Jun. 23, 2009

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR PROCESSING
MAP DATA

Inventors: Christopher Bethune, Scarborough
(CA); Ryan Eccles, Toronto (CA); Tom
Kapler, Toronto (CA)

Assignee: Oculus Info Inc., Toronto, Ontario (CA)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 115 days.
Appl. No.: 11/333,298
Filed: Jan. 18, 2006
Prior Publication Data
US 2006/0170693 Al Aug. 3, 2006

Related U.S. Application Data
Provisional application No. 60/644,033, filed on Jan.

18, 2005.

Int. CI.

GO09G 5/00 (2006.01)

G09G 5/02 (2006.01)

GO6T 15/00 (2006.01)

HO4N 1/46 (2006.01)

HO4N 1/387 (2006.01)

GO6K 9/36 (2006.01)

GO6K 9/34 (2006.01)

US.CL . 345/619; 345/381; 345/630;

345/501; 345/522;358/453; 358/538; 382/173;
382/282; 382/284; 382/305; 715/255; 715/700

Field of Classification Search 345/418-423,
345/581-583, 587, 589, 619, 629-630, 501,
345/3522, 530, 552, 555-536; 715/200, 700,
715/813, 848, 255, 273, 764, 382/171, 173,
382/254, 276, 282, 284, 305; 358/537-538,

358/452-453, 448
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,247,019 Bl 6/2001 Davies
2004/0047519 Al1* 3/2004 Gennartetal. 382/298
2004/0217980 Al1* 11/2004 Radburn etal. 345/672
(Continued)
OTHER PUBLICATIONS

Smith, “A Digital Library for Geographically Referenced Materials™,
1996, IEEE, pp. 54-60.%

(Continued)

Primary Examiner—Sajous Wesner
(74) Attorney, Agent, or Firm—Grant Tisdall; Gowling
Lafleur Henderson LLP

(57) ABSTRACT

A system and method is provided for assembling graphics
information as a graphics display for presentation on a visual
interface, the graphics information including a plurality of
image tiles stored in a data store. The system and method
comprise a management module for receiving a graphics
request message and for coordinating processing of a selected
number of the image tiles to generate at least one representa-
tive 1mage tile as the graphics display in response to the
graphics request message. The system and method also com-
prise a graphics system coupled to the management module
for receving processing information from the management
module to facilitate access to the selected number of the
image tiles. The selected number of 1mage tiles are processed
as a combination to generate the least one representative
image tile, such that the graphics system includes graphics
hardware such as a GPU/VPU configured for processing the
graphics information.

22 Claims, 14 Drawing Sheets

-~

Client
Application

b
r‘i"

12

. - - Client
Applicatian
.,
204 /13
4 Graphics Hardware ﬁ:f" 32 / CPU 30 A
4 et L)
: ﬁ d] o
Application
5 (Spatial Index D
(Texture X ~
70 (/ Cache) ~~{ Cllent
uff —_— polication
h..‘(: Frame Bufter \ L / i H}
. \ / ut
56 4c/ {o,gg 12
L6 (60 [54 58
¥
C . 1/0
100 \
Tlla Database \
~—_ 16 ™ 108
Client Tila Database
[Appiicﬂtim% m
— R

US 7,551,182 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0237329 Al* 10/2005 Rubinstemn et al. 345/531
2006/0188137 Al* 8/2006 Bacusetal. 382/128
OTHER PUBLICATIONS

Ming Fan et al: “A review of real-time terrain rendering techniques”
Computer Supported Cooperative Work 1n Design, 2004. Proceed-
ings. The 8th International Conference on Xiamen, China May
26-28, 2004, Piscataway, NJ, USA, IEEE, vol. 1, May 26, 2004, pp.
685-691 XP010737215 ISBN: 0-7803-7941-1 *p. 685, paragraph 1*
* pp. 685-686, paragraph 2.1.1* *p. 690, paragraph 3.3%*.

“Raster data in ArcSDE 8.3”[Online] Sep. 2003, XP002378367
Retrieved from the Internet: URL:http://www.esri.com/library/

whitepapers/pdfs/arcsde83-raster.pdf> [retrieved on Apr. 20, 2006]
*p. 1, line 1—p. 5, last line * *p. 18, line 1—Ilast line™ *p. 22, lines
11-14%*,

Thomas Porter & Tom Duftf, Computer Graphics Project Lucasfilm
Ltd., Compositing Digital Images; Jul. 1984 pp. 253-259.

Zhao F J et al: “Web publication of remote sensing images based on
ArcIMS” IGARSS 2003. IEEE 2003 International Geoscience and
Remote Sensing Symposium. Proceedings. Toulouse, France, Jul.
21-25, 2003, IEEE International Geoscience and Remote Sensing
Symposium, New Yor, NY: IEEE, US, vol. vol. 7 of 7, Jul. 21, 2003,
pp. 4540-4542, XP010704120 ISBN: 0-7803-7929-2 *p. 4541, para-
graph III.B—p. 45412, paragraph IV*,

* cited by examiner

U.S. Patent Jun. 23, 2009 Sheet 1 of 14 US 7,551,182 B2

Visual Interface 202

£ :'-T.:E_‘:'\.‘ :-'1'- o -1...:!-""

LY

xt " -"’l.' ' aH -.L -..)) !;I e - . 1- R .: .
1- Far . . % :...‘...-_.' . i 4 ‘. . .y .I._.l . 1
3 ,;;5";-;.:“"\:-.- . .,:I-..:- o, , A . . -. w7 y $
.. '.:- wr oy

Input Data
Elements

16

Client

TTTTEEETTTETTTS Application
12

P—
P—

"
—

10

15

15

Source(s)
41

Database Manager 14

U.S. Patent Jun. 23, 2009 Sheet 2 of 14 US 7,551,182 B2

Data Processing system 100

Memory 102
| 116 32
VI | Bl
Client Manager 10
Application 112 —
12
120
Data BUS 106
Manager
123 14 I
16 | I/0 |
Database Operating 108 46

System
110

Figure 2

U.S. Patent Jun. 23, 2009 Sheet 3 of 14 US 7,551,182 B2

Client
Application
12
13 e
*\p Client
Application

-

Graphics Hardware >/ 32 f CPU 3 A
2

VRAM Application
s C Spatial Index
(Texture i ~
7_0 Cache Client
(Frame Buffer 14 Application
\. _ —

il e o

Tile Database

16

Client
Application 12
/

Tile Database

16a

Figure 3

U.S. Patent Jun. 23, 2009 Sheet 4 of 14 US 7,551,182 B2

5 202

Source Dats .
14 210 514 Layer Fold 20

I'U
'

<>
XML
Mapman | Spatial Index
i GDALAII

DDS Tiles

(3d Hardware Optimi2ec
DTED |- 03 16

38

U.S. Patent Jun. 23, 2009 Sheet 5 of 14 US 7,551,182 B2

19
11

1024 256

512
Tile
Tile
Tile
Tile
Tile
lla

‘ l11a

512

012

Tile

1024

Tile
l1a

T "
T

9G¢ 09G¢ 962 962 9SC¢ 9G¢ 9G¢ 99¢

. . . R o
- . LR N . . .
o ' ' b . - .
: “!'*-1_ Tt p L N .. . ol
.:1_-" . C o : . o '::,
i — : 4
o ' I i
) -h) . I e :
- 1
' ' L H A
» ;
. meappE e n ma
' .
¥
'; -' -)
N EA - L
‘ . . - _'.:'.::'_'
i - ! P "..-\': '-:-.':-

012
o

—| [—
D

ST n
Hate Ty
EHAR
nitOENS

AP

lla
Tile

512

Til

D

—
®

Figure 5

U.S. Patent Jun. 23, 2009 Sheet 6 of 14 US 7,551,182 B2

Figure 6

U.S. Patent

Jun. 23, 2009 Sheet 7 of 14 US 7,551,182 B2
30 32
CPU | Graphics Hardware
412
404 ‘
| Select Visible > Tile
Layers Decompression
—] .
406 s 16 I 414
Select Visible .
Tiles in Layers Alpha Blending
i v 416
408 |Tile Dataspt
Depth Sort Tile Merging
; 410 418
Render Each
byl Tife List— Map ahd
Visible Tile Elevation Data
424
—m Y oy = 42
. I~ Hypsograph T/ 0
Final map Imagégei=— === = Mapee = ee e jm b = =d Lightmap |
| _ Creation, _|

422

U.S. Patent Jun. 23, 2009 Sheet 8 of 14 US 7,551,182 B2

Layer is not depth
blended. Tiles

beneath this one
are occluded.

: 500

The render list Map Request
contains all of the Image
sorted tiles to 2
render. ~
]
&
&/ _

SR R L e T
S g feth i e
gt R e e Wl AT R

Aot R s R S
" " " [Sl Ll HELH o il EERL e
B EEN W] S) Fay
e o Wi E T
woiel E g] B S] A A
e s R TR IR) s rll=n Gt :_:!:::_. o ;"-;;'-‘ 1
L e e .
':"t:;ilf':':"' Vi e i e _q::-.: Py '“"-'.:
e e e et A e
SRghes it Pk

Tile List

Figure 8

U.S. Patent Jun. 23, 2009 Sheet 9 of 14 US 7,551,182 B2

Layer is depth
blended Layers
below this one

are visibie

"- -
- |

Tile

Tile Tile

The render list \ Map Request
contains all of the Image

sorted tiles to @
render. ~

o
S
d

Q&

R T R R NTE e P P A R e T
..."'d-"":":l-.: _.-w-.- r.-:.:ir.l S %—
Sy et g TR e
ST Y R e B A et i R
. . - ’ g R —y g
g e []
I I YT IS : 7
CEERL IEE i A
S L A
Tt T . N FARCER Y . ol
FEEA) R N AR T

Tile List

Figure 9

2 B2
U.S. Patent Jun. 23, 2009 Sheet 10 of 14 US 7.551,18

~r
o
B

-
b TE R .

U.S. Patent Jun. 23, 2009 Sheet 11 of 14 US 7,551,182 B2

Goto HORS toard

o dommrLEL

Figure 11

US 7,551,182 B2

Sheet 12 of 14

Jun. 23, 2009

U.S. Patent

L e o]

o e WMM«
e L
e e
e
riat r -
e
L
iy
: i 5
W.E.
S
N
T e
L
2y .”..m._-”..u.m-m..__.m..? _uﬂ.._r A
iy o T A -

Figure 12

U.S. Patent Jun. 23, 2009 Sheet 13 of 14 US 7,551,182 B2

E /3 Figure 13
/ 72 b
t\combmc\l

11

73
l\ combine

B\generate 73

U.S. Patent

497

Pyramid Creation

Jun. 23, 2009 Sheet 14 of 14

30

CPU

Request

L

/500
Determine Next

Pyramid Tile Size/
Location

v /501

Select Pyramid Target
Layer

Y /5 02

Select Tiles in Layer

l /503

16

507

US 7,551,182 B2

Figure 14

/32

Graphics System

Tiles

THe
Database

Render Each Tile

//509

Tile List

Tile

Add Tile To Pyramid

T /508

P Tile Decompression

5035

'

Tile Merging

506

'

Raster and Elevation
Data

507

Final Pyramid Tile [«

Map

US 7,551,182 B2

1

SYSTEM AND METHOD FOR PROCESSING
MAP DATA

(The present application claims the benefit of U.S. Provi-
sional Application No. 60/644,033, filed Jan 18, 2005, herein
incorporated by reference.)

The present invention relates to an interactive visual pre-
sentation of graphical data on a user interface.

BACKGROUND OF THE INVENTION

Internet GIS and Web mapping have been applied in home-
land security, disaster management, business market, trans-
portation, city planning, and K-12 educations. According to a
recent research from ComScore Network

((http://www.ebrandz.com/newsletter/2005/July/1july__
31july_articlel .htm), online map users are a huge market.

Currently, Time Warner’s MapQuest.com had an estimated
437 million U.S. visitors in May 20035, the Yahoo! Maps had
20.2 million users, Google Map had 6.1 million users, and
Microsoit’s MSN MapPoint had 4.68 million visitors. This 1s
a huge market for mapping services providing more diversi-
fied geospatial information services.

The maps presented by these web sites (and other mapping,
applications) are generated by a map server, a specialized
application for the storage and retrieval of map and GIS data.
The goal of a map server 1s to respond to requests for data with
as low latency as possible. This requires the optimum use of
the host computer’s resources, such as memory, network
bandwidth and processor usage.

When viewing satellite 1imagery, categorizing land use
data, or comparing the changes of land cover before/after the
disasters, traditional GIS applications and Web-based map-
ping tools can sulfer from processing bottlenecks from sys-
tem overload. This results in slow response times for users
making map requests. Map servers attempt to avoid this by
mitigating the effect of large 1image data sizes on the server
hardware and client/server communications. Some map serv-
ers for generating 3D surface textures decrease the amount of
map data in real time through the use of impostors and occlu-
sion culling. This occlusion culling 1s done by using the
current 3D scene viewpoint, which can be inefficient 1n the
use of computer processing and network bandwidth when
using a collection of tiles to represent the requested scene.
Other techniques for reducing the load on the map server
involve caching on either the client or the server end to allow
for repeated queries to be fetched without having to search the
server’s database.

Map servers frequently deal with terabytes of 1mage data
The mitial loading of this data into the map server’s database
1s a very computationally intensive process. The image data
must be store 1n such a manner that 1t can be retrieved quickly
when requested. This involves the use of a spatial database,
which 1s a techmique for indexing a data set such that it can be
queried using physical dimension parameters such as location
and spanning range. Loading image data into the spatial data-
base 1volves mtensive image processing operations such as
slicing 1nto tiles and pre-processing of data into 1image pyra-
mids. These lengthy operations require heavy processor and
disk utilization, essentially consuming all system resources
until the loading 1s complete.

It 1s an object of the present invention to provide a graphics
processing system and method to obviate or mitigate at least
some of the above-mentioned disadvantages.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

When viewing satellite 1magery, categorizing land use
data, or comparing the changes of land cover before/after the
disasters, traditional GIS applications and Web-based map-
ping tools can sufler from the slow response and the lack of
high resolution images because of the limitation of 1mage
data sizes and the network communications. Further, loading
of multiple 1mage segments or tiles by a requesting applica-
tion can result 1n an increased use of processing and memory
resources that can undesirably reduce the display response of
requested map data. Contrary to current systems 1s provided
a system and method for assembling graphics information as
a graphics display for presentation on a visual interface, the
graphics information including a plurality of image tiles
stored 1n a data store. The system and method comprise a
management module for recerving a graphics request mes-
sage and for coordinating processing of a selected number of
the 1mage tiles to generate at least one representative image
tile as the graphics display 1n response to the graphics request
message. The system and method also comprise a graphics
system coupled to the management module for receiving
processing information from the management module to
facilitate access to the selected number of the image tiles. The
selected number of 1mage tiles are processed as a combina-
tion to generate the least one representative image tile, such
that the graphics system includes graphics hardware such as a
GPU/VPU configured for processing the graphics informa-
tion.

One aspect provided 1s a system for assembling graphics
information as a graphics display for presentation on a visual
interface, the graphics information including a plurality of
image portions stored in a data store, the system comprising:
a management module for receiving a graphics request mes-
sage and for coordinating processing of a selected number of
the 1mage portions to generate at least one representative
image portion as the graphics display in response to the
graphics request message; and a graphics system coupled to
the management module for receiving processing imforma-
tion from the management module to facilitate access to the
selected number of the image portions and for processing
them as a combination to generate the least one representative
image portion, the graphics system including graphics hard-
ware configured for processing the graphics information.

A Turther aspect provided i1s a method for assembling
graphics information as a graphics display for presentation on
a visual interface, the graphics information including a plu-
rality of 1image portions stored in a data store, the method
comprising the steps of: recerving a graphics request mes-
sage; providing processing information for coordinating pro-
cessing of a selected number of the 1image portions for inclu-
sion 1n at least one representative image portion as the
graphics display 1n response to the graphics request message;
and accessing the selected number of the 1mage portions and
processing them as a combination to generate the least one
representative 1image portion through use of graphics hard-
ware configured for processing the graphics information.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of these and other embodiments of
the present invention can be obtained with reference to the
tollowing drawings and detailed description of the preferred
embodiments, in which:

US 7,551,182 B2

3

FIG. 1 1s a block diagram of a data graphics processing;

FIG. 2 shows further details of a data processing system of
the system of FIG. 1;

FIG. 3 shows further details of the processors and data store
manager of FIG. 2;

FI1G. 4 shows details of a graphics data conversion into tiles
of the system of FIG. 1;

FIG. 5 1s an example embodiment of tiles for a visualiza-
tion representation of FIG. 1;

FIG. 6 shows an example layer structure for the tiles of
FIG. 5;

FIG. 7 shows an example operation of the data store man-
ager of FIG. 3;

FIG. 8 shows an example of the visualization representa-
tion of FIG. 1 with occluded tiles;

FIG. 9 shows an example of the visualization representa-
tion of FIG. 1 with translucent tiles;

FIG. 10 1s an example of hypsographic enhancement of a
2D terrain of the visualization representation of FIG. 1;

FIG. 11 1s an example of hypsographic enhancement of a
3D terrain of the visualization representation of FIG. 1;

FI1G. 12 1s an example of a colour scale used in the hypso-
graphic enhancements of FIGS. 10 and 11;

FIG. 13 1s an example combination of the tiles of FIG. 6 to
produce the representative tile; and

FI1G. 14 shows an example operation of creating the image
pyramid shown 1n FIG. 6.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

System 8 Overview

Referring to FIG. 1, a graphics delivery system 8 includes
a client application 12 (e.g. a visualization tool) for manipu-
lating a collection of data objects 15 stored 1n a data store 16
as tiles 11 (otherwise referred to as 1image segments or por-
tions). The tiles represent geographic region portions and
associated information of a complete geographic data set 17,
are used as mput for map-based and associated data elements
supplied to a visual interface 202, and are stored as a series of
layers 200 (see FIG. 6), as further described below. The
geographic data set 17 can include data object 15 types such
as but not limited to imagery, terrain, vector, and annotation
tor both aerial- and satellite-based 1mages. Selected ones of
the tiles 11 from the complete geographic data set 17 are
combined by a data store manager 14, as further described
below, to generate a desired visual representation 19 of the
geographic data set 17 (or portion thereof) on the visual
interface 202. The graphical information included in the visu-
alization representation 19 1s provided to the application 12 1n
a visualization retrieval message 39 (or series of retrieval
messages 39) from the data store manager 14, in response to
a graphics request message 10 (or series of request messages
10). It 1s recognized that the graphical information can be
configured in the retrieval message 39 as at least one scene
representative tile 70. Communication of the retrieval 39 and
request 10 messages can be facilitated using Simple Object
Access Protocol (SOAP), JavaScript, or similar XML-based
web service protocols, for example.

Using the tiles 11 communicated as the scene representa-
tive tile 70 (see FIG. 3), the application 12 can select a
plurality of graphical information (e.g. visual elements) from
the complete geographic data set 17, such as but not limited to
clements including: a desired geographic region (e.g. subset
of the geographic region contained in the geographic data set
17); three-dimensional visual characteristics including ter-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

rain elevation details and elevation details for structures posi-
tioned with respect to the domain; a selected display resolu-
tion; information (e.g. alpha-numeric mformation and other
graphical symbols including points, lines, shapes, images,
and 2D, 3D models) for overlay on the desired geographic
region; and/or visual enhancements (further described
below). Examples of the overlay mmformation can include
information such as but not limited to realtor market 1nfo,
superposition of translucent satellite images on top of raster
map data, hyspso-graph and light map data, GPS tracking,
and/or user defined business data, Display of the tiles 11 and
related data objects 15 are driven by user events 109 by a user
(not shown) via a user interface 108 (see FIG. 2) during
interaction with the visual representation 19 by the applica-
tion 12. It 1s recognized that the display of the scene repre-
sentative tile 70 could also be automated or semi-automated,
as desired. The data store manager 14 also facilitates genera-
tion of the tiles 11 from 1nput data files 38 obtained from data
sources 41. It 1s recognized that the data files 38 could be
obtained from local storage (e.g. a storage 102, see FIG. 2,
such as a disk drive) or from a remote storage via a network
(not shown).

Referring to FIG. 2, an example embodiment of a visual-
1zation data processing system 100 (of the system 8) has the
user interface 108 for interacting with the application(s) 12,
such that the user interface 108 1s connected to a memory 102
via a BUS 106. The interface 108 1s also coupled to a proces-
sor 30 (e.g. CPU) and graphics system 32 (including special-
1zed graphics processing hardware such as a GPU, software
for programming certain components of the GPU, or a com-
bination thereof) via the BUS 106, to interact with the user
events 109 to monitor or otherwise instruct the operation of
the application 12 and data store manager 14 via an operating
system 110, as well as provide for interaction between the
application 12 and the data store manager 14 as further
described below. It 1s recognized that generation, processing,
and/or manipulation of the tiles 11 can be shared by the
computing capabilities of both the processor 30 and the
graphics system 32, such as when the data store manager 14
and client application(s) 12 are hosted on the same data pro-
cessing system 100. The user interface 108 can include one or
more user input devices such as but not limited toaQWERTY
keyboard, a keypad, a track wheel, a stylus, a mouse, and a
microphone. The visual interface 202 1s considered the user
output device, such as but not limited to a computer screen
display. I the screen 1s touch sensitive, then the display can
also be used as the user mput device as controlled by the
processor 104. Further, 1t 1s recognized that the data process-
ing system 100 can include a computer readable storage
medium 46 for providing instructions (e.g. software
upgrades) to the processor 30, the graphics system 32 and/or
the application 12 and the data store manager 14. The com-
puter readable medium 46 can include hardware and/or soft-
ware such as, by way of example only, magnetic disks, mag-
netic tape, optically readable medium such as CD/DVD
ROMS, and memory cards. In each case, the computer read-
able medium 46 may take the form of a small disk, floppy
diskette, cassette, hard disk drive, solid-state memory card, or
RAM provided in the memory 102. It should be noted that the
above listed example computer readable mediums 46 can be
used etther alone or 1n combination.

Referring again to FIG. 2, the application 12 interacts via
link 116 with a VI manager 112 (also known as a visualization
renderer) of the system 100 for presenting the visual repre-
sentation 19 on the visual interface 202. The application 12
also interacts via link 118 with the data store manager 14 of
the system 100 to coordinate management of the tiles 11

US 7,551,182 B2

S

stored 1n the memory 102. The data store manager 14 can
receive requests for storing, retrieving, amending, or creating,
the tiles 11 via the application 12 and/or directly via link 120
from the VI manager 112, as driven by the user events 109
and/or independent operation of the application 12. Accord-
ingly, the application 12 and managers 112, 14 coordinate the
processing of tiles 11 and user events 109 with respect to the
content of the visualization representation 19 displayed on
the visual interface 202.

Architecture Overview of System 100

FIGS. 2 and 3 shows a system 100 overview of the data
store manager 14 amongst 1ts associated components, namely
the processor 30, the graphics system 32, the memory 102,
and an I/O user interface 108. The request 10 and retrieval 39
messages for graphics data (e.g. portions of a map with asso-
ciated information) are intended to be performed 1n a black-
box fashion, for example, to help increase simplicity and
allow for multiple client applications 12 to connect to the data
store manager 14, which acts as an access service for the data
store 16. Communication between the data store manager 14
and the client applications 12 can be done locally when hosted
on the same computer (e.g. data processing system 100—see
FIG. 2) or remotely with applications 12 networked with the
data store manager 14 via a network 13.

Graphics System 32 Referring again to FIG. 3, the graphics
system 32 1s used by the data store manager 14 to offload data
processing from the processor 30 related to the contents of the
data store 16. The graphics system 32 (e.g. the Graphics
Processing Unit or GPU also occasionally called a Visual
Processing Unit or VPU) manipulates and facilitates display
of computer graphics involving mathematically-intensive
tasks (e.g. matrix and vector operations), and are suited for
data processing using a range of complex algorithms, 1.e. for
computing 3D functions including lighting effects, object
transformations, and 3D motion as well as stream computing.
Use of the graphics system 32 by the data store manager 14
can lift computing burden from the processor 30 to help free
up processor 30 cycles that can be used for other jobs, 1nclud-
ing operation of the application 12, operation of the data
manager 14, and operation of the mterfaces 108,202 for
example. Computing done by the graphics system 32 can
include 1tems such as but not limited to defining 2D rect-
angles, triangles, circles and arcs and their 3D computer
graphic equivalents, as well as digital video-related functions.

The graphics system 32 can accelerate the memory inten-
stve work of combining the tiles 11 to generate the represen-
tative tile 70 such as but not limited to; texture mapping and
rendering polygons, geometry calculations such as mapping,
vertices 1nto different coordinate systems, support for hard-
wired/programmable shaders which can manipulate vertices
and textures, over-sampling and interpolation techniques to
reduce aliasing, and high-precision color formats. The graph-
ics system 32 can include basic 2D acceleration and frame
butiler 538 (containing on-screen and/or ofi-screen bullering as
desired) capabilities (usually with a VGA compatibility
mode), can support the YUV color space and hardware over-
lays (used for digital video playback), and can support MPEG
primitives like motion compensation and 1DCT. It 1s recog-
nized that the graphics system 32 can sits on a separate graph-
ics card from the motherboard of the data processing system
100, connected to the processor 30 memory 102 through the
bus 106. On the other hand, many motherboards have inte-
grated graphics system 32 that uses the main memory 102 as
a Trame butler.

The graphics system 32 has generic graphics hardware 54
resources for implementing general graphics data processing.

10

15

20

25

30

35

40

45

50

55

60

65

6

The graphics system 32 also has a texture module 56 for
providing texture creation/modification of graphics data, a
pixel shader module 60 for shading operations applied to a
stream of pixels included in the tiles 11, and a rendering
module to assist 1n filtering techniques. It 1s recognized that
the graphics system 32 1s responsible for combining (e.g.
adding, subtracting, or otherwise moditying) a selected por-
tion 72 of the tiles 11 from the data store 16, by combining
respective pixels 73, to generate the representative tile 70 (or
a number of representative tiles 70) including the combined
pixels 75 (as shown by example 1n FIG. 13).

Data Store Manager/Module 14

Referring to FIGS. 2 and 3, the data store manager 14
includes a spatial index 18 for storing metadata 202, or other
structured definitions for defining data, (see FIG. 6) associ-
ated with the tiles 11 to facilitate retrieval of selected tiles 11
upon request from the data store 16. The metadata 202 stored
in the spatial indices 18 can relate each leaf 1n a treed data
structure to the filename of its corresponding tile 11. For
example, from a black-box viewpoint, querying the indices
18 returns the filename of each tile 11 that 1s required to span
the requested geographic region of the retrieval message 10.

For example, the metadata 202 1s defined 1n a structured
definition language (e.g. XML) and 1s used to relate adjacent
tiles 11 1n the same layer 200 to one another, e.g. named 1n a
sequential order. The metadata 202 1s used to store the entire
geographic data set 17 in the data store 16 as tile-based
pyramidal data (for example) 1n an associated hierarchical
indexed format, as further described below. The data store
manager 14 also includes a layer management module 52
(e.g. an indexing module) for generating the layers 200 (see
FIG. 6) from the source data files 38. The module 52 can also
determine/provide the appropriate image set (e.g. selected
tiles 11 from respective layers 200) 1n the retrieval 39 mes-
sage 1n response to the requesting application 12 for a suitable
level of detail for the visualization representation 19. It 1s
recognized that the module 52 can access already generated
layers 200 (stored 1n the data store 16) via the spatial index 18
and/or access via the spatial index 18 and dynamically gen-
erate modifications to stored layers 200 to take into account
varying levels of detail/resolution associated with the request
message 10, for example.

Further, the module 52 can communicate with an access
module 33 to determine the allowed level of detail of the
graphics data suitable for display on the visual interface 202.
The access module 33 15 used to determine permissions (€.g.
according to application 12 identification information and/or
user 1dentification of the application 12 user—such as login
and password information) of the application 12 submitting
the request message 10. These permissions and/or level of
detail (e.g. resolution) of the graphics data (of the tiles 11) can
be contained in the request message 10, predefined by the
system 8 1n a corresponding permissions table and a level of
detail table (not shown) accessible by the data store manager
14 and/or application 12, already known by the data store
manager 14, or a combination thereof. Based on the deter-
mined permission(s), the data store manager 14 coordinates
the content of the retrieval message 39 to contain the requisite
level of detail in the combination of tiles 11 provided as the
representative tile 70. It 1s recognized that the module 52 can
increase or decrease the level of detail of the graphics data 1n
the retrieval message 39 by substituting one layer 200 for
another, adding or subtracting layers to one another, substi-
tute selected tiles 11 1n one layer 200 for other tiles 11 con-
taining the desired/allowed level of detail, or a combination
thereof, as further described below. Further, it 1s recognized

US 7,551,182 B2

7

that the functionality of the access module 33 can be incor-
porated into that of the module 52, as desired.

The data store manager 14 can also implement a cache 40
for recycling memory 102 resources among the currently/
often used memory pages containing the tiles 11 that were
already fetched from the data store 16 previously for use 1n
generating earlier versions of the representative tile 70. For
example, a major bottleneck when dealing with large tile data
stores 16 can be the inherent slowness of reading tiles 11 from
the physical medium of the data store 16 (e.g. a hard disk).
The data store manager 14 can take advantage of the common
task of panning around a contiguous geographic region (as
opposed to jumping to a disparate region of the map) by
caching recently used tiles 11 in the cache 40 to help limit the
number of times the hard disk must be accessed when satis-
tying the request message 10 through assembly of the repre-
sentative tile 70. The size of the cache 40 can be modified, but
defaults for example to 100 MB. Accordingly, given the tile
11 filenames retrieved from the spatial indices 18, the data
store manager 14 checks 11 the tiles 11 are 1n the cache 40. It
this 1s the case, the found tiles 11 are retrieved from the cache
40. IT not, the data store manager 14 must load the tiles 11
from the data store 16.

Referring again to FIG. 3, an example embodiment of the
data store manager 14 can be installed or otherwise down-
loaded at the start of a session (€.g. a web session) for viewing
the geographic data set 17. For example, the data store man-
ager 14 can be installed on the data processing system 100 as
a graphics engine and could be responsible for facilitating
both rendering the visual representation 19 the user sees and
communicating with a remote data store 16a (provided by a
networked data source) on the user’s behalf. Further, the
engine (e.g. data store manager 14) can allow the user’s
interaction with the data store 16a to happen asynchronously,
in the case of the remotely accessed data store 16a, for
example. Accordingly, the data store manager 14 can be
employed as a local cache for the remote GIS data store 16a
via network 13.

Graphics Pipeline 50

Referring to FIG. 3, a graphics data pipeline 50 1s used to
transfer graphics commands and other request parameters
(e.g. processing information) from the data store manager 14
to the graphics system 32 as well as to transfer information
about the resultant processed graphics data from the graphics
system 32 to the data store manager 14. Accordingly, the data
store manager 14 can act as an intermediary between the
graphics system 32 and the client applications 12.

Processor 30

Referring to FIG. 3, the processor 30 1s used for many
functions, such as but not limited to coordinating operation of
the data store manager 14, coordinating operation of the
locally hosted applications 12 (including assistance in display
of the visualization representation 19 on the visual interface
202), coordinating communication of the messages 10, 39,
coordinating communication with remote applications 12
over the network 13 via a network intertace 204, as well as
assisting 1n graphics data processing for that processing not
explicitly provided for by the graphics system 32 coupled to
the data store manager 14 via the graphics pipeline 50.

Data Store 16

Referring to FIGS. 3 and 6, the data store 16 (and/or remote
data store 16a) 1s used to store the entire geographic data set
17 (e.g. representing 1imagery, terrain, vector, annotation data
of a map for a number of different resolutions) as a plurality
of layers 200, each comprising a number of tiles 11 represent-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing a certain geographic sector/portion/region of the geo-
graphic data set 17. The data store 16 can be located locally 1n
the memory 102 or remotely (1.e. data store 16a) via the
network 13. For example, the data stores 16,16a can be
accessed via TCP/IP or other communication protocols. It 1s
recognized that the layers 200 can be used to represent vari-
ous degrees of resolution of the geographic dataset 17, as well
as represent different overlays for selected geographic
regions (e.g. selected annotation information—e.g. digital
clevation models to visualize 3D spatial information). The
use of tiles 11 to select specific regions of the geographic data
set 17 allows the client applications 12 to represent only part
of the geographic data image dynamically instead of the
whole 1image representing the entire geographic data set 17.
Further, use of the tiling 11 technique facilitates presentation
of appropriate high/low resolution 1magery and inhibits
unnecessary computation/processing ol off-display regions
(1.e. absent from the region selected for display on the visual
interface 202) of the geographic data set 17. It 1s recognized
that the tiles 1 are used by the graphics system 32 as input
graphs data to generate the representative tile 70.

Referring to FIG. 5, for example, the application 12 can
send the user request message 10 to the server (e.g. web)
hosting the data store manager 14 to retrieve only the graphics
data needed by the desired visualization representation 19. It
1s recognized that the level of detail in the graphics data
(supplied 1n the retrieval 39 message) can be configured such
that adjacent tiles 11a with a greater level of detail are com-
bined by the graphics system 32 with a lower level of detail
tile(s) 115 pertaining to a restricted access (e.g. supplied in
the request message 10) spatial location 1n the terrain of the
geographical data set 17.

Accordingly, the level of detail of individual/groups of tiles
11 within the layers 200 can be adjusted for use 1n the result-
ant representative tile 70 to provide selected or otherwise
allowed resolution levels for the graphics data as well as the
degree of information provided with the geographical details,
¢.g. to provide or to restrict certain visual features such as
detailed displays of government buildings, military installa-
tions and other important sites. For example, the level of
detail provided by the representative tile 70 1n the retrieval
message 39 can be adjusted by the data store manager 14 so as
to 1n effect block images of vulnerable government buildings
and others deemed sensitive/restricted sites (e.g. areas such as
the presidential residence and defense installations) through
the use of resolution 1images lower than surrounding areas of
the geographic data set 17 to facilitate obscurement or blur-
ring of 1images used to represent the selected portion of the
geographic data set 17. It 1s also recognized that given the
correct permissions the tile 115 could contain a greater (e.g.
different) level of detail than the surrounding tiles 11a used to
construct the representative tile 70, as desired.

Referring again to FIGS. 1, 2 and 3, accordingly, the total
image content or data 1n the scene representative tile 70 inter-
changed between the client application 12 and data store
manager 14 can be dynamically configured (increased or
decreased). For example, 1f users of the application 12 need to
Zoom-1n to a new map area 1n a map browser, the data store
manager 14 would not need to reprocess the whole map page
content (all map information contained 1n data store 16 for the
requested map area) but only to include and then re-send in
the scene representative tile 70 the smaller area of map
requested by the user for the appropnate resolution level and
requested map details (1.e. level of detail). In this case, the
subsequently sent representative tile 70 would be used to
overwrite the earlier sent representative tile 70 as the visual-
1zation representation 19. For example, the appropriate reso-

US 7,551,182 B2

9

lution level of the tiles 11 1included 1n the representative tile 70
can either be requested by the user or be preset by the system
8 (e.g. due to configuration settings of the data store manager
14 and/or the application 12) according to the size of the
geographic region requested 1n the request message 10. The
use of tiles 11 and associated layers 202 1n assembling the
representative tile 70 can help prevent memory 102 overload,
decrease processing ol the associated graphics data, and
decrease pipeline 50 (and network 13) bandwidth require-
ments, and facilitate efficient movement of terrain displayed
in the visual representation 19 from one section of the geo-
graphic data set 17 to another. Accordingly, the interaction of
the data store manager 14 and the graphics hardware 32
results 1n the assembly of the tiles 11 1nto one final direct x
representative tile 70, which 1s returned to the client applica-
tion 12 for presentment on the visualization interface 202.

Data Store Creation—Operation of the Module 52

Referring to FIGS. 3 and 4 and 14, the module 52 of the
data store manager 14 can be used itially to generate and
store the tiles 11 and respective layers 200 associated with the
source data files 38 received from the sources 41. Further, the
module 52 can be used to dynamically combine the available
tiles 11 and corresponding layers 200 retrieved from the data
store 16 for use 1n constructing the representative tile 70 to
satisty any request messages 10 received from the
application(s) 12. Operation of the module 52 can include
functionality such as but not limited to: rendering and display
of global and local scale imagery, elevation, and vector-based
datasets; rendering of multiple global and high resolution
imagery and terrain data inserts; maintain selected level of
detail represented in the tiles 11 while performing zoom
functions; terrain morphing between resolution levels based
on viewpoint and level of detail observable by the user of the
visul interface 202; terrain scaling and tessellation bias con-
trol; facilitating level of detail calculations; and provision of
translucent overlays and fade between datasets. The module
52 can also assist 1n tile 11 selection and dynamic modifica-
tion of selected tiles 11 for deselecting and/or adding graphic
objects 1n a scene for display on the visual interface 202. It 1s
recognized that the computationally intensive operations can
be performed by the graphics system 32 in the initial loading,
of the tiles 11 1n the data store 16 (e.g. image pyramid cre-
ation), mcluding 1n assisting of adding/removing tiles 11
from the database 16.

Referring to FIGS. 3 and 14, a user ol the database manager
14 requests 490 a pyramid be generated for a given layer 200
(see FIG. 6). The module 52 then determines 500 the number
of pyramid levels that need to be constructed based on the
coverage and resolution of the target layer 200. For each
pyramid level, the module 52 creates a set of target request
areas based on that level, the coverage area of the layer 200
being processed, and said area’s resolution (1n pixels).

The processing of the tiles 11 for loading 1n the data store
16 as a pyramid 1s shared between the processor 30 and the
graphics system 32 such that each target request area 1s pro-
cessed as follows:

Step 501—=Select layer 200 (no ordering/pruning required,
as we are guaranteed to work with one layer only);

Step 502—Select tiles 11 1n layer 200 that lie within the
target request area;

Step 303—Fetch tiles 11 from data store 16 (for example).
The previously generated pyramid level can be used 1n order
to speed up the rendering process;

Step 504—Send tiles to graphics system 32 for rendering;
Step 505—Decompress tiles 11;

10

15

20

25

30

35

40

45

50

55

60

65

10

Step 506—Merge tiles 11 (depth blending not required
when only one layer 200 1s being processed);

Step 507—Send produced raster or elevation data back to
processor 30;

Step 508—Add raster/elevation data to the pyramid; and

Step 509—Update the data store 16 with the new pyramid
tile information.

It 1s recognized that the above processing gets done for each
level/layer 200 of the pyramid. It 1s recognized that by using
previously generated pyramid levels 200 1n the build process
we greatly reduce the time taken to perform the build of the
pyramid for a given layer 200.

Loading of Map Data

Referring to FIG. 4, loading source data file 38 imagery
into the spatial data store 16 can be a computationally inten-
stve task since the data store 16 may consist of terabytes of
data, which must be parsed for geospatial information and
converted into the tile 11 sets for optimized retrieval. The
initial creation of the data store 16 1s performed by the module
52 by firstly importing 208 source data files 38 from poten-
tially a plurality of different source formats that include map
data (e.g. raster image files with associated elevation infor-
mation), and secondly by extracting 210 the geospatial data
contained within as a series of tiles 11, and generating/con-
verting the resultant tiles 11 to a file format known as
Microsoit Direct Draw Surface (DDS) to allow for compres-
s1on to be enabled, for example, for storing 212 1n the data
store 16. It 1s recognized that other file -formats (JPEG, PNG)
can be used to offer higher compression ratios, as desired.
However, 1t 1s recognized that DDS has a decompression
algorithm that 1s implemented in hardware on the graphics
system 32. For example, DDS can be used to provide the tiles
11 in a compressed image format with a compression ration of
4:1 for 32 bit data, and 6:1 for 24 bit data.

The extracting/creating step 210 performed by the module
52 1ncludes creation of the standardized tiles 11 of dimen-
sions 1024 pixels by 1024 pixels, for example. In situations
where there aren’t enough pixels to create the 1024x1024
tiles 11 (e.g. such as along an 1mage border), the data store
manager 14 can adapt the tile 11 size (e.g. continually try
smaller tiles 11 with dimensions that are reduced by a power
of two, for example, to provide a suitable tile 11 size that
results 1n appropriate coverage of terrain represented by the
geographic data set 17. This tile 11 resizing 1s repeated by the
module 52 until the entire map data of the input data file 38 1s
broken into appropnately sized tiles 11, see FIG. 5). While the
DDS format supports any image dimensions, graphics hard-
ware can perform significantly better with 1images whose
dimensions are a power of two.

In one embodiment, the geospatial data at step 210 1s
extracted from the input data file 38 by the data store manager
14 using GDAL (Geospatial Data Abstraction Library),
which provides an open-source library for translating raster
geospatial data formats. Further, an step 214 extracts the
metadata 202 from each mput data file 38 by the module 52
for later use 1n creating 216 the respective spatial index 18.
The metadata 202 can also be used to store the required
permission (e.g. access criteria) of the graphic information
associated with the respective tile(s) 11 and/or complete layer
200 (or portion thereof) including the tile(s) 11, for later
reference by the access module 33 further described below.

Storing Metadata 202 1n a Hierarchical Data Structure

Each tile 11 in the data store 16 has associated metadata
202 that includes definitions of spatial coordinates or refer-
ence frame data sets (e.g. the latitude and longitude of the

US 7,551,182 B2

11

tile’s 11 geographic span). When the data store manager 14
responds to the request message 10 for geographic data, the
data store manager 14 locates the correct tiles 11 1n the data
store 16 that span the requested coordinates as represented 1n
the index 18. Imtially, upon loading the tiles 11 into the data
store 16, each of the tile’s 16 metadata 202 1s stored by the
manager 14 in the spatial index 18, using a hierarchical data
structure (e.g. a KD Tree), in order to assist 1n tile(s) 11
retrieval. A KD Tree 1s a type of binary search tree for storing,
points 1n K-dimensional space. Creation of the data structure
can be done by an O(n log n) algorithm, and can result 1n the
data structure where points can be retrieved i O(sqrt(n)+k),
where n 1s the number of points in the tree and k 1s the number
of points 1n the result.

Map Layers 200

When graphical data of the mput data files 38 1s 1nitially
loaded 1nto the system 8 by the module 52, the respective tile
11 1s assigned the layer 200 value (or a plurality of layer
values 11 the graphic data content of the tile 11 1s applicable to
more than one layer). The assignment of the tile 11 to the layer
200 allows multiple layers 200 to be input for a single region
of the geographical data set 17, e.g. one map layer 200 with
road features, one layer 200 with terrain features, one layer
200 with landsat imagery, etc. . . . Each entry’s layer 200 value
1s associated with the layer’s 200 level of detail (e.g. resolu-
tion) of the mformation (e.g. terrain, 1magery, vector, anno-
tation) for presentment on the visualization representation 19
from the geographic data store 16 including the geographic
data set 17. This helps the client applications 12 to request a
specific level of detaill when viewing map data, as obtained
from the data store 16. The spatial index 18 1s created by the
module 52 for each layer 200, but every layer 200 may not
contain an entry for each map location, due to varied 1mnput
data file 38 sources. Further, 1t 1s recognized that the layers
200 can be use to provide varying levels of detail for a respec-
tive geographical region, as firer described below. For
example, the layers 200 can be used to provide varying
degrees of spatial resolution for display on the visual interface
202 depending upon the viewing angle or point of view (e.g.
degree of zoom such as street level as compared to city level)
requested by the user of the application 12.

Each layer’s spatial index 18, tile file system (e.g. data
store 16) and the metadata 202 (e.g. XML definitions) are
stored 1n a layer folder 20, which 1s accessible by the manager
14 (see FI1G. 4). The metadata definitions 202 for each layer
200 can consist of the following values, such as but not
limited to:

layerName—descriptive layer 200 name;
minZoom—Provides the mimmum square kilometer
request (or other area unit of measure) that this layer 200
will be visible. Requests with a square coverage less
than this value will not be drawn;
maxZoom—Provides the maximum square kilometer
request (or other area unit of measure) that this layer 200
will be visible. Request with a square coverage larger
than this value will not be drawn;
blendIntensity—opacity value for alpha blending;

blendOp—the graphics processor 32 may provide different
formula for blending pixels (e.g. a Porter-Duif blend and
a Modulated color blend); and

blendOrder—used for sorting layers 200.

Further, referring to FIG. 6, it 1s recognized that in loading
of the input data file 38 into the data store 16 through the
creation of tiles 11, the module 52 can request a region that
contains a 3x3, for example, tile 11 region but may be any
reduction of the original tile 11 set. A new set of tiles 11 1s

10

15

20

25

30

35

40

45

50

55

60

65

12

generated using this technique recursively for each level of
detail desired for storage in the data store 16 as successive
level of detail layers 200. Each successive layer 200 builds the
appropriate next part of the level of detail image pyramid 208
using the level of detail reduction (e.g. averaged pixels) from
the previous layer 200. For example, the highest level 1n the
image pyramid 208 may only contains a single tile represent-
ing the entire layer 200 at the lowest level of detail.

Module 52

Referring to FIGS. 3 and 6, 1n general, the image pyramid
208 (or other ordered association of layers 200 with varying
levels of detail of respective tiles 11) 1s a performance
improving feature designed to help reduce the number of
rendered 1mage tiles 11 provided to applications as well as to
reduce the amount of graphic data content (e.g. level of detail)
for rendering onto visual interfaces. For example, a 40000x
40000 pixel image representing the geographic data set 17 1s
broken up into 500x500 tiles, next pyramid level 1s same
image sampled by 20000x20000 pixels, divided up into 250x
250 tiles, etc. The tiles 11 will end up being bound by
similar constraints described 1n the extracting/creating step
210. In the case of the graphics delivery system 8, the data
store manager 14 (with the cooperation of the module 52 and
the graphics system 32) coordinates assembly of the repre-
sentative tile 70 for presentment to the applications 12 as a
complete 1image for display on the visual interface 202. It 1s
recognized that the applications 12 can maintain a list of the
layers 200 available 1n the data store 16 as one of the param-
cters (e.g. processing information) specified in the request
message 10.

It 1s recognized that data though-put of the data store man-
ager 14 can be negatively impacted when excessive numbers
of tiles 11 with redundant levels of detail must be loaded from
the data store 16 to satisly the retrieval request 10. For
example, when a large area of a map 1s viewed, a system
without 1mage pyramids 208 would load all the necessary
tiles 11 and render them 1n full detail 1n the representative tile
70, which 1s excessive 1f most of the graphics detail 1s not
visible (e.g. individual buildings drawn to scale in a user
selected view of a continental land mass) 1n the displayed
visual representation 19. The image pyramid 208 comprises
multiple layers 200 of varying levels of detail (e.g. pixel
resolution), which can reduce the cost of loading 1images by
creating adaptive levels of graphics detail in the resultant
visual representation 19 dependant on the observable detail,
according to a predefined detail parameter(s) associated with
the retrieval message 10. As the layer 200 matching the level
of detail desired by the retrieval message 10 1s used by the
module 52 in constructing the representative tile 70 for pre-
sentment on the visual interface 202. The data store manager
14 will select an appropriate sub-layer 200 to render from the
layer pyramid 208 depending on the visible region of the
geographic data set 17 requested 1n the retrieval message 10.
When zoomed very close to the surface of the terrain of the
geographical data set 17, the data store manager 14 will use
the tile 11 set (e.g. a selected number of the tiles 11) with the
maximum level of detail originally obtained (for example)
from the input data files 38. As the user moves away from the
surface, the other sub-layers 200 with a lesser degree of detail
will be chosen for satisfying the retrieval request 39.

Accordingly, the image tiling 11 technique can be adapted
to store the geographic data set 17 as a series of layers 200,
cach providing a different degree of graphics data resolution
that 1s erther requested by the application 12 and/or preset by
the data store manager 14 or other appropriate entity of the
system 8. The large size image 1s first shrunk down (e.g. using

US 7,551,182 B2

13

pixel averaged smaller versions of the original texture map)
by the module 52 to different resolutions for building multi-
level image pyramid layers 200, and then each layer 200 1s
turther broken into smaller tiles 11 1n a separate file with a
standard naming convention related to the specific tile 11
position. Alternatively, the previous layer 200 in the pyramid
can be used to build the current layer, so that the original data
doesn’t have to be scaled down before 1t 1s broken up 1nto the
tiles 11. The tiles 11 are typically same size squares, for
example, except where the visualization representation 19
width and height may not be exactly the integer multiples of
the tile 11 width and height. The adjacent tiles 11 1n the same
layer 200 are normally named in sequential order as repre-
sented by the spatial index 18. The entire tile-based pyramidal
data (e.g. segmented 1mages) 1s stored as the image pyramid
208 stored 1n the hierarchy, indexed format 1n the data store
16. The end product of the image pyramid 208 is created using
the module 52 from the base tile 11 set for a given layer 200.
Each image pyramid 208 may contain any number of sub-
layers 200, each a reduction in level of detail of the previous
sub-layer 200.

In FIG. 6, for example, the module 52 can build the image
pyramid sub-layers 200 of varying resolution and details,
such that at close distances to the camera viewpoint, the
texture of the graphics data appears 1n its original full detail in
the tiles 11 of the highest level of detail layer 200. For medium
distances, a smaller texture of the graphics data that is halt the
resolution of the original layer 200 1s used. Even further
distances display texture of the graphics data that are a quarter
the resolution of the previous layer 200 and so on. Each of
these layers 200 can be referred to as a map level. Therelore,
cach of the map levels can be represented by one of the layers
200 1n the data store 16, such that a plurality of layers 200
(ecach with a different level of detail) are used to represent the
same spatial region (e.g. area of terrain modeled by the geo-
graphic dataset17). The above-described process can be used
in mip-mapping on the client side, using camera viewpoints.

For example, bilinear filtering or interpolation can be used
in computer graphics to reduce “blockiness”. This 1s a prob-
lem that arises 1n highly close-up views of computer gener-
ated objects. It 1s similar to using a magnifying glass to
examine a newspaper closely. When the print 1s magnified,
the dots that make up words start to become noticeable. Com-
puter generated objects are wire frame models with texture
maps wrapped around them to create surface detail [see tex-
ture mapping]. These texture maps are ordinary two dimen-
sional graphic images. Unfortunately, when one zooms 1n too
closely to a graphic 1image, 1ts pixels become highly magni-
fied and the image becomes *“blocky”. Bilinear filtering
reduces pixilation (e.g. “blockiness”) at the expense of reso-
lution by taking 4 neighbouring pixels of the texture map
[texels], and averaging between them. This gives a more
gradual change 1n colour instead of the normally abrupt
change. However, since bilinear filtering samples neighbour-
ing pixels from a square area, 1t can only produce convincing
results for surfaces at a right angle to the viewer. For angled or
uneven surfaces, amisotropic filtering 1s required. Bilinear
filtering can be used in production of the layers 200 with
varying levels of detail.

Trilinear filtering can improve the quality of the map 1image
by bilinear filtering between two levels for a given 1image.
This filtering can create a smoother looking image where the
texture 1s not a one-to-one mapping from texture to screen
mapping. This filtering algorithm can be resident on the
graphics system 32. Trilinear filtering can be used 1n produc-
tion of the layers 200 with varying levels of detail. Further, 1t
1s recognized that some mip-map levels can be stored on the

10

15

20

25

30

35

40

45

50

55

60

65

14

tiles 11, which can be used by the graphics hardware 32 when
creating the texture rather than for the client application’s use
in the scene. The client application can be responsible for 1ts
OWIn mip-maps.

Texture Request, Retrieval, and Creation

Client Request of Step 400

Referring to FIGS. 3 and 7, at step 400 the client applica-
tions 12 that require a map texture send the retrieval message
10 packets via TCP/IP, for example, to the data store manager
14 running on the local host system 100. Using TCP/IP, as
well as other communication protocols and message passing
interfaces, can allow the data store manager 14 to potentially
be run in remote client/server architectures. The interface 108
via user events 109 can provide geographical coverage
request parameters, such as but not limited to: a resolution or
level of detail; a request priority; java compatibility flag; and
optionally a list of layers 200 to display showing specific
types of graphic information in the representative tile 70.
Each of the requested layers 200 for combining can be
altered, for example, for blend intensity, modulation type;
blend order; minimum visible coverage; and maximum vis-
ible coverage. The communication messages 10,39 can be
implemented as XML messages, as desired. Further, the
applications 12 may additionally request a list of the available
layers 200 and their blend parameters. If the application 12
request for amap omits the list of layers 200 to render, the data
store manager 14 can use the default blend parameters for
cach layer 200. Further, elevation requests can additionally
contain a request to return the mimimum and maximum height
values for a given request.

Step 402

Upon receiving the request for map data, the data store
manager 14 queries each spatial index 18 and sorts the avail-
able layer 200 data, extracting the layer 200 definition from
its associated metadata 202 file. For example, 1t 1s recognized
that each layer 200 would have 1t’s own unique index repre-
sented by the spatial index 18 (see FI1G. 3) as an aggregation
of the individual indicies.

Steps 404 and 406

The data store manager 14 then selects 404 the visible tiles
11 by pruming occluded layers (e.g. referring to FIG. 8 shows
occluded tiles 500 under an opaque tile 502). Accordingly, 1f
a layer’s 200 tile 11 has alpha blending set to opaque and 1t
completely occludes the tile 11 on the layer 200 beneath, the
data store manager 14 uses the selected opaque tile 500 as the
topmost data layer and 1gnores 406 all map data of the tiles
502 beneath 1t. This blending by the graphics system 32 1n
generating the representative tile 70 can significantly reduce
the number of tiles 11 that need to be fetched from the data
store 16 and represented 1n the representative tile 70.

Part of step 406 can include operation of the access module
53 to determine the allowed level of detail of the graphics data
suitable for display on the visual interface 202. The access
module 53 1s used to determine permissions (e.g. according to
application 12 i1dentification information and/or user 1denti-
fication of the application 12 user—such as login and pass-
word information) of the application 12 submitting the
request message 10. These permissions and/or level of detail
(e.g. resolution) of the graphics data (of the tiles 11) can be
contained in the request message 10, predefined by the system
8 1n a corresponding permissions table and a level of detail
table (not shown) accessible by the data store manager 14
and/or application 12, already known by the data store man-
ager 14, or a combination thereof. Based on the determined
permission(s), the data store manager 14 coordinates the con-

US 7,551,182 B2

15

tent of the retrieval message 39 to contain the requisite level
of detail in the combination of tiles 11 provided as the repre-
sentative tile 70. It 1s recognized that the module 52 can
coordinate the increase or decrease 1n the level of detail of the
graphics data in the response message 10 by substituting one
layer 200 for another, coordinating adding or subtracting
layers to one another, coordinating substitution of selected
tiles 11 1n one layer 200 for other tiles 11 containing the
desired/allowed level of detail, or a combination thereof.
Further, 1t 1s recognized that the functionality of the access
module 53 can be mncorporated into that of the module 52, as
desired.

Restricted access to the graphic detail contained 1n selected
tiles 11 of the data store 16 by the access module 53 provides
for handling and releasing such restricted data responsibly,
according to the access criteria assigned in the metadata 202
associated with the restricted tiles 11. The access module 53
provides a mechanism to 1dentily sensitive information con-
tent of the geospatial data set 17 and for monitoring what
access to provide to such restricted data and still protect
sensitive information, including procedures for identifying
sensitive geospatial data in the geospatial data set 17 (e.g.
through access criteria) and a methodology for making deci-
sions whether to publish such data, the kind and quantity to
release thereby, and the extent to which some of the data
should be changed (e.g. through tile 11 substitution for tiles
11 having restricted access graphical data of a certain level of
detall. Examples of restricted access graphical data can
include such as but not limited to: business or personal pro-
ductivity data; and data related to military significance, public
health, public satety, or the government’s regulatory func-
tions. Further, the access module 53 can be used to coordinate
the updating of the metadata 202 defining the access level of
certain tiles 11 and their graphic data content as the restricted
level of detail becomes unrestricted (e.g. the data store man-
ager 14 would recerve updates from an information access
administrator (not shown) to modify the degree of access
associated with certain tiles 11 and/or whole layers 200, as
provided for 1n the metadata 202.

Step 408

If the layer 200 has a non-opaque alpha blending value, the
data store manager 14 notes this so the graphics system 32 can
later perform an alpha blending operation on each tile layer
200, compositing it with the layer 200 below (e.g. referring to
FIG. 9 a translucent tile 504 1s rendered so as to show all
graphics data of tiles 506 situated under the tile 504). The
resulting depth blended 504 or top-most occluding tiles 502
are used to comprise the representative tile 70 that 1s returned
to the requesting application 12 at step 424.

Step 410

For graphics system 32 priming, the data store manager 14
initializes the graphics system 32 by sending 1t 1nitial data to
prepare for the pending texture creation via the texture mod-
ule 56. This process can also include not creating any new
texture, rather just rendering to an off-screen surface (e.g. in
the frame butiler 58). This causes the graphics system 32 to
s1ze the view port ol the representative tile 70 in accordance to
the requesting application’s 12 specifications in overall pixel
S1ZE.

Step 412—Decompression of Tiles 11

The retrieved tiles 11 from the data store 16 are received by
the graphics system 32 and decompressed, 11 compressed,
using the DDS decompression scheme (DirectX Texture
Compression for example) that 1s implemented in the graph-
ics system 32.

10

15

20

25

30

35

40

45

50

55

60

65

16

Step 414—Alpha Blending

Alpha blending of tile layers 200 can be performed in the
graphics system 32, for example using a standard Porter-Duif
rules for digital image compositing, as described for example
in Thomas Porter, Tom Dull, Compositing Digital Images,
Computer Graphics 1984. Alpha blending i1s used by the
spatial data store manager 14 via the computer graphics sys-
tem 32 to create the effect of transparency in the visual rep-
resentation 19 displayed on the visual interface 202 (see FI1G.
1). Alpha blending combines a translucent foreground with a
background colour to create an 1n-between blend for presen-
tation 1n the visual representation 19. For animations, alpha
blending can also be used to gradually fade one 1mage into
another. In computer graphics, an image can use 4 channels to
define 1ts colour, where 1t 1s recognized that 1mages can be
defined using less that 4 channels. Three of these are the
primary colour channels—red, green and blue. The fourth,
known as the alpha channel, conveys information about the
image’s transparency. It specifies how foreground colours
should be merged with those in the background when overlaid
on top of each other.

Step 416—Quad Creation (e.g. Creation of the Representa-
tive Tile 70)

The graphics system 32 creates a Direct X quad (1.e. 4x4
pixels), included 1n the representative tile 70, for example, in
order to implement tile blending for each tile 11 1n the tile set
that 1s sent to the graphics system 32 for use 1n generation of
the representative tile 70. For example, the frame buifer 358
s1ze 1s set to the requested 1mage size (included in the request
message 10), and the data store manager 14 defines a view
transform such that our world space (defined through the tiles
11 used from the data store 16) maps to screen space (defined
by the visualization interface 202 for displaying the resultant
representative tile 70). In this way, a quad defined as being
4x4 actually occupies 4x4 pixels. For example, DirectX can
apply a DDS based image to this quad as a texture, thus
making 1t the vehicle for rendering the tile 11 to an offscreen
surface using the buifer 8. The graphics system 32 resources
can be utilized by rendering images as a textured quad, mean-
ing that the graphics hardware performs expensive filtering
(e.g. bilinear) on the card, and uses 1ts pixel shaders 60 to
modily image results in hardware. A texel 1s a term used 1n
computer graphics, the abbreviation of texture mapping pixel.
Textures are made up of texels, just as a screen 1s made up of
pixels. When drawing the image of the visualization repre-
sentation 19, the graphics system 32 maps these texels to the
screen. It 1s recognized that steps 414 and 416 can be thought
of as drawing the tile 11,70 into the frame builer 58.

Step 418—Elevation Data Handling

Elevation data, commonly known as a height map, supplies
the relief data which 1s used to compute hypsograph and light
map values, further described below. It can also be used by the
client applications 12 to construct a 3D mesh for overlaying
on the map composed by data store manager 14, thus provid-
ing elevation perception to the representative tile 70. For
example, this height map can be stored 1n the memory 102 as
a grayscale image, with a completely black pixel representing
the lowest elevation, and a completely white pixel represent-
ing the highest elevation. Encoded in the data can be the
maximum and minimum elevation values for that particular
tile 11, allowing the system 8 to use the elevation data to
interpolate the intermediate elevation values. While the origi-
nal elevation data contains a 16-bit range of values (0-65536)
between completely black and completely white, the data
store manager 14 can reduce this number to an 8-bit range
(0-256), for example, because current graphics hardware only

US 7,551,182 B2

17

supports 8-bit grayscale 1images. It 1s also recognized that
other ranges can be used, for example 16-bit, where sup-
ported.

The elevation data for a tile 11 set can undergo a normal-
1zation process to account for the varying scales (height
range) and biases (maximum and minimum height) for each
tile 11. Because each tile 11 has interpolated its 256 interme-
diate elevation levels for its own scale and bias, the height
map for adjacent tiles 11 would no longer be contiguous. This
can be done by recording a global maximum and minimum
bias for the current tile set, calculating a multiplication factor
to normalize the data (e.g. scale and bias), and applying this
factor to each pixel in the tile set. The normalization process
can be greatly accelerated by using the graphics pipeline 50 to
process the map data pixels as a stream.

Step 420—Hypsographic Texture Creation

A hypsographic map 1s a visualization representation 19
showing the elevations and depressions of a terrain by directly
mapping a color range to the elevation values of representa-
tive tile 70 on a pixel per pixel basis. Hypsographic maps can
be used with 2D maps to represent a third dimension on a
single plane (see FIG. 10). When coupled with a 3D terrain,
the elevation effect 1s amplified (see F1G. 11). It 1s recognized
that the Hypsographic Texture can be applied to any of the
layers having various levels of detail.

The data store manager 14 creates a hypsographic map
texture by using the elevation data that accompanies each
selected 1nput tile 11. A color range 510 from 0-2535 1s pro-
vided, for example, corresponding to the 256 discrete incre-
ments 1n the elevation data (see FI1G. 12). Instead of using the
raster map data as the map’s texture, the data store manager
14 uses the color range 510 as a lookup table for each pixel 1n
the elevation data to create a new texture for use 1n the visu-
alization representation 19.

Hypsographic creation 1s accelerated by taking advantage
of the programmable pixel shader 60. The pixel shader 60
allows for shading operations to be applied to a stream of
pixels on the graphics processor 32. Each shader 60 program
can be implemented 1n the DirectX Shader language, for
example. Rendering a hypsograph by the shader 60 for a
given coverage region ol the geographic data set 17 has the
tollowing steps, such as but not limited to:

1) Outside Shader 60

1. Before rendering ensure the hypsographic color scale
510 1s loaded (See FIG. 12);

2. Render the height map to texture A, a selected texture
value:

3. Render the raster map to texture B, a selected texture
value;

4. Send Hypsographic Color Scale, Texture A, Texture B,
and an intensity variable to shader 60 algorithm;

5. Run Shader 60 algorithm; and

6. Copy Rendered Texture from shader 60 algorithm output
bufler S8.

Example Shader Algorithm

2)

For each pixel coordinate p 1n output image:
a. Let h be the value at coordinate p in heightmap texture A;

b. Let ¢l be the color at coordinate (0,h) 1n the hypso-
graphic Colour scale Texture;

c. Let c2 be the color at the coordinate p 1n the raster texture
B; and

d. Composite ¢l and ¢2 into ¢3 by linear interpolating
between the two colors by the intensity value and place
into output butifer at p.

10

15

20

25

30

35

40

45

50

55

60

65

18

It 1s recognized 1n the above step 420 that the described
variables can be selected by the application 12 and/or pre-
defined by the data store manager 14, as desired.

Step 422—Light Map Generation

A light map applies shading to a 2D map so as to simulate
the lighting effects that occur on a 3D terrain, on a pixel per
pixel basis of the tiles 11 included 1n the representative tile 70.
When viewing a 2D map, 1t can be difficult to understand the
various contours of the terrain surface, due to the lack of
height information. Even with topographic maps, the effect 1s
quite limited. Instead, data store manager 14 coordinates the
computation of the shading levels that occur when the map
image data 1s stretched over a 3D terrain. The shading levels
are then composited onto the 2D map though use of the shader
60, giving the viewer of the visualization representation 19 a
better understanding of the elevations and depressions of the
terrain included 1in the geographic data set 17. It 1s recognized
that the Light map Generation can be applied to any of the
layers having various levels of detail.

Light map generation can be performed by using the pro-
grammable pixel shader 60, similar to the hypsograph cre-
ation. Rendering a height map uses the following steps, such
as but not limited to:

1) CPU Algorithm
1. Render the height map to texture A, a selected texture
value:
2. Render the raster map to texture B, a selected texture
value;
3. Send Height map texture A, Raster map texture B, a light
direction L, and an intensity 1 to shader 60 algorithm:;

4. Run Shader 60 algorithm; and

5. Copy Rendered Texture from shader 60 algorithm output
buffer 58.

2) Shader Algorithm

For each pixel at coordinate p 1n output image:

a. Calculate the normal n at pixel p 1n height map texture A
(Normal can be calculated by using neighboring pixels
or additionally pre-calculated normal map 1nstead of a
heightmnap);

b. Use shader 60 instruction lit to calculate lighting color
cl, requires light direction L, intensity 1, and normal n;
and

c. Composite pixel at p 1n raster image texture B and light
map color ¢l 1nto output buil

er at pixel p.

It 1s recognized 1n the above step 422 that the described
variables can be selected by the application 12 and/or pre-
defined by the data store manager 14, as desired.

Step 424— [exture Return

The DirectX quads are rendered into an off-screen surface,
which 1s then returned at step 424 to the processor 30 from the
graphics system 32 via the pipeline 50. If the client applica-
tion wants to retrieve the merged elevation data, 1t 1s specifi-
cally requested 1n another call, for example.

Accordingly, the above-described system 8 includes the
spatial data store manager 14 (e.g. for GIS—Geographic
Information Systems) for providing a map delivery system 8
that 1s preferably transparent to the user of the client applica-
tion 12 and does not overly occupy the processor 30
resources. The system 8 can take advantage of the computer’s
graphics system 32 by offloading computationally intensive
functions of the map delivery system 8 to the graphics system
32, such that the processor 30 1s free to perform other tasks
related to functioming of the application 12 and thereby help-
ing to minimize the computation imposition on the user of the

US 7,551,182 B2

19

associated graphics processing. It 1s recognised that the data
store manager 14 can be used to provide the image tiling
techniques for Web-based 3D wvisualization environments
with respect to iteractive Web applications 12. The use of
tiled 11 images for combining to generate the representative
tile 70 helps to improve the application 12 performance by
allowing the application 12 to process an 1mage region of the
geographic data set 17 using a selected number of tiles 11
and/or layers 200 without bringing an excessive amount of
individual tiles 11 and associated information into computer
memory 102 hosting the application 12. The data store man-
ager 14 coordinates pruning of the tile 11 set by using stored
image pyramids 208 when looking at a large area of the scene,
and uses the spatial index 18 to determine viewable tiles 11
based on the acceptable level of detail suitable for rendering
the visualization representation 19. The applicable tiles 11
from the data store 16, as well as any dynamic modifications
to the tile(s) content, 1s combined by the graphics system 32
to generate the representative tile 70 for sending in the
retrieval message 39.

Further, 1t 1s recognized that the data store manager 14 1s
applicable to compose maps (e.g. visualization representation
19) requested by the client application 12 using tile-based
techniques, where the tiles 11 are regions of the map data that
have been segmented into a plurality of squares (or other
shaped regions of the geographic data set 17). Accordingly,
instead of loading an entire map to the application 12 in order
to view a small region of interest on the visual interface 202,
only the required tiles 11 with the appropriate level of
detail(s) (1.e. selected spatial portions of the entire map) are
acquired by the data store manager 14, are modified where
needed and combined to generate the representative tile 70,
which 1s then sent to the application 12. Further, it 1s recog-
nized that multiple types of map data may be layered on top of
one another through the use of different categories of the
layers 200 1n order to provide configurable multiple levels of
detail for a single geographic region and customization 1n the
presentation of the graphics data on the visual interface 202.
For example, the client application 12 can select multiple
levels to be composited using a technique known as alpha
blending, further described below, which can be applied to
hypsograph and/or light map applications.

We claim:

1. A system for assembling graphics information as a
graphics display for presentation on a visual interface, the
graphics information including a plurality of image portions
stored 1n a data store, the system comprising:

a management module for recerving a graphics request
message and for coordinating processing of a selected
number of the image portions to generate at least one
representative image portion as the graphics display 1n
response to the graphics request message;

a graphics system coupled to the management module for
receiving processing information from the management
module to facilitate access to the selected number of the
image portions and for combining them as a merged
combination by combining respective pixel values
obtained from the image portions to generate the least
one representative 1mage portion including the com-
bined pixel values, the graphics system including graph-
ics hardware configured for processing the graphics
information; and

a data store for storing the at least one representative image
portion as the merged combination of the selected num-
ber of 1mage portions;

5

10

15

20

25

30

35

40

45

50

55

60

65

20

wherein the data store 1s configured as tile-based pyramidal
data referenced 1n an associated hierarchical indexed
format, the 1image portions stored as a plurality of image
tiles 1n respective layers.

2. The system of claim 1, wherein the data store 1s part of

the graphics hardware.

3. The system of claim 1, wherein the 1mage portions are
represented as image tiles and the at least one representative
image portion 1s generated as a single representative image
tile.

4. The system of claim 1 further comprising a pixel shader
module for adjusting texture of the selected number of the
image portions during processing by the graphics system, the
pixel shader module being part of the graphics hardware.

5. The system of claim 4, wherein the texture 1s adjusted to
include additional graphics detail 1n the at least one represen-
tative 1mage portion selected from the group comprising a
hypsograph and a light map.

6. The system of claim 4, wherein the graphics information
includes information selected from the group comprising: a
selected geographic region; three-dimensional visual charac-
teristics 1ncluding terrain elevation details and elevation
details; a selected display resolution; and alpha-numeric
information and other graphical symbols for overlay on a
desired geographic region.

7. The system of claim 1 further comprising at least two of
the layers 1n the data store having different resolutions such
that the least one representative image portion 1s a combina-
tion of the different layers combined from the data store.

8. A system for assembling graphics information as a
graphics display for presentation on a visual interface, the
graphics information including a plurality of image portions
stored 1n a data store, the system comprising:

a management module for recerving a graphics request
message and for coordinating processing of a selected
number of the image portions to generate at least one
representative 1image portion as the graphics display in
response to the graphics request message;

a graphics system coupled to the management module for
receiving processing information from the management
module to facilitate access to the selected number of the
image portions and for combiming them as a merged
combination by combining respective pixel values
obtained from the 1mage portions to generate the least
one representative 1mage portion including the com-
bined pixel values, the graphics system including graph-
ics hardware configured for processing the graphics
information;

a data store for storing the at least one representative image
portion as the merged combination of the selected num-
ber of 1mage portions; and

an access module coupled to the management module for
coordinating the access the restricted content of the plu-
rality of image portions stored 1n the data store, such that
the access 1s determined based on the allowed level of
detail of the graphics data for the user of the graphics
request message.

9. A method for assembling graphics information as a
graphics display for presentation on a visual interface, the
graphics information including a plurality of image portions
stored 1n a data store, the method comprising the steps of:

receving a graphics request message;

providing processing information for coordinating pro-
cessing of a selected number of the 1image portions for
inclusion 1n at least one representative 1mage portion as
the graphics display in response to the graphics request
message; and

US 7,551,182 B2

21

accessing the selected number of the 1image portions and
combining them as a merged combination by combining
respective pixel values obtained from the 1image portions
to generate the least one representative 1image portion
including the combined pixel values through use of
graphics hardware configured for processing the graph-
ics information;

storing the at least one representative 1image portion as the
merged combination of the selected number of the
image portions 1n a data store;

wherein the data store 1s configured as tile-based pyramidal
data referenced 1n an associated hierarchical indexed
format, the 1image portions stored as a plurality of image
tiles 1n respective layers.

10. The method of claim 9, wherein the data store 1s part of

the graphics hardware.

11. The method of claim 9, wherein the 1mage portions are
represented as 1image tiles and the at least one representative
image portion 1s generated as a single representative image
tile.

12. The method of claim 9, further comprising the step of
adjusting texture of the selected number of the image portions
during graphics processing.

13. The method of claim 12, wherein the texture 1s adjusted
to include additional graphics detail in the at least one repre-
sentative image portion selected from the group comprising a
hypsograph and a light map.

14. The method of claim 12, wherein the graphics infor-
mation includes information selected from the group com-
prising: a selected geographic region; three-dimensional
visual characteristics including terrain elevation details and
clevation details; a selected display resolution; and alpha-
numeric information and other graphical symbols for overlay
on a desired geographic region.

15. The method of claim 9 further comprising the step of
accessing at least two of the layers 1n the data store having
different resolutions such that the least one representative
image portion 1s a combination of the different layers com-
bined from the data store.

16. The method of claim 9, further comprising the step of
coordinating access to restricted content of the plurality of
image portions stored 1n the data store, such that the access 1s
determined based on the allowed level of detail of the graph-
ics data for the user of the graphics request message.

17. The system of claim 1, wherein the image portions
include a first 1image portion with a greater level of detail
combined with a second adjacent image portion having a
lower level of detail.

18. The method of claim 9, wherein the 1image portions
include a first 1mage portion with a greater level of detail
combined with a second adjacent image portion having a
lower level of detail.

19. The system of claim 1 further comprising an access
module coupled to the management module for coordinating,
the access to restricted content of the plurality of 1mage por-
tions stored in the data store, such that the access 1s deter-
mined based on the allowed level of detail of the graphics data
tor the user of the graphics request message.

20. A method for assembling graphics information as a
graphics display for presentation on a visual interface, the
graphics information including a plurality of image portions
stored 1n a data store, the method comprising the steps of:

receiving a graphics request message:;

providing processing information for coordinating pro-

cessing of a selected number of the 1image portions for

5

10

15

20

25

30

35

40

45

50

55

60

22

inclusion 1n at least one representative image portion as
the graphics display in response to the graphics request
message; and

accessing the selected number of the image portions and

combining them as a merged combination by combining
respective pixel values obtained from the image portions
to generate the least one representative 1image portion
including the combined pixel values through use of
graphics hardware configured for processing the graph-
1cs information:

storing the at least one representative image portion as the

merged combination of the selected number of the
image portions in a data store; and

coordinating access to restricted content of the plurality of

image portions stored 1n the data store, such that the
access 1s determined based on the allowed level of detail
of the graphics data for the user of the graphics request
message.

21. A system for assembling graphics information as a
graphics display for presentation on a visual interface, the
graphics information including a plurality of image portions
stored 1n a data store, the system comprising:

a management module for receiving a graphics request
message and for coordinating processing of a selected
number of the 1mage portions to generate at least one
representative 1mage portion as the graphics display 1n
response to the graphics request message;

a graphics system coupled to the management module for
receiving processing information from the management
module to facilitate access to the selected number of the
image portions and for combiming them as a merged
combination by combining respective pixel values
obtained from the 1mage portions to generate the least
one representative 1mage portion including the com-
bined pixel values, the graphics system including graph-
ics hardware configured for processing the graphics
information; and

a data store for storing the at least one representative image
portion as the merged combination of the selected num-
ber of 1image portions;

wherein the 1image portions include a first image portion
with a greater level of detail combined with a second
adjacent 1mage portion having a lower level of detail.

22. A method for assembling graphics information as a

graphics display for presentation on a visual interface the

graphics information including a plurality of image portions

stored 1n a data store, the method comprising the steps of:
recerving a graphics request message;

providing processing information for coordinating pro-
cessing of a selected number of the 1image portions for
inclusion 1n at least one representative 1image portion as
the graphics display in response to the graphics request
message; and

accessing the selected number of the image portions and
combining them as a merged combination by combining,
respective-pixel values obtained from the 1mage por-
tions to generate the least one representative image por-
tion including the combined pixel values through use of
graphics hardware configured for processing the graph-
1cs information;

storing the at least one representative image portion as the
merged combination of the selected number of the
image portions 1n a data store;

wherein the 1image portions include a first image portion
with a greater level of detail combined with a second
adjacent 1mage portion having a lower level of detail.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

