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(57) ABSTRACT

An early return indication 1s used to notify a first communi-
cations interface, prior to a response being recerved from any
of a plurality of sources coupled to a second communications
interface, that the return data can be used by the first commu-
nications interface when 1t 1s received thereby from a source
of the return data 11 the source has an exclusive copy of the
return data. By doing so, the first communications intertace
can often prepare for forwarding the return data over its
associlated communication link such that the data can be
torwarded with little or no latency once the data 1s retrieved
from its source, and may be able to 1nitiate the return of data
over the communication link prior to all responses being
received Irom the other sources. The early return indication
may also serves as an early coherency indication in that the
first communications interface 1s no longer required to wait
for updating of a coherency directory to complete prior to
forwarding the return data over the commumnication link.

8 Claims, 6 Drawing Sheets
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EARLY RETURN INDICATION FOR READ
EXCLUSIVE REQUESTS IN SHARED
MEMORY ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to copending U.S. patent appli-
cation Ser. No. 11/225,656, filed on even date herewith by
Brian T. Vanderpool and entitled “EARLY RETURN INDI-
CATION FOR RETURN DATA PRIOR TO RECEIVING
ALL RESPONSES IN SHARED MEMORY ARCHITEC-

TURE,” (ROC920050142US1), the disclosure of which 1s
incorporated by reference herein.

FIELD OF THE INVENTION

The invention relates to computers and data processing
systems, and in particular to communicating data 1n a data
processing system incorporating a shared memory architec-
ture.

BACKGROUND OF THE INVENTION

(Given the continually increased reliance on computers in
contemporary society, computer technology has had to
advance on many fronts to keep up with increased demand.
One particular subject of significant research and develop-
ment efforts 1s parallelism, 1.e., the performance of multiple
tasks 1n parallel.

A number of computer software and hardware technolo-
gies have been developed to facilitate increased parallel pro-
cessing. From a hardware standpoint, computers increasingly
rely on multiple processors to provide increased workload
capacity. Furthermore, some processors have been developed
that support the ability to execute multiple threads 1n parallel,
elfectively providing many of the same performance gains
attainable through the use of multiple processors.

A significant bottleneck that can occur 1n a multi-processor
computer, however, 1s associated with the transfer of data to
and from each processor, often referred to as communication
cost. Many computers rely on a main memory that serves as
the principal working storage for the computer. Retrieving
data from a main memory, and storing data back into a main
memory, however, 1s often required to be performed at a
significantly slower rate than the rate at which data 1s trans-
terred internally within a processor. Often, intermediate buil-
ers known as caches are utilized to temporarily store data
from a main memory when that data 1s being used by a
processor. These caches are often smaller 1n size, but signifi-
cantly faster, than the main memory. Caches often take advan-
tage of the temporal and spatial locality of data, and as a
result, often significantly reduce the number of compara-
tively-slower main memory accesses occurring 1in a computer
and decrease the overall communication cost experienced by

the computer.

Often, all of the processors 1n a computer will share the
same main memory, an architecture that 1s often referred to as
Symmetric Multiprocessing (SMP). One limitation of such
computers, however, occurs as a result of the typical require-
ment that all communications between the processors and the
main memory occur over a common bus or interconnect. As
the number of processors 1n a computer increases, the com-
munication traffic to the main memory becomes a bottleneck
on system performance, irrespective of the use of intermedi-
ate caches.
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To address this potential bottleneck, a number of computer
designs rely on another shared memory architecture referred
to as Non-Uniform Memory Access (NUMA), whereby mul-
tiple main memories are essentially distributed across a com-
puter and physically grouped with sets of processors and
caches 1nto physical subsystems or modules, also referred to
herein as “nodes”. The processors, caches and memory in
cach node of a NUMA computer are typically mounted to the
same circuit board or card to provide relatively high speed
interaction between all of the components that are “local” to
a node. Often, a “chipset” including one or more integrated
circuit chips, 1s used to manage data communications
between the processors and the various components 1n the
memory architecture. The nodes are also coupled to one
another over a network such as a system bus or a collection of
point-to-point mterconnects, thereby permitting processors
1n one node to access data stored 1in another node, thus effec-
tively extending the overall capacity of the computer.
Memory access, however, 1s referred to as “non-umiform”™
since the access time for data stored 1n a local memory (1.e., a
memory resident 1n the same node as a processor) 1s often
significantly shorter than for data stored 1n a remote memory
(1.e., a memory resident 1n another node).

Irrespective of the type of architecture used, however, the
latency of memory accesses 1s oiten a significant factor in the
overall performance of a computer. As a result, significant
ciforts have been directed to obtaining the smallest memory
latency possible for any given memory request.

In a computer where processors are coupled to a memory
system via an mtermediate chipset, read or load requests
typically must be forwarded to the chipset via a processor bus
that interconnects the requesting processor to the chipset,
which then determines where the requested data currently
resides (e.g., In main memory, 1n a shared cache, 1n the local
cache of another processor, or, inthe case of a NUMA system,
in a memory or cache 1n a different node). The determination
1s often made by performing a lookup of a coherency direc-
tory, which may be centralized, or 1n some designs, distrib-
uted to multiple points 1n the architecture. In addition, an
update to the coherency directory may also be made based
upon the fact that the requested data will be resident in the
requesting processor alter completion of the request.

Based upon the location of the requested data, the chipset
will then initiate the retrieval of the requested data, and once
the data 1s returned, the data 1s typically stored 1n a buller in
the chipset. Thereafter, a communications interface in the
chupset, e.g., the processor bus 1nterface that couples to the
requesting processor over the processor bus, will use the
return data by retrieving the data from the central butier and
driving the return data to the requesting processor over the
processor bus. The latency of the request 1s typically mea-
sured from the time that the request 1s forwarded across a
processor bus by a requesting processor, until the return data
1s driven back across the processor bus to the requesting
Processor.

One operation that can affect the latency of a memory
request 1n conventional designs 1s associated with updating
the coherency directory. Specifically, 1n many designs, the
datareturned from a memory or other source, and temporarily
stored 1n a chipset buffer, 1s not forwarded to the requesting
processor by the processor bus interface until after the coher-
ency directory 1s updated to reflect the new status of the
relevant data. This is typically due to the need to vernily that
the memory request will not need to be canceled prior to
returning the data to the requesting processor. In many such
designs, therefore, the data being returned waits 1n the chipset
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buffer until a confirmation 1s received from the coherency
directory indicating that the data 1s ready to be forwarded to
the requesting processor.

In a multinode system such as a NUMA-based system, a
similar 1ssue arises with respect to commumnicating data
requested by another node over the communication link
between the nodes. Some conventional designs, for example,
utilize scalability port interfaces 1n a chipset to provide high
speed point-to-point 1nterconnections between pairs of
nodes. From the perspective of the chipset in a node, the
handling of memory requests received over a scalability port
1s handled much like a memory request from a local proces-
sor, with the primary difference being that the communica-
tions protocol used on the scalability port 1s often packet-
based, and requires that data be formatted into specific
packets of information prior to being sent to another node via
the scalability port. From the perspective of performing a
lookup of a coherency directory to identify the source of the
requested data, updating the coherency directory, retrieving,
the requested data from the source, storing the return data in
a bulfer, and waiting for confirmation from a coherency direc-
tory, there 1s little difference between memory requests origi-
nated by local processors and those originated by remote
nodes.

By requiring the data requested by a processor or another
node 1n a multinode system to wait in the builer, several
cycles of additional latency may be introduced. Furthermore,
given the pipelined nature of most memory systems, this
requirement typically requires larger bullers to enable the
data for multiple requests to be retained in the chipset while
awaiting confirmation from the coherency directory. Larger
butlers often lead to increased cost and complexity for a given
design, and as such, 1t 1s typically desirable to minimize the
amount of bulfering required in a chipset whenever possible.

NUMA-based systems may also be subject to additional
latencies associated with processing responses from other
nodes whenever data requested by a processor 1n one node
will be sourced by another node via the scalability port. In
particular, in many designs a coherency directory on a node
will be able to determine that requested data will be sourced
by another node, although which particular node will source
the data 1s typically not known. As a result, many such sys-
tems utilize a broadcast protocol to forward the request to all
other nodes 1n the system. Then, once each node receives the
request, the node determines whether that node should return
the requested data. If so, the node returns the data in a
response, along with an indication of the state of the data, e.g.,
whether the node has a shared or exclusive copy of the data. IT
not, the node still sends a non-data response to confirm that
the node received the response, which also may also indicate
that the node does not have a valid copy of the data. The node
that broadcasts the request typically waits to receive
responses from all of the nodes before updating the coherency
directory and allowing the return data to be forwarded to the
requested processor on the node.

In some designs, a directory protocol may be used 1n lieu of
a broadcast protocol. With a directory protocol, a request 1s
sent to a central directory 1n the system, which looks up the
current node for the requested data and sends a request to that
node. The node that receives the request then forwards the
requested data back to the original requesting node, and noti-
fies the central directory to indicate a transier in ownership of
the data to the requesting node (1f appropriate).

While directory protocols often scale better, broadcast pro-
tocols are often preferred for performance reasons, particu-
larly 1n smaller systems. One drawback of many broadcast
protocols, however, results for the need to wait for all
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responses 1o a request before allowing a processor on a node
to use return data received from another node 1n the system. In

particular, 1n some circumstances, the requested data may be
returned 1n a response from one node before the responses
from other nodes have been received. As a result, even once
the requested data 1s received from another node, several
cycles may elapse belore all responses are received from the
other nodes and the data 1s forwarded to the requesting pro-
cessor. Consequently, the return data, which has already been
received by the node, may need to be stored 1n a buffer and
held for several cycles.

Therefore, a significant need continues to exist for a man-
ner of mimmizing the latency of memory requests in a shared
memory data processing system.

SUMMARY OF THE INVENTION

The invention addresses these and other problems associ-
ated with the prior art by utilizing early return indication to
notify a first communications intertace, prior to a response
being recerved from any of a plurality of sources coupled to a
second communications interface, that the return data can be
used by the first communications interface when 1t 1s recerved
thereby from a source of the return data 1f the source has an
exclusive copy of the return data. By doing so, the first com-
munications interface can often prepare for forwarding the
return data over 1ts associated communication link such that
the data can be forwarded with little or no latency once the
data 1s retrieved from 1ts source, and may be able to 1itiate the
return of data over the communication link prior to all
responses being recerved from the other sources. In addition,
in many embodiments the early return indication also serves
as an early coherency indication 1n that the first communica-
tions 1nterface 1s no longer required to wait for updating of a
coherency directory to complete prior to forwarding the
return data over the communication link.

In some embodiments consistent with the invention, the
carly return indication 1s utilized in connection with data that
1s being returned by another node 1n a multinode data pro-
cessing system, and where the node that has requested the
data 1s executing a read exclusive request that seeks to modity
the requested data, e.g., a Bus Read Invalidate Line (BRIL)
request 1n a scalability network. Typically, a BRIL request
requires a guarantee that all other copies of requested data
have been invalidated before the data can be used by the
requesting node. Otherwise, a risk exists that another node
may attempt to use a stale copy of the data. However, 1in the
case of data that 1s held by another node 1n an exclusive state,
it 1s known that no other node will have a valid copy of the
requested data, so whenever a response 1s recerved from that
node, 1t 1s safe for the data to be used in the receving node
prior to receiving all responses from the other nodes in the
system.

Therefore, consistent with the invention, a request for data
1s processed 1n a data processing system of the type including
a first communications interface configured to be coupled to
at least one requester over a first communications link and a
second communications interface configured to be coupled to
a plurality of sources over a second commumnications link. In
response to a request by the requester, the request i1s for-
warded to the plurality of sources over the second communi-
cations interface, and responses to the request from each of
the plurality of sources are tracked. Furthermore, prior to
receiving a response from any of the plurality of sources, an
indication 1s made to the first communications interface that
return data received from one of the sources in response to the
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request can be used by the processor bus interface it the
source has an exclusive copy of the return data.

These and other advantages and features, which character-
1ze the invention, are set forth 1n the claims annexed hereto
and forming a further part hereof. However, for abetterunder- 5
standing of the ivention, and of the advantages and objec-
tives attained through 1ts use, reference should be made to the
Drawings, and to the accompanying descriptive matter, 1n
which there i1s described exemplary embodiments of the
invention. 10

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional timing diagram 1llustrating the rela-
tive timings of various steps 1n a conventional memory trans- 15
action in a multinode data processing system implementing a
shared memory.

FIG. 2 1s a functional timing diagram illustrating the rela-
tive timings of various steps 1n a read memory transaction in
a multinode data processing system implementing a shared »g
memory and utilizing early return indication in a manner
consistent with the invention.

FIG. 3 1s a functional timing diagram 1llustrating the rela-
tive timings of various steps in a read exclusive memory
transaction 1n a multinode data processing system imple- 35
menting a shared memory and utilizing early return indica-
tion 1n a manner consistent with the invention, where the data
requested by the read exclusive memory transaction 1s in an
exclusive state.

FIG. 4 1s a functional timing diagram 1illustrating the rela- 3¢
tive timings of various steps in a read exclusive memory
transaction 1 a multinode data processing system imple-
menting a shared memory and utilizing early return indica-
tion 1n a manner consistent with the invention, where the data
requested by the read exclusive memory transaction 1s 1 a 35
shared state.

FIG. 5 15 a block diagram of a multinode computer system
suitable for utilizing early coherency indication in a manner
consistent with the invention.

FI1G. 6 1s a block diagram illustrating the interconnections 40
between the coherency unit, scalability port interface,
memory interface and processor bus interface in the chipset of
FIG. 5.

FIGS. 7TA-7B are flowcharts illustrating the handling of a
processor request 1n the chipset of FIG. 3. 45
FI1G. 8 15 a block diagram of an exemplary implementation

of the ready to transfer block referenced in FIG. 7A.

DETAILED DESCRIPTION

50
The embodiments discussed and 1llustrated hereinatter uti-

lize early return indication to enable one communications
interface to anticipate a data return from a source over another
communications interface, and based upon that anticipation,
prepare for communication of the return data, e.g., by plan- 55
ning out and executing any bus arbitration/signaling, prepar-
ing a data response packet, etc. Then, once the data 1s returned
from its source over the other interface, the communications
interface can communicate the data directly to the entity that
requested the data with minimal latency and with a minimal 60
amount of buffering.

Embodiments consistent with the invention, 1n particular,
accelerate the return of data over a first communications
interface to a requester that has 1ssued a request for that data
whenever it 1s determined that the return data will be returned 65
by a source among a plurality of sources that are accessed via
a second communications interface, and that the data can

6

sately be used by the first communications interface once 1t 1s
returned by that source. Embodiments consistent with the
invention additionally incorporate a coherency protocol
whereby the request from the requester 1s forwarded to the
plurality of sources over the second communications inter-
face, and responses from those sources are then tracked to
coniirm that all of the sources have recerved the request.
Locally, each source updates 1ts own coherency information
to ensure that the state of the requested data is coherent
throughout the system. One or more of the sources also pro-
vide the return data 1n response to the request, e.g., as part of
the responses, and 1n certain circumstances in which it can be
verified that the return data is safe to use prior to responses
being recerved from all sources, thatreturn data 1s provided to
the first communications interface for forwarding to the
requester before all of the responses are received, and thus
with reduced latency and decreased buifering requirements.

Embodiments consistent with the invention generally
reduce latency and buifering requirements through a number
of related mechanisms. First, in appropriate situations, the
collection of responses to a memory request 1s removed from
the critical path for the processing of the memory request such
that data returned 1n connection with one of the responses
may potentially be used prior to all responses being recerved.
As such, any latency caused by tracking and/or collecting
responses alter the requested data 1s recerved will typically
not affect the latency of a memory request.

Second, an early indication, referred to herein as an early
return indication, 1s provided to the first communications
interface, indicating that the data can be used by the first
communications interface and forwarded over 1ts associated
communications link, whenever the data 1s recerved by the
communications interface from the source of the return data
over the second communications mterface. The indication 1s
typically provided prior to receiving responses from any of
the sources, although the mndication may be provided before,
alter or concurrently with forwarding the request to the
sources. In addition, the indication may indicate that the data
will arrive at a predetermined time, e.g., 1 a fixed number of
cycles. By doing so, this allows the first communications
interface to begin arbitrating for the bus and line up the data
return phase, and/or preparing a data response packet or oth-
erwise beginning formatting the data for communication over
the communications link, prior to the data actually being
made available to the first communications interface.

The early return 1ndication 1s asserted whenever 1t can be
ascertained that return data can safely be used without the
need for recerving responses from all of the sources. For
example, 1n one implementation of the invention, it can be
ascertained that return data can sately be used prior to receiv-
ing all responses whenever the request 1s of the type that will
not have the ability to modity the requested data, e.g., 1n the
case of a load or read request. In such a case, even 1f other
sources have copies of the return data, 1t 1s typically sate to
use the return data since those other copies will be 1n a shared
state once the request has been processed locally by each of
the sources.

In another implementation of the invention, 1t can be ascer-
tained that return data can safely be used prior to recerving all
responses whenever the request 1s of the type that will have
the ability to modily the requested data, e.g., 1n the case of a
read exclusive or read with intent to modify request, and when
it can be determined that the source of the return data held an
exclusive copy of the data. In many embodiments, not all read
exclusive-type requests can be safely used prior to receiving
all responses due to the need to verity that all other sources
have invalidated their own copies of the data before allowing
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the requester to have an exclusive copy of the data. However,
it has been found that, in the event that a source that 1s
providing return data 1n response to a request previously had
an exclusive copy of the data, i1t can be confirmed that no other
source had a copy of the data, so there 1s no risk that another
source will attempt to use a stale copy of the data.

As will become more apparent below, it may be desirable to
provide early return indications 1n connection with both types
of situations. However, it may be desirable 1n some embodi-
ments to omit one type of early return indication.

It will also be appreciated that, 1n many embodiments
consistent with the invention, the update of a coherency direc-
tory may be treated as a separate step from performing a
lookup of the coherency directory, and may also be removed
from the critical path for the processing of the memory
request. In this regard, the early return indication may further
serve as an early coherence indication that indicates that the
return data may be used prior to updating the coherency
directory. By doing so, the update to the coherency directory
1s essentially made independent of enabling the communica-
tions interface to communicate the return data over the com-
munications link based upon a lookup of the coherency direc-
tory. As such, any latency caused by updating the coherency
directory will typically not affect the latency of a memory
request. A further discussion of this concept 1s provided in
copending U.S. patent application Ser. No. 11/023,706, filed
on Dec. 28, 2004 by Barrett et al. and entitled “EARLY
COHERENCY INDICATION FOR RETURN DATA IN
SHARED MEMORY ARCHITECTURE,” which applica-
tion 1s incorporated by reference herein. It will be appreci-
ated, however, that 1n some embodiments early coherence
indication may not be utilized 1n connection with early return
indication as discussed herein. Furthermore, early coherence
indication may be utilized in connection with handling dii-
terent types of requests, e.g., requests originated from other
nodes via the scalability port interface, processor requests
that are sourced by another processor on the same node or by
the local memory of the node, eftc.

Embodiments consistent with the invention are principally
focused upon providing an early return indication to one
communications interface to enable that communications
interface to prepare for data returned over a different commu-
nications 1interface. In the 1illustrated embodiments, for
example, the early return indication 1s provided to a processor
bus interface to enable that interface to prepare for sending
return data to a requesting processor on the processor bus,
when that return data 1s being sourced by a different node in
a multinode data processing system over a scalability port
interface. Furthermore, 1n the illustrated embodiments, the
carly return indication i1s generated in connection with for-
warding a request to other nodes 1n a scalability network in
response to a processor request, whenever a coherency direc-
tory on the local node for the processor determines that the
return data will be sourced by a different node.

The 1llustrated embodiments rely on a broadcast protocol
that propagates the request to each other node of the system,
and that requires confirmation or acknowledgment, in the
form of a response, to be returned by each other node 1n the
system to ensure that all nodes have processed the request 1n
a suitable manner, e.g., by locally updating their coherency
information for the data to maintain coherency throughout the
system. In other embodiments, a directory-based protocol or
other coherency protocol may be used. Furthermore, 1t will be
appreciated that by “forwarding™ a request from a processor
to other nodes, the request forwarded to the other nodes need
not have the same format as the request from the processor,
and indeed may require reformatting to comply with the
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protocol utilized by the other nodes or sources to which the
node 1s connected. In addition, the forwarding of a request
may result 1n the generation of multiple requests, e.g.,
requests directed to each other node 1n the system.

Typically, only one node, or source, returns data in
response to a request, by virtue of a serializer mechamism that
ensures that even 1n the case of data that 1s shared by multiple
nodes, only one node will return the data 1n response to a
request. Such a serializer mechanism may be implemented,
for example, by defining additional cache states that distin-
guish between a node having a shared copy of data and a node
having a shared copy of data and additionally being the owner
of the data. For example, 1t may be desirable to define, for
shared data, four states: shared clean, shared dirty, shared
serializer clean and shared sernializer dirty. From these states,
cach node can locally determine whether 1t should return data
in response to a request. It will be appreciated, however, that
in other embodiments, every node that has a copy of shared
data will return the data 1n response to the request, with the
node recerving the multiple responses responsible for ensur-
ing that the appropriate copy of the data 1s returned (e.g., by
returning the first copy of shared data that 1s returned).

As noted above, the invention contemplates the provision
of an mdication to a first communications interface that data
being returned over a second communications interface can
be used by the first communications interface once that data 1s
received thereby. In the illustrated embodiments, for
example, the first communications interface 1s a processor
bus interface for a node 1n a multinode data processing sys-
tem, while the second communications interface 1s an inter-
nodal interface such as a scalability port interface that
receives return data from another node 1n the system. How-
ever, 1t will be appreciated that either communications inter-
face consistent with the invention may include practically any
logic suitable for communicating data to be returned in
response to a memory request to the desired destination for
that memory request, be 1t a processor bus interface, an inter-
nodal interface, or any other suitable communications inter-
face known 1n the art.

A source of return data may 1include any memory storage or
component housing the same that 1s capable of storing data
and returning that data in response to a memory request. For
example, 1n the multinode implementation described herein-
aiter, the source of return data may include the main memory
storage for a particular node, any cache memory maintained
within or managed by a chipset 1n that node, and any proces-
sor (or local cache therefor) that 1s resident 1n the node, as well
as any of such components that may be resident on a different
node altogether. Moreover, from the perspective of return
data being returned to one node by another node, from the
perspective of the requesting node, the source may simply be
the node that returns the data, regardless of where 1n that node
the data was actually sourced.

In the embodiments discussed hereinafter, an early return
indication 1s also referred to as an early coherency indication,
given that the indication serves the additional purpose of
indicating that data can be used prior to update of a coherency
directory. It will be appreciated, however, that in other
embodiments, an early return indication may not provide any
such 1ndication with respect to coherency. In addition, other
factors may be relevant in an early coherency indication from
the perspective of determining whether return data can be
used by a communications interface, e.g., when 1t can be
ascertained that the request will complete. For example, in a
multinode system, a request may not complete 11 1t 1s deter-
mined that another request 1n process 1s directed to the same
address or cache line (1.e., a collision with another request).
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It will also be appreciated that multiple indicators may be
utilized by a communications interface to determine when
return data may be used by the communications interface. For
example, 1n the embodiments discussed below, separate
coherency indications are used for read and read exclusive
requests, with an additional useSPdata indication that 1s used
to indicate when shared data can be used 1n response to a read
exclusive request. Other modifications will be apparent to one
of ordinary skill 1in the art having the benefit of the instant
disclosure.

Turning now to the Drawings, wherein like numbers
denote like parts throughout the several views, FIGS. 1-4
highlight the distinctions in the handling of exemplary
memory requests 1ssued by a processor 1n the chipsets of a
conventional data processing system (FIG. 1) and a data
processing system implementing early return indication con-
sistent with the mvention (FIGS. 2-4), where 1t 1s assumed
that the memory request will be fulfilled from a remote node
in a multinode data processing system. It will be appreciated
that the timings of the various operations 1llustrated 1n FIGS.
1-4 are relative 1n nature, and that no specific timings should
be 1mplied by the specific positions of the blocks 1n either
figure. It 1s also assumed that the requester 1s a processor
coupled to a chipset via a processor bus, and that the other
nodes 1n the data processing system are coupled to the chipset
via a scalability port interface.

As shown in block 10 of FI1G. 1, a processor request, 1ssued
as a processor bus command, 1s recerved by a conventional
chipset, resulting in the mitiation of a directory lookup, as
well as the loading of a pending queue (PQ) entry, which 1s
used to track the progress of the command throughout its
lifespan. In addition, 1n some embodiments, the request may
be speculative 1n nature, and result in the 1ssuing of a memory
request to the memory on the node. Some period of time later,
the result of a collision detection operation 1s returned as
illustrated in block 12, as 1s the result of a coherency directory
lookup, as illustrated 1n block 14. As a result of this lookup, 1t
1s determined that the source of the requested data 1s another
node, and as such, scalability port (SCP) requests are broad-
cast to the other nodes 1n the system.

Next, as shown 1n block 17, some time later all of the
responses to the SCP requests are received. One of these
responses will be a data response, which includes the data
requested by the processor. The other responses are typically
non-data responses, or null responses, which do not provide
data, but which do provide confirmation of the receipt of the
request by each node.

Thereatfter, the coherency directory 1s updated, and 11 nec-
essary, the data 1s written to a cache 1n the chipset, as 1llus-
trated 1in blocks 18 and 20. In the conventional design, once
the coherency directory i1s updated, a processor bus data
return indication 1s made to the processor bus interface as
illustrated in block 22, and some time thereatfter, e.g., after the
processor bus interface prepares the return data and arbitrates
for the processor bus, the processor bus interface 1nitiates the
transier of the return data over the processor bus, as 1llustrated
in block 24. Once the return data 1s transferred over the
processor bus, the PQ entry for the command can be retired,
as 1llustrated 1n block 26, and processing of the command 1s
complete.

In contrast, embodiments consistent with the invention
provide an early return indication to the processor bus inter-
face that the return data can be used by the communications
interface and forwarded over 1ts associated communications
link when the data becomes available, and prior to receiving
all responses from the other nodes in the data processing
system. In the 1llustrated embodiments, this early return indi-
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cation also serves as an early coherency indication, as the
indication 1s made before the coherence directory 1s updated.

FIG. 2, for example, illustrates the handling of a read
request such as a BRL request, for which the return data 1s
found to be located on a remote node. In this embodiment,
carly coherence indication may be implemented by providing
an early coherency indication as illustrated in block 28, which
occurs after the results of collision detection and lookup of the
coherency directory have been returned, but also prior to
updating the coherency directory, and optionally writing to
the chipset cache, as 1llustrated 1n blocks 18' and 20'. Of note,
this early coherency indication 1s also performed concur-
rently to the broadcast of SCP requests to the remote nodes in
block 16, although it will be appreciated that the indication
may alternatively be made before or after the broadcast of the
SCP requests, so long as the indication 1s made prior to
receiving any responses from the remote nodes. Thereatter,
responses are recerved from the other nodes, including an
SCP response with the requested data, which 1s shown at
block 30, until all responses are recerved as indicated 1n block
32. It will be appreciated that the receipt of the data response
in block 30 may occur in any sequence relative to the non-data
responses from the other nodes.

By providing the early indication to the processor bus
interface, the processor bus interface 1s able to begin arbitrat-
ing for the processor bus and otherwise preparing for the
return of data, such that once the data 1s returned from the
remote node, the data may be returned over the processor bus
at a much earlier time, as represented by block 24'. In many
instances, the data may even be returned prior to receiving
responses from all of the nodes (block 32).

Moreover, given the updating of the coherency directory 1s
also outside of the critical path for processing the memory
request, the updating of the directory, and optional writing to
the chipset cache, may be delayed 1f desired, as illustrated in
blocks 18' and 20'. Consequently, it can be seen that the
overall latency of the request, from when 1t 1s {irst placed on
the processor bus until the return data 1s returned back over
the processor bus, 1s reduced from that of conventional
designs.

FIGS. 3 and 4 next illustrate the processing of a read
exclusive request, e.g., a BRIL request, which requests data
for the purpose of modifying the data, and thus requires that
the requesting node obtain exclusive access to the requested
data, with any other copies of the requested data invalidated
on the other nodes prior to use of the data by the requesting
node. As noted above, 1t has been found that, when the return
data 1s found to be 1n an exclusive state on another node, it 1s
suitable to use the return data as soon as it 1s recerved from
that other node, and without requiring all other nodes to return
responses to the requesting node. This 1s because as a com-
ponent of processing the request in the remote node, the
remote note invalidates 1ts copy of the return data, so the data
response acts as a confirmation that no other node in the
system has a valid copy of the return data.

As such, as shown 1n FIG. 3, a read exclusive request 1s
1ssued 1n block 10', which results 1n a directory lookup being
initiated and a PQ entry being loaded for the request. Colli-
s1on detection and the return of directory results occur 1n a
similar manner to that described in the earlier figures 1n
blocks 12 and 14. In addition, in this example the directory
results indicate that the request will be sourced by another
node, and as such, SCP requests are broadcast as shown in
block 16. Then, prior to receiving any responses to the broad-
cast SCP requests, an indication 1s provided in block 34,
which 1s referred to herein as a conditional early coherency
indication. This indication 1s conditional from the standpoint
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that the processor bus interface 1s not permitted to use the
return data unless and until 1t 1s known that the return data was
in an exclusive state on the node returming the data. For
example, as shown 1n block 36, an SCP response with an
indication of exclusive data may be returned, resulting in the

processor bus data return occurring shortly thereafter as

shown 1n block 24', even potentially prior to recerving the rest
of the SCP responses 1n block 32.

In contrast, as shown 1n FIG. 4, 1f a response 1s returned that
indicates that the data 1s not exclusively held by any node,
¢.g., a response with return data indicated to be 1n a shared
state (block 40), the condition for the early coherence indica-
tor 1s not met, so the node 1s required to wait for the rest of the
SCP responses belore indicating that the return data may be
used by the processor bus iterface in block 24, as a guarantee
that no other nodes 1n the system have valid copies of the
requested data. One manner of doing so in the illustrated
embodiment 1s via a separate useSPdata indication, as 1llus-
trated 1n block 42, which may optionally be asserted concur-
rently with updating the directory and writing to the cache, as
shown 1n blocks 18' and 20'. It will be appreciated that, 1n
systems where only one node 1s considered to be an owner of
any given cache line, only one node may provide the
requested data when that data 1s held in a shared state,
whereby the other nodes also holding shared copies of the
data may send responses that indicate a shared state, but
without the return data appended thereto. As such, the deter-
mination that requested data 1s not 1n an exclusive state, as
illustrated 1 block 40, may alternatively be made in response
to a non-data response that indicates a shared state, and that 1s
received prior to recerving the return data from another node.

Now turning to FIG. 3, this figure 1llustrates a multinode
computer 50 that represents one suitable environment within
which the herein-described early return indication function-
ality may be implemented in a manner consistent with the
invention. Computer 50 generically represents, for example,
any ol a number of multi-user computers such as a network
server, a midrange computer, a mainirame computer, efc.
However, 1t should be appreciated that the invention may be
implemented 1n practically any device capable of utilizing a
data bus that serves multiple memory requesters, including
other computers and data processing systems, €.g., 1n single-
user computers such as workstations, desktop computers,
portable computers, and the like, or 1n other programmable
clectronic devices (e.g., incorporating embedded controllers
and the like), such as set top boxes, game machines, etc.

Computer 50, being implemented as a multinode com-
puter, includes a plurality of nodes 52, each of which gener-
ally including one or more processors 54 coupled to one or
more system or processor buses 56. Also coupled to each of
processor buses 24 1s a chipset 38 incorporating a chipset
cache 59, a processor bus interface 60, and a memory nter-
face 62, which connects to a memory subsystem 64 over a
memory bus 66. Memory subsystem typically includes a plu-
rality of memory devices, e.g., DRAM’s 68, which provides
the main memory for each node 32.

For connectivity with peripheral and other external
devices, chipset 58 also includes an mnput/output interface 70
providing connectivity to an I/O subsystem 72. Furthermore,
to provide internodal connectivity, an internodal interface,
¢.g., a scalability port interface 74, 1s provided 1n each node to
couple via a communications link 75 to one or more other
nodes 52. Chipset 58 also typically includes a number of
butlers resident therein, €.g., a central buifer 77, as well as one
or more dedicated butlers 61, 75 respectively disposed 1n
processor bus interface 60 and scalability port interface 74.
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Chipset 58 also includes control logic referred to herein as
a coherency unit 76 to manage the processing ol memory
requests provided to the chipset by processors 54 and/or
remote nodes 52 over a scalability port interconnect 75. It 1s
within chipset 38 that early return indication 1s implemented
in the embodiment of FIG. 5. Moreover, while other imple-
mentations will be envisioned, the embodiment described
heremnafter provides early return indication as an optional
mode of operation for the chipset, and furthermore, supports
carly return indication for data being returned 1n response to
requests 1ssued both by processors on the same node (where
the data 1s to be returned over a processor bus) and processors
on a different node (where the data 1s to be returned over the
scalability port). Furthermore, in the embodiment discussed
hereinafter, it will be appreciated that requests 1ssued to a
chipset may be tulfilled by a remote node via the scalability
port, via the main memory located on the node, via a cache in
the chipset, or 1n another processor on the local node, depend-
ing upon the location of the requested data.

It will be appreciated that multiple ports or interfaces of
any given type may be supported in chipset 38. As shown 1n
FIG. 5, for example, 1t may be desirable to support multiple
processor buses (or bus segments) in each node, which, as will
be more apparent below, may result 1n the need to source data
requested by a processor on one processor bus by communi-
cating the data from a processor on another processor bus.
Furthermore, the various interfaces supported by chipset 58
may implement any number of known protocols. For
example, chipset 58 may be compatible with the processor
bus protocol for the Xeon line of processors from Intel Cor-
poration. It will be appreciated however that the principles of
the invention apply to other computer implementations,
including other multinode designs, single node designs, and
other designs utilizing split transaction buses and/or proto-
cols.

Chipset 58 may be implemented using one or more inte-
grated circuit devices, and may be used to interface system
bus 24 with additional electronic components, €.g., graphics
controllers, sound cards, firmware, service processors, etc. It
should therefore be appreciated that the term chipset may
describe a single integrated circuit chip that implements the
functionality described herein, and may even be integrated 1n
whole or 1n part into another electronic component such as a
processor chip.

Computer 50, or any subset of components therein, may be
referred to hereinafter as an “apparatus™. It should be recog-
nized that the term “apparatus” may be considered to 1ncor-
porate various data processing systems such as computers and
other electronic devices, as well as various components
within such systems, including imndividual mtegrated circuit
devices or combinations thereof. Moreover, within an appa-
ratus may be incorporated one or more logic circuits that
circuit arrangements, typically implemented on one or more
integrated circuit devices, and optionally including additional
discrete components intertaced therewith.

It should also be recognized that circuit arrangements are
typically designed and fabricated at least 1n part using one or
more computer data files, referred to herein as hardware defi-
nition programs, that define the layout of the circuit arrange-
ments on integrated circuit devices. The programs are typi-
cally generated 1n a known manner by a design tool and are
subsequently used during manufacturing to create the layout
masks that define the circuit arrangements applied to a semi-
conductor water. Typically, the programs are provided 1n a
predefined format using a hardware definition language
(HDL) such as VHDL, Verilog, EDIF, etc. Thus, while the

invention has and hereinafter will be described 1n the context
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of circuit arrangements implemented 1n fully functioning
integrated circuit devices, those skilled 1n the art will appre-
ciate that circuit arrangements consistent with the imnvention
are capable of being distributed as program products 1n a
variety of forms, and that the mvention applies equally
regardless of the particular type of computer readable signal
bearing media used to actually carry out the distribution.
Examples of computer readable signal bearing media include
but are not limited to tangible, recordable type media such as
volatile and non-volatile memory devices, tloppy disks, hard
disk drives, CD-ROM’s, and DVD’s, among others, and
transmission type media such as digital and analog commu-
nications links.

FIG. 6 illustrates in greater detail the interconnections
between coherency umt 76, memory interface 62, processor
bus interface 60 and scalability port interface 74 1in chipset 58,
specifically with regard to handling processor-initiated
memory requests forwarded to the chipset over one of pro-
cessor buses 56. Coherency unit 76 includes a pending queue
78 and a coherence directory 80.

Pending queue (PQ) 78 includes control logic 82 incorpo-
rating an array ol PQ entries 84, coupled to a collision detec-
tion block 86. Each PQ entry 1s configured to store status
information for a pending command or request being pro-
cessed by the chipset. Additionally included 1n each PQ) entry
utilized 1n the 1llustrated embodiment are status fields con-
figured to indicate whether (1) the processor bus interface has
been provided with an early coherence indication or a condi-
tional early coherence indication, (2) the scalability port
interface has been provided with an early coherence 1ndica-
tion, (3) the return data has been forwarded to the processor
bus but the coherence directory still needs to be updated, and
(4) the return data has been forwarded to the scalability port
but the coherence directory still needs to be updated.

Pending queue 78 typically tracks the status of a command
or request throughout 1ts lifetime. Typically, this will include
receiving the command or request from the processor bus or
scalability port interface, determining retry/collision infor-
mation, recerving directory results to determine where the
latest copy of the requested cache line can be found, ensuring
that the requested data 1s obtained by either allowing the
fastpath memory read complete, cancelling the fastpath
memory read and 1ssuing a new request to another processor
bus, or cancelling the memory fastpath request and 1ssuing
requests over the scalability port for processor sourced com-
mands, ensuring the data return has occurred, providing noti-
fication to the requester that data 1s available, and ensuring the
requestor has consumed the data. Of note, when early return
indication 1s used, the notification provided that data 1s avail-
able 1s typically performed after receiving the directory
results, rather than waiting until after the data return has
occurred.

Collision detection block 86 1s configured to compare the
address or cache line associated with a new request to those of
the pending requests stored 1n the array of PQ entries. Any
new request that 1s directed to the same address or cache line
as a pending request 1s considered to “collide’” with the pend-
ing request, and will be canceled and retried at a later time.
From the perspective of the new request, an indication from
the collision detection that no collisions exist 1s a prerequisite
tor providing the early return indication. Moreover, from the
perspective of a pending request, the fact that later requests
that are directed to the same address or cache line will gen-
erate collisions ensures that the pending request will not need
to be canceled and retried, and as such, the collision detection
operates as a guard on the request during the period of time
between when the return data for the request 1s being returned
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and when the coherence directory 1s updated as a result of the
request. By protecting a pending request 1n such a manner, 1t
can be assured that a request that will be serviced by the local
node, and that does not raise any collisions with other
requests, will be able to complete.

Coherence directory 80 stores coherence information
related to the associated node, e.g., tracking all cache lines
currently cached by local processors, whether those cache
lines are owned by this or a different node, and tracking all
cache lines owned by this node that have been cached by
another node. Based upon the indication of the source of the
requested data (e.g., a cache line) for a memory request, the
results of the lookup to the coherence directory also operate as
a prerequisite on the early return indication, as a memory
request that has been requested for an address or cache line
that 1s owned by another node will typically be canceled and
retried at a later time.

From the perspective of data flow, FIG. 6 illustrates an
incoming processor bus read request that 1s supplied to each
of control logic 82, collision detection block 86, coherence
directory 80, and memory interface 60. In the illustrated
embodiment, the read request i1s treated as a speculative
request, 1.e., a fastpath request, by the memory interface 60,
resulting in the memory request being forwarded to the
memory subsystem prior to completing any lookup to the
coherence directory.

As also seen 1n FIG. 6, collision detection block 86 and
coherency directory 80 are capable of supplying collision and
directory cancel signals to each of control logic 82 and
memory 1nterface 60, which signals are asserted whenever 1t
1s determined that a collision has occurred or the source of the
requested data 1s such that the current memory request must
be canceled and retried. Coherence directory 80 also outputs
directory results to control logic block 82, which are used to
update the PQ entry for the request, as well as to scalability
port imterface 74, to indicate, when appropriate, that the
request will be sourced by a remote node, thus mitiating the
broadcast of the request to the other nodes over the scalability
port interface.

Based upon the aforementioned input signals control logic
82 selectively outputs an early coherence indication when it 1s
known that a given request will complete, and thus, will not
need to be retried. This indication 1s supplied to processor bus
interface 60, along with a data return signal generated by
memory 1interface 62 whenever the requested data has
become available for those requests that are being handled by
the memory of the local node. Based upon these two signals,
processor bus interface 60 1s able to notify the processor bus
interface to 1mitiate transmission of the return data over the
processor bus. Furthermore, transier of the return data to the
processor may result in the provision of an indication from the
processor bus interface to control logic 82 that the transfer has
been 1nitiated.

For those requests being handled by remote nodes, control
logic 82 also may utilize the atorementioned early coherence
indicator. For handling read exclusive requests, control logic
82 also provides to processor bus interface 60 a conditional
carly coherence indicator and a wuseSPdata indicator,
described in greater detail below. Furthermore, a direct path
between scalability port interface 74 and processor bus inter-
face 60 1s provided to enable return data from the scalability
port interface to be provided directly to the processor bus
interface, and bypassing the central builer. This data return
also provides the state of the return data, which may be
encoded, for example, in the header of the return data packet.
For read exclusive requests, processor bus interface 60 relies
on the conditional coherence indicator and the state of the
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return data to determine whether the return data can be for-
warded to the requesting processor prior to all responses
being received from the other nodes 1n the system.

FIGS. 7A-7B next illustrate an exemplary tlowchart for
handling a processor request in the chipset of FIG. 5. The
flowchart 1llustrates the steps that occur 1n association with
handling a processor request that results 1n a simple memory
fetch, a processor request that results in an 1ntervention by
another processor on the other processor bus, and a processor
request that results in the 1ssuance of a scalability port request
to retrieve the requested data from another node 1n the data
processing system. Moreover, as will become more apparent
below, the request may either be a BRL (read) request or a
BRIL (read exclusive) request, with the different handling of
cach 1n connection with a request that 1s sourced by another
node 1n the scalability network further illustrated in the fig-
ures. It should be noted that 1n the flowchart of FIGS. 7TA-7B,
blocks 118 and 120 are implemented by memory interface 62,
blocks 112 and 122-128 are implemented by processor bus
interface 60, the blocks shown in FIG. 7B (blocks 138-146)
are 1mplemented by scalability port interface 74, and the
remaining blocks are implemented by control logic 82. The
reader may wish to refer to FIG. 6 1n association with the
discussion of FIGS. 7A-7B.

As shown 1n block 100, arequest 1s in1tially loaded 1nto the
chipset, which may include initiating a fastpath (speculative)
read on the memory interface, whereby at this point, the
control logic has a cancel opportunity due to address colli-
s10ons (detected by collision detector 86), or due to the request
being directed to a cache line resident on another node (de-
tected by coherence directory 80). In addition, the control
logic may also determine a request needs to be canceled due
to buslocks or livelock avoidance. As such, block 102 deter-
mines whether the request will be retried (1.e., will not com-
plete). IT so, control passes to block 104, whereby the request
1s canceled and the command 1s retried back to the source.
Handling of the request 1s then complete.

Otherwise, control passes to block 106 to determine from
the coherency directory the source of the requested data.
Assuming a scenario where the source of the requested data 1s
the local memory for the node, control passes to block 114 to
signal an early coherence indicator (ECI), indicating to the
processor bus interface that the data to be returned from
memory can be used when 1t becomes available.

From the perspective of the memory interface, mitiation of
the fastpath read in block 100 1mitiates an indication from
block 118 to the processor bus interface that data will be
arriving to the chipset from the memory subsystem in a fixed
(X) number of cycles (assuming the request 1s not canceled).
The indication 1s typically asserted when the memory inter-
face 1ssues the command on the memory bus. Thereafter, 1n
block 120, once the data does arrive at the chupset, another
indication 1s provided by the memory 1nterface to the proces-
sor bus interface.

Turning now to block 122, which i1s performed by the
processor bus interface, the processor bus interface waits on
the indications from the control logic and the memory inter-
face to determine when the bus i1s ready to transfer the
requested data. In the case of a request sourced by local
memory for the node, block 122 waits until both the ECI 1s
asserted and either of the indications from blocks 118 and 120
1s also asserted. Block 122 is also dependent upon a memory
reset not occurring (€.g., as may be set 1n block 108 when a
memory read 1s canceled), which notifies the processor bus
interface to 1gnore any data already seen for the request and
start looking for new data (e.g., 1f data 1s returned prior to
receiving directory results that indicate the requested data
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should not be sourced from the local memory). Of note, block
122 may wait until a different (e.g., shorter) number (Y) of
cycles than X cycles remain until the data will arrive from the
memory interface. Once these conditions are met, block 122
passes control to block 124 to begin arbitration for the pro-
cessor bus at an appropriate amount of cycles before the data
will arrtive (which 1s computed based upon the bus protocol)
to 1mitiate the data return. It should also be appreciated that,
during this time, the control logic will hold off any subsequent
requests that collide with the request.

Next, control passes to block 126 to transier ownership of
the requested data (typically the cache line with which the
data 1s associated) from the chipset to the requesting proces-
sor. For example, depending upon the protocol supported, the
transier may be performed during a deferred snoop phase or
during an IDS (1dentification strobe) phase, or 1n another
manner suitable for the particular protocol. Next, as illus-
trated 1n block 128, as data 1s returned from memory, the data
typically flows mto a central data buffer in the chipset, and
optionally directly into a builer in the processor bus interface
as well, to preserve the data in case the processor interface
buifers are full. Due to the early arbitration allowed by the
carly coherence indicator, the processor bus interface 1s able
to take the data and drive it out on the processor bus with
minimal bullering.

Also, as shown 1n block 130, as data 1s returned to the
source processor over the processor bus, the processor bus
interface provides an IDS valid notification to the control
logic that the transfer of ownership for the requested data has
occurred, and that the directory state should now be updated
in the coherency directory. Block 132 then updates the coher-
ency directory, and writes the cache line to the local cache 1f
necessary. Processing of the request 1s then complete.

Returning now to block 106, assuming a scenario where
the source of the requested data 1s a processor on another
processor bus (or bus segment) 1n the node, control 1nstead
passes to block 108 to cancel the memory read and reset an
indicator that indicates that the data will be coming from
memory. In addition, block 108 masters a command onto the
appropriate processor bus to imitiate the retrieval of the return
data from the appropriate processor within which the return
data resides.

Upon mastering the command on the other bus, a snoop
will be performed by the processors on the bus to obtain the
state of the requested cache line. If the cache line 1s 1n any
other state than modified, block 110 passes control to block
116 to simply mnitiate a new read to the memory, as the
exemplary embodiment is configured to implement modified
intervention, where a processor only intervenes when that
processor has the cache line in a modified state. It will be
appreciated that other intervention protocols may be sup-
ported 1n other embodiments.

Upon completion of block 116, control passes to block 114
to assert the ECI, as well as to initiate the read on the memory
bus via block 118. The memory request will then be handled
in the basic manner described above for a request initially
determined to be sourced by the memory.

Returning to block 110, 1f 1t 1s determined that a processor
has a modified copy of the cache line, control i1s passed to
block 114 to signal the ECI. Moreover, as illustrated 1n block
112, the processor bus interface provides a data indicator to
the processor bus for the requesting processor that data will be
arriving 1 a fixed number of cycles. Block 122 thereafter
initiates the data return once receiving the ECI and the indi-
cation from the other processor bus, and processing of the
request proceeds 1n a stmilar manner as for a request sourced
by memory, but with the other processor bus providing the
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return data to the central data bufler, and optionally the
requesting processor bus interface buifer. Also, as with a
request sourced by memory, due to the early arbitration
allowed by the early coherence indicator, the processor bus
interface 1s able to take the data and drive it out on the
requesting processor bus with minimal buifering.

Returming again to block 106, assuming a scenario where
the source of the requested data 1s a processor or memory on
another node, control instead passes to block 138 (FI1G. 7B) to
broadcast the SP requests to the other nodes over the scalabil-
ity port interface. Next, block 140 determines whether the
request 1s a read request (BRL) or a read-exclusive request
(BRIL). If a read request, the ECI signal 1s asserted 1n block
114, and 1f a read exclusive request, a Conditional Early
Coherence Indicator (CECI) signal 1s asserted 1n block 134
(FIG. 7A). Returning to FIG. 7B, 1rrespective of the type of
request, control passes to block 142 to wait for the responses
to the SCP requests from the other nodes. Fach received
response 1s processed in block 144 (e.g., by tracking receipt of
the response), and block 146 returns control to block 142 to
wait for the other responses until all responses have been
received. Once all such responses have been received, block
146 passes control to block 136 (FIG. 7A) to assert the useSP-
data signal, such that in the event the processor bus interface
receives shared data 1n response to a read-exclusive request,
the interface can be notified when all responses are received.

FIG. 8 illustrates one exemplary implementation of block
122 to process early return indications 1n a manner consistent
with the mvention. FIG. 8 in particular 1llustrates an exem-
plary logic diagram including blocks 150-168.

For requests sourced either locally on a node, or for read
requests sourced by a different node, the ECI signal 1s coupled
to AND gate 150, having another input coupled to the output
of an OR gate 152. Gate 152 recerves as input the data coming
in y cycles and data here signals output by blocks 118 and 120
(FIG. 7A), and a scalability response with data signal, which
1s asserted whenever response data 1s received from the scal-
ability port interface by the processor bus interface.

For read exclusive requests sourced by another node, the
CECI signal 1s coupled to AND gate 154, having another
input coupled to the output of an OR gate 156. A test block
158 determines from the response data (e.g., via the header of
the response packet) whether the state of the data 1s exclusive,
and outputs a signal indicating the same. This output 1s pro-
vided to an AND gate 160, which also receives the indication
that a scalability response with data has been recerved, such
that the output of AND gate 160, which 1s provided to OR gate
156, 1s asserted whenever an exclusive data response 1s
received by the scalability port interface.

The other mnput of OR gate 156 1s coupled to an AND gate
162, which combines the data here signal (generated by block
120) and the useSPdata signal (generated by block 136) to
indicate when the data has arrived from the scalability port
and all responses have been received.

The outputs of AND gates 150 and 154 are combined by
OR gate 164, which outputs to an AND gate 166 having as 1ts
other 1input the output of an mverter 168 that receives the
memory reset signal (generated by block 108). The output of
gate 166 1s a ready signal that 1s asserted whenever the pro-
cessor bus interface 1s ready to begin arbitrating for return of
data over the processor bus.

Early return indication in a manner consistent with the
invention therefore minimizes latency, and potentially mini-
mizes butlering requirements, whenever 1t can be determined
that data returned from a particular source 1n response to a
request can be used prior to recerving responses from all other
sources that receive the request.
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Early return indication may also provide a number of addi-
tional benefits consistent with the invention. For example,
when the data 1s being returned from memory, the data may be
allowed to flow 1nto the processor bus interface butler without
being ECC corrected. It no ECC error or correction occurs the
data 1s correct as soon as it 1s recerved, and can be driven
directly to the requester. I an ECC error or correction occurs,
a signal may still be sent from the memory interface to the
processor bus interface to enable the processor bus interface
to stall the data return for one or more cycles, as required to
receive the corrected data.

In addition, when the data 1s being returned over a proces-

sor bus, the “data coming” indication may be provided based
upon a data transfer signal such as the TRDY signal used in
the Intel Xeon bus protocol. A minimum architected time may
be specified from the TRDY signal to data on the processor
bus; however, 1t may be desirable to allow the processor to
take longer than the minimum time to supply the data. In the
case where the data does not arrive according to minimum
timings, it may be desirable to discard the packet and then
restart the packet at a later time when the data 1s known to be
in the central bufler (if being routed to the scalability port
interface), or to stall the data return for one or more cycles (1f
being routed to the processor bus interface).
Therefore, 1t will be appreciated that the provision of an
early return indication reduces the latency of read requests,
and enables coherence directory updates and response track-
ing to be removed from the critical path for processing such
read requests. It will be appreciated that various additional
modifications may be made to the 1llustrated embodiments
consistent with the invention. It will also be appreciated that
implementation of the functionality described above within
logic circuitry disposed 1n a chipset or other appropriate inte-
grated circuit device, would be well within the abilities of one
of ordinary skill in the art having the benefit of the instant
disclosure.

What 1s claimed 1s:

1. A method of processing a request for data 1n a data
processing system of the type including a first communica-
tions interface configured to be coupled to at least one
requester over a first communications link and a second com-
munications nterface configured to be coupled to a plurality
of sources over a second communications link, the method
comprising, 1n response to a request by the requester:

forwarding the request to the plurality of sources over the

second communications interface;

tracking responses to the request from each of the plurality

of sources; and

prior to recewving a response from any of the plurality of

sources, indicating to the first communications interface
that return data recerved from one of the sources in
response to the request can be used by the first commu-
nications interface 1f the source has an exclusive copy of
the return data.

2. The method of claim 1, further comprising;

accessing coherency information stored in a coherency

directory to identily the source of return data for the
request; and

updating the coherency directory based upon the request;

wherein indicating to the first communications interface

that the return data can be used by the first communica-
tions mterface 1s performed prior to updating the coher-
ency directory.

3. The method of claim 1, wherein the first communica-
tions interface comprises a processor bus interface configured
to be coupled to at least one processor over a processor bus,
wherein the request 1s generated by the processor and
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received by the processor bus intertace, wherein the first and
second communications interfaces and the control logic are

disposed 1n a first node 1n a multi-node data processing sys-
tem, and wherein the second communications interface com-
prises an internodal interface configured to coupled the first
node to a second node.

4. The method of claim 1, further comprising, 1 the first
communications interface, preparing for communication of
the return data over the communications link 1n response to
the indication, and prior to the return data being available to
the communications interface, by arbitrating for the commu-
nications link to line up the return data.

5. The method of claim 1, wherein the indication to the
communications 1interface comprises a conditional early
coherence 1ndicator.

6. The method of claim 1, further comprising, in the first
communications interface, after the indication 1s made that
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return data recerved from one of the sources 1n response to the
request can be used by the first communications interface i
the source has an exclusive copy of the return data, determin-
ing whether the return data recerved from the source indicates
that the source has an exclusive copy of the return data.

7. The method of claim 1, further comprising, 1n the first
communications interface, initiating communication of the
return data over the first communications link when received
thereby from the source of the return data over the second
communications interface prior to responses being recerved
from all of the plurality of sources if a determination 1s made
that the source has an exclusive copy of the return data.

8. The method of claim 7, turther comprising waiting until
responses have been received from all sources 11 a determi-

nation 1s made that the source does not have an exclusive copy
ol the return data.
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