12 United States Patent

US007525986B2

(10) Patent No.: US 7,525,986 B2

Lee et al. 45) Date of Patent: Apr. 28, 2009
(54) STARVATION PREVENTION SCHEME FOR A 6,820,151 B2* 11/2004 Ennisccccceeevveennnn.. 710/240
FIXED PRIORITY PCI-EXPRESS ARBITER 6,882,649 B1* 4/2005 Guraetal. 370/395.42
WITH GRANT COUNTERS USING 2003/0126376 Al* 7/2003 Blankenship etal. 711/146
ARBITRATION POOLS 2003/0204679 Al* 10/2003 Blankenship 711/146
2005/0033906 Al* 2/2005 Mastronarde et al. 711/100
(75) Inventors: Khee Wooi Lee. Penang (MY); Mikal 2006/0064695 Al* 3/2006 Bumnsetal. 718/100
C. Hunsaker, El Dorado Hills, CA (US); OTHER PUBLICATIONS
Darren L. Abramson, Folsom, CA (US) o N
PCI Express Base Specification Revision 1.0a, PCI Express, Apr. 15,
(73) Assignee: Intel Corporation, Santa Clara, CA 2003, pp. 1-118.
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Min Jung
patent i1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—Blakely, Sokoloit, Taylor &
U.S.C. 154(b) by 910 days. Zatman LLP
(21) Appl. No.: 10/975,593 (57) ABSTRACT
(22) Filed: Oct. 28, 2004 Method and apparatus for arbitrating prioritized cycle
streams 1n a manner that prevents starvation. High priority
(65) Prior Publication Data and low priority arbitration pools are employed for arbitrating
US 2006/0101179 A1 Mav 11. 2006 multiple mput cycle streams. Each cycle stream contains a
M stream of requests of a given type and associated priority.
(51) Int.Cl Under normal circumstances in which resource butler avail-
GOES 'a 1 3/14 (2006.01) ability for a destination device 1s not an 1ssue, higher priority
' _ _ _ streams are provided grants over lower priority streams, with
(52) US.CL ... 370/462; 710/113; 77110é /234(?9,, all streams receiving grants, However, when a resource buffer
_ _ _ 1s not available for a lower priority stream, arbitration of high
(58) Field of Clg;zlg%ztlgg 5823?(:?1 1/ 10 71 12 131730/;1%? priority streams with available bufter resources are redirected
’7 10 /'1 : 53 240. 24 1" 5 4i 20 9’ : 6" to the low priority arbitration pool, resulting 1n generation of
Q lieation file £ "1 ’ 1"1 b ’ > grant counts for both the higher and lower priority streams.
ce application lile for complete search history. When the resource buffer for the low priority stream becomes
(56) References Cited available and a corresponding request is arbitrated 1n the high

6,009,488 A
6,546,017 B1*

U.S. PATENT DOCUMENTS

12/1999 Kavipurapu
4/2003 Khaunte

priority arbitration pool, a grant for the request can be 1mme-
diately made since grant counts for the stream already exist.

30 Claims, 5 Drawing Sheets

PCI-Express | PCI-Express
«— | —>
e e Rool-Complex | Device queue 1
:Fixed Priority Arbiter with Arbitration Pools for Starvation Prevention : |
| —>
: High Priority Arbitration Pool — shared queue free : :
| 212 | hared |
~\ share
cycle stream 1 : ”[‘7 1 ¥ : queue :
— grant " individual — shared fixed : f |
cycle stream 2 | |
d ——lp count I > resource > resource priority 1> ﬂ
cycle stream3 | [qualification +qualiﬁcatiunl_h quailification enforcer ! :
| _ | R |
| — &) | ueue 3
~ ((- ?22 . 202 / | S
Produces___ | =0 #0 220 214 appending | PCl-Express | AV
L] 3207 ! 304 of | Link -\ 204‘"" fﬂ“‘“‘*
| grant 208 priority : | 1V,
Cycle Stream | | | counters - queue 1 free enforcer l |
Separglron : 1,23 — queue 2 free { 4 f) ' }{

Logic | P . 208
| queue 3 free | Flow Control queue free
foreachVC || 218 | reload | “— Credit Update informatior

—— _l_ —— — | | | |
\Virtual Channel); | | grant ; |
) Separation 1) (counters& | |
| Logic ! poo! | |
------- 1) | selection | |
205 -1 | logic ; .
I

PCl Express : ? f : |

Port | 308 | |

yaninmmE oA shared queue free ———— |
201 T L Low Priority Arbitration Pool 302 _: 200 | 206
———————————————————————————————————— I

U.S. Patent Apr. 28, 2009 Sheet 1 of 5 US 7,525,986 B2

106
1

110

PC| EXPRESS 136
ENDPOINT | pcl EXPRESS

128

PC| EXPRESS-PC| f=—t——— 106
PC| EXPRESS
——— 120
pey ——— 122 (TYP) 126
SN B o
—
———
PC PCI
EXPRESS PCl PC EXPRESS

EXPRESS EXPRESS
139 134

128 130
LEGACY LEGACY PCI EXPRESS PCI EXPRESS
ENDPOINT ENDPOINT ENDPOINT ENDPOINT
116 118 112 114

Fig, 1

US 7,525,986 B2

Sheet 2 of S

Apr. 28, 2009

U.S. Patent

e0C~, MH

uoljew.ojul
9al} ananb

80¢ N\

SO
ANNNNN
BRNNNN

NN

AN

- 3

¢ anan

NN

O

Z anan

AN
ANNNNN

O

L anan

—

0C

epdn Ipa1y __,
|0JJUOD) MO

12014

301A8(]

“— ss81dX3-194

AU
$S91dX3

-10d 202

N\

RNNNNN

A

anan
paleys

x3|dwo09-100Y
ssaudx3q-1nd

I I T S S I DS A G

132J0JU3
Aloud

paxy

8al} ananb paleys

8al} ¢ ananb

8al) Z ananb —]
88)) | ananb

h

80¢
0¢¢

Luonealijenb
92In0sal
paJleys

uoinedljifend

801n0Sa)
[ENPIAIPUI

HOd |
xw_m T ssaldx3 |Nd
albo| peojl| | T T T T M m@m
JoOJUNO0D | O_@Ou_
juesb | uojesedsg

91¢

€Tl
SJajunod
juelb

81¢

0#]0=
AT |
uollealjljenc
—— JuUnod
Jueib
19)1q4y Ajiold paxid

]

L0

[BUUELD) [ENHIA

A\ Uoea 10}

R 2

o_mo._ _
uoleledss
weaJis 9k

Sl

¢ ©889Np0id

<~

£ Weal)s 9JoA2

7 Weal)s 3joko

| Weal)s 3[oA2

US 7,525,986 B2

Sheet 3 of 5

Apr. 28, 2009

U.S. Patent

|, ananb

“—gss531d%3-197d

90¢
80¢

2160
U0I}29|3S
j00d
9 SI3JUNOD
Juesb

peojas | 8LC

Al
eI lo
jueb

0% 0=

VY Vv vV

uonesiiienb]
JUNOY
jueib

ssaldx3-10d

A T4

|10z

Hod
ssaidx3 |10d

GOC

=
01b07

uole.edss
[SUUBYD) [ENUIA

|
A UJES I0]

_
I
|
|

01007
| uonesedsg
Wweas)s ajoAn

00|

$80Np0Id

< >

¢ weal)s ajohd

2 weal)s aj94o

— — §

L weals a(oho

|
|
|
_
_

e o ——
0c _ 0c “.Nom j0Od uoneniqly A3iolid Mo
| 9alj ananb paleys
_ "
| |
_ |
| | EIE uoneayiienty Juoneouent
“ | foud 92IN0$3} 32IN0S31
| | paxl
)
_ — —
_
|
uojewuoul ajepdn wpasy _
931} ananb 0.3U0)) MO|4 | 591] £ ananb
. |
802 N\ |w |) 80} 7 ananb
| | 180103 8aJj | ananb
_ _ fuoud S
MUy | JO 1401%
ssa1dx3-10d _ Bupuadde 7 077
. 202 966 ———
¢ ananb |
| \“ 19010JU8 uoneaiyenb| |uonesienb
\ St “\ Auoud 80.N0S8) 80In0Sa!
m _ mm v paxy pajeys [ENPIAIPU
A A A »a
Z ananb ananb |
1 _ paJeys _ N \ﬁ /
““ “ 531} ananb paleys 1004 uoneniqy Aiuold ybiy
— | _
\“ | | UOIJUdAdIJ UOIJBAIR)S IO} S|00d UOIIBIQIY Y)IM J8)IqIy AJIokd PaXid
A8 | X9dWON-J00Yy @ T T T e e e e
|
|

U.S. Patent Sheet 4 of 5

Apr. 28, 2009

US 7,525,986 B2

30 TN _
%/ Stage 1 Stage 2 , Stage 3 Stage 4 VGU'_BHW €q
406 Grant Count Pool ‘; Resource Priority :
Qualification Qualification Qualification Qualification
veQcp_req i _{400 __1[408 i i
'rT/o - - BTy Ir)
cp_gent > E E E i
worpreq |y | T 402 || PPIR4qg || YOPEE a
' rL_/ r“—g : ;--.E _L E J@ i._rx_
wgent>0 |14 o e 320 | 428 |
i N p_hpflag E veOnp_resrc E :
vcOp_req ——\5404 i g 419 .
r—’-/ :E.--L ::; r_/ - r_\,‘ : ;ﬂ@ E: S
i p_gent>0 | i p_hpflag vcOp_resrc 422 l 430
High PriorityPootf 1 R
Low Priority Pool || _(423 r _,i‘{_cgj 5
- r_}} l Uun__-?/ E
, : 431 |
: veUCp_resre E ;
cfg_cpgent[3:0) M 424 | L]
cfg_npgcent[3:0] [— 432
cfq._pacnt[3:01 I;',n::(Jm::_resrc 496]
T op_gont[3:0] cp_hpflag M —5 . i_? ST
np_gcni[3.0] np_hpflag ' 'E A34
p_gcnt[3:0] p_hpflag ; veOp_resrc i §
306 A : ' i
| i — O I U 1.
. S S—— 45 4 |
reload grant HiPri Flags 0 92
values counts (x 3) 416 hp_gent_rst Ip_gent_rst
clr_cp_hpflag
Grant Ctrs clr_np_hpflag |
(X 3) clr_p_hpflag
| sel_all_hpflag —fe-------
decrement (individually)|<oee=SP=gcnt %ﬁ;—’;ﬁﬂt 448
reload (individually) 1d_cp_gent rﬁ!d_nppﬁ%r{l
218 reload (globally) rid_gent_global — e ------- 208
vccp_pgnt)\ 442\}»— -
7] 5436
g_cOnp_pgnt — q
Ic(]p_pgnt \\Jjj 444 — _q 438
4 4‘ 5 440 B vc0_pgnt

U.S. Patent Apr. 28, 2009 Sheet 5 of 5 US 7,525,986 B2

I e N2 h Ty
I ol e]:;:,'
I -.,1_“““ ""_,-"-
l S
O~
504 |
=
506 I
|
522 |
i GRAPHICS |
i PCl Express l
| {"PCI-Express T ; |
i 508
| . Root-Complex ?24 :
: IDE/ATA |
|ttt uituieniaiintats —— == |
: § i Fixed Priority Arbiter with Arbitration Pools for Starvation Prevention |
14
| i High Priority Arbitration Pool |
7 ~ |
E |
| | grant ‘ individual shared fixed | |
B count | resource resource priority : |
| § : qualification qualification qualification enforcer | |
I E | (J 3 k7‘\ : : |
: i212 2?20 221; appef[ding 222\ |
I i | grant 304 Of | fUSB 20 I
| | | counters | priority : 530 |
| 4 1,2,3 enforcer : 534 |
||
i | |
: ; : 218 |Reload Low Priority Arbitration Pool l FLASH |
al rant | or ATE DN]
I : coEnters& . individual . shared . : PLA;S\?RM :
| : pool selection resource resource priority : 53B|
| | logic I qualification - gualification enforcer |
i Se— f: LPC |
| e |
— |
| 038 (TYP)\+ S lE — | PCI Express S |
I er__ ____________ D | GbE l
_____ b
| 542 = | _~sa0(TYP) |

US 7,525,986 B2

1

S TARVATION PREVENTION SCHEME FOR A
FIXED PRIORITY PCI-EXPRESS ARBITER
WITH GRANT COUNTERS USING
ARBITRATION POOLS

FIELD OF THE INVENTION

The field of mvention relates generally to computer and
processor-based systems, and, more specifically but not
exclusively relates to techniques for arbitrating cycle streams
for PCI-Express environments.

BACKGROUND INFORMATION

Over their histories, computing has evolved around a single
board-level interconnect (for example, the current de facto
interconnect 1s the Peripheral Component Interconnect
(PCI)), while communications equipment has historically
incorporated many board-level and system-level intercon-
nects, some proprietary, while others being based on stan-
dards such as PCI. As the two disciplines converge, an abun-
dance of interconnect technologies creates complexity in
interoperability, coding, and physical design, all of which
drive up cost. The use of fewer, common interconnects will
simplity the convergence process and benefit infrastructure
equipment developers.

As originally specified, the PCI standard (e.g., PCI 1.0)
defined an interconnect structure that simultaneously
addressed the 1ssues of expansion, standardization, and man-
agement. The original scheme employed a hierarchy of bus-
ses, with “bridges” used to perform interface operations
between bus hierarchies. The original PCI standard was aug-
mented by the PCI-X standard, which was targeted towards
PCI implementations using higher bus speeds.

The convergence trends of the compute and communica-
tions industries, along with reorganization of the inherent
limitations of bus-based interconnect structures, has lead to
the recent immergence ol serial interconnect technologies.
Serial interconnects reduce pin count, simplity board layout,
and offer speed, scalability, reliability and flexibility not pos-
sible with parallel busses, such as employed by PCI and
PCI-X. Current versions of these interconnect technologies
rely on high-speed serial (HSS) technologies that have
advanced as silicon speeds have increased. These new tech-
nologies range from proprietary interconnects for core net-
work routers and switches to standardized serial technolo-
gies, applicable to computing, embedded applications and
communications.

One such standardized sernial technology 1s the PCI Express
architecture. The PCI Express architecture 1s targeted as the
next-generation chip-to-chip interconnect for computing.
The PCI Express architecture was developed by a consortium
of compamnies, and 1s managed by the PCI SIG (special inter-
est group). In addition to providing a serial-based intercon-
nect, the PCI Express architecture supports functionalities
defined 1n the earlier PCI and PCI-X bus-based architectures.
As a result, PCI and PCI-X compatible drivers and software
are likewise compatible with PCI Express devices. Thus, the
enormous investment in PCI software over the last decade
will not be lost when transitioning to the new PCI Express
architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the

10

15

20

25

30

35

40

45

50

55

60

65

2

following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG. 1 1s a schematic diagram illustrating an exemplary
configuration for a PCI-Express architecture;

FIG. 2 1s a schematic diagram 1illustrating an arbitration
scheme using a fixed priority arbiter that may produce star-
vation of low-priority cycle streams;

FIG. 3 1s a schematic diagram 1llustrating an embodiment
of an arbitration scheme employing high- and low-priority
arbitration pools that prevents starvation of low-priority cycle
streams

FIG. 4 1s a schematic diagram 1llustrating circuitry for
implementing the arbitration scheme of FIG. 3, according to
one embodiment of the invention; and

FIG. 5 1s a schematic diagram of a computer platiorm
architecture including an I/O bridge that implements an
embodiment of the arbitration scheme of FIG. 3.

DETAILED DESCRIPTION

Embodiments of starvation prevention schemes for a fixed
priority PCI-Express arbiter with grant counters using arbi-
tration pools are described herein. In the following descrip-
tion, numerous specific details are set forth to provide a thor-
ough understanding of embodiments of the mvention. One
skilled 1n the relevant art will recognmize, however, that the
invention can be practiced without one or more of the specific
details, or with other methods, components, materials, etc. In
other instances, well-known structures, materials, or opera-
tions are not shown or described 1n detail to avoid obscuring
aspects of the invention.

Retference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
present mvention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” 1n various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner in one or more embodiments.

As an overview, FIG. 1 shows an exemplary configuration
of basic PCI-Express elements. At the heart of the PCI-Ex-
press architecture 1s a root complex 100. The root complex
denotes the root of an mput/output (I/0) hierarchy that con-
nects the CPU/memory subsystem to the system’s [/O
devices. Accordingly, root complex 100 provides a host
bridge 102 to facilitate communications with a host processor
(CPU) 104 via an interface 106. Depending on the implemen-
tation, interface 106 may comprise a parallel bus, a set of
buses, a PCI-Express link, or a combination of the foregoing.
Root complex 100 1s also coupled to memory 106 via an
interface 108. In general, interface 108 may also comprise
one or more parallel buses, a PCI-Express link, or a combi-
nation of these elements.

A root complex may support one or more PCI Express
ports, which comprises an interface between the root complex
and a PCI Switch or Endpoint. Each interface defines a sepa-
rate hierarchy domain. Each hierarchy domain may comprise
a single endpoint or a sub-hierarchy containing one or more
switch components and endpoints.

Endpoints refer to types of devices that can be a Requester
or Completer of a PCI Express transaction, either on 1ts own
behalf or on behalf of a distinct non-PCI Express device

(other than a PCI device or Host CPU), e.g., a PCI Express

US 7,525,986 B2

3

attached graphics controller or a PCI Express-USB host con-
troller. Endpomts are classified as either legacy or PIC
Express endpoints. The exemplary endpoints depicted in FIG.

1 includes PCI Express endpoints 110, 112, and 114, and
legacy endpoints 116 and 118.

The PCI-Express architecture introduces the concept of
switch elements for PCI-based infrastructure. A PCI Express
Switch 1s defined as a logical assembly of multiple virtual
PCI-PCI bridge devices, and enables multiple downstream
endpoints (or other switches) to communicate with an
upstream root complex or switch. The exemplary PCI con-
figuration of FIG. 1 includes a switch 124 having an upstream
port connected to root complex 100 via a PCI Express link

126 and four downstream ports connected to legacy endpoints
116 and 118 via PCI Express links 128 and 130, and to PCI

Express endpoints 112 and 114 via PCI Express links 132 and
134. A switch 1s a logical element that may be contained
within a component that also contains a host bridge, or may be
implemented as a separate component (as 1llustrated 1n FIG.
1). Switches are used to replace conventional multi-drop
buses, and are used to provide fan-out for the I/O bus. A
switch may provide peer-to-peer communication between
different endpoints. It also may be used to forward data
between an endpoint and a root complex. In the case of
peer-to-peer communications between endpoints, 1f 1t does
not involve cache-coherent memory transters, the traffic need
not be forwarded to a host bridge.

A root complex also may be connected to one or more PCI
Express-PCI bridges, such as PCI Express-PCI bridge 120
shown 1n FIG. 1. A PCI Express-PCI bridge provides a con-
nection between a PCI Express fabric and a PCI/PCI-X
device hierarchy, as depicted by a hierarchy of PCI/PCI-X
devices 122.

Under the PCI-Express architecture, the parallel buses his-
torically used to connect components in a conventional PCI
system are replaced by PCI-Express links, with each link
comprising one or more lanes. For example, PCI-Express
links having multiple lanes may be used to connect root
complex 100 to switch 124, and to PCI-Express-PCI bridge
120, as depicted by PCI Express links 126 and 128, respec-

tively. Meanwhile, each of PCI Express links 128, 130, 132,
134, and 136 comprises single-lane links.

At one level, the PCI-Express architecture eliminates the
bus arbitration schemes that were required under the conven-
tional PCI/PCI-X architectures. This 1s because dedicated
PCI-Express links may be provided for each PCI-Express
endpoint, rather than using a shared bus structure. However,
there 1s still a need for communication path arbitration. Such
arbitration must be provided at components that are linked to
multiple endpoints or switches, such as host bridge 100 and
switches 122. Further arbitration i1s needed for virtual chan-
nels hosted by a common link and arbitration of streams for a
given virtual channel or link.

In brief, the PCI-Express switches and root complexes
perform functions similar to network switches and routers.
This 1s enabled, 1n part, via a packetized transmission scheme
that 1s implemented via a multi-layer protocol that 1s similar
to that employed by conventional networking protocols, such
as Bthernet. The PCI-Express transmission scheme supports
many features that are familiar to conventional networking,
including Quality of Service (QoS) and traffic classification.
Thus, a switch or host bridge not only has to arbitrate between
competing traific transported via different links, but also
between priority levels assigned to such traffic.

With regard to ftraffic priority considerations, a PCI
Express link may support multiple virtual channels per lane.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Up to eight different independently controlled communica-
tion sessions may exist in a single lane. Each session may
have different QoS definitions per the packet’s Trailic Class
attribute. As a packet travels through a PCI Express fabric, at
cach switch or link endpoint, the traflic class information can
be mterpreted and appropriate transport policies applied.

In general, access to a given lane that hosts multiple pri-
oritized virtual channels dictates some form of arbitration
scheme. In order to support enhanced service for higher pri-
ority channels, 1t 1s necessary to give corresponding packets
preference over packets for lower priority channels. Thus,
packets corresponding to higher priority channels are for-
warded at a higher rate, on average, than those packets cor-
responding to lower priority channels.

In addition to arbitration of prioritized virtual channels,
there exists a need to arbitrate cycle streams for each channel
(e1ther a virtual channel on a shared link or a the channel for
a link that does not support or employ virtual channels). Cycle
streams correspond to streams of PCI-Express requests and
data that are have a common type, wherein different types of
requests are separated 1nto different cycle streams. The term
“cycle” refers to processing of a particular request based on a
current cycle. Typically, recetved messages will be separated
into separate cycle streams based on type information con-
tamned 1n the message headers. Furthermore, under some
embodiments, separate priority levels will be assigned to each
cycle stream.

One technique for handling arbitration of prioritized cycle
streams (1.e. virtual channels) 1s 1llustrated 1n FIG. 2, which
shows a block diagram of a PCI-Express system that imple-
ments a fixed priority arbiter with grant counters. Three cycle
streams (1, 2, 3) in a PCI-Express root-complex 200 arbitrate
for a shared queue resource 202 1n order to be transmitted over
a PCI-Express Link 204 to an attached PCI-Express device
206. In the PCI-Express device 206, requests and associated
data corresponding to the mput cycle streams are put into
individual queues (queue 1, 2, 3). In response to access
requests, individual queue free information 208 from queues
1, 2, and 3 1s sent back to root-complex 200 via flow control
packets over PCI-Express Link 204. A fixed priority arbiter
210 looks at the queue free signals 208 from the 1individual
queues 1, 2, and 3 in combination with shared queue iree
signals 212 from shared queue 202 (indicating the availability
of the shared queue) to make sure there 1s relevant queue
space available before granting a cycle stream.

Upon being received at a PCI-Express port 201 coupled to
a PCI-Express link 203, incoming packets are separated into
approprate cycle streams. In cases 1n which virtual channels
are supported for a given link, a first-level virtual channel
separation operation 1s performed to separate the packets into
separate virtual channel streams. This operation 1s facilitated
by virtual channel separation logic 2035, which separates
packets based on the Traffic Class value specified in the
packet header of each packet. Cycle stream separation logic
207 1s then applied to each virtual channel stream to separate
the packets into corresponding cycle streams. In cases in
which virtual channels are not supported, incoming packets
received for the single physical channel corresponding to the
link are forwarded directly to cycle stream separation logic
207. The cycle stream separation logic examines the Type
information present in the packet header of each packet to
determine which cycle stream the packet 1s to be directed to.
The PCI-Express types include Memory, 1/0O, Config(ura-
tion), Message, Request, and Completion.

In one embodiment of a PCI-Express system, cycle streams
1, 2, and 3 respectively comprise Posted, Non-Posted and
Completion cycles. Posted cycles typically pertain to trans-

US 7,525,986 B2

S

actions that are “posted” to a PCI-Express device. These are
given the lowest prionty, and include memory writes and
message requests. Non-posted transactions pertain to trans-
actions that are not posted, such as read requests and /O or
configuration write requests. Completion cycles are used to
indicate that a cycle has successtully completed and are
assigned the highest priority. Completion cycles include read
completions (including the returned read data) and I/O or
configuration write completions.

Under a typical PCI-Express device access sequence, the
process begins with a requesting device (the requester) sub-
mitting a request to be serviced by a destination or servicing,
device (the completer). For example, a requesting PCI-Ex-
press device may send a write request to be serviced compl-
cter such as a memory controller or the like. This mitial
request informs the completer that access to that device 1s
wanted. It also informs an intermediate device (e.g., a PCI-
Express root complex in the immediate example) coupled
between a requester and completer that the requester desires
to access the completer via the itermediate device. In gen-
eral, the request may include a size for a corresponding data
transier such that the completer and intermediate device can
verily that adequate butiler resources are available to service
the request.

In response to receving the request, a check 1s made to
determine if the completer can recetve any (or an amount
specified on data. The completer provides continuous feed-
back to the arbiter (using flow control messages) indicating
whether 1t can accept data or not. In the context of FIG. 2, this
data pertains to queue free information 208, which 1s returned
to fixed priority arbiter 210 in the form of flow control credits.
PCI Express transactions use a credit-based flow control
mechanism (messages containing flow control credits, man-
aged by the transaction layer) that ensures the receiving
device has enough bufler resources available to accept the
s1ze and type of data transfer from the sending device. In view
of grant counts, flow control credits and shared queue free
information, the fixed priority arbiter logic 1ssues a grant to a
grant count qualification block 212. Diflferent respective
grants may be 1ssued 1n response to requests from different
cycle streams. In cases in which a completer does not have
adequate builer resources, a grant 1s not provided. At the same
time, a requester will repeat its access request until the request
1s serviced. Thus the access request, and corresponding pro-
cessing of the access request will be repeated until adequate
bufler resources are available.

Upon receiving a write grant, data from a requesting device
1s forwarded to the completer. In one embodiment, a shared
queue 1s employed to ensure cycles are streamed efficiently
over the PCI Express link and to absorb any temporary
latency 1n getting a packet to be transmitted over the link. In
accordance with the exemplary scheme of FIG. 2, this data 1s
stored 1n shared queue 202. As such, another consideration
for 1ssuing grants 1s whether or not there 1s enough storage
space available 1n shared queue 202. This determination 1s
made by circuit logic depicted by a shared resource qualifi-
cation logic block 214.

In a conventional fixed prionty arbiter, each cycle stream
request 1s assigned a fixed priority number and a cycle stream
request 1s granted if there are no other higher priority cycle
stream requests. To prevent higher priority requests from
starving the lower priority requests, each request 1s normally
assigned a grant count which 1s employed by a grant counter
associated with each cycle stream. Each time a request is
granted, 1ts grant counter 1s decremented by one. When the
grant count of a request reaches zero, 1t will be blocked from
arbitrating so that other lower priority requests that have not

10

15

20

25

30

35

40

45

50

55

60

65

6

used up their grant counts can be granted. The grant counts are
reloaded to their 1nitial values when all of them have reached
zero. The grant counters for cycle streams 1, 2, and 3 are
depicted by grant counters 218 in FIG. 2. The outputs of
shared resource qualification block are provided as 1inputs to
grant counter reload logic 216, which 1s used to reload grant
counters 218.

I1 the arbiter also needs to comprehend resource availabil-
ity, like in the PCI-Express system in FI1G. 2, the cycle streams
that are not blocked at the grant count qualification stage are
forwarded to an individual queue qualification stage 220,
whereby the cycle streams with available individual queue
resources are sent to the following shared queue qualification
stage 214. If the shared queue 1s available, all qualified cycle
streams are sent to fixed priority enforcer logic 222 in which
the highest priority cycle stream 1s granted. As an 1llustration,
if all 3 cycle streams are assigned the same 1nitial grant count
value, each of them will have a chance to be granted 33.3% of
the time 1n a continuously streaming steady-state condition
under which none of the queues get tull.

Starvation Problem

In the case when some of the queues can and do get full, the
conventional fixed priority arbitration scheme might intro-
duce a starvation situation. For instance, 1f cycle stream 3 has
not used up 1ts grant count but cannot be granted because
queue 3 1s full, and cycle stream 2 has used up its grant count
but queue 2 1s not full, we would naturally want to grant cycle
stream 2 1 shared queue 202 1s available, so that we do not
waste any bandwidth on PCI-Express Link 204 while waiting
for queue 3 to free up. The obvious option to achieve this is to
reload the grant count of cycle stream 2 so that it can be
granted. However, since cycle stream 2 has higher priority
that cycle stream 3, once 1ts grant count 1s reloaded, 1t will
continually be granted in favor of cycle stream 3 until 1ts grant
count 1s used up again, even by the time queue 3 has already
freed up for cycle stream 3 to proceed.

As aresult, cycle stream 3 1s starved because 1t 1s deprived
of being granted by the time it 1s ready to accept more data
(1.e., queue 3 1s no longer tull). Assuming that cycle stream 1
does not play an active role here and the 1nitial grant count
values are set to “5” for all cycle streams, the grant sequences
below 1illustrate how cycle stream 3 might be granted in the
normal case (none of the queues get full) and the starvation
case described above. The underlined “2” refers to the time
when cycle stream 2 grant count 1s reloaded under the condi-
tion described above. Thelast sequence 1llustrates the fair and
desired grant sequence assuming that queue 3 does get freed
up almost immediately after cycle stream 2 grant count 1s
reloaded.

Normal Case: 11111 22222 33333 . ..

Starvation Case: 11111 22222 22222 3 22222 3 22222 3
222223222223 ...

Desired Case: 11111 22222 2323232323 . ..

The starvation problem 1s exponentially amplified 11 cycle
stream 1 also plays an active role and starves cycle stream 2,
which 1n turn starves cycle stream 3. In this worst case, the
grant sequence might even look like that shown below where
cycle stream 3 rarely has a chance to be granted even though
it has the same 1nitial grant count values as cycle streams 1
and 2.

Worst Case: ... 2111112111112 11111211111 211111

3...

An architecture 300 corresponding to one embodiment of
the imnvention that addresses the foregoing starvation problem
1s shown 1n FIG. 3. Architecture 300 details components and
logic for a PCI-Express fixed priority arbitration scheme with

US 7,525,986 B2

7

high- and low-priority arbitration pools for starvation preven-
tion, depicted generally at 302. The logic of the high- and
low-priority arbitration pools are cascaded in the manner
described below with reference to FIG. 4 to enable grant
counts to be provided to lower-priority streams when their
destination (completer device) resource builers are not avail-
able, thus eliminating the starvation problem associated with
fixed priority arbitration schemes by enabling data corre-
sponding to those streams to be forwarded as soon as the
resource buffers become available. In further detail, the low
priority pool enables resetting of the grant count of the high
priority request that has used up its grant count but has avail-
able butler resources. The key 1s that once the high priority
request grant count 1s reset, the request 1s moved to the low
priority pool so that other requests in the high priority pool are
not penalized.

As depicted by like-numbered reference numbers in FIGS.
2 and 3, many of the components and logic of architecture 300
are similar to those described above with reference to the
fixed priority arbiter architecture of FIG. 2. As further shown
in FIG. 3, the components and logic for individual resource
qualification block 216, shared resource qualification block
214 and fixed priority enforcer 220 are grouped to define a
High Priority Arbitration Pool 304. In addition to these com-
ponents, architecture 300 provides a Low Priority Arbitration
Pool 306, which comprises a copy of the queue resource
qualification logic and fixed priority enforcer logic of High
Priority Arbitration Pool 302. The Low Priority Arbitration
Pool provides a means to continue granting counts to requests
that have used up their grant counts, but might have available
resources Output from both High Priority Arbitration Pool
304 and Low Priority Arbitration Pool 306 are provided as
inputs to grant counters and pool selection logic 308, which 1n
turn 1s used to reload grant counters 218.

As discussed above, Low Priority Arbitration Pool 306
contains a copy (e.g., similar logic) of the queue resource
qualification logic and the fixed priority enforcer of High
Priority Arbitration Pool 304. However, rather than providing
equal prioritization, all requests provided as mputs to Low
Priority Arbitration Pool 306 will be serviced at lower priority
than any request in the High Priornity Arbitration Pool. In one
embodiment this 1s accomplished by appending the fixed
priority enforcer logic of the Low Priority Arbitration Pool
below the fixed prionty enforcer logic of the High Priority
Arbitration Pool, as described below.

As an example of how this arbitration scheme works, con-
sider the foregoing example discussed above with respect to
FIG. 2. In this mstance, the cycle stream 2 grant count will
still be reloaded as before, but cycle stream 2 will be blocked
from the High Priornity Arbitration Pool by the arbiter logic
and sent to the Low Priority Arbitration Pool instead, as
shown 1n FIG. 2 by the thickened lines with arrows.

In this manner, we can continue granting cycle stream 2 via
the Low Priornity Arbitration Pool, and when queue 3 has been
freed up, cycle stream 3 can be granted immediately via the
High Priority Arbitration Pool because 1ts grant count 1s non-
zero and 1t has higher priority than cycle stream 2 (since it 1s
now being arbitrated in the Low Priority Arbitration Pool).

Similarly, If cycle stream 1 has also used up 1ts grant count
but has queue resources available, we can similarly reload its
grant count, block 1t from the High Priority Arbitration Pool
and send 1t to the Low Priority Arbitration Pool for arbitration.
All requests 1 the Low Priority Arbitration Pool can be
granted according to the original priority order. Their grant
counts can also be repeatedly reloaded 1n the Low Priority
Arbitration Pool while waiting for resource of the request in
the High Priority Arbitration pool to be freed up.

10

15

20

25

30

35

40

45

50

55

60

65

8

This arbitration scheme of FIG. 3 provides a simple and
symmetrical way of handling the starvation problem pre-
sented above. The scheme can be easily generalized to any
fixed priority arbiters of any input sizes, and can be easily
scaled to support any number of virtual channels.

Details of one embodiment of circuitry and logic for imple-
menting the arbitration scheme of FIG. 3 are shown in FIG. 4.
The architecture includes four stages 1-4. Stage 1, which
corresponds to logic for grant count qualification block 212,
receives three types of request inputs corresponding to cycle
streams 1-3 of FIGS. 2 and 3. These include vcOcp_req,
vcOnp_req, and vcOp_req. The nomenclature for these inputs,
as well as other mputs described below, 1s a follows. “vc0”
identifies the inputs are for virtual channel 0; this 1s merely
exemplary, as similar logic may be applied to any number of
virtual channels. More specifically, 11 n virtual channels are to
support the arbitration scheme, then a component implement-
ing the scheme would employ n instances of the circuitry and
logic shown in FIG. 4. “cp” represents completion, while
“np” stands for non-posted, and “p” stands for posted. “req”
stands for request. Thus, for example, input vcOcp_req refers
to an input on virtual channel 0 corresponding to a completion

request.

As shownin FIG. 4, vcOcp_req, veOp_req and vclp_req are
provided as respective inputs to AND gates 400, 402, and 404.
For a given clock cycle, the assertion of an input produces a
logic level °1°, with the absence of an mnput produces a logic
level “0°. The second mnputs for AND gates 400, 402, and 404
are logic values that are determined by the current grant
counts output by grant counters 218. These include values for
the completion grant count (cp_gcnt), the non-posted grant
count (np_gcnt) and the posted grant count (p_gcent). Ifa grant
count value 1s greater than 0, then 1ts corresponding input has
a logic ‘1’ value. In addition to the AND gates for stage 1,
vclcp_req, velOnp_req, and vclp_req are provided as mputs
to an OR gate 406, which produces an output (vc0_anyreq)
identifying whether any request for virtual channel 0 are
asserted for the current clock cycle.

The outputs of AND gates 400, 402, and 404 are provided
as respective inputs to AND gates 408, 410, and 412 of a stage
2, which 1s used for pool qualification. Pool qualification 1s
used to direct arbitration operations to either High Priority
Arbitration Pool 304 or Low Priority Arbitration Pool 306.
The second iputs for AND gates 408, 410 and 412 are
completion, non-posted, and posted high-priority flags (re-
spectively cp_hpflag, np_hptlag and p_hpflag), which are
used to indicate whether the High Priority or Low Priority
Arbitration Pool 1s applicable for arbitrating the current
request. The values (1.e., logic levels) of the completion,
non-posted and posted high-priority flags are defined by a
high-priority flags generator 416.

The stage 3 resource qualification mputs include the out-
puts of AND gates 408, 410, and 412, which are respectively
provided as inputs to AND gates 418, 420, and 422. The logic
level for a second mput to AND gate 418 (vcOcp_resrc) 1s
determined based on whether the bulfer resource for the
completion stream destination queue (queue 1 1n the 1mme-
diate example) 1s available. This will be dependent on the flow
control credits 1ssued for the queue 1n the manner discussed
above 1n combination with the shared queue free information.
Similarly, the second input for AND gate 420 (vcOnp_resrc)1s
dependent on the availability of the destination bulifer
resource for non-posted requests (e.g., queue 2), while the
second mput for AND gate 422 (vcOp_resrc) 1s dependent on
the availability of the destination buifer resource for posted
request (e.g., queue 3).

US 7,525,986 B2

9

The outputs of stage-1 AND gates 402 and 404 are also
provided as mputs to AND gates 423, 424 and 426 of Low
Priority Arbitration Pool 306. The other inputs for these AND
gates are other shared instances of the vcOcp_resrc,
vcOnp_resrc and vclp_resrc values discussed above for the

stage-3 resource qualification mnputs to AND gates 420 and
426.

Stage 4 priority qualification includes AND gates 428, 430,
431, 432, and 434, which are provided with mputs (both
inverted and non-inverted) from the stage 3 AND gates 418,
420, and 422 and Low Priority Arbitration Pool AND gates
423, 424 and 426. The inputs to these gates are “cascaded”,
with the AND gate at each lower level receiving another
inverted mput shared by the AND gate above. For example,
AND gate 428 recerves an imnverted output from AND gate 418
and a non-inverted output from AND gate 420, while AND
gate 430 receives the iverted output from AND gate 418, an

inverted output from AND gate 420, and a non-inverted out-
put from AND gate 422.

The outputs of the Stage 4 priority qualification logic are
provided as inputs to the logic shown at the bottom of the
diagram of FIG. 4. This includes OR gates 436, 438 and 440,
as well as AND gates 442, 444, and 446. This logic, in com-

bination with a combi(nation) decoder 448 produces pre-
grant signals vcOcp_pgnt, veOnp_pgnt, and vcOp_pgnt. Pre-
grant signals are employed by additional logic (not shown) to
enable corresponding grants to be made during the next clock
cycle.

In addition to the output of AND gates 442, 444 and 446,
the mputs for comb1 decoder 448 include a high priority grant
count reset (hp_gcent_rst) signal output by an AND gate 450,
a similar low priority grant count reset (Ip_gcnt_rst) signal
output by an AND gate 452, the completion, non-posted and
posted high priority flags (cp_hptlag, np_hptlag and p_hp-
flag), and the completion, non-posted and posted grant counts
provided by grant counters 218. In one embodiment, the grant
counters comprise 4-bit values, as depicted by cp_gent[3:0],
np_gcnt[3:0] and p_gent[3:0]. The combin decode produces
several outputs, including clear signals for the completed,
non-posted and posted high prionity flags (clr_cp_hptlag,
clr_np_hptlag and clr_p_hptlag), a signal to set all high pri-
ority flags (set_all_hpflag), decrement count signals for the

Signal

clr__np__hpflag nxt
clr__p_hpflag nxt
clr_ np_ hpflag
clr_p_hpflag

set_ all_ hpflag
dec_ np_ gcnt
dec_p_ gent
rld__np_ gent
rld__p__gent
rld__gent__global

completed, non-posted and posted grant counts (dec_

5

10

15

20

25

30

35

40

Equation

np__pent * (np__gent == 1 * np__hptlag)
p_pgnt * (p_gent==1*p__hpllag)

Flopped clr__np_ _hpflag nxt

Flopped clr_p_ hpflag nxt

hp_ gent rst

np__pegnt * !(np__gent == 1 * np__hpflag)
p_pgnt * (p_gent ==1*p_ hptlag)
(Ip_gent_ rld * 'np__hpflag) + clr__np_ hpflag
(Ip_gent_ rld * 'p__hpflag) + clr__p_ hpflag
hp__gent rld

10

The grant count of a request 1s individually decremented
whenever the request 1s granted (Note the exception
below when grant count 1s 1).

The grant count decrement signal 1s simply the request
grant signal. For example np_gcnt[3:0] will be decre-
mented by 1 1n the next clock when np_pgnt 1s asserted.
(Note the exception below when grant count 1s 1).

The high prionty flags are preset to 1 after reset so that all
requests will arbitrate in the High Priority Pool initially.

The high priority grant count reset (hp_gent_rst) will be
asserted when there 1s no more active requests at the
output of the Pool Qualification stage.

The low priority grant count reset (Ip_gent_rst) will be
asserted when there 1s no more active requests at the
output of the Low Priority Pool Resource Qualification
stage.

The resetting of grant counts and the clearing/setting of the
high prionty flags are governed by the following rules,

using FIG. 4 as an example:

1. If the high priority grant count reset (hp_gent_rst) 1s
asserted, then:

All the high prionity flags are set.
All the grant counts are reloaded.

2. If the low priority grant count reset (Ip_gcnt_rst) 1s

asserted, then:

All the high prionty flags are NOT affected.

The grant counts of the requests that have their high
priority flags cleared are reloaded.

3. ITa request 1s granted when 1ts grant count 1s 1 and the
high priority tlag 1s set:

The high priority flag of the request will be cleared.

The grant count of the request 1s reloaded.

4. I a request 1s granted when 1ts grant count 1s 1 and the
high priority flag 1s cleared:
The grant count of the requests 1s decremented to O.
It will have to wait until the low priority grant count
reset to go again.

The grant count reset signals might be active when the
grant count decrement signal 1s active. In this case the
grant count reset will take place.

The arbiter grant count reset/decrement and the high pri-
ority tlags set/clear control signals are generated as
shown 1n Table 1.

TABLE 1

Description

individual HiPr1 flag clear
individual HiPr1 flag clear
flop existing clr__ np*_ hpflag signal

flop existing clr_np*_ hpflag signal
global HiPr1 flags set

individual grant count decriment
individual grant count decriment
individual grant count reset
individual grant count reset

global grant count reset

In one embodiment, the reload values for the completion,

cp_gent, dec_np_gentand dec_p_gent), reload signals forthe .y non-posted and posted grant counters are specified via con-

completion, non-posted and posted grant counts (rld_
cp_gent, rld np_gent and rld_p_gent), and a global grant
count reload signal (rld_gcnt_global).

Each input request (cycle) stream to the arbiter has a cor-

figurable inputs. In the illustrated embodiment of FIG. 4,
these comprise 4-bit inputs, which are depicted as cig_cpgent
[3:0], cig_npgcnt[3:0] and cig_pgcent[3:0].

In one embodiment, completion requests are assigned to a

responding grant counter and a high priority flag. The grant 65 highest priority that 1s not arbitrated using the high and low

counts and high priority flags are managed using the follow-
ing rules:

priority arbitration pools. Thus, a completion request 1s
always granted immediately 11 there 1s sullicient space avail-

US 7,525,986 B2

11

able 1n the corresponding queue at the destination PCI-Ex-
press device. Under a corresponding implementation, there 1s
notneed to employ a grant counter or igh-priority flag for the
completion cycle stream; accordingly, AND gates 400 and
408 will not exist.

In general, embodiments of the fixed priority arbiter with
starvation prevention may be implemented in various types of
components, including PCI-Express root complexes and
switches. Such components may be employed for various
types of processing and communication tasks, and may typi-
cally be implemented in desktop platiorms, mobile platiorms,
and server platforms. The components will typically com-
prise integrated circuits manufactured using well-known
semiconductor manufacturing techniques. Generally, the
integrated circuits will comprises application specific inte-
grated circuits (ASICs), although other types of circuits, such
as programmable logic gate arrays (PLGAs) may also be
used.

An exemplary desktop platform architecture including a
chipset that implements an embodiment of the fixed priority
arbiter with starvation prevention 1s shown in FIG. 5. More
specifically, FIG. 5 shown architecture details of a mother-
board 500 employed 1n a desktop computer 502. The core
components of the platform architecture includes a processor
504 (1.e., CPU), a memory controller hub (MCH) 506, and an
input/output controller hub (ICH) 508. MCH 506 1ncludes a
host intertace 510 that provides an interface to processor 504
via a bus 512. MCH 506 1s communicatively-coupled to ICH
508 via a direct media mtertace (DMI) 514. In the illustrated
embodiment, the combination of ICH 508 and MCH 506
comprises the PCI-Express root complex for the platform.

Typically, an MCH, which 1s also commonly referred to as
a memory bridge or the “Northbridge”, 1s used to provide a
high-speed interface to system memory and other platform
devices, such as on-board graphics. In the exemplary configu-
ration of F1G. 5, MCH 506 provides a double data-rate (DDR)
memory interface 516 for interfacing with system memory
518. MCH 506 also includes a PCI Express port to commu-
nicate with a built-in graphics controller 520 via a PCI
Express link 522.

An ICH, which 1s commonly referred to as the I/O bridge or
“Southbridge™, 1s used to provide an interface to various
platform I/O devices and add-on peripheral devices. In the
1llustrated embodiment, ICH 508 provides an IDE/ATA (inte-
grated drive electronics—AT attachment) interface 524 that
supports I/O communication with one or more disk drives 526
(which would typically be external to the motherboard and

housed 1n the chassis for the desktop computer) via an ATA
link 528. In one embodiment ATA link 528 comprises a serial

ATA link. ICH 508 also provides a USB (universal serial bus)
2.0 interface 530, and a low pin-count (LPC) interface to
communicate with devices coupled to an LPC bus 532. Such
devices will typically include a flash device 534 that 1sused to
store platform firmware 536.

ICH 508 also provides support for both conventional PCI/
PCI-X devices and PCI-Express devices. In the illustrated
embodiment, motherboard 500 includes four PCI/PCI-X add-
on slots 538. The motherboard also includes four PCI-Ex-
press add-on slots 540. Under the PCI-Express electrome-
chanical specification, a common slot may be configured to
support both PCI/PCI-X add-on boards and PCI-Express add-
on boards, as depicted by a combination slot 542. The archi-
tecture ol F1G. 5 also includes a PCI Express link 544 coupled
to a Gigabyte Ethernet (GbE) network interface controller
546.

As depicted by the dashed box 1n ICH 508, the ICH also

includes logic circuitry to facilitate an embodiment of the

10

15

20

25

30

35

40

45

50

55

60

65

12

fixed priority arbiter with arbitration pools for starvation pre-
vention. In one embodiment, the circuit elements of FIG. 4
are employed and operate in the manner discussed above. For
clanty, logic for performing virtual channel separation and
cycle stream separation i1s not shown in FIG. 4; however, 1t
will be understood that such logic 1s provided by ICH 508.

In addition to implementing embodiments of the present
description on a semiconductor chip, they may also be imple-
mented via machine-readable media. For example, the
designs described above may be stored upon and/or embed-
ded within machine readable media associated with a design
tool used for designing semiconductor devices. Examples
include a netlist formatted 1n the VHSIC Hardware Descrip-
tion Language (VHDL) language, Verilog language or SPICE
language. Some netlist examples 1include: a behavioral level
netlist, a register transfer level (RTL) netlist, a gate level
netlist and a transistor level netlist. Machine-readable media
also include media having layout information such as a GDS-
II file. Furthermore, netlist files or other machine-readable
media for semiconductor chip design may be used 1n a simu-
lation environment to perform the methods of the teachings
described above.

The above description of 1llustrated embodiments of the
invention, including what 1s described 1n the Abstract, 1s not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the mvention, as those skilled in the
relevant art will recognize.

These modifications can be made to the invention in light of
the above detailed description. The terms used 1n the follow-
ing claims should not be construed to limit the invention to the
specific embodiments disclosed 1n the specification and the
drawings. Rather, the scope of the invention 1s to be deter-
mined entirely by the following claims, which are to be con-
strued 1n accordance with established doctrines of claim inter-
pretation.

What 1s claimed 1s:
1. A method, comprising:
recerving a plurality of device access requests from respec-
tive requesting devices desiring to access a destination
device at an mtermediate device coupled 1n communi-
cation between the requesting and destination devices;

assigning each access request to one of a plurality of cycle
streams based on a type of the device access request,
cach of the cycle streams having a respective priority;

performing arbitration of the cycle streams using a fixed
priority arbiter with starvation prevention, wherein grant
counts to requests may be provided to lower priority
cycle streams over higher priority cycle streams during
cycles 1n which destination queues for those cycle
streams on the destination device are not immediately
available to avoid starvation of the lower priority
streams.

2. The method of claim 1, wherein the types of the access
requests 1nclude posted, non-posted, and completion
requests.

3. The method of claim 1, wherein PCI-(peripheral com-
ponent interconnect) Express requests received at a PCI-Ex-
press component hosted by the intermediate device are
assigned to the cycle streams.

4. The method of claim 3, wherein the PCI-Express com-
ponent comprises a PCI-Express root complex.

5. The method of claim 3, wherein the PCI-Express com-
ponent comprises a PCI-Express switch.

US 7,525,986 B2

13

6. The method of claim 1, further comprising;

performing arbitration of the cycle streams using a high-
priority arbitration pool and a low-priority arbitration
pool, each of the high-priority and low-priority arbitra-
tion pools selectively generating request grant counts.

7. The method of claim 1, further comprising;

implementing a respective instance of the fixed priority
arbiter with starvation prevention for each of a plurality
of virtual channels supported by a serial interconnect
link hosted by the intermediate device.

8. The method of claim 1, wherein performing arbitration

ol the cycle streams further comprises:

receiving a lirst request via a first cycle stream:;

determining 1f the destination device has adequate bufler
resources available to recerve data corresponding to the
first request;

providing grant counts to the first access request if 1t 1s
determined the destination device has adequate buifer
resources available;

receiving a second request via a second cycle stream, the
second cycle stream having lower priority than the first
cycle stream;

determining 1 the destination device has adequate butler
resources available to receive data corresponding to the
second request; and 11 1t does not,

also providing grant counts to the second request,

wherein the grant counts to the first and second requests are

interspersed 1 time.

9. The method of claim 8, wherein grant counts for the first
and second requests are mterspersed i time 1n an alternating
manner on a cycle basis.

10. The method of claim 1, further comprising: implement-
ing circuitry and logic to facilitate the fixed priority arbiter
with starvation prevention on a processor chipset component.

11. A method, comprising:

receiving a plurality of device access requests at a PCI-
Express root complex from respective requesting

devices desiring to access a PCI Express device coupled
to the PCI-Express root complex;

assigning each access request to one of a completion cycle

stream, a non-posted cycle stream, and a posted cycle
stream, each of the cycle streams having a respective
priority;

performing arbitration of access requests for the comple-

tion, non-posted, and posted cycle streams 1n a manner
that provides interspersed grant counts to higher priority
cycle streams and lower priority cycle streams during
cycles 1n which destination queues for those lower pri-
ority cycle streams on the PCI Express device are not
immediately available to avoid starvation of the lower
priority streams.

12. The method of claim 11, further comprising:

performing arbitration of the cycle streams using a high

priority arbitration pool and a low priority arbitration
pool, each of the arbitration pools generating request
grant counts.

13. The method of claim 12, turther comprising;:

employing a flagging mechanism to arbitrate handling of

cycle stream cycles between the high priority and low
priority arbitration pools.

14. The method of claim 12, wherein performing arbitra-
tion of the cycle streams further comprises:

receiving a first request via a first cycle stream;

determining 11 the PCI-Express device has adequate butler
resources available to recerve data corresponding to the
first request;

10

15

20

25

30

35

40

45

50

55

60

65

14

providing grant counts to the first access request if 1t 1s
determined the destination device has adequate buller
resources available;

receving a second request via a second cycle stream, the

second cycle stream having lower priority than the first
cycle stream;

determining if the PCI-Express device has adequate buffer

resources available to receive data corresponding to the
second request; and 11 1t does not,

providing grant counts to the second request,

wherein grant counts provided to the first and second

requests are interspersed 1n time.

15. The method of claim 11, further comprising;:

implementing circuitry and logic to facilitate the fixed

priority arbiter with starvation prevention on an input/
output (I/0) bridge component.

16. An apparatus comprising;:

an integrated circuit including,

first and second commumnication ports, the first communi-

cations port to recerve requests to access a destination
device connected to the apparatus via the second com-
munication port;

logic circuitry to implement a high-priority arbitration

pool, operatively coupled to the first communications
port; logic circuitry to implement a low-priority arbitra-
tion pool, a portion of the low-priority arbitration pool
receiving mput from the high-priornity arbitration pool;
and logic circuitry to selectively generate grants to
requests recerved at the first communications port 1n
response to arbitration decisions made by the high-pri-
ority and low-priority arbitration pools 1mn view of a
priority level associated with the requests.

17. The apparatus of claim 16, wherein each of the high-
priority and low priority arbitration pools includes resource
qualification logic including 1mnputs via which logical iputs
are received mdicating availability of bulfer resources.

18. The apparatus of claim 16, wherein the integrated cir-
cuit further includes logic circuitry to separate mcoming
packets received at the first communication port into a plu-
rality of cycle streams having respective priorities.

19. The apparatus of claim 18, wherein the logic circuitry
for the integrated circuit supports implementation of a multi-
stage grant qualification operation, including a grant count
qualification stage, a pool qualification stage, a resource
qualification stage, and a priority qualification stage,
wherein,

the grant count qualification stage 1s employed to deter-

mine an existence of grant counts for a given cycle
stream;

the pool qualification stage 1s used to determine which of

the high priority and low prionty arbitration pool 1s to be
used for arbitrating the request;

the resource qualification stage 1s used to determine 1f

adequate builer resources exist to grant the request; and
the priority qualification stage 1s used to generate grants for
the request.

20. The apparatus of claim 16, wherein each of the com-
munications ports comprise PCI-Express ports, and the
access requests comprise PCI-Express requests.

21. The apparatus of claim 20, wherein the integrated cir-
cuit performs arbitration of completion, non-posted, and
posted requests.

22. The apparatus of claim 16, wherein the apparatus com-
prises an input/output (I/0) bridge.

23. An apparatus comprising:

circuit means for implementing a fixed priority arbiter with

starvation prevention, the circuit means including,

US 7,525,986 B2

15

input means to receive access requests comprising requests
to access a destination device to be linked 1n communi-
cation with the apparatus;

means for separating recerved access requests into multiple

cycle streams, each cycle stream assigned a respective
priority; and means for arbitrating grants to the cycle
streams, wherein grant counts to requests may be pro-
vided to lower priority cycle streams over higher priority
cycle streams during cycles 1n which destination queues
for those cycle streams on the destination device are not
immediately available to avoid starvation of the lower
priority streams.

24. The apparatus of claim 23, wherein the access requests
comprise PCI-Express access requests, and the destination
device comprises a PCI-Express device.

25. The apparatus of claim 23, wherein the means for
arbitrating grants to the cycle streams comprises:

means for performing high priority arbitration of the cycle

streams;

means for performing low priority arbitration of the cycle

streams; and means for routing a cycle stream arbitration
between the

means for performing high prionity arbitration and the

means for performing low priority arbitration.

26. The apparatus of claim 23, further comprising:

buffer means for bulfering data to be received by the appa-

ratus and temporarily stored at the apparatus prior to
torwarding the data to the destination device; and
means for determining an availability of the buifer means.

27. A system, comprising:

a motherboard;

a processor, coupled to the motherboard;

a memory bridge, coupled to the processor and communi-

catively-coupled to the processor;

at least one PCI-Express add-on slot, each coupled to the

motherboard and coupled at a first end to a PCI-Express
link built into the motherboard;

10

15

20

25

30

35

16

an mput/output (I/0) bridge, coupled to the motherboard
and communicatively-coupled to the memory bridge via
a direct media access interface, the I/O bridge compris-
ing an integrated circuit including,

a plurality of PCI-Express ports, including a respective
PCI-Express port coupled to a second end of each of the
PCI-Express links built into the motherboard, one of the
PCI-Express ports to recetve access requests to access a
PCI Express destination device;

logic circuitry to separate received access requests nto
multiple cycle streams, each cycle stream assigned a
respective priority; and

logic circuitry to arbitrate grants to the cycle streams,
wherein grant counts to requests may be provided to
lower priority cycle streams over higher priority cycle
streams during cycles 1n which destination queues for
those cycle streams on the destination device are not
immediately available to avoid starvation of the lower
priority streams.

28. The system of claim 27, further comprising: a graphics
processor, coupled to the memory bridge via a PCI Express
link.

29. The system of claim 27, wherein the PCI-Express des-
tination device comprises the memory bridge.

30. The system of claim 27, wherein the logic circuitry to
arbitrate grants to the cycle streams icludes:

logic circuitry to implement a high-priority arbitration
pool, operatively coupled to the PCI Express port;

logic circuitry to implement a low-priority arbitration pool,
a portion of the low-priority arbitration pool receiving
input from the high-priority arbitration pool; and

logic circuitry to selectively generate grants to requests
received at the PCI Express port in response to arbitra-
tion decisions made by the high-priority and low-prior-
ity arbitration pools in view of a prionty level associated
with the requests.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

