12 United States Patent

US007523448B2

(10) Patent No.: US 7.523.448 B2

Kawabhito 45) Date of Patent: Apr. 21, 2009
(54) OPTIMIZING COMPILER 2004/0154011 Al* 82004 Wangetal. 717/158
OTHER PUBLICATIONS

(75) Inventor: Motohiro Kawahito, Sagamihara (JP)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 955 days.

(21) Appl. No.: 10/940,541

(22) Filed: Sep. 13, 2004
(65) Prior Publication Data
US 2005/0071832 Al Mar. 31, 2005
(30) Foreign Application Priority Data
Sep. 30,2003 (JP) e, 2003-339666
(51) Int.CL
GO6Il’ 9/45 (2006.01)

(52) US.Cl e 717/151
(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,664,193 A * 9/1997 Tirumalal 717/153
6,128,775 A * 10/2000 Chowetal. 717/156
6,934,943 B2* 82005 Hundtetal. 717/159

(START)

Gupta, R. et al. “Register Pressure Sensitive Redundancy Elimina-
tion,” Department of Computer Science, University of Pittsburgh,

PA, 1999,
Knoop, J. et al. “The Power of Assignment Motion,” Passau Univer-

sity and Kiel Institute, Germany, 19935.

* cited by examiner

Primary Examiner—Michael] Yigdall
(74) Attorney, Agent, or Firm—Scully, Scott, Murphy &
Presser, P.C.; Gail H. Zarick, Esq.

(57) ABSTRACT

Provides methods, apparatus and systems for an optimizing
compiler which optimizes load instructions to read out data
from a memory in an object program targeted for optimiza-
tion. In an example embodiment, an optimizing compiler
includes partial redundancy eliminating means for performs-
ing partial redundancy elimination on load instructions to
read out variable data from the memory so that spilling does
not take place when the variables are assigned to the registers;
backward register detecting means for detecting free regis-
ters, which are not assigned to any variable, along execution
paths traced 1n reverse order of execution, starting backward
from use 1nstructions to use data read out by the load instruc-
tions and extending to the load instructions; and free register
assigning means for assigning the free registers detected by
the backward register detecting means to target variables to be
read out by the load nstructions.

1 Claim, 6 Drawing Sheets

‘ ASSIGN REGISTERS rHﬂSZGD

!

ENERATE SPILL-IN INSTRUCTION

REPEAT PROCESSIN
EACH DATA LOEEEDG ON

ELIMINATE PARTIAL REDUNDANCY 5220

DETECT FREE REGISTERS AT LOAD
INSTRUCTION AND USE INSTRUCTTION 5225

EXECUTION LOCATIONS

DETECT FREE REGISTERS BACKWARD $230

DETECT FREE REGISTERS FORWARD

DIVIDE INSTRUCTIONS INTO GROUPS

ACQUIRE EXECUTION FREQUENCIES

CALCULATE S5UM OF
EXECUTION FREQUENCIES

ASSIGN FREE REGISTERS

EACH DATA LOADED

(ENE).

U.S. Patent Apr. 21, 2009 Sheet 1 of 6 US 7,523,448 B2

FIG.1

OBJECT PROGRAM

OPTIMIZING COMPILER 10

REGISTER 0
ASSIGNING 10
MEANS

SPILL-IN
INSTRUCTION
GENERATING MEANS

PARTIAL REDUNDANCY FREE REGISTER 140
ELIMINATING MEANS DETECTING MEANS
130 -

110

BACKWARD REGISTER -‘42

EXECUTION FREQUENCY 150 DETECTING MEANS

ACQUIRING MEANS

FORWARD REGISTER

DETECTING MEANS 144

EXECUTION FREQUENCY
SUM CALCULATING

MEANS
160
FREE REGISTER 190
ASSIGNING MEANS
180 LIVE RANGE COPY INSTRUCTION
170 DETECTING MEANS | lGENERATING MEANS
ALTERNATIVE USE INSTRUCTION/
182 REGISTER REGISTER ASSIGNING
DETECTING MEANS MEANS
192
REGISTER ASSTIGNMENT
184 CHANGING MEANS
-*

RESULT PROGRAM

U.S. Patent Apr. 21, 2009 Sheet 2 of 6 US 7,523,448 B2

FIG.2

START
ASSIGN REGISTERS S200
ENERATE SPILL-IN INSTRUCTIONSI~S205

REPEAT PROCE
EACH DATA LOADED® N S215

ELIMINATE PARTTAL REDUNDANCY S§220

DETECT FREE REGISTERS AT LOAD

INSTRUCTION AND USE INSTRUCTION 3225
EXECUTION LOCATIONS

DETECT FREE REGISTERS BACKWARD S230

DETECT FREE REGISTERS FORWARD S235

ACQUIRE EXECUTION FREQUENCIES

CALCULATE SUM OF 8250
EXECUTION FREQUENCIES
I ASSIGN FREE REGISTERS ' S255

S245

END REPEATED PROCESSING ON
EACH DATA LOADED

5260

U.S. Patent Apr. 21, 2009 Sheet 3 of 6 US 7,523,448 B2

FIG.3

3300

ARE FREE
REGISTERS
DETECTED?

NO

YES
ASSIGN FREE
ASSIGN FREE REGISTERS TO S320
REGISTERS TARGET VARIABLES
S310
DETECT LIVE RANGE OCF
VALUES OF PREVIOQUSLY S330
ASSTGNED VARIABLES
DETECT ALTERNATIVE
REGISTERS 3340
ARE" ALTERNATIVE
S350 REGISTERS

DETECTED?

YES S370

3360 CHANGE REGISTERS GENERATE COPY
TO BE ASSIGNED INSTRUCT IONS

ASSIGN REGISTERS

TO USE
INSTRUCTIONS

9380

US 7,523,448 B2

Sheet 4 of 6

Apr. 21, 2009

U.S. Patent

FIG.4

(3n0) {g4 14}
016 —{z4}
005 —1{24)

{¢4 14}
(ut) {z4°14}

¢dd NI SYdISIODIY HTHYTIVAY

9gd(L4+pA+£4 =

(4 + ¥4 = {4
= 74

| 4

1gd) Lut11ds = |4

(3)

{v4°¢4°g4 L4} {2414} 944

{24 14]
{241 4]
{24 °14)
{74'14]
{¢4°14}

(U) noh3Y

(NG

¢d + £€4 = £4
N &

£t

@

ak
M1 ved (p4°ed) {g4°14
Mw“ .“”._W et {v4'24} {24 .—._W wmm
UL (g (L) g
{24714} 18d TUY N9
CIALE N ’
(Mg

(P) (9)

14 + £€4 = ¢4
I P
L= "

¢dd

199} 1ul11ds =

U.S. Patent Apr. 21, 2009 Sheet 5 of 6 US 7,523,448 B2

FIG.5
(a)
do {
ro = ...
= ... 1
ri = spitlini
rd = [r1},
= ... rd
r2 = spillint;
r2 = r2 + ro,;
=.,.. ré
} while(..):

(b) FREE REGISTERS
T = spitlint;: {r2, r3]}
do {

ro = ...
= ... rl
r4d = [T]. . {r2, r3}
= ... f
r2:T+5'.'2 fr2. r3 } — 600
= ... r
} while(...):

(¢) FREE REGISTERS
T = spillint; [r2, 13}
do {

rb = ...
= ... rl

rd = [T]; { r3 }
= ... rd

r2 =T + b, { r3 } —— 610
= ... r2

} while(j-.:):

US 7,523,448 B2

Sheet 6 of 6

Apr. 21, 2009

U.S. Patent

FIG.6

O

CYAURS (€

&
0501

AA LA

0901

dAL1dd
ASIAd ddYH

0t0l

01

0L0L

dIHD O/1I

0£01

d/1
NOILYIINAOWRNOD

JUTTOEINOD

O/1

801 0801

dATTOILNOD

LSOH DIHAYYED

¢801 SL01

dA T IOdLNOD

dOIAHUd

AYId5 1A

0801

AJOMLAN

US 7,523,448 B2

1
OPTIMIZING COMPILER

TECHNICAL FIELD

The present invention relates to an optimizing compiler, a
compiler program, and a recording medium. More particu-
larly, the present invention relates to an optimizing compiler
which optimizes load instructions to read out data from a
memory, a compiler program, and a recording medium.

BACKGROUND OF THE INVENTION

Recently, technical innovation has yielded higher operat-
ing speeds of central processing units (CPUs) of computers.
Thus, the time required for memory access 1s relatively longer
than the time taken to read out data from registers of the CPU.
To 1mprove processing speed of the entire program, 1t 1s
increasingly important to hold as many variable values for use
in the program as possible in registers so as to reduce the
number of memory accesses.
Conventionally, an optimizing compiler has a register
assignment function for etffectively assigning variables 1in an
object program targeted for optimization to registers 1n order
to reduce the number of memory accesses and improve the
elficiency of the overall processing. The optimizing compiler
causes the registers to hold varnable values assigned to the
registers and the memory to store variable values judged as
being unassignable to the register. The optimizing compiler
generates spill-in 1mstructions to read out the variable values
from the memory, prior to mstructions to refer to the variable
values stored 1n the memory.
The following documents are considered:
[Non-Patent Document 1] J. Knoop et al., “The Power of
Assignment Motion,” PLDI ”95

[Non-Patent Document 2] R. Gupta and R. Bodik, “Reg-
ister Pressure Sensitive Redundancy Elimination,” Pro-
ceedings of the 8th International Conference on Com-
piler Construction, LNCS 1573, pp. 107-121 (1999).

Meanwhile, a redundancy elimination technique 1s used in
recent optimizing compilers to improve the efficiency of the
overall processing by eliminating redundant instructions
among the plurality of istructions. In many cases, the opti-
mizing compilers change instruction execution locations in
order to effectively eliminate redundancy. To change instruc-
tion execution locations, a techmque has been conventionally
used to perform control so as not to generate additional vari-
ables which store the operation results of the instructions.
(See Non-Patent Document 1). An alternative technique has
been proposed to change instruction execution locations
within a range that additional spilling does not take place even
when variables are assigned to registers. (See Non-Patent
Document 2).

The above-mentioned techniques of redundancy elimina-
tion are applicable to the spill-in instructions. However,
according to Non-Patent Document 1, there 1s a problem that
the range of a change 1n spill-in struction execution loca-
tions 1s limited when target registers, {from which data 1s to be
read out by spill-in 1nstructions, are used by other nstruc-
tions. The technique described 1n Non-Patent Document 2
cannot determine registers assigned to variables although the
technique can detect the range that permits a change in the
instruction execution locations for instructions targeted for
redundancy elimination.

SUMMARY OF THE INVENTION

It 1s therefore an aspect of the present invention to provide
an optimizing compiler, a compiler program, and a recording

5

10

15

20

25

30

35

40

45

50

55

60

65

2

medium, which are capable of overcoming the foregoing
problems. This aspect1s achieved by combinations of features
as set forth 1n mndependent claims of the appended claims.
Dependent claims thereof define further specific advanta-
geous examples of the present invention.

In order to solve the foregoing problems, another aspect of
the mmvention 1s to provide an optimizing compiler which
optimizes load instructions to read out data from a memory 1n
an object program targeted for optimization, including: par-
tial redundancy eliminating means for performing partial
redundancy elimination on the load instructions to read out
variable data from the memory in the object program whose
variables are at least 1n part unassigned to registers so that
spilling does not take place when the variables are assigned to
the registers; backward register detecting means for detecting
free registers, which are not assigned to any variable, along
execution paths traced in reverse order of execution, starting
backward from use instructions to use data read out by the
load 1nstructions and extending to the load instructions; and
free register assigning means for assigning the free registers
detected by the backward register detecting means to target
variables from which the load mstructions read out the data.
The aspect of the imnvention also provides a compiler program
which allows a computer to function as the optimizing com-
piler, and a recording medium having the compiler program
recorded thereon.

According to the present invention, load instructions can be
eificiently optimized to read out data from a memory.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantage thereol, reference 1s now made to the
tollowing description taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1 1s a functional block diagram of an optimizing
compiler 10;

FIG. 2 1s an operational flowchart of the optimizing com-
piler 10;

FIG. 3 1s an operational flowchart showing the details of
step S255 shown 1n FIG. 2;

FIGS. 4A to 4F show a first example of application of an
embodiment;

FIGS. 5A to 5C show a second example of application of
the embodiment; and

FIG. 6 15 a block diagram showing an example of a hard-
ware configuration of a computer which functions as the
optimizing compiler 10.

DETAILED DESCRIPTION OF THE INVENTION

The present mvention provides methods, systems and
apparatus for an optimizing compiler, a compiler program,
and a recording medium. In an example embodiment, the
invention provides an optimizing compiler which optimizes
load 1nstructions to read out data from a memory in an object
program targeted for optimization. The compiler includes:
partial redundancy eliminating means for performing partial
redundancy elimination on the load instructions to read out
variable data from the memory 1n the object program whose
variables are at least 1n part unassigned to registers so that
spilling does not take place when the variables are assigned to
the registers; backward register detecting means for detecting,
free registers, which are not assigned to any variable, along
execution paths traced in reverse order of execution, starting
backward from use instructions to use data read out by the
load 1nstructions and extending to the load instructions; and

US 7,523,448 B2

3

free register assigning means for assigning the free registers
detected by the backward register detecting means to target
variables from which the load mstructions read out the data.
According to the present invention, load instructions can be
cificiently optimized to read out data from a memory.

Although the present invention will be described below
with reference to particular embodiments of the mnvention, it
1s to be understood that the following embodiments do not
limit the 1nvention, and that all combinations of features as
discussed 1n the description of the embodiment are not nec-
essarily essential for means of the mvention for solving the
problems.

FIG. 1 1s a functional block diagram of an optimizing
compiler 10. The optimizing compiler 10 optimizes load
instructions to read out data from a memory in an object
program targeted for optimization. The optimizing compiler
10 1includes register assigning means 100, spill-in mstruction
generating means 110, partial redundancy eliminating means
130, free register detecting means 140, backward register
detecting means 142, forward register detecting means 144,
execution frequency acquiring means 150, execution Ire-
quency sum calculating means 160, free register assigning
means 170, live range detecting means 180, alternative reg-
ister detecting means 182, register assignment changing
means 184, copy instruction generating means 190, and use
instruction/register assigning means 192.

The optimizing compiler 10 assigns a plurality of variables
contained 1n the object program to registers and generates
spill-in 1nstructions to load the values of vanables judged as
being unassignable from the memory. When the plurality of
spill-in istructions are redundant instructions which perform
the same processing, the optimizing compiler 10 performs
partial redundancy elimination to improve the efficiency of
the overall processing by eliminating at least part of the
plurality of spill-in 1nstructions. Then, the optimizing com-
piler 10 acquires the sets of free registers available to be
assigned to target variables, readout destinations of the plu-
rality of spill-1n instructions which have undergone the partial
redundancy elimination. Then, the optimizing compiler 10
assigns the registers to the target vanables.

An aspect of the optimizing compiler 10 according to the
embodiment 1s to efficiently optimize load instructions by
narrowing down the detected sets of free registers and assign-
ing appropriate registers to the target variables.

Herein, the object program 1s, for example, intermediate
representation indicating a program targeted for optimization
within the optimizing compiler 10, and examples thereof
include Java (registered trademark) bytecode, RTL (register
transier language), and quadruple representation. Alterna-
tively, the object program may be a source code of a program.
Variables are not limited to variables themselves 1n a source
code and may be, for example, the live range of values 1n the
object program.

The registers are not limited to all available registers that
can be used by a central processing unit (CPU) which
executes the object program. It 1s only necessary to include
the registers in groups of registers which are predefined
according to a specification of an operating system, a pro-
gramming language, or the like of an information processing
unit and permitted to be used by the object program. For
example, the registers do not have to include registers which
can change 1n their contents by being used by a library pro-
gram or the like called from the object program.

Upon receipt of the object program, the register assigning
means 100 assigns variables in the object program to registers
and sends the resultant object program, which has undergone
the assignment processing, to the spill-in instruction gener-

10

15

20

25

30

35

40

45

50

55

60

65

4

ating means 110. In this case, 1t 1s preferable that the register
assigning means 100 assign variables to higher-priority reg-
isters based on the predetermined priority of assignment of a
plurality of registers. With this arrangement, the register
assigning means 100 can narrow registers to be assigned
down to specific types of registers, and thus the number of
free registers which can be consistently used 1n a predeter-
mined execution path.

The spill-in instruction generating means 110 generates
spill-in 1nstructions for variables judged as being unassign-
able to the registers by the register assigning means 100 1n the
received object program. Then, the spill-in imstruction gener-
ating means 110 sends the resultant object program, which
has undergone the generation processing, to the partial redun-
dancy eliminating means 130. Herein, the spill-in instructions
are load instructions to load variable values from the memory,
prior to 1structions to use the variable values.

The partial redundancy eliminating means 130 performs
partial redundancy elimination on the spill-in nstructions
which are the load instructions 1n the recerved object pro-
gram. Specifically, the partial redundancy eliminating means
130 transiers each load instruction within a range including at
least one free register, thereby performing partial redundancy
climination such that spilling does not take place when the
variables are assigned to the registers. As an example, the
partial redundancy eliminating means 130 can use the tech-
nique described in Non-Patent Document 2 to perform partial
redundancy elimination. Furthermore, the partial redundancy
climinating means 130 replaces registers, which store data
read out by the spill-in mstructions, with variables used in the
optimizing compiler 10.

Then, the partial redundancy eliminating means 130 sends
the resultant object program, which has undergone the
replacement processing, to the free register detecting means
140 and the execution frequency acquiring means 150.

As specific examples of processing, the partial redundancy
climinating means 130 may eliminate at least part of the
plurality of load instructions or change instruction execution
locations for at least part of the plurality of load instructions
when a plurality of load 1nstructions are redundant. Instead of
performing partial redundancy elimination on the object pro-
gram whose variables are already assigned to registers, the
partial redundancy eliminating means 130 may perform par-
tial redundancy elimination on the object program whose
variables are at least 1n part unassigned to registers. More
specifically, the partial redundancy eliminating means 130
may perform partial redundancy elimination on load nstruc-
tions to read out variable data from the memory in such a
manner that spilling does not take place when the variables
are assigned to the registers. Herein, variables unassigned to
registers may include not only variables unassigned to regis-
ters at the time of partial redundancy elimination, but also
variables which are already assigned to registers but are to be
finally assigned to different registers from the assigned reg-
1sters in the processing of generating a result program from
the object program.

The free register detecting means 140 detects the sets of
free registers, which are not assigned to any variable, at load
instruction execution locations and use 1nstruction execution
locations. Herein, use instructions refer to instructions to use
data read out by load instructions. Then, the free register
detecting means 140 sends the results of detection to the
backward register detecting means 142. The backward regis-
ter detecting means 142 detects iree registers, which are not
assigned to any variable among the sets of free registers
detected by the free register detecting means 140, along
execution paths traced in reverse order of execution, starting

US 7,523,448 B2

S

backward from the use instructions and extending to the load
instructions. Then, the backward register detecting means
142 sends the results of detection to the forward register
detecting means 144. The forward register detecting means
144 detects free registers, which are not assigned to any
variable among the sets of free registers detected by the back-
ward register detecting means 142, along execution paths
traced 1n order of execution, starting forward from the load
instructions and extending to the use instructions. Then, the
torward register detecting means 144 sends the results of
detection to the execution frequency sum calculating means
160 and the free register assigning means 170.

The execution frequency acquiring means 150 acquires the
frequencies of load 1nstruction execution and the frequencies
ol use istruction execution in the object program recerved
from the partial redundancy eliminating means 130. Then, the
execution frequency acquiring means 150 sends the results of
acquisition to the execution frequency sum calculating means
160. The execution frequency acquiring means 150 may use
profiling technique, such as node profiling technique or edge
profiling technique, to measure the frequencies of execution
of a plurality of instructions contained in the object program
and thereby acquire the frequencies of load instruction execu-
tion and use mstruction execution. The execution frequency
sum calculating means 160 calculates the sum of the frequen-
cies of load instruction execution and use instruction execu-
tion received from the execution frequency acquiring means
150 for each of the free registers at the load instruction execu-
tion locations and the use instruction execution locations
based on the results of free register detection received from
the forward register detecting means 144. Then, the execution
frequency sum calculating means 160 sends the results of
calculation to the free register assigning means 170.

The free register assigning means 170 selects the free reg-
isters each having the maximum sum of the execution fre-
quencies calculated by the execution frequency sum calculat-
ing means 160 from among the free registers at the load
instruction execution locations, which are detected by both
the backward register detecting means 142 and the forward
register detecting means 144. The free register assigning,
means 170 assigns the selected registers to the target variables
to be read out under the load instructions. Then, the {free
register assigning means 170 outputs the resultant object
program, which has undergone the assignment processing, as
the result program. Herein, the target varniables may be the
variables for use in the optimizing compiler 10, with which
the registers storing data to be read out by the load nstruc-
tions are replaced by the partial redundancy eliminating
means 130.

However, when no free register 1s detected along the execu-
tion paths traced in reverse order of execution, starting back-
ward from the use instructions and extending to the load
instructions, the free register assigning means 170 assigns
any of the free registers at the load instruction execution
locations to the target variables and sends the resultant object
program, which has undergone the assignment processing, to
the live range detecting means 180 or the copy instruction
generating means 190. For example, the free register assign-
ing means 170 may assign, to the target variables, the free
registers each having the maximum sum of the execution
frequencies at the load instruction execution locations or the
free registers each having the highest priority of assignment at
the load nstruction execution locations.

The live range detecting means 180 detects the liverange of
the values of variables previously assigned to the registers
assigned to the target variables by the free register assigning
means 170 1n the received object program and sends the

10

15

20

25

30

35

40

45

50

55

60

65

6

results of detection to the alternative register detecting means
182. The alternative register detecting means 182 detects
alternative registers which are free registers 1n the live range
detected by the live range detecting means 180 and sends the
results of detection to the register assignment changing
means 184. Upon receipt of the results of detection, the reg-
ister assignment changing means 184 changes the registers
assigned to the previously assigned variables to the alterna-
tive registers and outputs the resultant object program, which
has undergone the changing processing, as the result pro-
gram.

The copy instruction generating means 190 generates
instructions to copy target variable data into the free registers
cach having the maximum sum of the execution frequencies,
at the execution locations where the instructions are executed
prior to mstructions to substitute other varniable data into the
registers assigned to the target variables by the free register
assigning means 170, along the execution paths from the load
istructions to the use instructions 1n the recerved object
program. Then, the copy instruction generating means 190
sends the resultant object program, which has undergone the
generation processing, to the use mstruction/register assign-
ing means 192. Alternatively, the copy instruction generating
means 190 may generate instructions to copy target variable
data into the highest-priority free registers used by the register
assigning means 100.

The copy 1nstruction generating means 190 may also gen-
erate copy instructions immediately before the confluence of
a plurality of execution paths so that the registers assigned to
the target variables along the execution paths may coincide
with one another at the confluence, 1n other words, a register
image which 1s the set of the registers assigned to the target
variables along one execution path may coincide with register
images located along the other execution paths at the contlu-
ence. At this time, the copy instruction generating means 190
selects the registers, into which target variable data 1s to be
copied, so as to minimize the sum of the execution frequen-
cies along the execution paths, where the copy instructions
are generated, based on the execution frequencies along the
plurality of execution paths. Then, the use instruction/register
assigning means 192 assigns the registers, copy destinations
of the copy 1nstructions, to the variables to be used by the use
instructions in the received object program. Then, the use
instruction/register assigning means 192 outputs the resultant
object program, which has undergone the assignment pro-
cessing, as the result program.

Note that the configuration shown 1n FIG. 1 1s an example,
and therefore, various changes may be made 1n the configu-
ration shown in FIG. 1. For example, the optimizing compiler
10 may exclude either the backward register detecting means
142 or the forward register detecting means 144 or both. In
this case, the free register assigning means 170 may assign, to
the target variables to be read out by the load 1nstructions, any
ol the sets of free registers detected by the free register detect-
ing means 140 or the free registers detected by either the
backward register detecting means 142 or the forward register
detecting means 144.

For example, the optimizing compiler 10 does not have to
include the live range detecting means 180, the alternative
register detecting means 182 and the register assignment
changing means 184. In this configuration, when no free
register 1s detected along the execution paths traced in reverse
order of execution, starting backward from the use 1nstruc-
tions and extending to the load instructions, the free register
assigning means 170 assigns any of the free registers at the
load 1nstruction execution locations to the target variables.
Then, the free register assigning means 170 sends the result-

US 7,523,448 B2

7

ant object program, which has undergone the assignment
processing, to the copy instruction generating means 190.

According to the optimizing compiler 10 of the embodi-
ment, partial redundancy elimination 1s performed by trans-
ferring the load instructions within the range including at
least one free register. Registers to be assigned to the target
variables to be read out by the load instructions are deter-
mined based on the frequencies of load mnstruction execution
and use 1struction execution. Thus, 1t 1s possible to optimize
the load nstructions more etficiently.

FI1G. 2 1s an operational flowchart of the optimizing com-
piler 10. First, the register assigning means 100 assigns vari-
ables 1n a received object program to registers (step S200).
Then, the spill-1n instruction generating means 110 generates
spill-1n 1nstructions to load variable values from the memory
prior to 1nstructions to use the variable values, for variables
tudged as being unassignable to the registers by the register
assigning means 100 (step S205).

Then, the optimizing compiler 10 repeatedly performs the
tollowing processing on each of a plurality of data loaded
from different memory addresses by the spill-in instructions
(step S215). First, the partial redundancy eliminating means
130 pertforms partial redundancy elimination on each of the
plurality of spill-in 1nstructions to load the data, and further,
replaces registers, which store the data to be read out by the
spill-in 1nstructions, with variables for use in the optimizing
compiler 10 (step S220).

Then, the free register detecting means 140 detects the sets
REG(p) of free registers, which are not assigned to any vari-
able, at execution locations p of load instructions and use
istructions (step S225). Herein, use instructions use data
read out by load mstructions.

Herein, the optimizing compiler 10 generates the following
three sets 1n each basic block of the object program.

(1) GEN Set

The optimizing compiler 10 generates the GEN set, that 1s,
the set of registers which are not assigned to other variables by
the register assigning means 100, within a range from the start
location of basic block execution to the location where
instructions to make final reference to variables are executed.

(2) GEN' Set

The optimizing compiler 10 generates the GEN' set, that 1s,
the set of registers which are not assigned to other variables by
the register assigning means 100, within arange from the load
instruction execution location to the end location of basic
block execution.

(3) KILL Set

The optimizing compiler 10 generates the KILL set, that 1s,
the set of registers assigned to other variables by the register
assigning means 100, 1n the basic block.

Hereinafter, the GEN set, the GEN' set, and the KILL set1in
the n-th basic block are expressed as GEN(n), GEN'(n), and
KILL(n), respectively.

The backward register detecting means 142 detects free
registers, which are not assigned to any variable, along execu-
tion paths traced 1n reverse order of execution, starting back-
ward from the use instructions and extending to the load
instructions, based on the results of detection performed by
the free register detecting means 140 (step S230).

Specifically, the backward register detecting means 142
transmits information on the sets of free registers in a back-
ward direction of the order of execution, starting from the end
ol the object program, and performs processing expressed as
the following data-flow equation (1) using iteration method to
cause a monotonic decrease in the number of free registers. In
this manner, the backward register detecting means 142
detects the free registers.

10

15

20

25

30

35

40

45

50

55

60

65

8

In equation (1), BWD-REG, (n) represents the set of free
registers at the start location of n-th basic block execution,
and BWD-REG__ (n)represents the set of {ree registers at the
end location of n-th basic block execution.

[Equation 1] (1)

BWD — REG;, (n) = GEN(n) | (BWD = REG,,,(n) — KILL(n))

((all available registers)(r 1s end)

BWD — REG () = < ﬂ BWD — REG,, (m)(otherwise)

\ meSuce(n)

where Succ(n) represents the set of basic blocks which can
be executed after the n-th basic block.

Furthermore, the backward register detecting means 142

acquires the sets of free registers at the istruction execution
locations p 1n the n-th basic block based on BWD-REG_ (n),

GEN(n), and KILL(n). Then, the means 142 calculates the
intersections of the acquired sets of free registers and the sets
REG(p) of free registers detected by the free register detect-
ing means 140. When the calculated intersections are not
empty sets, the backward register detecting means 142
updates the sets REG(p) by replacing the sets REG(p) with
the 1ntersections.

Then, the forward register detecting means 144 detects free
registers which are not assigned to any variable, along execu-
tion paths from the load mnstructions to the use instructions,
based on the results of detection performed by the backward
register detecting means 142 (step S235).

Specifically, the forward register detecting means 144
transmits information on the sets of free registers 1n a forward
direction of the order of execution, starting from the start of
the object program, and performs processing expressed as the
following data-flow equation (2) using iteration method to
cause a monotonic decrease in the number of free registers. In
this manner, the forward register detecting means 144 detects
the free registers.

In equation (2), FWD-REG, (n) represents the set of free
registers at the start location of n-th basic block execution,
and FWD-REG_ (n) represents the set of free registers at the
end location of n-th basic block execution.

[Equation 2] (2)

FWD — REG,;(n) = GEN'(n) || (FWD — REG;,(n) — KILL(n))

(all available registers)(; 1s start)

FWD - REG,(n) = ﬂ FWD — REG,,;(m)(otherwise)

me Pred(n)

where Pred(n) represents the set of basic blocks which can
be executed before the n-th basic block.

Furthermore, the forward register detecting means 144

acquires the sets of free registers at the instruction execution
locations p 1n the n-th basic block based on FWD-REG, (n),

GEN'(n), and KILL(n). Then, the means 144 acquires the

intersections of the acquired sets of iree registers and the sets
REG(p) of free registers updated by the backward register
detecting means 142. When the acquired intersections are not
empty sets, the forward register detecting means 144 updates
the sets REG(p) by replacing the sets REG(p) with the inter-
sections.

Herein, the order of execution of steps S230 and S235 1s not
limited to the above-mentioned order of execution. More

US 7,523,448 B2

9

specifically, the forward register detecting means 144 may
detect free registers based on the results of detection per-
formed by the free register detecting means 140, and there-
after the backward register detecting means 142 may detect
free registers, based on the results of detection performed by
the forward register detecting means 144.

The processing of either step S230 or S235 or both may be
omitted. More specifically, the optimizing compiler 10 may
detect free registers which include the sets of registers
detected commonly by the free register detecting means 140
or the sets of registers detected by the free register detecting
means 140 and either the backward register detecting means
142 or the forward register detecting means 144.

Then, the optimizing compiler 10 divides the load 1nstruc-
tions and the plurality of use instructions to use data read out
by the load mstructions into groups (step S240). For example,
the optimizing compiler 10 may use UD/DU chain technique
or Web-based technique to divide the load istructions and the
use 1nstructions into groups. Subsequently, the execution Ire-
quency acquiring means 150 acquires the frequencies of load
instruction execution and the frequencies of use instruction
execution (step S245).

Next, the execution frequency sum calculating means 160
calculates the sum of the frequencies of load instruction
execution for each of the free registers at the load instruction
execution locations and calculates the sum of the frequencies
ol use instruction execution for each of the free registers at the
use mstruction execution locations (step S2350). Specifically,
the execution frequency sum calculating means 160 associ-
ates a plurality of registers contained in the set REG(p) at the
istruction execution location p with the frequencies of
instruction execution for each of a plurality of instructions
belonging to the same group. Then, the execution frequency
sum calculating means 160 obtains the sum of the execution
frequencies by summing the execution frequencies associ-
ated with the registers at each execution location, for each of
all available registers that can be used by the object program.
When a plurality of registers have the equal sum of the execu-
tion frequencies, the execution frequency sum calculating
means 160 can also adjust the sums of the execution frequen-
cies so that the sums may be ditferent from one another.

Then, the free register assigning means 170 assigns any of
the free registers to the target variables from which the load
instructions read out data (step S255). The optimizing com-
piler 10 repeats the above processing on a plurality of data
loaded from different memory addresses by the spill-in
istructions (step S260).

As described above and shown 1n FIG. 2, the optimizing
compiler 10 can assign the variables, which are judged as
being unassignable to the registers by the register assignment
processing, to the registers which are not yet assigned to any
variable even after the end of the register assignment process-
ing. This reduces the number of spill-in 1mstruction execu-
tions, and thus 1t 1s possible to improve the efficiency of
execution of the overall object program.

FIG. 3 1s an operational flowchart showing the details of
step S255 shown 1n FIG. 2. The free register assigning means
170 determines whether free registers, which are consistently
available along all execution paths traced 1n reverse order of
execution, starting backward from the use instructions and
extending to the load instructions, are detected (step S300).

When free registers are detected (YES 1n step S300), the
free register assigming means 170 selects the free registers,
which are consistently available along all the execution paths
traced in reverse order of execution, starting backward from
the use instructions and extending to the load instructions,
and which have the maximum sum of the execution frequen-

10

15

20

25

30

35

40

45

50

55

60

65

10

cies, from among the sets REG(p) of free registers at the load
instruction execution locations p. Then, the means 170
assigns the selected registers to the target variables, the read-
out destinations of the load instructions (step S310). Then, the
processing ends.

When no free register 1s detected (NO 1n step S300), the
free register assigning means 170 assigns, to the target vari-
ables, the registers each having the maximum sum of the
execution frequencies, which are selected from among the
sets REG(p) of free registers at the load instruction execution
locations p (step S320). Then, the live range detecting means
180 detects the live range of the values of variables previously
assigned to the registers assigned to the target variables by the
free register assigning means 170 (step S330). The means 180
performs the following processing on the detected live range.
When a plurality of live ranges are detected, the live range
detecting means 180 may perform the following processing
on each of the detected live ranges.

The alternative register detecting means 182 detects alter-
native registers which are free registers in the live range
detected by the live range detecting means 180 (step S340).
When the alternative register detecting means 182 succeeds
in detecting alternative registers (YES 1n step S350), the
register assignment changing means 184 changes the regis-
ters assigned to the previously assigned variables to the alter-
native registers (step S360). Then, the processing ends.

On the other hand, when the alternative register detecting
means 182 fails to detect alternative registers (NO 1n step
S5350), the copy 1nstruction generating means 190 generates
instructions to copy target variable data 1nto the free registers
cach having the maximum sum of the execution frequencies,
at the execution locations where the mstructions are executed
prior to mstructions to substitute other variable data into the
registers assigned to the target variables, along the execution
paths from the load instructions to the use instructions (step
S370).

Subsequently, the use instruction/register assigning means
192 assigns the registers, copy destinations of the copy
instructions, to the variables to be used by the use istructions
(step S380). Then, the processing ends.

As described above and shown 1n FIG. 3, when there are
detected the registers which are not consistently assigned to
other variables 1n the range of the vaniable values between the
load instructions and the use instructions, the optimizing
compiler 10 selects the detected registers as the registers to
hold the variable values. Furthermore, even when there are
not detected the free registers which are not consistently
assigned to other variables, the optimizing compiler 10 tries
to change the registers previously assigned to other variables
to other registers. As a result, the optimizing compiler 10 can
enhance the elliciency of execution of the object program by
minimizing the occurrence of the processing of copying the
value from one register into another.

FIGS. 4A to 4E show a first example of application of the
embodiment. FIG. 4A shows the object program of the
example of application after the execution of step S220 of
FIG. 2. FIG. 4B shows the object program of the example of
application after the execution of step S255 o1 FIG. 2. F1G. 4C
shows the respective GEN sets and KILL sets 1n a plurality of
basic blocks contained in the object program of the example
of application. FIG. 4D shows the results of detection, which
are obtained when the backward register detecting means 142
detects free registers 1n a plurality of basic blocks contained in
the object program of the example of application. The
description will be given below with regard to the procedure
for obtaiming the results shown in FI1G. 4D using the data-tlow
equation (1).

US 7,523,448 B2

11

First, the backward register detecting means 142 detects all
available registers {rl, r2, r3, r4} as the set BWD-REG_
(BB6) of free registers at the end locations of execution of a
basic block BB6, the end of the object program. Then, the
backward register detecting means 142 detects {rl, r2},
which is the union of {rl, r2} resultant from subtraction of
KILL(BB6) {r3,rd4} from BWD-REG_ _(BB6){rl,r2,r3,r4}
and GEN(BB6) {r1,r2}, as the set BWD-REG;, (BB6) of free
registers at the start locations of execution of the basic block
BB6.

Then, the backward register detecting means 142 detects
BWD-REG, (BB6){rl,r2} as the set BWD-REG,_ (BBS5)of
free registers at the end location of execution of a basic block
BBS5. Herein, basic blocks to be executed after the basic block
BBS5 include a basic block BB2 besides the basic block BB6.
However, the backward register detecting means 142 detects
BWD-REG_ _(BBS) based on only BWD-REG, (BB6)
because BWD-REG, (BB2) 1s not yet detected at this time.
The backward register detecting means 142 solves the data-

flow equation (1) illustrated 1n FIG. 2 by using iteration
method, and thus the means 142 detects BWD-REG_(BBS)

by using the set BWD-REG, (BB2) of free registers at the
looping execution start location and the set BWD-REG,
(BB6) of free registers at the location to be executed after the
looping. Thereaftter, the backward register detecting means
142 pertforms calculation using the same procedure, thereby
detecting the free registers shown i1n FIG. 4D as the free
registers along the execution paths traced in reverse order of
execution, starting backward from the use instructions and
extending to the load instructions.

FIG. 4E shows free registers 1n a basic block BB3 of the
object program of the example of application. Herein, FIG.
4E shows that the available register at execution locations 500
and 510 in the basic block BB3 is {r2}. When the free register
is {r1} in a basic block other than the basic block BB3, e.g.,
a basic block BB4, the free register assigning means 170
cannot detect the free registers which are consistently avail-
able along all execution paths traced in reverse order of execu-
tion, starting backward from the use mstructions 1n the basic
block BB6 and extending to the load instructions 1in a basic
block BB1.

Herein, the free register assigning means 170 assigns the
register rl to a target variable, the readout destination of the
load 1nstruction, in the basic block BB1. Then, the live range
detecting means 180 detects that the live range of the value of
a variable, which 1s previously assigned to the register rl
assigned to the target variable, in the basic block BB3 lies
between the execution locations 500 and 510. Upon receipt of
the results of detection, the alternative register detecting
means 182 detects the register r2 as an alternative register
which 1s a free register in the detected live range. Then, the
register assignment changing means 184 changes the register
rl assigned to the previously assigned variable to the alterna-
tive register r2, thus making the register rl available in the
basic block BB3.

In the above-mentioned manner, the optimizing compiler
10 can generate the object program shown in FIG. 4B by
consistently assigning a variable T to the register rl.

As the example of application illustrates, according to the
optimizing compiler 10, 1t 1s possible to avoid generation of
copy structions by changing the registers assigned to the
previously assigned variables to the alternative registers.
Thus, 1t 1s possible to optimize the load instructions eifi-
ciently.

FIGS. 5A to 5C show a second example of application of
the embodiment. FIG. SA shows the object program of the
second example of application after the execution of step

5

10

15

20

25

30

35

40

45

50

55

60

65

12

S205 of FIG. 2. FIG. 5B shows an example of the object
program of the second example of application atter the execu-
tion of step S230 of F1G. 2. FIG. 5C shows one example of the
object program of the second example of application after the
execution of step S2335 of FIG. 2.

The spill-in 1instruction generating means 110 generates the
spill-in 1nstructions for variables judged as being unassign-
able to registers by the register assigning means 100. For
example, as indicated by the fourth and seventh lines 1n FIG.
5A, the spill-in 1nstruction generating means 110 generates
the spill-1n instructions prior to the use of variable values each
time the variable values are used.

The backward register detecting means 142 detects free
registers along an execution path traced in reverse order of
execution, starting backward from an execution location 600
and extending to a spill-in mstruction. Specifically, when the
looping includes a use instruction, the backward register
detecting means 142 detects free registers along a path where
the first looping 1s to be executed. Consequently, as shown in
FIG. 5B, the backward register detecting means 142 detects
Ir2, r3} as free registers along the execution path from the
execution location 600 to the spill-in mstruction.

On the other hand, the forward register detecting means
144 detects a free register along an execution path traced 1n
order of execution, starting forward from a spill-1n instruction
and extending to an execution location 610. Specifically,
when the looping includes a use instruction, the forward
register detecting means 144 detects a free register along a
path where the looping 1s repeatedly executed more than
once. Consequently, the forward register detecting means 144
detects {r3} as a free register at the execution location 610.

As mentioned above, the results of free register detection
obtained by either the backward register detecting means 142
or the forward register detecting means 144 may be different
from the results of iree register detection commonly obtained
by both the backward register detecting means 142 and the
forward register detecting means 144.

This may cause variations in the results of optimization
performed by the optimizing compiler 10. For example, when
the register r2 1s selected as the register to be assigned to the
variable T 1n FIG. 5B, the register r2 1s used at the execution
position 600 for other purposes. Therefore, the optimizing
compiler 10 must generate a copy instruction at an execution
location to be executed prior to the execution location 600.
Specifically, the optimizing compiler 10 must generate a copy
instruction to copy the value of the vaniable T 1nto a register
other than the register r2 so as to cause the register to hold the
value. On the other hand, when the register 13 is selected as
the register to be assigned to the vanable T 1n FIG. 5C, the
optimizing compiler 10 does not have to generate a copy
istruction.

According to the optimizing compiler 10 of the second
example of application, free registers detected by both the
backward and forward register detecting means 142 and 144
are assigned to target variables to be read out by load instruc-
tions. Thus, generation of copy instructions are avoided, and
thereby achieving efficient optimization of load instructions.

FIG. 6 1s a block diagram showing an example of a hard-
ware configuration of a computer which functions as the
optimizing compiler 10. The optimizing compiler 10 includes
CPU and its peripheral devices including a CPU 1000, a RAM
1020, a graphic controller 1075, and a display device 1080,
which are connected to one another via a host controller 1082
input/output units including a commumnication interface 1030,
a hard disk drive 1040, and a CD-ROM drive 1060, which are
connected to the host controller 1082 via an input/output
controller 1084; and legacy mput/output units mncluding a

US 7,523,448 B2

13

ROM 1010, a flexible disk drive 1050, and an input/output
chip 1070, which are connected to the imnput/output controller
1084.

The host controller 1082 provides connection between the
RAM 1020 and the CPU 1000 and graphic controller 1075
which access the RAM 1020 at high transfer rate. The CPU
1000 operates 1n accordance with programs stored in the
ROM 1010 and the RAM 1020 to control each unit. The
graphic controller 1075 acquires image data which the CPU
1000 or the like generates in frame buifers within the RAM
1020, and the 1image data 1s displayed on the display device
1080. Alternatively, the graphic controller 1075 may contain
frame butlers to store 1mage data generated by the CPU 1000
or the like.

The input/output controller 1084 connects the host control-
ler 1082 to the communication interface 1030, the hard disk
drive 1040, and the CD-ROM drive 1060, which are the
relatively high-speed mput/output devices. The communica-
tion interface 1030 1s connected to an external device via a
network. The hard disk drive 1040 stores a compiler program
and data used by the optimizing compiler 10. The CD-ROM
drive 1060 reads out a program or data from a CD-ROM 1095
and provides the program or data to the mput/output chip
1070 via the RAM 1020.

The ROM 1010 and the relatively low-speed 1input/output
devices such as the flexible disk drive 1050 and the mput/
output chip 1070 are connected to the input/output controller
1084. The ROM 1010 stores a boot program which the CPU
1000 executes at the time of activating the optimizing com-
piler 10, a program which depends on the hardware of the
optimizing compiler 10, and the like. The flexible disk drive
1050 reads out a program or data from a flexible disk 1090 and
provides the program or data to the input/output chup 1070 via
the RAM 1020. The mnput/output chip 1070 1s connected to
various types ol input/output devices via the flexible disk
1090, and, for example, a parallel port, a serial port, a key-
board port, and a mouse port.

The compiler program to be provided to the optimizing
compiler 10 1s stored 1 a recording medium such as the
flexible disk 1090, the CD-ROM 1095, or an IC card and
provided by users. The compiler program 1s read out from the
recording medium and 1s 1nstalled as well as executed 1n the
optimizing compiler 10 via the input/output chip 1070 and/or
the input/output controller 1084.

The compiler program, which 1s 1nstalled and executed in
the optimizing compiler 10, includes a register assigning
module, a spill-in instruction generating module, a partial
redundancy eliminating module, a free register detecting
module, a backward register detecting module, a forward
register detecting module, an execution frequency acquiring,
module, an execution frequency sum calculating module, a
free register assigning module, a live range detecting module,
an alternative register detecting module, a register assignment
changing module, a copy instruction generating module, and
a use instruction/register assigning module. Since the opera-
tion of the modules acting on the optimizing compiler 10 1s
the same as the operation of corresponding components of the
optimizing compiler 10 described with reference to FIGS. 1
to 5C, the descriptions thereof are omaitted.

The above-mentioned compiler program may be stored in
an external storage medium. Besides the flexible disk 1090
and the CD-ROM 1095, an optical recording medium such as
a DVD or a PD, a magneto-optical recording medium such as
an MD, a tape medium, a semiconductor memory such as an
IC card, or the like can be used as the storage medium. A
storage or memory such as a hard disk or a RAM 1n a server
system connected to a dedicated communication network or

10

15

20

25

30

35

40

45

50

55

60

65

14

the Internet may also be used as a recording medium to
provide the compiler program to the optimizing compiler 10
via the network.

As apparent from the above description of the embodi-
ment, the optimizing compiler 10 can assign the variables,
which are judged as being unassignable to the registers by the
register assignment processing, to the registers which are not
yet assigned to any variable even after the end of the register
assignment processing. This reduces the number of spill-in
istruction executions, thereby improving the efficiency of
execution of the overall object program.

Moreover, the optimizing compiler 10 changes the regis-
ters, previously assigned to the variables by the register
assignment processing, to other registers. Accordingly, the
optimizing compiler 10 can reduce the number of copy
instructions to copy the value from one register into another.
Furthermore, even when the previously assigned registers
cannot be changed to other registers, the optimizing compiler
10 can give higher priority of assignment to the free registers
at the execution locations where instructions having the
greater frequencies of execution are executed, and therefore
the optimizing compiler 10 can improve the efliciency of
execution of the object program.

Although the present invention has been described above
by referring to the embodiment, the technical scope of the
present invention 1s not limited to the above-mentioned
embodiment. It 1s obvious to those skilled 1n the art that
various changes or modifications can be made 1n the above-
mentioned embodiment. It 1s apparent from the appended
claims that the technical scope of the present invention also
covers such changes or modifications.

According to the above-mentioned embodiment, an opti-
mizing compiler, a compiler program, and a recording
medium are implemented as described 1n each item below.

(Item 1) An optimizing compiler which optimizes load
instructions to read out data from a memory 1n an object
program targeted for optimization, including: partial redun-
dancy eliminating means for performing partial redundancy
climination on the load instructions to read out variable data
from the memory 1n the object program whose variables are at
least 1n part unassigned to registers so that spilling does not
take place when the variables are assigned to the registers;
backward register detecting means for detecting free regis-
ters, which are not assigned to any variable, along execution
paths traced in reverse order of execution, starting backward
from use instructions to use data read out by the load nstruc-
tions and extending to the load instructions; and free register
assigning means for assigning the free registers detected by
the backward register detecting means to target variables
from which the load istructions read out the data.

(Item 2) The optimizing compiler according to Item 1,
wherein the backward register detecting means transmits
information indicating sets of the free registers in a backward
direction of the order of execution, starting from an end of the
object program, and performs processing expressed as a data-
flow equation, using iteration method to cause a monotonic
decrease 1n a number of the free registers, to detect the free
registers.

(Item 3) The optimizing compiler according to Item 1,
wherein when no free register 1s detected along the execution
paths traced in reverse order of execution, starting backward
from the use mstructions and extending to the load instruc-
tions, the free register assigning means assigns, to the target
variables, any of the free registers at load struction execu-
tion locations, and the optimizing compiler further includes:
live range detecting means for detecting a live range of values
of variables previously assigned to the registers assigned to

US 7,523,448 B2

15

the target variables; alternative register detecting means for
detecting alternative registers which are the free registers 1n
the live range; and register assignment changing means for
changing the registers assigned to the previously assigned
variables to the alternative registers.

(Item 4) The optimizing compiler according to Item 1,
turther including: register assigning means for assigning the
variables to the registers; and spill-in 1nstruction generating,
means for generating spill-in instructions for variables judged
as being unassignable to the registers by the register assigning
means, the spill-in istructions loading variable values from
the memory, prior to mstructions to use the variable values,
wherein the partial redundancy eliminating means performs
the partial redundancy elimination on the spill-in instructions
which are the load imnstructions, and further, replaces registers,
which store data to be read out by the spill-in 1nstructions,
with variables for use 1n the optimizing compiler, and the free
register assigning means assigns the free registers detected by
the backward register detecting means to the variables
replaced by the partial redundancy eliminating means.

(Item 35) The optimizing compiler according to Item 4,
wherein a priority of assignment of the variables to a plurality
of the registers 1s predefined, the register assigning means
assigns the variables to higher-prionty registers, and when no
free register 1s detected along the execution paths traced 1n the
reverse order of execution, starting backward from the use
istructions and extending to the load instructions, the free
register assigning means assigns, to the target variables, high-
est-priority free registers among the free registers at the load
instruction execution locations, the optimizing compiler fur-
ther includes: copy instruction generating means for generat-
ing instructions to copy target variable data into the highest-
priority iree registers at execution locations where
istructions are executed prior to instructions to substitute
other variable data into the registers assigned to the target
variables, along execution paths from the load istructions to
the use istructions; and use instruction/register assigning,
means for assigning the registers, copy destinations of the
copy 1nstructions, to the variables to be used by the use
instructions.

(Item 6) The optimizing compiler according to Item 1,
turther including: forward register detecting means for
detecting iree registers, which are not assigned to any vari-
able, along execution paths traced 1n order of execution, start-
ing forward from the load instructions and extending to the
use 1structions to use data read out by the load instructions,
wherein the free register assigning means assigns, to the
target variables, the free registers detected by both the back-
ward register detecting means and the forward register detect-
Ing means.

(Item 7) An optimizing compiler which optimizes load
instructions to read out data from a memory 1n an object
program targeted for optimization, including: partial redun-
dancy eliminating means for performing partial redundancy
climination on the load instructions to read out varniable data
from the memory 1n the object program whose variables are at
least 1n part unassigned to registers so that spilling does not
take place when the variables are assigned to the registers;
forward register detecting means for detecting free registers,
which are not assigned to any variable, along execution paths
traced 1n order of execution, starting forward from the load
instructions and extending to use mstructions to use data read
out by the load instructions; and iree register assigning means
for assigning the free registers detected by the forward regis-
ter detecting means to target variables from which the load
instructions read out the data.

10

15

20

25

30

35

40

45

50

55

60

65

16

(Item 8) The optimizing compiler according to Item 7,
wherein the forward register detecting means transmits infor-
mation indicating sets of the free registers 1n a forward direc-
tion of the order of execution, starting from a start of the
object program, and performs processing expressed as a data-
flow equation, using iteration method to cause a monotonic
decrease 1n a number of the free registers, to detect the free
registers.

(Item 9) An optimizing compiler which optimizes load
istructions to read out data from a memory 1n an object
program targeted for optimization, including: partial redun-
dancy eliminating means for performing partial redundancy
climination on the load instructions to read out variable data
from the memory 1n the object program whose variables are at
least 1n part unassigned to registers so that spilling does not
take place when the variables are assigned to the registers;
execution frequency acquiring means for acquiring frequen-
cies of the load mstruction execution and frequencies of use
instruction execution, use mstructions using data read out by
the load 1nstructions; free register detecting means for detect-
ing sets of the free registers, which are not assigned to any
variable, at load instruction execution locations and use
instruction execution locations; execution frequency sum cal-
culating means for calculating a sum of the frequencies of
load 1nstruction execution and a sum of the frequencies of use
instruction execution for each of the free registers at the load
instruction locations or the use instruction execution loca-
tions; and free register assigning means for assigning iree
registers to target variables, readout destinations of the load
instructions, the free registers having a maximum sum of the
execution frequencies among the free registers at the load
instruction execution locations.

(Item 10) The optimizing compiler according to Item 9,
turther including: copy 1nstruction generating means for gen-
erating instructions to copy target variable data 1nto the free
registers each having the maximum sum of the execution
frequencies, at execution locations where instructions are
executed prior to mstructions to substitute other variable data
into the registers assigned to the target variables, along execu-
tion paths from the load instructions to the use i1nstructions;
and use struction/register assigning means for assigning the
registers, copy destinations of the copy instructions, to the
variables to be used by the use 1nstructions.

(Item 11) A compiler program which allows a computer to
function as an optimizing compiler for optimizing load
istructions to read out data from a memory 1n an object
program targeted for optimization, the compiler program
allowing the computer to function as: partial redundancy
climinating means for performing partial redundancy elimi-
nation on the load mstructions to read out variable data from
the memory 1n the object program whose variables are at least
in part unassigned to registers so that spilling does not take
place when the variables are assigned to the registers; back-
ward register detecting means for detecting free registers,
which are not assigned to any variable, along execution paths
traced 1n reverse order of execution, starting backward from
use 1nstructions to use data read out by the load instructions
and extending to the load instructions; and free register
assigning means for assigning the free registers detected by
the backward register detecting means to target variables
from which the load mstructions read out the data.

(Item 12) A compiler program which allows a computer to
function as an optimizing compiler for optimizing load
instructions to read out data from a memory 1n an object
program targeted for optimization, the compiler program
allowing the computer to function as: partial redundancy
climinating means for performing partial redundancy elimi-

US 7,523,448 B2

17

nation on the load structions to read out variable data from
the memory 1n the object program whose variables are at least
in part unassigned to registers so that spilling does not take
place when the variables are assigned to the registers; forward
register detecting means for detecting free registers, which
are not assigned to any variable, along execution paths traced
in order of execution, starting forward from the load nstruc-
tions and extending to use instructions to use data read out by
the load nstructions; and free register assigning means for
assigning the free registers detected by the forward register
detecting means to target variables from which the load
instructions the data.

(Item 13) A compiler program which allows a computer to
function as an optimizing compiler for optimizing load
instructions to read out data from a memory in an object
program targeted for optimization, the compiler program
allowing the computer to function as: partial redundancy
climinating means for performing partial redundancy elimi-
nation on the load instructions to read out variable data from
the memory 1n the object program whose variables are at least
in part unassigned to registers so that spilling does not take
place when the vaniables are assigned to the registers; execu-
tion frequency acquiring means for acquiring frequencies of
the load mstruction execution and frequencies of use mstruc-
tion execution, the use mstructions using data read out by the
load instructions; free register detecting means for detecting
sets of the free registers, which are not assigned to any vari-
able, at load instruction execution locations and use instruc-
tion execution locations; execution frequency sum calculat-
ing means for calculating a sum of the frequencies of load
istruction execution and a sum of the frequencies of use
instruction execution for each of the free registers at the load
instruction locations or the use instruction execution loca-
tions; and free register assigning means for assigning free
registers to target variables, readout destinations of the load
instructions, the free registers having a maximum sum of the
execution frequencies among the free registers at the load
istruction execution locations.

(Item 14) A recording medium having a compiler program
according to any one of Items 11 to 13 recorded thereon.

Although particular embodiments of the present invention
has been described in detail, 1t should be understood that
various changes, substitutions and alternations can be made
therein without departing from spirit and scope of the inven-
tions as defined by the appended claims.

Variations described for the present invention can be real-
ized 1n any combination desirable for each particular appli-
cation. Thus particular limitations, and/or embodiment
enhancements described herein, which may have particular
advantages to the particular application need not be used for
all applications. Also, not all limitations need be implemented
in methods, systems and/or apparatus including one or more
concepts of the present invention.

The present invention can be realized 1n hardware, soft-
ware, or a combination of hardware and software. A visual-
1zation tool according to the present invention can be realized
in a centralized fashion in one computer system, or 1n a
distributed fashion where different elements are spread across
several interconnected computer systems. Any kind of com-
puter system—or other apparatus adapted for carrying out the
methods and/or functions described herein—is suitable. A
typical combination of hardware and software could be a
general purpose computer system with a computer program
that, when being loaded and executed, controls the computer
system such that it carries out the methods described herein.
The present mvention can also be embedded 1n a computer
program product, which comprises all the features enabling

10

15

20

25

30

35

40

45

50

55

60

65

18

the implementation of the methods described herein, and
which—when loaded 1n a computer system—is able to carry
out these methods.
Computer program means or computer program in the
present context include any expression, in any language, code
or notation, of a set of instructions intended to cause a system
having an information processing capability to perform a
particular function either directly or after conversion to
another language, code or notation, and/or reproduction 1n a
different material form.
Thus the mvention includes an article of manufacture
which comprises a computer usable medium having com-
puter readable program code means embodied therein for
causing a function described above. The computer readable
program code means in the article of manufacture comprises
computer readable program code means for causing a com-
puter to eiflect the steps of a method of this invention. Simi-
larly, the present mvention may be implemented as a com-
puter program product comprising a computer usable
medium having computer readable program code means
embodied therein for causing a function described above. The
computer readable program code means 1n the computer pro-
gram product comprising computer readable program code
means for causing a computer to effect one or more functions
of this invention. Furthermore, the present invention may be
implemented as a program storage device readable by
machine, tangibly embodying a program of instructions
executable by the machine to perform method steps for caus-
ing one or more functions of this imvention.
It 1s noted that the foregoing has outlined some of the more
pertinent objects and embodiments of the present invention.
This mvention may be used for many applications. Thus,
although the description 1s made for particular arrangements
and methods, the intent and concept of the mvention 1s suit-
able and applicable to other arrangements and applications. It
will be clear to those skilled 1n the art that modifications to the
disclosed embodiments can be effected without departing
from the spirit and scope of the mvention. The described
embodiments ought to be construed to be merely 1llustrative
ol some of the more prominent features and applications of
the invention. Other beneficial results can be realized by
applying the disclosed invention in a different manner or
modifying the invention in ways known to those familiar with
the art.
What 1s claimed 1s:
1. A compiling method comprising optimizing load
istructions to read out data from a memory 1n an object
program targeted for optimization, the step of optimizing
comprising the steps of:
performing partial redundancy elimination on the load
instructions to read out variable data from the memory 1n
the object program whose variables are at least in part
unassigned to registers so that spilling does not take
place when the variables are assigned to the registers;

acquiring frequencies of the load instruction execution and
frequencies of use instruction execution, the use instruc-
tions using data read out by the load instructions;

detecting, by a free register detecting means, sets of the free
registers, which are not assigned to any variable, at load
instruction execution locations and use instruction
execution locations;

detecting by a backward register detecting means, free

registers, which are not assigned to any variable, along
execution paths traced in reverse order of execution,
starting backward from use 1nstructions to use data read
out by the load instructions and extending to the load
instructions;

US 7,523,448 B2

19

detecting, by a forward register detecting means, Iree reg-
isters, which are not assigned to any variable, along
execution paths traced 1n order of execution, starting
forward from the load instructions and extending to use
istructions to use data read out by the load instructions;

updating said free register sets by one or more of: said

backward register detecting means, and forward register
detecting means, said updating including calculating
intersections of the sets of free registers obtained by said
free register detecting means with said free registers
detected by either said forward register detecting means
or said backward register detecting means;

calculating a sum of the frequencies of load instruction
execution and a sum of the frequencies of use instruction

10

20

execution for each of the free registers at the load
instruction locations or the use instruction execution
locations; and,

assigning the updated free registers to target variables from
which the load instructions read out the data, the updated

free registers having a maximum sum of the execution

frequencies among the free registers at the load nstruc-
tion execution locations,

wherein the target variables are assigned, which are judged
as being unassignable to registers by a register assign-
ment processing, to registers which are not yet assigned
to any variable even after the end of the register assign-
ment processing.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

