12 United States Patent

Mishra et al.

US007503063B1

10) Patent No.: US 7,503,063 B1
45) Date of Patent: Mar. 10, 2009

(54) CONTAINER LEVEL ACCESS CONTROL
MECHANISM

(75) Inventors: Anshuman Mishra, Westminster, CO

(US); Kumar Subramanya, Louisville,
CO (US); Brandon E. Taylor,

Longmont, CO (US)

(73) Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 826 days.

(21) Appl. No.: 11/095,431
(22) Filed: Mar. 30, 2005

(51) Int.CL.

GO6F 17/30 (2006.01)
(52) US.CL i 726/2; 726/5; 726/6
(58) Field of Classification Search 726/2,
726/5, 6
See application file for complete search history.
(56) References Cited
OTHER PUBLICATIONS

Solaris Containers, Wikipedia, printed 2008.*

Event-based blackboard architecture for multi-agent systems Dong,
I.; Chen, S.; Jeng, J.-].; Information Technology: Coding and Com-
puting, 2005. ITCC 2005. International Conference on vol. 2, Apr.
4-6, 2005 pp. 379-384 vol. 2.*

A purpose-oriented access control model for object-based systems
Yasuda, M.; Tachikawa, T.; Takizawa, M.; Object-Oriented Real-

Time Distributed Computing, 1998. (ISORC 98) Proceedings. 1998
First International Symposium on Apr. 20-22, 1998 pp. 146-147.*

An object-oriented database system Jasmine: implementation, appli-
cation, and extension Ishikawa, H.; Yamane, Y.; Izumida, Y.; Kawato,
N.; Knowledge and Data Engineering, IEEE Transactions on vol. 8,
Issue 2, Apr. 1996 pp. 285-304.*

* cited by examiner

Primary Examiner—David Y Jung
(74) Attorney, Agent, or Firm—Bobby K. Truong; Hickman

Palermo Truong & Becker LLP

(57) ABSTRACT

An access control mechanism that implements access control
at a container level 1s disclosed. In one implementation, the
access control mechanism provides one or more access con-
trol services, and registers these services with a container.
Once registered, the access control services are exposed to
other applications 1n the container, and those applications can
invoke the services to have the access control mechanism
implement access control on their behalf. The access control
mechanism implements access control for all applications
within the container; thus, the applications do not need to
implement their own access control mechanisms. In addition,
the access control mechanism 1s not an operating system
component. Thus, by relying on the access control mecha-
nism for access control functionality, the applications are not
relying on any operating system component. As a result, the
applications, the container, and the access control mechanism
can be ported to and run on other operating systems/plat-
forms.

22 Claims, 3 Drawing Sheets

REGISTER ACCESS 204
CONTROL SERVICES
WITH CONTAINER

RECEIVE INVOCATION
REQUEST FROM
APPLICATION

208

DETERMINE WHETHER
ENTITY HAS SUFFICIENT
ACCESS PRIVILEGE

212

SEND RESPONSE
INDICATING WHETHER
ENTITY HAS SUFFICIENT
ACCESS PRIVILEGE

216

US 7,503,063 B1

Sheet 1 of 3

Mar. 10, 2009

U.S. Patent

NOILVIWNHO4NI 104LNOD SS300V

0¢l

001
ONIddVYI ONIddVYI
SEREN VIR =RERIRLEE 3104
AYLSIOI 3108 | -43SN
ALIMYNOILONNS
91 [30IAY3S 971
HIOVNYI
901 NOILYYLSIOTY
INION3
TOY¥1INOD
SS30V |
bl
NOILYONddY
: TOY¥1INOD
: SS30JV
ARl
NSINYHOIN
(Y01 NOLLYOIddY o1 /| TO¥INOOSS3OIV |
HIOVNYN
201 NOISSdS
d3INIVLINOD

JOV443LNI
JAILVHLSININAY

3OV4HILINI
ol d3SN 0EL

\zoL

[by

U.S. Patent

Mar. 10, 2009 Sheet 2 of 3

REGISTER ACCESS
CONTROL SERVICES
WITH CONTAINER

RECEIVE INVOCATION

REQUEST FROM
APPLICATION

DETERMINE WHETHER

ENTITY HAS SUFFICIENT
ACCESS PRIVILEGE

SEND RESPONSE

INDICATING WHETHER
ENTITY HAS SUFFICIENT
ACCESS PRIVILEGE

US 7,503,063 B1

204

208

212

216

503,063 Bl

Sheet 3 of 3 US 7,

2009

b/

Mar. 10

U.S. Patent

¢ DD
743
1SOH
- 008 m
e\ 0z m 8l¢ m "
MNIT YOE m JOYLNOD
30VA4ILNI _ HOSHND
AGONSIN | MOMLIN NOILVOINANINOD 40SSIO0Nd m
9z¢ —
B “ Ot _ Ple
SNd 301A30 LNdNI
8¢ m
| Or¢ 80¢€ 90¢ m
— : 30IN3C AHOWAN | ! —
0 _ NOY _ 3
yanyas | 1 | FIVEOLS i NIVAA m AVdSIa

US 7,503,063 Bl

1

CONTAINER LEVEL ACCESS CONTROL
MECHANISM

BACKGROUND

A large scale computer program provides a large number of
functionalities that can be invoked by users and other entities
(c.g. other programs). Some of these functionalities (e.g.
functionalities that allow a user to set certain fundamental
operating parameters of the program) may have significant
impact on the overall operation and performance of the pro-
gram, while other functionalities may have little or no impact.
Because some of the functionalities may give rise to serious
consequences, 1t 1s desirable to limit access to those and
perhaps other functionalities to ensure that only the proper
users have access to them. For this reason, most, 1f not all,
large scale programs implement some type of access control
mechanism.

Some large scale programs implement access control at the
component level. More specifically, a large scale program
may comprise a plurality of components, each of which may
provide one or more functionalities. Access control logic may
be coded 1into some or all of these components to enable them
to control and limit access to the functionalities that they
provide. An advantage of this component-level approach 1s
that it 1s versatile. Because each component can implement its
own access control logic, that logic can be customized to {it
the needs of each individual component. A drawback of this
approach, however, 1s that 1t can require significant amounts
of code to be added to each component, which 1n turn, can
significantly increase the cost of developing each component.
In addition, 1t can lead to large amounts of redundant code.

Access control may also be implemented at the operating
system level. Some operating systems provide access control
modules that can be invoked by program components (e.g. the
components of a large scale program) that run on top of those
operating systems. Using the access control modules, an
administrator can specily certain access control rules and
policies. Then, at runtime, the components can invoke the
access control modules of the operating system to have those
modules enforce the rules and policies to implement access
control on behalf of the components. This approach 1s advan-
tageous 1n that it relieves the components of having to imple-
ment their own access control mechanisms. However, 1t 1s
disadvantageous 1n that 1t renders the components operating
system/platform dependent. Because of this dependency, the
components, and hence, the large scale program, cannot be
ported to and run on other operating systems/platiorms.

As the above discussion shows, the current approaches to
implementing access control 1n large scale programs have
significant drawbacks. Consequently, an improved approach
1s needed.

SUMMARY

In accordance with one embodiment of the present mven-
tion, there 1s provided an access control mechanism that
implements access control at a container level. As used
herein, the term container refers broadly to any program that
contains and hosts other applications. Each application
within the container may provide zero or more functional-
ities. In one embodiment, the access control mechanism 1s
implemented as one of the applications within the container.

In one embodiment, the access control mechanism pro-
vides one or more access control services, and it registers
these services with the container. Once 1t does so, the access
control services are exposed to the other applications in the

10

15

20

25

30

35

40

45

50

55

60

65

2

container, and those applications are able to ivoke the ser-
vices to have the access control mechanism implement access
control on their behalf. In one embodiment, the access control
mechanism implements access control for all of the applica-

tions 1n the container; thus, the applications do not need to
implement their own access control mechanisms.

As noted above, the access control mechanism, in one
embodiment, 1s implemented as an application within the
container. Hence, it 1s not an operating system component.
Thus, by relying on the access control mechanism for access
control functionality, the applications in the container are not
relying on any operating system component. This 1n turn
means that the applications are not operating system/platform
dependent. As a result, the applications, the container, and the
access control mechanism can be ported to and run on other
operating systems/platiorms (1.¢. they are platform 1indepen-
dent). As this discussion shows, this embodiment of the
present invention achieves the advantages of the prior
approaches without suffering the accompanying drawbacks.

In one embodiment, the access control mechanism oper-
ates as follows. During startup, the access control mechanism
registers the access control services that it provides with the
container 1 which the access control mechanism 1s con-
tamned. This registration process exposes the access control
services, and enables other applications within the container
to see and to invoke those services.

At some point during regular operation, an application
within the container recerves a request to mvoke a function-
ality that the application provides. Betfore allowing this func-
tionality to be invoked, the application first determines
whether the entity (whether it be a user or a program) trying
to imvoke the functionality has suilicient access privilege to do
s0. In one embodiment, the application makes this determi-
nation by enlisting the services of the access control mecha-
nism. More specifically, the application sends an 1nvocation
request to the access control mechanism to obtain therefrom
a determination on whether this enfity has suificient access
privilege to invoke this functionality. The invocation request
invokes one or more of the access control services provided
by the access control mechanism, and may include a set of
invocation parameters. In one embodiment, the set of 1nvoca-
tion parameters may comprise a role and one or more privi-
leges. The role represents the role currently held by the entity
that 1s imnvoking the functionality, and the one or more privi-
leges represent the privilege(s) needed to invoke the function-
ality.

The mvocation request 1s received by the access control
mechanism. In response, the access control mechanism deter-
mines, based upon the invocation parameters and a set of
access control information, whether the entity has sufficient
access privilege. In one embodiment, the access control
mechanism makes this determination by checking the access
control information to determine whether the role specified 1n
the invocation parameters has all of the privileges specified in
the invocation parameters. In one embodiment, 11 the speci-
fied role has all of the specified privileges, then the entity has
suificient access privilege to mvoke the functionality. Other-
wise, the entity does not have sulificient access privilege. After
this determination 1s made, the access control mechanism
sends a response to the application indicating whether the
entity has suificient access privilege. The application then
acts 1n accordance with this response to either allow or deny
access to the functionality. In this manner, the access control
mechanism implements access control for the application.
The access control mechanism can implement access control
tor other applications in the container 1n the same way. Thus,

US 7,503,063 Bl

3

the access control mechanism acts as a centralized, container
level access control mechanism for all of the applications 1n
the container.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram of a system 1n which
one embodiment of the present mmvention may be imple-
mented.

FI1G. 2 1s an operational flow diagram 1llustrating the opera-
tion of the access control mechanism of FIG. 1, 1n accordance
with one embodiment of the present invention.

FIG. 3 1s a block diagram of a general purpose computer
system 1n which one embodiment of the present invention
may be implemented.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Container and Applications

With reference to FIG. 1, there 1s shown a functional block
diagram of a system 1n which one embodiment of the present
invention may be implemented. As shown, the system 100
comprises a container 102. As used herein, the term container
refers broadly to any program that contains and hosts one or
more applications 104. A container 102 allows applications
104 to be “plugged 1n”” to the container. Once plugged 1n, an
application 104 can be accessed through the container 102 so
that the container 102 acts as the front end host for the appli-
cation 104. Examples of a container 102 include but are
certainly not limited to web servers and web application
SErvers.

In one embodiment, applications 104 are plugged 1in to the
container 102 via aregistration process. More specifically, the
container 102 comprises a registration manager 106, and the
applications 104 interact with this registration manager 106
to register the functionalities that they provide. Once these
functionalities are registered, they are exposed to other appli-
cations 104 1n the container 102 as well as to entities (e.g.
users and programs) external to the container 102. These
functionalities may thereafter be invoked directly by other
applications 104 1n the contamner 102. They may also be
invoked by external entities by going through the container

102.

When an application 104 registers a functionality with the
registration manager 106, 1t provides a set of information
pertinent to that functionality. In one embodiment, the func-
tionalities provided by the applications 104 take the form of
methods that can be 1invoked. In such an embodiment, the
information pertinent to a functionality (i.e. a method) may
include the name of the method, the name of the object class
that implements the method, a specification of what, 11 any,
parameter(s) may or need to be included in an mvocation of
the method, a description of the method, etc. This and other
information may be provided to the registration manager 106.
In response, the registration manager 106 stores the informa-
tion 1nto a registry 116, and this registry 116 may thereaiter be
consulted to determine what functionalities are provided by
the applications 104 in the container 102, and how those
functionalities can be invoked. In this manner, the function-
alities are exposed.

Each application 104 may provide and register zero or
more functionalities. Some or all of these functionalities may
be access controlled. A functionality 1s access controlled 11 its
invocation requires an invoking enftity (e.g. user, program,
etc.) to have one or more access privileges. In one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ment, 1t 1s up to the application 104 that provides a function-
ality to know whether that functionality 1s access controlled.
If a functionality 1s access controlled, 1t 1s up to the applica-
tion 104 to know what privilege or privileges are needed to
invoke that functionality. Knowledge of the functionality-
privilege(s) relationship may be programmed 1nto the appli-
cation 104. For example, the application 104(1) may be hard-
coded such that 1t knows that 1n order to mnvoke the method
“100”, an 1nvoking entity needs to have privilege “X””. Knowl-
edge ol the functionality-privilege(s) relationship may also be
imparted via a set of configuration information. For example,
the configuration information may specily that in order to
invoke the method “foo™, the privilege “X” 1s required. The
application 104(1) reads the configuration information to
learn this functionality-privilege(s) relationship. The applica-
tion 104 may gain knowledge of the tunctionality-privilege(s)
relationship 1n these and other ways.

In one embodiment, while the application 104 1s respon-
sible for knowing which, if any, privileges are required to
invoke a functionality, the application 104 1s not responsible
for determining whether an 1nvoking entity actually has the
necessary privileges to invoke the functionality. Rather, as
will be discussed turther below, the application 104 enlists the
services of the access control mechamism 110 for this deter-
mination. Thus, none of the applications 104 need to 1mple-
ment their own access control logic.

Session Manager and Access Control Mechanism

As noted above, one of the functions of the container 102 1s
to expose the functionalities provided by the applications 104
so that those functionalities can be 1nvoked. In addition to
performing this function, the container 102 may also provide
some services commonly to all of the applications 104. An
example of such a common service 1s that of session manage-
ment. As shown 1n FIG. 1, container 102 comprises a session
manager 108. This session manager 108 opens sessions with
external entities, manages the session information while the
sessions are ongoing, and closes the sessions when the exter-
nal entities log out. The session manager 108 performs this
session management function for all of the applications 104
in the container 102. Thus, the applications 104 do notneed to
implement their own session management logic.

In one embodiment, another service provided commonly
by the container 102 to all of the applications 104 is that of
access control. This service 1s provided by the access control
mechanism 110. Given the access control mechanism 110, 1t
1s not necessary for the applications 104 within the container
102 to implement their own access control logic. Rather,
when they need access control functionality, they call upon
the access control mechanism 110. Thus, the access control
mechanism 110 provides access control functionality for all
of the applications 104 at the container level.

In one embodiment, the access control mechanism 110
comprises an access control manager 112 and an access con-
trol engine 114. The access control manager 112 acts as the
front end interface of the access control mechanism 110.
More specifically, it 1s the access control manager 112 that
interacts with an administrative interface 130 to enable an
administrator to manager the access control functionality pro-
vided by the access control mechanism 110. It 1s also the
access control manager 112 that interacts with the applica-
tions 104 to receive requests for access control functionalities
and to provide responses thereto.

The access control engine 114 1s the component that carries
out the back end access control functions. More particularly,
it 1s the access control engine 114 that manages and maintains

US 7,503,063 Bl

S

a set of access control information 120 used 1n making access
control decisions. It 1s also the access control engine 114 that
determines whether an entity has suificient access privilege to
invoke a functionality. The access control engine 114 1is
invoked by and interacts with the access control manager 112.

In one embodiment, the access control mechanism 110 1s
implemented as an application within the container 102.
Thus, as with every other application 104, the access control
mechanism 110 registers the functionalities that 1t provides
with the registration manager 106. Once registered, these
functionalities are exposed, and the applications 104 1n the
container 102 are able to invoke them. In addition, the func-
tionalities may be mmvoked by external entities. To clearly
distinguish the functionalities provided by the access control
mechanism 110 from the functionalities provided by the other
applications 104, the functionalities provided by the access
control mechanism 110 will hereinafter be referred to as the
access control services.

Generally, the access control services may be divided 1nto
two groups. The first group, referred to herein as the admin-
istrative services, allows an administrator to manage the set of
access control information 120 used by the access control
mechanism 110 1n carrying out access control. The second
group, referred to as the query services, may be mvoked by
the applications 104 to obtain determinations on whether an
entity has suilicient access privilege to mnvoke a functionality.

Before describing these services 1n greater detail, some
additional information will be provided regarding the access
control information 120 to facilitate a complete understand-
ing of the present mvention. In one embodiment, the access
control information 120 1s maintained in terms of a hierarchy
of users, roles, and privileges. Users are at the top of the
hierarchy. A user can have one or more roles. A role may be,
for example, “employee”, “manager”, etc. If a user 1s a low
level employee, then he may have just the “employee” role. If
a user 1s a manager, then he may have both the “manager” and
“employee” roles. Each role may have one or more associated
privileges. A privilege provides permission to access some
information or to perform some function. Different roles may
have different privileges. For example, while a “manager”
role may have a privilege “X”” that allows financial informa-
tion to be viewed, an “employee” role may not have such a

privilege.

Information pertaining to the users, roles, and privileges
are stored 1n data structures 122, 124, and 126. Specifically,
data structure 126 stores all of the available privileges. Data
structure 124 stores the mapping between roles and privi-
leges. Thus, 11 the “manager’ role has the privileges “X”” and
“Y”, then that would be specified 1n this data structure 124.
Data structure 122 stores the mapping between users and
roles. Hence, if a user has the “manager” and “employee”
roles, then that would be specified 1n this data structure 122.
For purposes of the present invention, data structures 122,
124, and 126 may be any type of data structure taking on any
desired form. In one embodiment, the data structures 122,
124, and 126 take the form of extensible markup language
(XML) documents. More specifically, the information con-
tained 1n data structures 122, 124, 126 1s specified using
extensible access control markup language (XACML), which
1s a form of XML.. XACML 1s a well known standard; hence,
it need not be described 1n detail herein. With the above
information 1 mind, the access control services provided by
the access control mechanism 110 will now be described in
detaul.

10

15

20

25

30

35

40

45

50

55

60

65

6

Administrative Services
In one embodiment, the access control mechanism 110
provides the following administrative services:

createPrivilege—allows a privilege to be created and added
to data structure 126;

deletePrivilege—allows a privilege to be removed from
data structure 126;

createRole—allows a role to be created and added to data
structure 124;

deleteRole—allows a role and 1ts associated privileges, 11
any, to be removed from data structure 124;

createrUser—allows a user to be created and added to data
structure 122;

deleteUser—allows a user and 1ts associated roles, if any,
to be removed from data structure 122;

addPrivilegeToRole—allows a privilege to be added to/as-
sociated with a role 1n data structure 124;

deletePrivilegeFromRole—allows a privilege to be
removed from/de-associated with a role 1n data structure
124;

addRoleToUser—allows a role to be added to/associated
with a user 1n data structure 122; and

deleteRoleFromUser—allows a role to be removed from/
de-associated with a user 1n data structure 122.

It should be noted that this list of administrative services 1s
shown for illustrative purposes only. It 1s not meant to be
definitive or exhaustive. Thus, the access control mechanism
110 may provide fewer services, more services, and/or dif-
ferent services.

Using an administrator interface 130, an administrator can
invoke these administrative services of the access control
mechanism 110 to manage and to maintain the access control
information 120 in data structures 122, 124, and 126. By
mampulating this information, the administrator can control
which functionalities can be invoked by which entities.
Because these services can have profound effects on the over-
all operation of the system 100, these services are access
controlled. Thus, only a user having the proper access privi-
leges will be allowed to mvoke these services. The access
control mechanism 110 checks for these privileges before
allowing the administrative services to be mvoked.

Query Services

In addition to the administrative services, the access con-
trol mechamism 110, in one embodiment, also provides the
following query services:

1sUserAuthorized; and
1sRoleAuthorized

Again, 1t should be noted that this list of query services 1s
shown for illustrative purposes only. It 1s not meant to be
definitive or exhaustive. Thus, the access control mechanism
110 may provide fewer services, more services, and/or dif-
ferent services.

The query services allow applications 104 to submit
requests to the access control mechanism 110 to obtain deter-
minations on whether certain functionalities can be mvoked.
More specifically, the “isUserAuthorized” service, when
invoked, takes 1n several parameters from an application 104.
A first parameter 1s a set of user information (e.g. user name
or ID) that identifies a particular user. The other parameter or
parameters are one or more privileges. These privileges rep-
resent the privileges that are required in order to mmvoke a
particular functionality provided by an application 104. In
response, the “1sUserAuthorized” service determines, based
upon the access control information 120, whether the speci-
fied user has all of the one or more specified privileges.

US 7,503,063 Bl

7

Similarly, when the “isRoleAuthorized” service 1s
invoked, it takes 1n a role parameter and one or more privilege
parameters from an application 104. The role represents the
role currently held by an enfity trying to invoke a particular
functionality provided by the application 104, and the privi-
leges represent the one or more privileges required to mvoke
that functionality. In response, the “isRoleAuthorized” ser-
vice determines, based upon the access control imnformation
120, whether the specified role has all of the one or more
specified privileges. With these query services, the applica-
tions 104 are able to use the access control mechanism 110 to
determine whether to allow functionalities that they provide
to be invoked.

Sample Operation

With reference to the functional block diagram of FIG. 1
and the operational flow diagram of FIG. 2, a sample opera-
tion of the system 100 will now be described. At startup time,
cach of the applications 104 registers 1ts functionalities with
the registration manager 106 of the container 102. Since, in
one embodiment, the access control mechanism 110 1s imple-
mented as an application within the container 102, the access
control mechanism 110 also registers (block 204) 1ts access
control services with the registration manager 106. In one
embodiment, the access control services are implemented as
methods provided by object classes. Thus, 1n this embodi-
ment, the access control mechanism 110 registers an access
control service (1.e. amethod) by providing to the registration
manager 106 miformation pertaining to that method. This
information may include, for example, the name of the
method, the name of the object class that implements the
method, a specification of what, if any, parameter(s) may or
need to be included 1n an invocation of the method, a descrip-
tion of the method, etc. In turn, the registration manager 106
stores this information into the registry 116, thereby exposing
the method. Once all of the access control services are regis-
tered and exposed, they can be invoked by the other applica-
tions 104 and by external entities.

At some point, an administrator may log 1n to the container
102 using the administrator interface 130. When this occurs,
the session manager 108 creates a session. As part of the
session creation process, the session manager 108 obtains
information pertaining to the administrator, such as the name
or ID of the administrator, and the role or roles that the
administrator 1s currently holding. This information 1s asso-
ciated with the session. After the session 1s created, the
administrator can try to invoke the administrative services of
the access control mechanism 110 to configure the access
control information 120. When the administrator invokes one
of the administrative services, the access control mechanism
110 checks the session information to make sure that this
administrator has the necessary privilege(s) to mvoke the
service. Only 11 this 1s answered in the affirmative will the
administrator be allowed to invoke the service. For the sake of
example, 1t will be assumed that the administrator has the
necessary privilege(s) to access all of the administrative ser-
VICES.

By mvoking the administrative services, the administrator
can fully configure the access control information 120 used
by the access control mechanism 110. This may involve add-
ing privileges, associating privileges with roles, associating
roles with users, etc. After all of the access control informa-
tion 120 1s specified, the access control mechanism 110 1s
ready to process requests from the other applications 104.

At some point, a user logs in to the container 102 using the
user interface 140. In response, the session manager 108

10

15

20

25

30

35

40

45

50

55

60

65

8

creates a session for the user. As part of the session creation
process, the session manager 108 obtains mformation per-
taining to the user, such as the name or 1D of the user, and the
role or roles that the user 1s currently holding. This informa-
tion 1s associated with the session. After the session 1s created,
the user 1s allowed to try to invoke one or more functionalities
provided by the applications 104. For the sake of example, 1t
will be assumed that the user tries to mvoke a method “foo”
provided by application 104(1).

Upon recerwving this method invocation, the application
104(1) determines whether this method 1s access controlled,
and 11 so, what privilege or privileges are require to ivoke 1t.
For the sake of example, 1t will be assumed that the applica-
tion 104(1) determines that a privilege “X” 1s required to
invoke method “foo”. That being the case, the application
104(1) needs to determine whether the user has this privilege.
To make this determination, the application 104(1) invokes
one ol the query services provided by the access control
mechanism 110. For the sake of example, 1t will be assumed
that the application 104(1) chooses to invoke the “1sRole Au-
thorized” service.

To mvoke this service, the application 104(1) assembles an
invocation request. From the information 1n the registry 116
tor this service, application 104(1) knows that the name of the
method 1s “1sRoleAuthorized™. It also knows the name of the
object class that implements this method. In addition, the
application 104(1) knows the method requires a role and one
or more privileges, where the role represents the role that the
user 1s currently holding and the privilege(s) represents the
privilege(s) required to mvoke a functionality. The applica-
tion 104(1) obtains the role from the session information. The
application 104(1) knows from 1ts previous determination
that the privilege required to invoke “1o0” 1s privilege “X”.
With this information, the application 104(1) assembles an
invocation request. The invocation request comprises an 1nvo-
cation of the “i1sRoleAuthorized” method on a particular
object class. The request further comprises the name of the
role currently held by the user and the privilege “X” as invo-
cation parameters. Once formed, the invocation request 1s
sent to the access control mechanism 110.

The access control mechanism 110 receives (block 208)
the 1nvocation request, and responds by determiming (block
212), based upon the access control information 120 and the
invocation parameters, whether the user, as defined by his
role, has sufficient access privilege. In one embodiment, the
access control mechanism 110 makes this determination by
taking the role specified in the mnvocation request, and using 1t
to access the data structure 124. From data structure 124, the
access control mechamism 110 determines which privilege(s)
that role has. It then compares the privilege(s) the role has
with the privilege “X” specified 1n the request. If the role has
all of the privilege(s) specified in request, then the user has
suificient access privilege. Otherwise, the user does not have
suificient access privilege. After making this determination,
the access control mechanism 110 sends (block 216) a
response to the application 104(1) indicating whether the user
has sutficient access privilege. Given the response, the appli-
cation 104(1) acts accordingly to either allow or deny access
to “foo”. In this manner, the access control mechanism 110
implements access control for the application 104(1). The
access control mechanism 110 can implement access control
for the other applications 104 1n the container 102 1n the same
way.

In the above example, the application 104(1) chose to
invoke the “1sRoleAuthorized” service. The application 104
(1) could have chosen the “isUserAuthorized” service
instead. In such a case, the invocation parameters would have

US 7,503,063 Bl

9

included a user name or user ID instead of the role. In
response to such an ivocation, the access control mechanism
110 would have used the user information to access data
structure 122 to determine which role or roles are held by the
user. Based on those role(s), the access control mechamism
110 would have accessed data structure 124 to determine
what privilege(s) those role(s) have. Then, 1t would have
compared those privilege(s) with the privilege “X” specified
in the mnvocation request to determine whether the user has all
of the privileges specified 1n the invocation request. It then
would have sent a response to the application 104(1) indicat-
ing whether the user has sufficient access privilege.

Hardware Overview

In one embodiment, the functional components (e.g. con-
tainer 102, applications 104, registration manager 106, ses-
sion manager 108, access control mechanism 110, interfaces
130, 140, etc.) shown m FIG. 1 are implemented as one or
more sets of instructions executed on one or more computer
systems. FIG. 3 1s a block diagram of a sample computer
system 300 on which one or more of the functional compo-
nents may be implemented. Computer system 300 includes a
bus 302 for facilitating information exchange, and one or
more processors 304 coupled with bus 302 for processing,
information. Computer system 300 also includes a main
memory 306, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 302 for storing
information and instructions to be executed by processor 304.
Main memory 306 also may be used for storing temporary
variables or other intermediate information during execution
of instructions by processor 304. Computer system 300 may
turther include a read only memory (ROM) 308 or other static
storage device coupled to bus 302 for storing static informa-
tion and 1nstructions for processor 304. A storage device 310,
such as a magnetic disk or optical disk, 1s provided and
coupled to bus 302 for storing information and instructions.

Computer system 300 may be coupled via bus 302 to a
display 312, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 314, includ-
ing alphanumeric and other keys, 1s coupled to bus 302 for
communicating information and command selections to pro-
cessor 304. Another type of user input device 1s cursor control
316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 304 and for controlling cursor movement
on display 312. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g.,v), that allows the device to specily positions in a plane.

In computer system 300, bus 302 may be any mechanism
and/or medium that enables information, signals, data, etc., to
be exchanged between the various components. For example,
bus 302 may be a set of conductors that carries electrical
signals. Bus 302 may also be a wireless medium (e.g. air) that
carries wireless signals between one or more of the compo-
nents. Bus 302 may also be a medium (e.g. air) that enables
signals to be capacitively exchanged between one or more of
the components. Bus 302 may further be a network connec-
tion that connects one or more of the components. Overall,
any mechanism and/or medium that enables information, sig-
nals, data, etc., to be exchanged between the various compo-
nents may be used as bus 302.

Bus 302 may also be a combination of these mechanisms/
media. For example, processor 304 may communicate with
storage device 310 wirelessly. In such a case, the bus 302,
from the standpoint of processor 304 and storage device 310,
would be a wireless medium, such as air. Further, processor

10

15

20

25

30

35

40

45

50

55

60

65

10

304 may communicate with ROM 308 capacitively. In this
instance, the bus 302 would be the medium (such as air) that
enables this capacitive communication to take place. Further,
processor 304 may communicate with main memory 306 via
a network connection. In this case, the bus 302 would be the
network connection. Further, processor 304 may communi-
cate with display 312 via a set of conductors. In this instance,
the bus 302 would be the set of conductors. Thus, depending
upon how the various components communicate with each
other, bus 302 may take on different forms. Bus 302, as shown
in F1G. 3, functionally represents all of the mechanisms and/
or media that enable information, signals, data, etc., to be
exchanged between the various components.

The invention 1s related to the use of computer system 300
for implementing the techniques described herein. According
to one embodiment of the mmvention, those techniques are
performed by computer system 300 in response to processor
304 executing one or more sequences ol one or more 1nstruc-
tions contained in main memory 306. Such instructions may
be read nto main memory 306 from another machine-read-
able medium, such as storage device 310. Execution of the
sequences of instructions contained 1n main memory 306
causes processor 304 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used 1n place of or in combination with software instruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circuitry and software.

The term “machine-readable medium” as used herein
refers to any medium that participates in providing data that
causes a machine to operation 1n a specific fashion. In an
embodiment implemented using computer system 300, vari-
ous machine-readable media are mvolved, for example, 1n
providing instructions to processor 304 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as storage device 310. Volatile media
includes dynamic memory, such as main memory 306. Trans-
mission media includes coaxial cables, copper wire and fiber
optics, mcluding the wires that comprise bus 302. Transmis-
sion media can also take the form of acoustic or light waves,
such as those generated during radio-wave and 1nfra-red data
communications.

Common forms of machine-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, DVD, or
any other optical storage medium, punchcards, papertape,
any other physical medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinatter, or
any other medium from which a computer can read.

Various forms of machine-readable media may be involved
1n carrying one or more sequences ol one or more imstructions
to processor 304 for execution. For example, the mstructions
may 1itially be carried on a magnetic disk of a remote com-
puter. The remote computer can load the mstructions nto its
dynamic memory and send the instructions over a telephone
line using a modem. A modem local to computer system 300
can recerve the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
inira-red detector can receive the data carried 1n the infra-red
signal and appropriate circuitry can place the data on bus 302.
Bus 302 carries the data to main memory 306, from which
processor 304 retrieves and executes the instructions. The

US 7,503,063 Bl

11

instructions received by main memory 306 may optionally be
stored on storage device 310 either before or after execution
by processor 304.

Computer system 300 also includes a communication
interface 318 coupled to bus 302. Communication interface
318 provides a two-way data communication coupling to a
network link 320 that 1s connected to a local network 322. For
example, communication interface 318 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
318 may be alocal area network (LLAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 318 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 320 typically provides data communication
through one or more networks to other data devices. For
example, network link 320 may provide a connection through
local network 322 to a host computer 324 or to data equip-
ment operated by an Internet Service Provider (ISP) 326. ISP
326 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 328. Local network 322
and Internet 328 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 320 and
through communication interface 318, which carry the digital
data to and from computer system 300, are exemplary forms
of carrier waves transporting the information.

Computer system 300 can send messages and receive data,
including program code, through the network(s), network
link 320 and communication interface 318. In the Internet
example, a server 330 might transmit a requested code for an
application program through Internet 328, ISP 326, local
network 322 and communication interface 318.

The received code may be executed by processor 304 as 1t
1s recerved, and/or stored in storage device 310, or other
non-volatile storage for later execution. In this manner, com-
puter system 300 may obtain application code in the form of
a carrier wave.

At this point, it should be noted that although the invention
has been described with reference to a specific embodiment,
it should not be construed to be so limited. Various modifica-
tions may be made by those of ordinary skill in the art with the
benetit of this disclosure without departing from the spirit of
the invention. Thus, the invention should not be limited by the
specific embodiments used to illustrate 1t but only by the
scope of the 1ssued claims and the equivalents thereof.

What is claimed 1s:

1. A method implemented by an access control mechanism,
comprising;

registering a set ol one or more access control services

provided by the access control mechanism with a con-
tamner to enable applications within the container to
invoke the set of access control services;

receiving a first invocation request from a first application

within the container, the first invocation request imvok-
ing at least one of the access control services to obtain a
determination on whether a first entity has sufficient
access privilege to mvoke a functionality provided by
the first application, the first invocation request compris-
ing a first set of invocation parameters;

determining, based upon the first set of ivocation param-

eters and a set of access control information, whether the
first entity has suificient access privilege; and

10

15

20

25

30

35

40

45

50

55

60

65

12

sending a response to the first application indicating
whether the first entity has sufficient access privilege.

2. The method of claim 1, further comprising:

recerving a second mvocation request from a second appli-
cation within the container, the second invocation
request mvoking at least one of the access control ser-
vices to obtain a determination on whether a second
entity has suificient access privilege to mvoke a func-
tionality provided by the second application, the second
invocation request comprising a second set of invocation
parameters;

determining, based upon the second set of invocation
parameters and the set of access control information,
whether the second entity has suificient access privilege;
and

sending a response to the second application indicating
whether the second entity has sulficient access privilege.

3. The method of claim 1, wherein the access control
mechanism 1s implemented as an application within the con-
tainer.

4. The method of claim 1, wherein the access control
mechanism 1s not a component of an operating system.

5. The method of claim 1, wherein the access control
mechanism 1s not a component of the first application.

6. The method of claim 1, further comprising;

recerving an administrative request from an administrator,
the admimstrative request invoking at least one of the
access control services to update one or more 1tems of
information 1n the access control information;

determining whether the administrator has suilicient
access privilege to update the access control informa-
tion; and

in response to a determination that the administrator has
suificient access privilege to update the access control
information, updating the access control information 1n
accordance with the administrative request.

7. The method of claim 1, wherein the first set of invocation
parameters comprises a role held by the first entity and a set of
one or more specified privileges, and wherein determining
whether the first entity has suilicient access privilege com-
Prises:

determiming, based upon the access control information, a

set of one or more associated privileges that have been
associated with the role; and

comparing the set of associated privileges with the set of
specified privileges to determine whether the set of asso-
ciated privileges includes all of the privileges 1n the set
of specified privileges.

8. The method of claim 1, wherein the first set of invocation
parameters comprises information identifying the first entity,
and a set of one or more specified privileges, and wherein
determining whether the first entity has suificient access
privilege comprises:

determining, based upon the access control information, a

set of one or more associated privileges that have been
associated with the first entity; and

comparing the set of associated privileges with the set of
specified privileges to determine whether the set of asso-
ciated privileges includes all of the privileges 1n the set
of specified privileges.

9. The method of claim 8, wherein determining the set of
associated privileges comprises:

determining, based upon the access control information, a
set of one or more roles associated with the first entity;
and

US 7,503,063 Bl

13

determining, based upon the access control information,
for each role 1n the set of roles, a set of one or more
privileges associated with that role.

10. A machine readable storage medium comprising
instructions which, when executed by one or more proces-
sors, cause the one or more processors to give rise to an access
control mechanism wherein the access control mechanism
performs the following operations:

register a set of one or more access control services pro-

vided by the access control mechamism with a container
to enable applications within the container to invoke the
set of access control services;

receive a first mvocation request from a first application

within the container, the first invocation request invok-
ing at least one of the access control services to obtain a
determination on whether a first entity has suificient
access privilege to mvoke a functionality provided by
the first application, the first invocation request compris-
ing a first set of 1nvocation parameters;

determine, based upon the first set of invocation parameters

and a set of access control information, whether the first
entity has suflicient access privilege; and

send a response to the first application indicating whether

the first entity has suificient access privilege.
11. The machine readable storage medium of claim 10,
wherein the access control mechanism further performs the
following operations:
receive a second 1nvocation request from a second appli-
cation within the container, the second invocation
request invoking at least one of the access control ser-
vices to obtain a determination on whether a second
entity has suflicient access privilege to mvoke a func-
tionality provided by the second application, the second
invocation request comprising a second set of invocation
parameters;
determine, based upon the second set of invocation param-
eters and the set of access control information, whether
the second entity has suificient access privilege; and
send a response to the second application indicating
whether the second entity has suificient access privilege.
12. The machine readable storage medium of claim 10,
wherein the access control mechanism 1s implemented as an
application within the container.
13. The machine readable storage medium of claim 10,
wherein the access control mechanism 1s not a component of
an operating system.
14. The machine readable storage medium of claim 10,
wherein the access control mechanism 1s not a component of
the first application.
15. The machine readable storage medium of claim 10,
wherein the access control mechanism further performs the
following operations:
receive an administrative request from an administrator,
the administrative request invoking at least one of the
access control services to update one or more 1tems of
information in the access control information;

determine whether the administrator has sufficient access
privilege to update the access control information; and

update, 1n response to a determination that the administra-
tor has suflicient access privilege to update the access
control information, the access control information in
accordance with the administrative request.

16. The machine readable storage medium of claim 10,
wherein the first set of invocation parameters comprises a role
held by the first entity and a set of one or more specified

5

10

15

20

25

30

35

40

45

50

55

60

14

privileges, and wherein the operation to determine whether
the first entity has suilicient access privilege comprises the
following operations:

determine, based upon the access control information, a set

of one or more associated privileges that have been
assoclated with the role; and

compare the set of associated privileges with the set of

specified privileges to determine whether the set of asso-
ciated privileges includes all of the privileges 1n the set
of specified privileges.

17. The machine readable storage medium of claim 10,
wherein the first set ol invocation parameters comprises infor-
mation identifying the first entity, and a set of one or more
speciflied privileges, and wherein the operation to determine
whether the first entity has sullicient access privilege com-
prises the following operations:

determine, based upon the access control information, a set

of one or more associated privileges that have been
associated with the first entity; and

compare the set of associated privileges with the set of

specified privileges to determine whether the set of asso-
ciated privileges includes all of the privileges 1n the set
of specified privileges.
18. The machine readable storage medium of claim 17,
wherein the operation to determine the set of associated privi-
leges comprises the following operations:
determine, based upon the access control information, a set
ol one or more roles associated with the first entity; and

determine, based upon the access control information, for
cach role 1n the set of roles, a set of one or more privi-
leges associated with that role.

19. A computer program product embodied on one or more
machine readable storage media, wherein the computer pro-
gram product, when executed by one or processors, causes the
one or more processors to give rise to:

a container;

an application contained within the container; and

an access control mechanism;

wherein the access control mechanism performs the opera-

tions of:

registering a set of one or more access control services

provided by the access control mechanism with the con-
tainer to enable the application within the container to
invoke the set of access control services;
receving an mvocation request from the application, the
invocation request mvoking at least one of the access
control services to obtain a determination on whether an
entity has suflicient access privilege to mvoke a func-
tionality provided by the application, the invocation
request comprising a set ol invocation parameters;

determining, based upon the set of invocation parameters
and a set of access control information, whether the
entity has suflicient access privilege; and

sending a response to the application indicating whether

the entity has sufficient access privilege.

20. The computer program product of claim 19, wherein
the access control mechanism 1s an application contained
within the container.

21. The computer program product of claim 19, wherein
the access control mechanism 1s not a component of an oper-
ating system.

22. The computer program product of claim 19, wherein
the access control mechanism 1s not a component of the
application.

	Front Page
	Drawings
	Specification
	Claims

