12 United States Patent

US007502914B2

(10) Patent No.: US 7.502.914 B2

Dhodapkar 45) Date of Patent: Mar. 10, 2009
(54) TRANSITIVE SUPPRESSION OF 6,694,424 B1* 2/2004 Kelleretal. 712/216
INSTRUCTION REPLAY 6,981,129 B1* 12/2005 Boggsetal. 712/218
7,055,021 B2 5/2006 Kadambi
(75) Inventor: Ashutosh S. Dhodapkar, Sunnyvale, 7,203,817 B2 4/2007 Yeh
CA (US) 2002/0138714 Al* 9/2002 Leibholz et al. 712/217
2003/0061470 A1* 3/2003 Yeh .ooooiiiniiiiiinnin, 712/219
(73) Assignee: Advanced Micro Devices, Inc., OTHER PUBLICATIONS
Sunnyvale, CA (US) Kim, Ilhyun and Mikko H. Lipasti, “Understanding Scheduling
N _ _ _ _ _ Replay Schemes™, Proceedings of the 10th International Symposium
(*) Notice: SUbJeCt‘ to any disclaimer) the term of this on High-performance Computer Architecture (HPCA-10), Madrid,
patent 1s extended or adjusted under 35 Spain, Feb. 2004, pp. 1-12.
U.S.C. 154(b) by 136 days. # cited by examiner
(21) Appl. No.: 11/496,225 Primary Examiner—FEric Coleman
_ (74) Attorney, Agent, or Firm—Lawrence J. Merkel;
(22) Filed: Jul. 31, 2006 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(65) Prior Publication Data (57) ABSTRACT
US 2008/0028193 Al Jan. 31,2008 In one embodiment, a processor comprises one or more
51 Tnt. CI execution resources configured to execute 1nstruction opera-
(51) (;1(;617 ;’/00 2006.01 tions and a scheduler coupled to the execution resources. The
(01) scheduler 1s configured to maintain an ancestor tracking vec-
(52) U..S. Cl. ... e 712/214 tor (ATV) corresponding to each given instruction operation
(58) FlEld Of .Cla.SSlﬁcathIl SeaFCh 712/214 111 the SChedllleI‘,, Wherein the ATV iden‘[iﬁes ins‘[ruction
See application file for complete search history. operations which can cause the given instruction operation to
(56) References Cited replay. The scheduler 1s configured to setthe ATV of the given

U.S. PATENT DOCUMENTS

instruction operation to a null value in response to the given
instruction operation being dispatched to the scheduler, and 1s
configured to create the ATV of the given instruction opera-

5,619,662 A * 4/1997 Steelyetal. 712/216 tion dvnamically as source onerands of the oiven instruction

5,938,775 A * &/1999 Damanietal. 714/15 Y M ved P &

6,427,207 B1* 7/2002 Coletal. .ooovvvvveen... 712/245 operation are resolved.

6,463,523 B1* 10/2002 Kessleretal. 712/216

6,553,482 B1* 4/2003 Witt .covieiiiiiiiiniinnnnn. 712/216 19 Claims, 5 Drawing Sheets
: N Processor 10 :
| |
| | |
| Instruction :
5 Cache 12 <—1> Fetch/DecadeHl ;
| I"""__-___"_'__-_--'__‘_-'---"-"-___'--_'-_--_____--_--'_-_-__-__"'_""'""'_"_"‘"___"___"'“"'; |
: : Scheduler 16 :
| | ¥ Y L
& Source Buffer 30 lag match[0..n] 5 ATV |
i E 18 < BufferB_Z E E

. f — 472 % |}

| |
N Y Raw Reqli 34 44 ~| | Per |
i i Per Entry Logic — q“b ‘\E Entry i {
5 LU Req0 Logic |
S S e . Pick —>]Kﬂl[i' ' i
J f .)
| vSRCs S R
| PRF | 18| Op Op ATVs i
|
| ATV Assign 26 |
| vy V_V i T = — |
I 20— E AGU [—f" ATV { i
|
: l 2 v ’ :
: Tags Data Cache :
| t |
l Store Queue Status, Status ATVs :
; 24 —/ |
| v Broadcast ATVs |
| |

U.S. Patent Mar. 10, 2009 Sheet 1 of 5 US 7,502,914 B2

W_m " N T T T " e TS B T SIS T T TS TUEST e T T T T

Processor 10
Instruction > Fetch/Decode 14
Cache 12 |

r—-—---—.—-—--—_-.—.—-ﬂl-‘--—-—lﬁﬂ-—w—------—-—--—.——.—--—--—— N O T ey ey e e e et e Bl R T B EE e e e et e Tl B e war e WS W I D W ST DS GE WS S W o o o o wr gy

E & Schedule 16!
| Source Buffer 30 | Tag match[0.n] [ATy |
g | l_—’_: 38 l o Butter 32 é E
5 SRCI l MP |...[SRCA| MP [P Raw Req[0..n] Killf0..n] AT E :
: i 42 s
! __Raw Req(i] 34 44 - Per |
: : Per Entry Logic * > Entry |
| E 40 ? Req|0..n] | Logic E E
O O == — Pick > K] E
ySRC: [S KX
| — e e e
) - ATV Assign 26
| v 28
l 20 EXU | | AGU [« ATV
') T 5
Lags \V Data Cache
I Store Queue |
Status, Status ATVS :
n A
: Broadcast dcast ATVs
|

Fig. 1

U.S. Patent Mar. 10, 2009 Sheet 2 of 5 US 7,502,914 B2

Load Op SC | RF ‘ AG IDCI DC2 | DC3 | DC4

Ta& Data\‘ Stat%

Dep Op | SC | RF %g}{/ DC1 | DC2 | DC3 IDC4

| D=
w >

ATV Size =D * Load Issue Width

Fig. 2
'Event) - Result
" Dispatch to Scheduler Entry i ATV[i]=0
Tag Broadcast (Load Op) Broadcast ATV=ATV[Load Entry] | ATV_Assign
Tag Broadcast (Other Op) Broadc-zgt-_AI\:——AT_V[OP Entry]
Tag Match - Entry 1 ATV[i] = ATV]i1] | Broadcast ATV
Status Broadcast__(Load Op) - Status__z-rx_TV = ATV Assign

.Statug:ATV Match - Entry 1
(Status ATV & ATV[i] non-
ZEro)

Kill[i] = ATV][i] & Status ATV & Status Bad
ATV[i] = ATV[1] & ~Status ATV

U.S. Patent Mar. 10, 2009 Sheet 3 of 5 US 7,502,914 B2

| Scheduler ATV v 50
3| AddR9,R8,R1 | 3| 00100000 |"
2| AddR6,R7,R4 | 2| 00000000 o] e
cnecauicr
(1) I‘j\oﬁi‘;’%ﬁ (1) 88(1)8 888? 3| Add R9, R8, R1 | 3 [0000 0000
= —1 2| AddR6,R7,R4 | 2| 01000000
Schedule Load, '/—52 1| AddR4,R3,R5 | 1| 01000000
Assign ATV = 0{Load R3,R2,R1| 0| 00000000

0100 0000
~ Status_ ATV | — 60
0100 0000, Status

Scheduler ATV
3| AddR9,R8,R1 | 3| 00100000 Good < L
21 AddR6,R7,R4 | 2| 0000 0000
1| AddR4,R3,R5 | 1| 00000000 | Qcheduler ATV
0{Load R3,R2,R1} 0| 00100001 3{ AddR9,R8,R1 | 3| 00000000
Load Tag Broadcast, | 54 2| Add R6, R7,R4 | 2 _2_000 0000
Tag Match Entry 1, vas 1| AddR4,R3,R5 | 1| 00000000
Broadcast ATV = 0 | Load R3, R2, R1 l 0| 0000 0000
01100001 J\/ |
___Scheduler ATV |
31 Add R9,R8,R1 | 3| 00100000 |
21 AddR6,R7,R4 | 2| 00000000
1| AddR4,R3,R5 | 1| 01100001
0 |Load R3,R2,R1| 0| 00100001
Schedule Add (Entry 1),
Tag Broadcast, / 20
Broadcast ATV =
0110 0001 ~
Scheduler I ATV |
31 AddR9,R8, R1 | 3| 00100000
2| AddR6,R7,R4 | 2| 01100001
1 | AddR4,R3,R5 | 1| 01100001
0 [Load R3,R2,R1| 0| 00100001
Status ATVs — 38
0000 0001 and Fig. 4

0010 0000, Status Good

U.S. Patent Mar. 10, 2009 Sheet 4 of 5 US 7,502,914 B2

Dispatch Op to
Scheduler with
Null ATV

70

Dynamically Build ATV 72

as Dependencies are
Resolved

Suppress Request 1f 74

ATV match with Bad
Status

U.S. Patent

Mar. 10, 2009

Sheet 5 of 5

US 7,502,914 B2

/7 314A 314B
Memory Memory \’
318C - 316A I 316B
MC [3184 318D A/If
/ 318F
7L _ _—324A A
Processing Processing,
[Node = = Node =
312A < L3298 3128
- IF | [F A
— . \
318B 318E
32E~ |~ 324F 324C~| | 324D
318G 318H
\ 4 |/ v — 318K
7] Ik A 318l 3187 | Ik 313L
324G _
Processing — P\ Processing > O
M Node i - Node — .
J 3190 _~ 324H | 312D DewglggA
[MC_ | MC | A
1 316C 1 N— 316D
— 314C 314D
Memory | ‘ Memory / Y
o 1/0
Device
320B

300/

Fig. 6

US 7,502,914 B2

1

TRANSITIVE SUPPRESSION OF
INSTRUCTION REPLAY

BACKGROUND

1. Field of the Invention

This ivention 1s related to processors and, more particu-
larly, to instruction replay mechanisms in processors.

2. Description of the Related Art

Managing power consumption in processors 1S 1ncreas-
ingly becoming a priority. In many systems, the power supply
1s at least sometimes a battery or other stored-charge supply.
Maximizing battery life 1n such systems 1s often a key selling
feature. Additionally, even 1n systems that have eflectively
limitless power (e.g. systems plugged into a wall outlet), the
challenges of cooling the processors and other circuits 1n the
system may be reduced 11 power consumption can be reduced
in the processors.

Some processors implement replay, in which an instruction
(or 1nstruction operation) 1s 1ssued for execution and, during
execution, a condition 1s detected that causes the instruction
to be reissued again at a later time. Instructions can also be
replayed 11 a preceding instruction 1s replayed (particularly 1
the mstructions depend on the previous instructions). If an
istruction 1s replayed due to a condition that may take some
time to clear, 1t 1s likely that the imstruction will be 1ssued and
replayed repeatedly until the condition 1s cleared. The power
consumed 1n 1ssuing the instruction, only to be replayed, 1s
wasted.

Furthermore, performance 1s impacted since the replayed
instructions occupy issue slots that could otherwise be occu-
pied by instructions that would not be replayed. This can lead
to power/performance variability on a workload-specific
basis, which 1s undesirable. Still further, extensive replay
scenarios complicate verification of the processor, increasing
the likelihood that bugs will pass into the fabricated design.

SUMMARY

In one embodiment, a processor comprises one or more
execution resources configured to execute instruction opera-
tions and a scheduler coupled to the execution resources. The
scheduler 1s configured to maintain an ancestor tracking vec-
tor (ATV) corresponding to each given mstruction operation
in the scheduler, wherein the ATV identifies 1nstruction
operations which can cause the given instruction operation to
replay. The scheduler 1s configured to set the ATV of the given
instruction operation to a null value in response to the given
instruction operation being dispatched to the scheduler, and 1s
configured to create the ATV of the given instruction opera-
tion dynamically as source operands of the given instruction
operation are resolved.

In one implementation, the scheduler comprises a butler
comprising a plurality of entries, wherein each entry of the
plurality of entries 1s configured to store one or more source
tags corresponding to source operands of a different instruc-
tion operation in the scheduler. The scheduler also comprises
an ATV bulfer comprising a second plurality of entries,
wherein each entry of the second plurality of entries i1s con-
figured to store an ATV corresponding to a given instruction
operation 1n the scheduler. The ATV identifies instruction
operations which can cause the given instruction operation to
replay. Coupled to each entry of the second plurality of
entries, logic 1s configured to set the ATV of the given mstruc-
tion operation to a null value 1n response to the given mstruc-
tion operation being dispatched to the scheduler, and 1s con-

10

15

20

25

30

35

40

45

50

55

60

65

2

figured to dynamically create the ATV of the given 1nstruction
operation as source operands of the given instruction opera-
tion are resolved.

In an embodiment, a method comprising dispatching an
instruction operation to a scheduler; setting an ancestor track-
ing vector (ATV) corresponding to the mnstruction operation
to a null value responsive to the dispatching; and dynamically
updating the ATV with an ATV corresponding to an executed
instruction operation if the executed instruction operation
resolves a source operand from the instruction operation.

In another embodiment, a processor comprises one or more
execution resources configured to execute instruction opera-
tions; a scheduler coupled to the execution resources; and an
ATV assignment unit. The scheduler 1s configured to main-
tain an ATV corresponding to each given instruction opera-
tion 1n the scheduler, wherein the ATV 1dentifies instruction
operations which can cause the given instruction operation to
replay within a replay window. The ATV assignment unit 1s
configured to assign an ATV token to an executing instruction
operation that can originate a replay chain. The ATV token
unmiquely 1dentifies the instruction operation with regard to
other instruction operations within the replay window that
can originate a replay chain.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description makes reference to the
accompanying drawings, which are now briefly described.

FIG. 1 1s a block diagram of one embodiment of a proces-
SOF.

FIG. 2 1s a pipeline diagram 1llustrating a portion of one
embodiment of a pipeline.

FIG. 3 1s a table 1llustrating various events 1n one embodi-
ment of a processor and one embodiment of a result from
those events.

FIG. 4 1s an example of several instructions and the gen-
eration ol ancestor tracking vectors (A1TVs) for the mstruc-
tions.

FIG. 5 1s a flowchart illustrating one embodiment of ATV
generation and use.

FIG. 6 1s ablock diagram of one embodiment of a computer
system.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example 1n the drawings and will herein be
described 1n detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limait the invention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Turning now to FIG. 1, a block diagram of one embodiment
of a portion of a processor 10 1s shown. In the illustrated
embodiment, the processor 10 includes an 1nstruction cache
12, a fetch/decode unit 14, a scheduler 16, a physical register
file (PRF) 18, an execution unit (EXU) 20, an address gen-
cration unit (AGU) 22, a data cache 24, an ancestor tracking
vector (ATV) assign umt 26, and an ATV register 28. The

istruction cache 12 1s coupled to the fetch/decode unit 14,
which 1s coupled to the scheduler 16. The scheduler 16 1s
turther coupled to the register file 18, the EXU 20, the AGU
22, and the data cache 24. The AGU 22 is coupled to the data
cache 24 and the ATV register 28, which 1s further coupled to
the ATV assign unit 26.

US 7,502,914 B2

3

In the 1llustrated embodiment, the scheduler 16 comprises
a source buffer 30, an ATV butlfer 32, ATV qualitying logic
34, and pick logic 36. The source butler 30 1s coupled to the
ATV bufler 32, the ATV qualitying logic 34, and the pick
logic 36. The source butler 30 comprises a plurality of entries
such as entry 38 and corresponding per entry logic 40 coupled

thereto. The ATV butfer 32 1s coupled to the ATV qualifying
logic 34 and the pick logic 36, and the ATV buillfer 32 com-

prises a plurality of entries such as entry 42 and correspond-
ing per entry logic 44 coupled thereto.

The scheduler 16 may be configured to maintain an ATV
for each instruction operation in the scheduler. The ATV for a
given 1nstruction operation i1dentifies preceding instruction
operations in the scheduler which can directly cause replay
and on which the given instruction operation depends, either
directly or indirectly, for a source operand. Instruction opera-
tions which can directly cause replay include instruction
operations which can experience data misspeculation, for
example. Load instruction operations (or more brieily,
“loads™) can experience data misspeculation. For example,
loads may be speculated to hit in the data cache 24, and
dependent 1nstruction operations may be scheduled presum-
ing that the load data will be available at a clock cycle con-
sistent with a cache hit. Data may be forwarded from the data
cache 24 prior to detecting the hit, in some embodiments,
which may allow data to propagate to subsequent instruction
operations that are indirectly dependent on the loads through
the intermediate 1instruction operations that use the load result
and generate 1n maccurate result themselves. Other condi-
tions besides a cache miss may cause data misspeculation as
well, described 1n more detail below. Instruction operations
which can directly cause replay may also be referred to as
instruction operations which can originate a replay chain. A
replay chain may be a set of instruction operations that replay,
directly or indirectly, due to the same event (such as a data
misspeculation for a load). For example, mnstruction opera-
tions that are directly or indirectly dependent on the load data
may be part of the replay chain.

The ATV for each instruction operation may be set to anull
value, indicating no preceding instructions which can cause
replay, when the mstruction operation 1s dispatched into the
scheduler to await scheduling and 1ssuance. The ATV may be
dynamically generated as instruction operations are sched-
uled and dependencies for source operands are resolved. The
ATV may thus be made small compared to the number of
instructions that may be 1n the processor pipeline. That 1s, the
ATV may be sized to cover those mstruction operations that
can directly cause a replay to occur (e.g. loads) and that can be
in the pipeline between the point in the pipeline at which the
instruction operation indicates to the scheduler that depen-
dent instruction operations can be scheduled (e.g. via a broad-
cast of a tag that identifies the destination register of the
instruction operation) and the point in the pipeline that the
replay event (e.g. data misspeculation) 1s signaled. Since the
ATV 1s relatively small, the hardware cost may be relatively
small, and the hardware may be more power efficient than
may be possible with a larger ATV.

Furthermore, the ATV may be transitive. That 1s, once a
given load 1s resolved (either misspeculated or not), the ATVs
may be updated to remove that load’s representation in the
ATV. If the load 1s replayed, the ATV may be again updated to
reflect the load (and 1n fact the ATV token assigned to the load
may be different in the replay). Thus, complicated book keep-
ing that often may be associated with tagging loads with a
fixed ATV token for their entire lifetime to retirement may be
avolded, in some embodiments. While various embodiments

10

15

20

25

30

35

40

45

50

55

60

65

4

may have any instruction operation that can directly cause a
replay, the remainder of the discussion will use loads as an
example.

The ATV may be used to suppress requests for scheduling
by instructions that are dependent on a load that has bad status
(e.g. data misspeculation has occurred), thus preventing
replay of those operations until the previous load executes
correctly. Thus, power may be conserved and performance
may be improved by scheduling instructions which have a
higher probability of not replaying, in some embodiments.

Generally, the ATV may comprise one 1indication for each
possible load that can be in tlight between the tag broadcast
stage and the status broadcast stage, at which replay events
are 1dentified by broadcasting status of the load. In one
embodiment, each indication 1n the ATV of a given instruc-
tion operation may be a bit that indicates, when set, that the
given instruction operation 1s directly or indirectly dependent
on the load that 1s assigned to that bit in the ATV. When the bit
1s clear, the given instruction operation 1s not dependent on
the load, the dependency has not yet been detected, or the
dependency has been resolved via the status broadcast of the
load. Thus, the ATV may be a bit vector 1n such an embodi-
ment. The null value of the ATV may be the value which
indicates no dependencies on instruction operations which
can replay. Thus, for the bit vector example, a bit vector with
the bits all set to zero may be the null value. This bit vector
will be used as an example for the embodiments described
herein, although other embodiments may use the opposite
meanings for the set and clear states of the bit or other indi-
cations.

The ATV assign unit 26 may be configured to assign ATV
tokens to mstruction operations that can directly cause replay
(e.g. loads). The ATV token may uniquely 1dentify the corre-
sponding load within the ATV. For a bit vector as mentioned
above, the ATV token may be a vector of equal length to the
ATV, and may be one-hot encoded. Each load may be
assigned a different one-hot token. Since ATVs are main-
tained transitively, the association of a given load and a given
ATV token ends when the status of the load 1s broadcast.
Thus, tokens may automatically be recycled. The ATV assign

unit 26 may detect that a load has been scheduled and 1ssued
to the AGU 22, and may assign the ATV in the ATV register 28

to the load. The ATV assign umit 26 may cause the ATV
register 28 to update to the next ATV token. For example, the
ATV register 28 may be mitialized to all binary zeros except
a binary one 1n the least significant bit. Fach time an ATV
token 1s assigned, the ATV assign unit 26 may trigger the ATV
register 28 to ledt shift by one bit, creating the next token. The
most significant bit of the ATV register 28 wraps around to the
least significant bit to automatically reuse the first ATV token
alter the last ATV token 1s assigned.

The general flow of instructions/instruction operations 1n
the processor 10 will next be described, to provide context for
the details of one embodiment of the scheduler 16. The fetch/
decode unit 14 may fetch instructions from the instruction
cache 12 and decode them into 1nstruction operations for the
scheduler 16. The fetch/decode unit 14 may implement
branch prediction to speculatively fetch down a given path in
the code being executed. In some embodiments, the processor
10 may implement register renaming to rename the architec-
tural registers to the physical registers in the register file 18. IT
s0, the fetch/decode unit 14 may perform the renaming also.

The scheduler 16 recerves the instruction operations dis-
patched by the fetch/decode unit 14, and may monitor source
operands of a given istruction operation to determine when
it can be scheduled. The scheduler 16 may schedule the
instruction operation, but may retain the instruction operation

US 7,502,914 B2

S

in case a replay event 1s detected. Generally, replay may
comprise any mechanism which, in response to a replay event
that indicates that the nstruction may not have produced a
correct result 1n execution, permits that instruction operation
to be re-executed without refetching the mstruction (and sub-
sequent 1nstructions in program order) from the nstruction
cache and/or memory. The scheduler 16 may be a centralized
builfer which schedules all instructions, or may be distributed
to execution resources (e.g. reservation stations). Scheduled
instruction operations are transmitted to the EXU 20 or the
AGU 22, 1n this embodiment.

The EXU 20 may comprise circuitry to execution arith-
metic, logic, shift, and other non-memory operations. Spe-
cifically, 1n one embodiment, the EXU 20 may be configured
to execute integer operations. Floating point operations may
be executed 1n a tloating point unit (not shown). The EXU 20
may receive source operands from the register file 18, the
operation to execute from the scheduler 16, and the ATV of
the operation from the scheduler 16 as well. As mentioned
previously, operand forwarding may also be supported via an
operand forwarding network (not shown). The EXU may
broadcast the tag of the instruction operation (which 1denti-
fies the destination of the mstruction operation in the register
file 18 and thus can be compared to the source operands) to
the scheduler 16 so that dependent operations may be sched-
uled and may recerve the execution result. Additionally, the
EXU 20 may broadcast the ATV of the operation to the
scheduler 16 so that the ATVs of dependent operations may be
updated. Similarly, the data cache 24 may broadcast tags and
ATVs of memory operations being executed (“Broadcast
ATVs”1n FIG. 1 from both the EXU 20 and the AGU 22). The
AGU 22 may receive operands and the memory operation,
and may generate the address of the memory location
accessed by the load/store operation. The address 1s provided
to the data cache 24 for access.

The data cache 24 i1s configured to determine if a load
operation hits in the cache, and 1s configured to transmit status
indicating whether the data speculation that was performed to
torward the data for the operation was correct. The status may
indicate bad (data speculation 1incorrect) or good (data specu-
lation correct). Additionally, the status ATV may be broadcast
with the status (*“Status, Status ATVs” 1n FIG. 1). The status
ATV may be the ATV token assigned to the load (one-hot
encoded). Data speculation may be incorrect i1f the load
misses 1n the cache, or if translation 1s enabled and a transla-
tion lookaside buffer (TLB) miss 1s detected. Additionally,
data speculation may be incorrect 1f the load hits a store in a
store queue (shown 1n the data cache block 24 i FIG. 1,
although the store queue may be physically separate from the
data cache 24) and the store data cannot be forwarded to
satisty the load. For example, the store data may not have
been provided yet, or the store may not update all of the bytes
accessed by the load (and thus some bytes from the store
queue and some bytes from the cache or memory are needed
to complete the load).

In the illustrated embodiment, the scheduler includes the
source buifer 30 to store the source register addresses for the
source operands of each istruction operation and the ATV
buffer 32 to store the corresponding ATVs. That 1s, each
instruction operation in the scheduler 16 may be assigned an
entry in the source buil

er 30 and the corresponding entry 1n
the ATV bulfer 32. An additional bufler may store other
information, such as the istruction operation itself, or that
information may be also be stored 1n the source butfer 30.
An exemplary entry 38 i1s shown in the source butier 30,
and may include one or more source register addresses (e.g.
up to four source addresses for a given 1nstruction operation,

10

15

20

25

30

35

40

45

50

55

60

65

6

labeled SRC1 to SRC4, although other embodiments may
have more or fewer source operands per 1nstruction opera-
tion). Additionally, a matched-previously (MP) bit may be
maintained for each source operand, indicating that the
source has previously matched a tag and thus 1s resolved.
Once a given 1nstruction operation’s source operands have all
been resolved, the mnstruction operand may request schedul-
ing. The per entry logic 40 may detect that the instruction
operation 1n entry 38 has resolved 1ts sources and may gen-
erate a request to schedule (e.g. Raw_Req[1] 1n FIG. 1, for
entry 38). More particularly, in one embodiment, the source
register address fields 1n the entry may comprise content
addressable memory (CAM), and a match may be detected
using the CAM to compare between a tag broadcast from the
execution resources and the stored register address. The per
entry logic may detect that all source operands are resolved to
make the request. The MP bit may also be set when the match
1s detected. If an 1nstruction operation has been scheduled, the
picked (“P”) bit may be set to prevent subsequent requests for
that instruction operation. Thus, a request may be made if all
source operands have been resolved and the instruction
operation has not be previously picked. The per entry logic 40
may be replicated for each entry 1n the source butter 30.

The request from each entry of the source buifer 30 1s
shown as the Raw_Req[0 . . . n] signal, for an n+1 entry
scheduler 16. That 1s, an n+1 entry scheduler 16 may include
n+1 entries similar to entry 38 1n the source buffer 30, and n+1
entries similar to the entry 42 1n the ATV butler 32. The source
butifer 30 may output a tag match signal for each entry (Tag_
Match[0 .. .n]) ndicating that a tag match has been detected.
The ATV buller 32 may recerve the tag match signals to
update ATVs in the ATV buifer 32 with the broadcast AT'Vs.
The broadcast AT Vs are provided by the execution resources
at the same time the tag broadcast occurs. Each entry that 1s
matched by the broadcast tag 1s updated to include the broad-

cast ATV (e.g. the broadcast ATV may be logically ORed with
the broadcast ATV). In this fashion, the ATV of a given
instruction operation may be dynamically generated as each
source operand of that given instruction resolves. Generally,
a source operand may be resolved if the source operand 1s
know to be available or predicted to be available prior to the
instruction operation that has the source operand reaching
execution. For example, a source operand may be resolved 1f
it 1s stored 1n the register file 18, will be stored 1n the register
file 18 prior to a register file read, and/or available for for-
warding 1n the pipeline (e.g. at the input to the EXU 20).

The request signals from the source butler 30 are qualified
by the request qualily logic 34. The request qualily logic 34
may be essentially a bitwise logical AND of the raw request
signals and corresponding kill signals. In the illustrated
embodiment, the kill signals (Kill[0 . . . n]) are asserted to
suppress the corresponding request, and thus the inverse of
the kill signal 1s ANDed. Other embodiments may generate
the kall signal active low, and no 1nversion may be needed.

The ATV butler 32 may include per entry logic 44 to
generate the kiall signals (and to update the ATVS) To generate
the kill signals, the ATV butler 32 may receive the status
broadcast and status ATV (which may be the ATV token
assigned to the load). The per entry logic 44 may compare the
received status ATV to the ATV 1n the corresponding entry 42.
IT the status ATV 1s represented 1n the stored ATV and the
status 1s bad (data misspeculation) the per entry logic 44 may
assert the kill signal (Kill[1]) for that entry.

In addition to suppressing the request for an nstruction
operation i the ATV matches the status ATV, the scheduler 16
may use the kill signal to set the picked bit 1n the correspond-
ing entry 38. The picked bit may prevent scheduling of the

US 7,502,914 B2

7

instruction operation once bad status has been reported for an
ancestor of that instruction operation, as indicated in the ATV
at the time the status 1s reported. The picked bit may be reset
on the next tag match 1n the entry, whether or not the next tag
match 1s for the same source operand for which bad status was
reported. Such an embodiment may permit scheduling of
requests, 1I the next tag match 1s not for the same source
operand, 1n cases 1 which the bad status has not yet been
cleared. An instruction thus scheduled 1s replayed. Other
embodiments may be more specific with the bad status, asso-
ciating 1t with a particular source operand (so that matching
on other source operands does not cause the instruction
operation to be rescheduled) or sharing bad status recording
among a subset of the operands to conserve space. In such
embodiments, the scheduling request can be suppressed until
the previously bad source operand 1s again forwarded.

The qualified request signals (Req[0 . . . n]) may be sup-
plied to the pick logic 36, which may schedule one or more
istruction operations. The picked operations are communi-
cated to the buifers 30 and 32, which supply the correspond-
ing source addresses to the register file 18 and ATVs to the
execution resources, respectively. The scheduler 16 also pro-
vides the instruction operations themselves (shown as Ops in
FIG. 1, input to the execution resources).

The term 1nstruction operation may generally refer to any
operation that execution resources within the processor 10
may execute. Instruction operations may have a one-to-one
mapping to instructions specified in an instruction set archi-
tecture that 1s implemented by the processor 10. The mnstruc-
tion operations may be the same as the instructions, or may be
in decoded form. Alternatively, instructions 1n a given mstruc-
tion set architecture (or at least some of the 1nstructions) may
map to two or more 1nstruction operations. In some cases,
microcoding may be implemented and the mapping may
comprise a microcode routine stored 1n a microcode read-
only memory (ROM). In other cases, hardware may generate
the instruction operations, or a combined approach of hard-
ware generation and microcoding may be used. Load instruc-
tion operations may correspond to explicit load instructions
or may be implicit in an instruction that specified a memory
source operand to be read by the processor. Similarly, store
istruction operations may correspond to explicit store
instructions or may be implicit in an instruction that specified
a memory destination operand to be written by the processor.

Execution resources may generally refer to any hardware
circuitry the performs all or part of the execution of an instruc-
tion operation. For example, the EXU 20, the AGU 22, and the
data cache 24 may comprise execution resources. An execu-
tion resource may be designed to accept one or more mstruc-
tion operations per clock cycle. There may be any number of
various types of execution resources in various embodiments.
Thus, the source butfer 30 may be configured to recerve and
resolve multiple tag broadcasts per clock cycle and the ATV
buffer 32 may be configured to receirve multiple broadcast
and/or status ATVs per clock cycle.

The mstruction cache 12 and the data cache 24 may com-
prise any configuration (set associative, direct mapped, etc.)
and any desired capacity. An external interface unit (not
shown) may coordinate the fetching of data/instructions nto
the caches when a cache miss occurs. The register file 18 may
comprise any type of memory configured as a register file
(e.g. random access memory, registers, etc.).

The buifers 30 and 32 may comprise any memory. In one
embodiment, the memory may comprise RAM and/or CAM,
or a combination thereof. Some or all of the per entry logic 40

5

10

15

20

25

30

35

40

45

50

55

60

65

8

and 44 may be part of the CAM, or may be logic separate from
the memory or mtegrated into the circuitry forming the
memory.

Turning now to FIG. 2, a pipeline diagram 1s shown 1llus-
trating a portion of an exemplary pipeline that may be imple-
mented by one embodiment of the processor 10. Other
embodiments may have more or fewer pipeline stages, as
desired. Stages are delimited by vertical lines 1n FIG. 1, and
stages for different ops that occur in the same clock cycle are
vertically aligned. There may be more pipeline stages 1n the
tull pipelines, such as stages prior to the SC stage for fetching
and decoding (and perhaps renaming) instructions.

The SC stage 1s the scheduling stage at which an instruction
operation 1s scheduled (1.e. the pick logic 36 picks the instruc-
tion operation and the scheduler entry of the picked 1nstruc-
tion operation 1s read 1n the SC stage). The RF stage 1s the
register file read stage at which source operands are read from
the register file. Operand forwarding from previous opera-
tions may also occur at the end of the register file read stage.
The AG/EX stage 1s the address generation stage (for memory
operations) at which the AGU 22 generates the address to be
accessed or the execution stage (for non-memory operations)
at which the instruction operation 1s executed. The DCI1 to
DC4 stages are the data cache access stages. In the DC1 and
DC2 stages, the data cache data array 1s accessed, and data 1s
forwarded from the DC2 stage. In the DC3 and DC4 stages,
the translated address 1s tag-matched to the data cache tag and
hit/miss 1s determined as well as whether or not other 1ssues
ex1st such as forwarding from the store queue. Status 1s broad-
cast 1n the DC4 stage.

FIG. 2 illustrates a load progressing through the pipeline
(Load Op 1n FIG. 2) and an 1nstruction operation dependent
on the load. The dependent operation can be any type of
operation (memory or non-memory). The tag broadcasts may
generally be timed so that, 11 a dependent operation 1s 1mme-
diately scheduled, the dependent operation will receive the
result data through operand forwarding into the EX or AG
stage. That 1s, the tag broadcasts may be timed to permit
maximum overlap in the pipeline of an mstruction operation
and 1ts dependent operation. In this embodiment, the tag
broadcast occurs two clocks before the data 1s transmitted,
covering the SC and RF stages. Thus, the load op has its tag
broadcast from the AG stage, which may cause the dependent
operation to schedule 1n the next clock cycle (at earliest). The
tag broadcast 1s 1llustrated in FIG. 2 via the arrow labeled
“Tag”. Two clocks later, the data 1s transmitted (arrow labeled
“Data” in FIG. 2), thus being available to the dependent
operation at the AG/EX stage. In this embodiment, the status
1s available 2 clocks after the data 1s transmitted (arrow
labeled “Status™ 1n FI1G. 2).

Accordingly, the distance between the tag broadcast and
the corresponding status may define a “replay window”
within which the replay status of a load (and thus 1ts depen-
dent operations) 1s not known (shown as D in FIG. 2, and
equal to four 1in this embodiment). The size of the replay
window may be a component in the minimum size of the ATV
to uniquely track each load that can be simultaneously have
its replay status unknown. Particularly, as shown 1n the equa-
tion at the bottom of FIG. 2, the ATV size may be at least the
width of the replay window multiplied by the load 1ssue width
(1.e. the number of loads that can be scheduled in the same
clock cycle). In one embodiment, the load 1ssue width may be
two, and thus the ATV size would be eight. Thus, ATVs
formed of bit vectors would be eight bits for this example.

FIG. 3 1s a table 1llustrating various events in one embodi-
ment of the processor and the ATV etlects related to those
events for one embodiment. The first event shown 1n the table

US 7,502,914 B2

9

1s a dispatch of an instruction operation to scheduler entry 1,
including entry 1 1 both the source buifer 30 and the ATV
butiler 32. The instruction operation 1s written to the entry, and
the ATV 1n that entry (ATV]1]) 1s set to the null value by the
per entry logic 44 (zero, 1n this case). Alternatively, the fetch/ 53
decode unit 14 may supply the null value to be written to the
ATV butler 32 to be written to entry 1.

To form a broadcast ATV to be transmitted during a tag
broadcast for a load operation, the AGU/data cache 1s config-
ured to broadcast an ATV that is the logical OR of the ATV 10
from the load operation’s entry 1n the scheduler (provided by
the ATV buller 32 1n response to the scheduling of the load
operation) and the ATV assigned by the ATV assign unit 26
(the one hot token that identifies the load operation in the
ATV). Thus, the broadcast ATV reflects the load operation 15
itselt, as well as preceding replayable operations. To form a
broadcast ATV for other mstruction operations, the EXU or
AGU/data cache may broadcast the ATV from that instruction
operation’s entry in the scheduler, again provided by the ATV
butiler 32 in response to scheduling the operation. 20

In response to a tag match on a tag broadcast for entry 1 in
the scheduler 16, the ATV buffer 32 may update the ATV in
entry 1 with the broadcast ATV. In this fashion, direct and
indirect dependencies on replayable operations may be
dynamically recorded. As illustrated in FIG. 3, the update 25
may comprise a logical OR by the per entry logic 44 of AT V(1]
and the broadcast ATV.

For a status broadcast for a load, the status ATV may be the
ATV assigned by the ATV assign unit 26. That 1s, the status
ATV may be the one hot token identitying the load in the ATV. 30
In response to a status broadcast, 11 the status ATV 1s repre-
sented 1n the ATV of entry 1, the per entry logic 44 may
generate the Kill[1] signal and may update the ATV]1]. Par-
ticularly, the Kill[1] signal 1s asserted if the status ATV 1s
represented 1n the entry and the status 1s indicated as bad (1.e. 35
a replay event has been detected). In eitther case, the ATV|[1]
may be updated to delete the load from the ATV (e.g. bit wise
AND with the inverse of the status ATV). Thus, the link
between the load operation and the instruction operation in
entry 1 1s removed. As 1llustrated 1n FIG. 3 for this embodi- 40
ment, the load 1s represented 1n ATV[1] 1 the bitwise AND of
the status ATV and ATV|[1] 1s non-zero.

Turning now to FIG. 4, an example of several instructions
in the scheduler 1s shown for one embodiment. Four scheduler
entries numbered 0, 1, 2, and 3 are shown. The 1nstruction 45
operation 1n entry 0 1s prior to the instruction operations 1n
entries 1-3 1n program order; the instruction operation 1n
entry 1 1s prior to the mstruction operations 1n entries 2-3 1n
program order; etc. Each instruction operation 1s listed with a
mnemonic (Load or Add, in this example), the destination 50
register of the mstruction operation, and the source registers
of the 1nstruction operation. One destination and two sources
are shown 1n this example. The ATVs for each instruction
operation for this example are also shown. An 1nitial state of
the example illustrates aload having an ATV representing two 55
prior loads, null ATVs for the Adds 1n entries 1 and 2, and an
ATV for the Add in entry 3 that represents one prior load
(which 1s the same as one of the prior loads represented 1n the
ATV for entry 0). ATVs are shown 1n binary 1n this example,
with eight bits. The 1mitial state 1s represented at reference 60
numeral 50.

The load 1s scheduled, and the ATV assign unit 26 assigns
ATV=0100 0000 (in binary) to the load (arrow 52). No update
to the 1nitial state occurs at this point. Subsequently, the load

reaches the tag broadcast stage and broadcasts an ATV 65
tformed from 1ts own ATV (0010 0001) and the ATV assigned

to the load by the ATV assign unit 26 (0100 0000). Thus, the

10

broadcast ATV 1s 0110 0001 (arrow 54). Since the Add in
entry 1 has R3 (the destination of the load) as a source, a tag
match in entry 1 1s detected and the ATV 1n entry 1 1s updated
to 0110 0001. Subsequently, the Add from entry 1 1s sched-
uled and broadcasts its tag and ATV (arrow 356). A tag match
in entry 2 1s detected, and the ATV 1n entry 2 1s updated.

The status for ATVs 0000 0001 and 0010 0000 are broad-
cast, both indicating good status (arrow 58). The ATVs are
deleted from the stored ATVs. Thus, both the load 1n entry
and the Add 1n entry 3 have null ATV after the status broad-
casts. Subsequently, the status for the load (status ATV=0100
0000) 1s broadcast, also indicating good status (arrow 60).
Thus, the resulting ATV are all null.

Had the status been bad 1n one of the status broadcasts, the
results on the ATV would be similar, but the matching instruc-
tions would have inhibited their scheduling requests. Accord-
ingly, scheduling of instructions that would otherwise be
replayed by be suppressed until the load operation replays
and matches the tag of the instruction operations again.

Turming now to FIG. 5, a flowchart 1s shown 1illustrating a
method of using ATVs. Aninstruction operation 1s dispatched
to the scheduler and a Null ATV 1s established for the mnstruc-
tion operation (block 70). The ATV 1s dynamically built as
dependencies of the instruction operation are resolved (block
72). The scheduling request for the op 1s suppressed if an ATV
match on a status broadcast 1s detected and bad status 1s
reported (block 74). The request may be suppressed 1n the
cycle that the status broadcast occurs via assertion of the kill
signal. In subsequent cycles, 1n one embodiment, the request
may be suppressed by setting the picked bit for the mstruction
operation. Alternatively, bad status may be tracked in the
source bufler and may be used to suppress the request until
good status 1s detected.

Turming now to FIG. 6, another embodiment of a computer
system 300 1s shown. In the embodiment of FIG. 6, computer
system 300 includes several processing nodes 312A, 312B,
312C, and 312D. Each processing node 1s coupled to a respec-
tive memory 314A-314D via a memory controller 316A-
316D included within each respective processing node 312 A-
312D. Additionally, processing nodes 312A-312D include
interface logic used to communicate between the processing
nodes 312A-312D. For example, processing node 312A
includes interface logic 318A for communicating with pro-
cessing node 312B, interface logic 318B for communicating
with processing node 312C, and a third mterface logic 318C
for communicating with yet another processing node (not
shown). Similarly, processing node 312B includes interface
logic 318D, 318FE, and 318F; processing node 312C includes
interface logic 318G, 318H, and 318I; and processing node
312D includes interface logic 318J, 318K, and 318L. Pro-
cessing node 312D is coupled to communicate with a plural-
ity of input/output devices (e.g. devices 320A-320B 1 adaisy
chain configuration) via interface logic 318L. Other process-
ing nodes may communicate with other I/O devices 1n a
similar fashion.

Processing nodes 312A-312D implement a packet-based
link for inter-processing node communication. In the present
embodiment, the link 1s implemented as sets of unidirectional
lines (e.g. lines 324 A are used to transmit packets from pro-
cessing node 312A to processing node 312B and lines 324B
are used to transmit packets from processing node 312B to
processing node 312A). Other sets of lines 324C-324H are
used to transmit packets between other processing nodes as
illustrated 1n FIG. 6. Generally, each set of lines 324 may
include one or more data lines, one or more clock lines cor-
responding to the data lines, and one or more control lines
indicating the type of packet being conveyed. The link may be

US 7,502,914 B2

11

operated 1mn a cache coherent fashion for communication
between processing nodes or 1n a noncoherent fashion for
communication between a processing node and an I/O device
(or a bus bridge to an I/O bus of conventional construction
such as the Peripheral Component Interconnect (PCI) bus or
Industry Standard Architecture (ISA) bus). Furthermore, the
link may be operated in a non-coherent fashion using a daisy-
chain structure between I/O devices as shown. It 1s noted that
a packet to be transmitted from one processing node to
another may pass through one or more intermediate nodes.
For example, a packet transmitted by processing node 312A
to processing node 312D may pass through either processing,
node 312B or processing node 312C as shown in FIG. 6. Any
suitable routing algorithm may be used. Other embodiments
of computer system 300 may include more or fewer process-
ing nodes then the embodiment shown in FIG. 6.

Generally, the packets may be transmitted as one or more
bit times on the lines 324 between nodes. A bit time may be
the rising or falling edge of the clock signal on the corre-
sponding clock lines. The packets may, include command
packets for initiating transactions, probe packets for main-
taining cache coherency, and response packets from respond-
ing to probes and commands.

Processing nodes 312A-312D, in addition to a memory
controller and interface logic, may include one or more pro-
cessors. Broadly speaking, a processing node comprises at
least one processor and may optionally include a memory
controller for communicating with a memory and other logic
as desired. More particularly, each processing node 312A-
312D may comprise one or more copies of processor 10 as
shown 1n FIG. 1 (e.g. including various structural and opera-
tional details shown 1n FIGS. 2-5). One or more processors
may comprise a chip multiprocessing (CMP) or chip multi-
threaded (CMT) integrated circuit 1n the processing node or
forming the processing node, or the processing node may
have any other desired internal structure.

Memories 314A-314D may comprise any suitable memory

devices. For example, a memory 314A-314D may comprise
one or more RAMBUS DRAMs (RDRAMSs), synchronous

DRAMs (SDRAMs), DDR SDRAM, static RAM, etc. The
address space of computer system 300 1s divided among
memories 314A-314D. Each processing node 312A-312D
may include a memory map used to determine which
addresses are mapped to which memories 314A-314D, and
hence to which processing node 312A-312D a memory
request for a particular address should be routed. In one
embodiment, the coherency point for an address within com-
puter system 300 1s the memory controller 316A-316D
coupled to the memory storing bytes corresponding to the
address. In other words, the memory controller 316 A-316D 1s
responsible for ensuring that each memory access to the cor-
responding memory 314A-314D occurs in a cache coherent
fashion. Memory controllers 316 A-316D may comprise con-
trol circuitry for interfacing to memories 314A-314D. Addi-
tionally, memory controllers 316A-316D may include
request queues for queuing memory requests.

Generally, interface logic 318A-318L may comprise a
variety of buflers for recerving packets from the link and for
buifering packets to be transmitted upon the link. Computer
system 300 may employ any suitable flow control mechanism
for transmitting packets. For example, 1n one embodiment,
cach interface logic 318 stores a count of the number of each
type of buifer within the receiver at the other end of the link to
which that interface logic 1s connected. The nterface logic
does not transmit a packet unless the receiving interface logic
has a free buller to store the packet. As a receiving builer 1s
freed by routing a packet onward, the receiving interface logic
transmits a message to the sending interface logic to indicate

10

15

20

25

30

35

40

45

50

55

60

65

12

that the bufler has been freed. Such a mechanism may be
referred to as a “coupon-based” system.

I/0 devices 320A-320B may be any suitable I/O devices.
For example, I/O devices 320A-320B may include devices
for communicating with another computer system to which
the devices may be coupled (e.g. network mterface cards or
modems). Furthermore, I/O devices 320A-320B may include
video accelerators, audio cards, hard or floppy disk drives or
drive controllers, SCSI (Small Computer Systems Interface)
adapters and telephony cards, sound cards, and a variety of
data acquisition cards such as GPIB or field bus interface
cards. Furthermore, any I/O device implemented as a card
may also be implemented as circuitry on the main circuit
board of the system 300 and/or software executed on a pro-
cessing node. It 1s noted that the term “I/O device” and the
term “‘peripheral device” are intended to be synonymous
herein.

Furthermore, one or more processors 10 may be imple-
mented 1n a more traditional personal computer (PC) struc-
ture including one or more interfaces of the processors to a
bridge to one or more I/O interconnects and/or memory.

Numerous variations and modifications will become
apparent to those skilled 1n the art once the above disclosure
1s Tully appreciated. It 1s intended that the following claims be
interpreted to embrace all such variations and modifications.

What 1s claimed 1s:
1. A processor comprising:

one or more execution resources configured to execute
instruction operations, wherein the execution resources
comprise hardware circuitry configured to perform at
least part of the execution of instruction operations; and
a scheduler coupled to the execution resources and config-
ured to maintain an ancestor tracking vector (A1TV) cor-
responding to each given instruction operation 1n a
memory circuit in the scheduler, wherein the ATV 1den-
tifies instruction operations which can cause the given
istruction operation to replay, wherein a replayed
istruction operation 1s reexecuted without being
refetched, and wherein the scheduler 1s configured to set
the ATV of each given 1nstruction operation to a null
value 1n the memory circuit 1n response to the given
instruction operation being dispatched to the scheduler,
and wherein the scheduler 1s configured to modity the
ATV of the given instruction operation dynamically to
msert ATVs corresponding to instruction operations
which resolve source operands of the given 1nstruction
operation responsive to destination tags of the mstruc-
tion operations that resolve the source operands,
wherein the destination tags are broadcast by the execu-
tion resources during execution of the instruction opera-
tions that resolve the source operands, and wherein the
scheduler 1s configured to modily the ATV of the given
istruction operation to remove ATV tokens assigned to
istruction operations for which a replay status 1s deter-
mined, wherein the ATV tokens of the mstruction opera-
tions are removed independent of whether or not the
replay status indicates replay.
2. The processor as recited 1in claim 1 wherein the ATV
token uniquely 1dentifies the executed instruction operation
among a subset of instruction operations within a replay

window that can cause replay.

3. The processor as recited 1n claim 2 wherein, 1f the ATV
token 1s represented in the ATV for the given instruction
operation and the replay status indicates that a replay 1is
detected for the executed mstruction operation, the scheduler
1s configured to suppress a potential scheduling request cor-
responding to the given instruction operation.

4. The processor as recited in claim 3 wherein the sched-
uling request 1s suppressed until a subsequent destination tag

US 7,502,914 B2

13

broadcast that matches a source operand tag in the scheduler
for the grven 1nstruction operation.

5. The processor as recited 1n claim 2 wherein the ATV
token 1s assigned to the executed instruction operation in
response to the scheduler scheduling the executed 1nstruction
operation for execution.

6. The processor as recited 1n claim 2 wherein the executed
istruction operation 1s a load.

7. The processor as recited 1n claim 6 wherein the replay
occurs of data for the load 1s misspeculated.

8. The processor as recited 1n claim 7 wherein the destina-
tion tag broadcast for the load 1s timed assuming a cache hit
for the load 1n a data cache, and wherein the data for the load
1s misspeculated 1f the load 1s a cache miss 1n the data cache.

9. The processor as recited 1n claim 1 wherein, 1n response
to a first instruction operation that resolves a source operand
of the given 1nstruction operation causing a replay, the sched-
uler 1s configured to reissue the first instruction operation, and
wherein a new ATV token 1s assigned to the first instruction
operation 1n response to reissuing the first mnstruction opera-
tion, and wherein the scheduler 1s configured to insert the
ATV corresponding to the first instruction operation, which
includes the new ATV token, into the ATV of the given
instruction operation in response to the broadcast of the des-
tination tag of the first instruction operation during reexecu-
tion of the first instruction operation.

10. The processor as recited 1n claim 9 wherein the new
ATV token 1s different from a previous ATV token that was
assigned to the first instruction operation.

11. The processor as recited in claim 1 wherein the ATV
corresponding to an instruction operation that resolves a
source operand of the given instruction operation comprises
an ATV from a scheduler entry that corresponds to the imstruc-
tion operation that resolves the source operand.

12. The processor as recited in claim 11 wherein the ATV
corresponding to the mstruction operation that resolves the
source operand of the given instruction operation further
comprises an ATV token assigned to the instruction operation
during execution of the instruction operation.

13. A scheduler comprising:

a buller memory circuit comprising a plurality of entries,
wherein each entry of the plurality of entries corre-
sponds to a different istruction operation of a plurality
of mstruction operations that can be stored 1n the sched-
uler, and wherein a given entry of the plurality of entries
1s configured to store one or more source tags corre-
sponding to source operands of a given 1nstruction
operation 1n the scheduler, wherein the given instruction
operation 1s assigned to the given entry;

an ancestor tracking vector (ATV) buller memory circuit
comprising a second plurality of entries, wherein each
entry of the second plurality of entries corresponds to the
different instruction operation, and wherein a given sec-
ond entry of the second plurality of entries 1s assigned to
the given mstruction operation and 1s configured to store
an ATV corresponding to the given instruction opera-
tion, wherein the ATV 1dentifies 1nstruction operations
which can cause the given instruction operation to replay
and wherein a replayed instruction operation 1s reex-
ecuted without being refetched; and

logic coupled to each entry of the second plurality of
entries, wherein the logic 1s configured to set the ATV of
cach given 1nstruction operation to a null value 1n the
ATV bufler memory circuit 1n response to the given
instruction operation being dispatched to the scheduler,
and wherein the logic 1s configured to dynamically
modily the ATV of the given instruction operation to

10

15

20

25

30

35

40

45

50

55

60

14

msert ATVs corresponding to instruction operations
which resolve source operands of the given instruction
operation responsive to destination tags of the instruc-
tion operations that resolve the source operands,
wherein the destination tags are broadcast during execu-
tion of the 1nstruction operations that resolve the source
operands, and wherein the scheduler 1s configured to
modily the ATV of the given instruction operation to
remove ATV tokens assigned to instruction operations
for which a replay status 1s determined, wherein the
ATVs of the mstruction operations are removed inde-
pendent of whether or not the replay status indicates

replay.

14. The scheduler as recited 1n claim 13 coupled to receive
a replay status of the executed instruction operation along
with an ATV token assigned to the executed nstruction opera-
tion, wherein the ATV token uniquely 1dentifies the executed
istruction operation among a subset ol 1nstruction opera-
tions within a replay window that can cause replay, and
wherein, 1f the ATV buller 1s configured to determine 11 the
ATV token 1s represented in the ATV for the given mstruction
operation.

15. The scheduler as recited 1n claim 14 wherein the sched-
uler comprises additional logic that 1s configured, if the replay
status indicates that a replay 1s detected for the executed
instruction operation, to suppress a potential scheduling
request corresponding to the given instruction operation.

16. A method comprising:

dispatching an 1nstruction operation to a scheduler,
wherein the scheduler comprises a memory circuit con-
figured to store the nstruction operation;

setting an ancestor tracking vector (ATV) corresponding to

the struction operation to a null value 1n the memory
circuit responsive to the dispatching; and
dynamically updating the ATV 1n the memory circuit to
isert an ATV corresponding to an executed instruction
operation that resolves a source operand of the instruc-
tion operation, the updating responsive to a broadcast of
a destination tag corresponding to the executed instruc-
tion operation during execution of the executed instruc-
tion operation; and
dynamically updating the ATV 1n the memory circuit to
delete an ATV token assigned to the executed mstruction
operation responsive to a replay status of the executed
instruction operation being determined and independent
of whether or not the replay status indicates replay, and
wherein a replayed instruction operation 1s reexecuted
without being refetched.
17. The method as recited 1 claim 16 further comprising;:
dispatching another imstruction operation for execution,
the other 1nstruction operation being capable of causing
a replay; and

assigning an ATV token to the other mstruction operation
responsive to scheduling the instruction operation for
execution.

18. The method as recited 1 claim 17 further comprising:

recerving areplay status corresponding to the other instruc-

tion operation; and

recerving the ATV token corresponding to the instruction

operation.

19. The method as recited 1n claim 18 further comprising
suppressing a potential scheduling request responsive to the
ATV token being represented in the ATV of the mstruction
operation and further responsive to the ATV status indicating
replay.

	Front Page
	Drawings
	Specification
	Claims

