12 United States Patent

US007496838B2

(10) Patent No.: US 7.496,838 B2

Salter et al. 45) Date of Patent: Feb. 24, 2009
(54) CONVERTING MARKUP LANGUAGE FILES 2002/0073119 Al* 6/2002 Richard 707/513
2002/0147748 Al* 10/2002 Huangetal. 707/517
(75) Inventors: Craig Salter, Hamilton (CA); Christina
P. Lau, Scarborough (CA) OTHER PUBLICATIONS
_ Bompani, Luca, et al, “Software Engineering and the Internet: A
(73) Assignee: International Business Machines Roadmap”, Proceedings of the Conference on the Future of Software
Corporation, Armonk, NY (US) Engineering, May 2000, pp. 303-315.*
Maglio, Paul, et al, “Intermediaries Personalize Information
(*) Notice: Subject to any disclaimer, the term of this Streams”, Communications of the ACM, vol. 43, Issue 8, Aug. 2000,
patent 1s extended or adjusted under 35 pp. 96-101.%
U.S.C. 154(b) by 1400 days. Computer Society, Proceedings for the 2002 Symposium on Appli-
cations and the Internet (SAINT’02), “XSLT Stylesheet Generation
(21) Appl. No.: 10/313,284 by Example with WYSIWYG Editing” by Kouichi Ono et al, pp.
150-159.
(22) Filed: Dec. 35, 2002 * cited by examiner
(65) Prior Publication Data Primary Examiner—Laurie Ries
1S 2004/0010753 A1 Jan. 15, 2004 (74) Attorney, Agent, or Firm—Mark S. Walker; Libby
Handelsman; Jefirey L. Streets
(30) Foreign Application Priority Data (57) ABRSTRACT
Jul. 11, 2002 (CA) e, 2393035
The mvention provides for the separation of formatting and
(51) Imt. Cl. content data 1n a first markup file (e.g., an HTML file) so that
Goot 17700 (2006.01) a second markup language file (e.g., an XML file) containing
(52) US.CL ., 715/239; 715/243 the content data and formatting or presentation data file (e.g.,
(58) Field of Classification Search 715/501.1, an XSL file) can be created. Content data 1n the first file that
715/513, 239, 243 1s to be converted 1s tagged. The tagged data may be included
See application file for complete search history. in an HTML file. The invention processes the tagged data so
_ that content data 1s identified and used to generate a file 1n the
(56) References Cited

2001/0056460 Al

U.S. PATENT DOCUMENTS

5,937,160 A

0,192,382 Bl
0,263,332 Bl
0,336,124 Bl
6,336,137 Bl

¥ 8/1999
¥ 2/2001
7/2001
1/2002
1/2002

| *12/2001

Davisetal. 709/203
Laferetal. 715/513
Nasr et al.

Alam et al.

[.ee et al.

Sahotaetal. 709/201

second format (e.g., an XML file). The presentation or for-
matting data 1s also identified and used to generate the pre-
sentation data file (e.g., an XSL file). The invention can be
employed to convert the existing data files (e.g., HI ML files)
into files which are separated into content data files (e.g.,
XML files) and presentation data files (e.g., XSL files).

17 Claims, 15 Drawing Sheets

406

/

s502

IDENTIFY ALL TAGS IN "TAGGED' INPUT HTML FILE

'

S04

CREATE XSL HEADER AND ROOT ELEMENT IN XSL FILE

506

f

FOR EACH IDENTIFIED
REGIONAL TAG

508

CREATE PRINT AND HANDLE TEMPLATES

t

510

FOR EACH VALUE TAG WITHIN REGION, ADD "X5L :
PARAM" TQO THE PRINT TEMPLATE, REPLACE VALUE
TAG WITH "XSL ; VALUES-OF" TAG

512

ANY NESTED REGIONS
WITHIN REGION TAG?

NO

514

FOR EACH NESTED REGICN, THE CONTAINING REGION
INVOKES "PRINT TEMPLATE" BY REPLACING IT WITH A
"XSL : CALL-TEMPLATE"

U.S. Patent Feb. 24, 2009 Sheet 1 of 15 US 7,496,838 B2

Figure 1

100

108
NETWORK

A ey anta e r p a P a a e T

£

_
=

104

A I e - e

Wi ey

3 mi s e, E":ll;'ll'.'.. Mol . _:.I"'_.
o
gy *ﬁii-.::'-"::*m:-! -!l'::ﬁ:-.:b:;:-.'i::w_._-. N By T R

L—-nq-—-—_ i ' 'i:,‘-:‘..:‘:.:‘i:.ﬂ:ii.}-:
“%ﬂ‘i:ﬁh‘ﬁﬁ =i i ;

T W e al :l'!—;‘:'- ﬂ"‘ F_LL‘::'_;- 1= EEEE NN R LR
o s hpemapdiin, S SN .

g, o '::-I':'.‘!j,rr. 'E .
‘Eaﬁﬁm{iﬁlmn;mm;nmh :I—.r:'.w.rrr-l.m'-:l:: Hm&

F
M o BT, AR M e SN, AL,

S g,
W

L -
oo , g,
G N e T, A

.
Aitliin
e Al

1068

U.S. Patent Feb. 24, 2009 Sheet 2 of 15 US 7,496,838 B2

Figure 2

102
TO VO DEVICES /
104, 106

210
I/Q INTERFACE

TO NETWORK 110

208
NETWORK INTERFACE

202A 2024 202A Volatile Parsistent
CPU Cp ewe Memory Memaory
7 CPY 214 212

204
MEMORY

U.S. Patent Feb. 24, 2009 Sheet 3 of 15 US 7,496,838 B2

Figure 3

TS EEEFEEEE Y FFF PR YR NN PN NSNS PPN PN N R PP PSR U R R R TSRS AR NP RS S R TR S TSR rr O rr e e r bbb i F RS SR A EFY R RS R R AP REAE AR AR A AAA S ANARRAEERFARS

314
GENERAL DATA STORAGE & X5LT

PROCESSOR

308
INPUT BTML FILE

310 312

OUTPLT XML FILE OUTPUT XSL FILE(S)

306
CODE GENERATOR

COMMUNICATION SUITE
J04

OPERATING SYSTEM
302

I T R L I R E L R T T I T R N e N L R R R N I N T I T N I I I N I rE r T I rrr I I YTy T I I TTar.

A R A o A R A g A ey Y I LI LIS

--

U.S. Patent Feb. 24, 2009 Sheet 4 of 15 US 7,496,838 B2

Figure 4

400

Comer > e

402
RECEIVE INPUT HTML FILE

404
EMBED TAGS
(REGIONAL AND VALUE TAGS)

406

PROCESS "TAGGED" INPUT HTML
FILE

408

OUTPUT XML FILE AND XSL
FILE(S)

U.S. Patent Feb. 24, 2009 Sheet 5 of 15 US 7,496,838 B2

Figure 5

502
IDENTIFY ALL TAGS IN "TAGGED' INPUT HTML FILE

'

406

/

004

CREATE XSL HEADER AND ROOT ELEMENT IN XSL FILE

206

FOR EACH IDENTIFIED
REGIONAL TAG

508
CREATE PRINT AND HANDLE TEMPLATES

510

FOR EACH VALUE TAG WITHIN REGION, ADD "XSL :
PARAM" TO THE PRINT TEMPLATE, REPLACE VALUE
TAG WITH "XSL : VALUES-OF" TAG

512

ANY NESTED REGIONS
WITHIN REGION TAG?

NO

YES

514

FOR EACH NESTED REGION, THE CONTAINING REGION
INVOKES "PRINT TEMPLATE" BY REPLACING IT WITH A
"XSL : CALL-TEMPLATE"

US 7,496,338 B2

Sheet 6 of 15

Feb. 24, 2009

U.S. Patent

29209

00¢ 3° 00¢
(0130 LO1
001 3° 001
L93° LY
501 3° 901
cli3ocll
093¢ 09

uadgy suny
_~

te 0Ll
6306
01 3° 01
330 L
U13° 01
e 130¢]
GIoL
uadp SINT

~

PZ0OY

Japsmo g
IapmoJ payaed
SUOWpUe,) Sundg
suopuey Juudg
SHOWIPUIO N Fundg
JapmoJ pavoed
Japmo J PIRIeJ

JLLING ATCUILLY

\
2¢09

WS11=GL1
G616
o L8
097163

14d%m24!

S1L-G11

__mmlmh.

qyda(q moug

d
Gz09

QUIOIHILITLIANSIYMY e 5109
S ES T 109
UREJUNOT] BURIOURT ~ 5100

fApaquIy] ~_

UTBJUNOTA] Xady ~— ar03

Hosay e¥09

ez09~

eIqume)) yspuyg - 3oday] pig

U.S. Patent Feb. 24, 2009 Sheet 7 of 15 US 7,496,838 B2

Figure 7A

308

<html>
<head>

<meta http-equiv="content-type" content="text/html; charset=1S0-8859-1"/>
<title>SkiReport</title>

</head>
<body>
 Ski Report - British Columbia

<table cellpadding="2" cellspacing="2" border="0" width="100%">
<tbody>
<{r>
<th valign="Middle" align="Center">Resort</th>
<th valign="Top" align="Center">Snow Depth</th>
<th valign="Top" align="Center">Primary Surface</th>
<th valign="Top" align="Center">Lifts Open</th>
<th valign="Top" align="Center">Runs Open</th>
</tr>
_ <ir>
<td valign="Middle" align="Center">Apex Mountain</td>
7043 <td valign="Top" align="Center">79-85"</td>
\ <td valign="Top" align="Center">Packed Powder</td>
<td valign="Top" align="Center">3 of b</td>
L <td valign="Top" align="Center">60 of 60</td> 702

</tr> /

_<tr> |

<td valign="Middle" align="Center">Big White</td>
704b <td valign="Top" align="Center">116-116"</td>
\ <td valign="Top" align="Center">Packed Powder</td>
<td valign="Top" align="Center">13 of 13</td>
<td valign="Top" align="Center">112 of 112</td>
</tr>

U.S. Patent Feb. 24, 2009 Sheet 8 of 15 US 7,496,838 B2

Figure 7B

<tr>
r <td valign="Middle" align="Center">Fernie Alpine</td>

704c <td valign="Top" align="Center">144-144"</td>
AN <td valign="Top" align="Center">Spring Conditions</td>
| <td valign="Top" align="Center">10 of 10</td>
L— <td valign="Top" align="Center">106 of 106</td>
</tr>
<tr>

<td valign="Middle" align="Center">Kimberley</td> |

<td valign="Top" align="Center">69"-69"</td>
704d <td valign="Top" align="Center">Spring Conditions</td>

N L <td valign="Top" align="Center"'>7 of 8</td>
<td valign="Top" align="Center'>67 of 67</td>

| 702

</tr> /
<tr>
<td valign="Middle" aligh="Center">Panorama Mountain</td>
704e <td valign="Top" align="Center">52-71"</td>

\ <td valign="Top" align="Center">Spring Conditions</td>
<td valign="Top" align="Center">10 of 10</td>
<td valign="Top" align="Center">100 of 100</td>
</tr>
<ir>
<td valign="Middle" align="Center">Silver Star</td>
704f <td valign="Top" align="Center">91-95"</td>
N\ <td valign="Top" align="Center">Packed Powder</td>
<td valign="Top" align="Center">5 of 9</td>
L <td valign="Top" align="Center">107 of 107</td>
</tr>
<ir>
<td valign="Middle" align="Center">Whistler/Blackcomb</td>
704g <td valign="Top" align="Center">115-115"</td>
\ <td valign="Top" align="Center">Powder</td>
<td valign="Top" align="Center">33 of 33</td>
<td valign="Top" align="Center">200 of 200</td>
</tr>
</tbody>
</table>
</body>
</html>

—

U.S. Patent Feb. 24, 2009 Sheet 9 of 15 US 7,496,838 B2

Figure 8
800
<?HTMLTemplate version="0.1"?> /
<TemplateRegion name="Root">
<html|>
<head>

- <meta http-equiv="content-type" content="text/html; charset=IS0O-8859-1"/>
<title>SkiReport</title>

</head>
<body>
<p> Ski Report - British Columbia<bi/>

<table cellpadding="2" cellspacing="2" border="0" width="100%">
<tbody>
<tr>
<th valign="Middle" align="Center">Resort</th>
<th valign="Top" align="Center">Snow Depth</th>
<th valign="Top" align="Center">Primary Surface</th>
<th valign="Top" align="Center">Lifts Open</th>
<th valign="Top" align="Center">Runs Open</th>

</tr>
<TemplateRegion name="SkiResort"> - 82 208
<tr>
<td valign="Middle" align="Center">{Resort}</td> /
<td valign="Top" align="Center">{SnowDepth}</td> 804

<td valign="Top" align="Center">{PrimarySurface}</td> /
<td valign="Top" align="Center">{LiftsOpen}</td>
<td valign="Top" align="Center">{RunsOpen}</td>
<ftr>
</TemplateRegion>
</tbody>
</table>
</body>
</html>
</TemplateRegion>

- 806

U.S. Patent Feb. 24, 2009 Sheet 10 of 15 US 7,496,838 B2

Figure 9A

310

e

<?xml version="1.0" encoding="UTF-8"?>
<Root>

<SkiResort>
<Resort>Apex Mountain</Resort>
<SnowDepth>79-85"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>3 of 5</LiftsOpen>
<RunsOpen>60 of 60</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Big White</Resort>
<SnowDepth>116-116"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>13 of 13</LiftsOpen>
<RunsOpen>112 of 112</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Fernie Alpine</Resort>
<SnowDepth>144-144"</SnowDepth>
<PrimarySurface>Spring Conditions</PrimarySurface>
<LiftsOpen>10 of 10</LiftsOpen>
<RunsOpen>106 of 106</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Kimberley</Resort>
<SnowDepth>69"-69"</SnowDepth>
<PrimarySurface>Spring Conditions</PrimarySurface>
<LiftsOpen>7 of 8</LiftsOpen>
<RunsOpen>67 of 67</RunsOpen>

</SkiResort>

U.S. Patent Feb. 24, 2009 Sheet 11 of 15 US 7,496,838 B2

Figure 9B

310

<SkiResort>

<Resort>Panorama Mountain</Resort>
<SnowDepth>52-71"</SnowDepth>
<PrimarySurface>Spring Conditions</PrimarySurface>
<LiftsOpen>10 of 10</LiftsOpen>
<RunsOpen>100 of 100</RunsOpen>

</SkiResort>

<SkiResort>
<Resort>Silver Star</Resort>
<SnowDepth>91-95"</SnowDepth>
<PrimarySurface>Packed Powder</PrimarySurface>
<LiftsOpen>5 of 9</LiftsOpen>
<RunsOpen>107 of 107</RunsOpen>

</SKiResort>

<SkiResort>
<Resort>Whistler/Blackcomb</Resort>
<SnhowDepth>115-115"</SnowDepth>
<PrimarySurface>Powder</PrimarySurface>
<LiftsOpen>33 of 33</LiftsOpen>
<RunsOpen>200 of 200</RunsOpen>

</SkiResort>

</Root>

U.S. Patent Feb. 24, 2009 Sheet 12 of 15 US 7,496,838 B2

Figure 10

3123

<?xml version="1.0"7?>

<xsl:transform version="1.0" xmIns:xs|="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="sr-presentationLogic.xs!"/>

<xsl:template match="/*">
<xsl:call-template name="printRoot"/>
</xsl:template>

<xsl:template name="handleSkiResort">
<xsl:for-each select="SkiResort">
<xsl:.call-template name="printSkiResort">
<xsl:with-param name="Resort">
<xsl.value-of select="./Resort"/>
</xsl|.with-param>
<xsl:with-param name="SnowDepth">
<xsl.value-of select="./SnowDepth"/>
</xsl:with-param>
<xsl:with-param name="PrimarySurface™>
<xsl:value-of select="./PrimarySurface"/>
<{xsl:with-param>
<xsl:with-param name="LiftsOpen">
<xsl:value-of select="_/LiftsOpen"/>
</xsl.with-param>
<xsl:with-param name="RunsOpen'>
<xsl:value-of select="/RunsOpen"/>
</xsl:with-param>
</xsl:call-template>
<fxsl:for-each>
</xsl-template>

<xsl:template name="handleRoot">
<xsl:for-each select="Root">
<xsl:call-template name="printRoot"/>
</xsl|:-for-each>
</xsl:template>

</xsl:transform>

US 7,496,338 B2

<8)ejduwisyiiex/>
<|Wy/>
<Apoqg/>
<2|QE})/>
«Apoqif>

</ HOSaHS9puRy, =aluieu 9)e dWid}-||Bed:SX>

<il/>
<U)>uado suny< doj =ubiijea Jajuad =ubye yi>
<Yy/>uadp syi<, dot =ubyea Jajuan, =ubie yi>
<Y)y>e0epung Aewud<, doj =ubijea Jajus),=ubje yi>
<4)/>yideg mouge, doj =ubijea Jejusn =ubye yp>
<Yi/>U0say<,31ppIN=ubiiea Jajue),=ublle yi>

<l]>
<ApoqQ)>
<.%004.=4pim .z =Bueds)so z,=buppedio ,0,~j8p10q s[qey>
\r, </1Qz
o < 1>
= <Q/>BIqUINo7 yshug - wodey 1M8<q>
o .nhhuDQu.
A <peay/>
> <8/>UcdaymS <>
- </,00A1-UBU0D, =AINba-dNY ., | -5GE8-OSI=19SIEYD ‘JWIY/IXE),=IUSIU0D BlaW:
9 9. <pedy:>
<{WIY>
<, Jooriund =suwieu sjejdwa) sy
.ﬂll”“””“H”H””“””“"””""”"”H"””“""“""“""“"“"”“””“”H“““””"“”“"”H”H“"""""“"""""“"””t.lr”””Imu.c
- <— j004juld —-j>
m .ﬂll""“““”“”.."”H””""""""""”"""”H""“""“””"”””””““”””“““””"””""“nﬂ”““""“""“"""""""H"””“"llm.....u
&
-
& <inl 0,=UOISIAA B1RIAWALTNL HE >
.m <, LUQIsURL] FISX/666 L /D10 CA A/ AIY, = [SXISUIWX 0’ L..=UOISISA LUOJSURIY|SX>
IIH“”“””“““H""l“”"""H"“”""“H“”H”“H”"“"""”""”H""""""""""“"”H”HH””““""“”""“””“""””""I_u_.__.
= < Jojelauac) 1SX0L TN LH SINgI AQ pelelausb sem 3| Iyl —i>
_.HIIH“"Hu“”“""""""H"“"””H””“"HH”““"”“""“”“"""“"""""“"""""”””"H””“"”H””“““”“”"”““"H"..""I_U.f

U.S. Patent

<i 1'0.=uoisian aeidwal N L HE>
<é.0 L. =UOISISA JWIX; >

qzit

Vil 2inbiy

<ULIOJSURIY |SX/>
<a)ejdwa);|SX/>
</ HOosSayIyQIuud, =aweu aje|dwa)-||Bo:|SX>
<, HOSOYNSojpuey, =aWweu sje|dwsa)|sx>

US 7,496,338 B2

<9)e|dLa);|SX/>
<J}/>
<P}/>
</, uadQsunys,=109|8S JO-aN|BA|SX>
<, do] =ubjea Jojan, =ubje p)>
<P}/>
</ uad(sylTs,=109[8s Jo-an|eA:|Sx>
<, do| =ubiea Jsjuan =ublye py>
<pPl/>
</, 90eungAiewuds, =109|9s Jo-aNnjeA:|SX>
<, do| =ubiea Jajag =uble pl>
<Pl/>
</, yidagmougy, =109|9s JO-anjeAl|SX:>
<, doj =ubiea Jajua)n =uble pi>
<Pl/>
</ 0593, =109|9S JO-8N|BA|SX>
<. 3IPPIN, =uB1eA J8juan =ublie p1>
<l]l>
</ H0Sey, =sweu wesed:|SX:
</ yidegmoug, =auwleu weled:|sx>
</, 80engliewlll 4, =aweu weied:Sx>
</ uadpsyiy, z=eweu weied:sx>
</ uadOsuny, =sweu weled:|Sx>
<, JOSaySluLd =aweu a)e|dwsy}:|SX>

Sheet 14 of 15

Feb. 24, 2009

qcit

dll ainbi

U.S. Patent

<WJIojsuel}:|SX/>

<2)B|dWa]|SX/>
<HOSIYNS/>
<uadOsuny/>
<f.()xay(Glpy ,=108|es Jo-Adoo:|sX>
<uadpsuny>
<uadQsyly/>
</.Oe)vlp) =108]198 JO-Ad0D:|SX >
<UadQsyn:
<3dorUNGAIBWILIA/>
</ xay/[elpi/, =108(9s J0-Ad02:[SX>
<aoepngAleWld>
<yidegmous /=
</ (¥x3)/(Z]pY,=10819S J0-AdoD:|SX>
<Yldagmougs
<HOSDY />
</ (OWey[LIpY/ . =109|95 Jo-Ad0D:|sX>
<OSa¥ >
0021 <JOSDHINS>

/’ <, HOSBMNS, =duweu a9)e|dws): |Sxs

US 7,496,338 B2

Sheet 15 of 15

<ole|dwa):|sX/>
<]00Y/>
<UIBD-I0) |SX /=
</ HOSOYINS, =8LueU 3)e|dwal-||eD:|SX>
<J[iSleil/LL)Apoaylileiaey/[1)Apoqgy =108(es YoBa-108:SX>
<]O0Y>
<, JOOY, =dWweu a)e|dwa); |sX>

Feb. 24, 2009

Cl m.:._m_u_ <ale|dwal:|sX/>
</, 1004, =sweu aje|dwsal-|jeo;|sX>

<, |JWiy/,=yolew as1e1dwa); |sx

<-- 2)ejdwio) pass —-j>

</.Cu=JUNOWE-lUSpuliueeX ,|wx,=poylaw ,sak,=juspul ,8-4 | N.=Buipodus Indino: [sxs

<, Wi0ISURL] F1SX/666 /D10 em mammy/ - d)IY, =|SX:SUJWIX
JISX/B10 ayoede jwx//. djy, =Ue|exX:Su[WX Q' |, =UOISISA WLIojsuelll[SX>

.n..m.:_.o. _‘:" CO_W._mw} _Evnm__uv

U.S. Patent

US 7,496,838 B2

1
CONVERTING MARKUP LANGUAGE FILES

FIELD OF THE INVENTION

The mvention relates generally to the conversion of {files
from one format to another and, more particularly, relates to
converting markup language files from one format to another.

BACKGROUND OF THE INVENTION

The Internet and, more particularly, the world wide web
(WWW) portion, has developed tremendously over the past
decade. The development of the WWW 1s now one of the
primary means for people and various organizations (e.g.,
companies, not-for-profit organizations, individuals, etc.) to
communicate and contact persons or other organizations. The
interaction between a web site provider and a reader may be
predominately one-way (e.g., data flowing predominately
from the web site provider to the reader) or two-way.

As a result of the explosive development and use of the
WWW, the use of markup languages has become quite com-
mon. Most common amongst these 1s the HyperText Markup
Language (HTML). Many web sites are simply a collection of
hyperlinked (or “linked”) HTML files. The individual HIML
files typically include both content (e.g., information that 1s
being conveyed to the reader) and formatting information
(e.g., display data used to format the visual characteristics of
the content on a screen). There has been some use of
stylesheets (a stylesheet 1s a file that 1s used to store margins,
tabs, fonts, headers, footers and other layout settings for a
particular category of document. When a style sheet 1s
selected, 1ts format settings are applied to all the documents
created under 1t, saving the page designer or programmer
from redefining the same settings over and over again for each
page) to generate web sites but the use of these stylesheets 1s
not particularly common and certainly not widespread.
Implementations of stylesheets for HITML include the Cas-
cading Style Sheets (CSS) language.

HTML files requested by a user of web browser (e.g.,
Netscape Navigator, Microsoit Internet Explorer, Opera,
Mouzilla, etc.) are parsed by the web browser to generate (1.¢.,
render) the visual display of data presented on the display
device of the user (e.g., CRT, LCD display, etc.).

Resulting from the ubiquity of web browsers, the use of the
WWW and HTML files, many people (oiten non-computer
programmers/developers) have developed an understanding,
of HI'ML and, to a lesser extent, CSS.

Recently, the use of the extensible Markup Language
(XML) has become more common and 1s expected to become
the lingua franca of the WWW particularly and the Internet
generally 1n the near future. XML 1s used for defining data
clements on a Web page and business-to-business documents.
It uses a similar tag structure as HIML; however, whereas
HTML defines how elements are displayed, XML defines
what those elements contain. HI' ML uses predefined tags, but
XML allows tags to be defined by the developer of the page.
Thus, virtually any data items, such as product, sales rep and
amount due, can be 1dentified, allowing Web pages to func-
tion like database records. By providing a common method
for i1dentifying data, XML supports business-to-business
transactions and 1s expected to become the dominant format
tor electronic data interchange. However, XML can also be
used to generate HTML files that can be displayed by web
browsers.

Similar to the relationship between CSS and HTML, the
eXtensible Stylesheet Language (XSL) relates to XML. XSL

1s commonly applied to the task of transforming XML data

10

15

20

25

30

35

40

45

50

55

60

65

2

into HI'ML data that 1s suitable for presentation 1n a web
browser through use of an eXtensible Stylesheet Language
Transformation (XSLT) processor. A web developer that
chooses to make use of XSL needs to be able to write XSL
code that will process XML data to produce a visually appeal-
ing web page. In order to write this code, an XSL programmer
will typically work from an HIML template. This HIML
template provides an example to the XSL programmer of the
kind of result that the transformation should produce. This
HTML template may be created from scratch by the devel-
oper (or perhaps by a graphic designer or other non-computer
programmers) most often using a WY SIWYG HI'ML editor.
Often 1n cases where developers are migrating from other
technologies to XML/XSL these HITML templates will
already exist. After acquiring an appropriate HI ML template
the XSL programmer 1s faced with the task of writing the code
to present the XML mput 1n the form specified by the HIML
template.

The most common approach that 1s currently used to per-
form this task of creating the XSL data ivolves copying
sections of HTML code mto XSL template bodies. This
approach suflers from the fact that the presentation logic
(HTML tags) and the data logic (XPaths, etc.) are jumbled
together. Because the HIML code 1s now broken into dis-
persed fragments, a WY SIWY G editor can no longer be used
to maintain the HI'ML code. Similarly the concerns of pre-
sentation and data logic can no longer be divided and assigned
to different parties.

Additionally, since much of the creation of content and
formatting data contained within HTML files 1s created by
non-computer programmers (e.g., graphic designers, content
creators, etc.), requiring these creators to learn, understand
and develop XSL code 1s a monumental undertaking. Addi-
tionally, the number of developers available that have a com-
petent understanding of XSL, XML and HI'ML to generate
XSL so that XML files can be used to generate HI' ML files 1s
not sufficient.

At least two approaches to the problems noted above 1n
converting XML data into HTML data files are known to the
inventors of the present application. In the first approach as
described above, HTML data and XSL data are mixed into a
single file. However, this approach has some significant draw-
backs. Notably, the mixed HITML/XSL {file cannot be main-
tained or edited using known WYSIWYG HTML editors. In
the second approach, using an HITML template, the HIML
template 1s processed to generate XSL code. This second
approach while having certain advantages over the first, also
has some notable shortcomings.

Accordingly, 1t would be desirable to provide solution
which addresses these shortcomings, at least in part.

SUMMARY OF THE INVENTION

The present invention 1s directed to providing for the con-
version of markup language files or data.

The invention provides for the separation of formatting and
content data 1n a first markup file (e.g., an HI'ML file) so that
a second markup language file (e.g., an XML file) containing
the content data and formatting or presentation data file (e.g.,
an XSL file) can be created.

Content data 1n the first file that 1s to be converted 1s tagged.
The tagged data may be included 1n an HTML file. The
invention processes the tagged data so that content data 1s
identified and used to generate a file in the second format
(e.g., an XML file). The presentation or formatting data 1s also
identified and used to generate the presentation data file (e.g.,
an XSL file). The mvention can be employed to convert the

US 7,496,838 B2

3

existing data files (e.g., HTML files) into files which are
separated 1into content data files (e.g., XML files) and presen-
tation data files (e.g., XSL files).

In one aspect of the present invention there 1s provided
encouragement to move from the HTML-centric space where
content and presentation data are combined to the XML,
XSL-centric space which separates the content from the pre-
sentation data. The XML data can then be used purposes other
than the simple generation of HI'ML files using an XSLT
Processor.

Advantageously, content creators can continue to use their
skills and tools which are directed towards HITML. Embodi-
ments of the invention are able to transform the HI'ML files
into XML and XSL files thus providing a separation between
style (1.e., presentation or formatting) and data (e.g., content).

Advantageously, the inventors have recognized that the
second approach described above requires significant devel-
opment complexity 1n that the XSL processor must handle
two 1mputs—the original XML file and the processed HIML
file. This results 1n more complicated XSL code. Addition-
ally, the second approach requires additional CPU time at
runtime which can be a significant detriment. Specifically, at
runtime, the XSL processor must manipulate both the XML
and HTML files. In a further shortcoming recognized by the
present inventors, the second approach includes much of the
code 1n the HTML template file. Unfortunately, many com-
mon XSL processors/compilers have been developed to pre-
compile XSL code into Java to improve service side pertor-
mance. By including much of the code 1n the HIML file
which the XSL processor must handle 1n conjunction with an
input XML file, the benefit of this pre-compilation into Java is
lost. The present invention, 1n some embodiments, only a
single mput (e.g., an XML file) 1s required. Moreover, the
invention provides improved runtime performance since
much of the computation (e.g., CPU time) that 1s required can
be performed at development time (e.g., by a developer)
rather than at runtime which would result 1n users desiring to
view the HIML generated from an XML mput receiving a
quicker response to their request.

Other advantages and aspects will be apparent to those of
ordinary skill in the art.

In accordance with an aspect of the present invention there
1s provided a method for converting a first markup file to a
second markup file, said method comprising generating said
second markup file from data elements extracted from said
first markup file using tags 1n said first markup file; and
generating a conversion file using tags 1n said first markup
file, said conversion file, when processed with said second
markup {file, adapted to generate a third markup file similar to
said first markup file.

In accordance with another aspect of the present invention
there 1s provided a computer readable media product storing,
data and 1nstructions, said data and instructions, when pro-
cessed by a computer system adapt said computer system to
convert a first markup file to a second markup file, said con-
version comprising generating said second markup file from
data elements extracted from said first markup file using tags
in said first markup file; and generating a conversion file using
tags 1n said first markup file, said conversion file, when pro-
cessed with said second markup file, adapted to generate a
third markup file stmilar to said first markup file.

In accordance with still another aspect of the present inven-
tion there 1s provided a method for converting a first markup
file to a second markup file, said method comprising means
for generating said second markup file from data elements
extracted from said first markup file using tags in said first
markup file; and means for generating a conversion file using,

10

15

20

25

30

35

40

45

50

55

60

65

4

tags 1n said first markup file, said conversion file, when pro-
cessed with said second markup file, adapted to generate a
third markup file similar to said first markup file.

Other aspects and features of the present mvention will
become apparent to those ordinarily skilled 1n the art upon
review of the following description of specific embodiments
of the 1invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

In the figures which 1llustrate an example embodiment of
this 1nvention:

FIG. 1 schematically illustrates a computer system
embodying aspects of the mnvention;

FIG. 2 schematically 1llustrates, 1n greater detail, a portion
of the computer system of FIG. 1;

FIG. 3 illustrates, 1n functional block form, a portion of
FIG. 2;

FIG. 4 1s a flowchart of exemplary operations of the com-
puter system of FIG. 1;

FIG. 5 1s a flowchart illustrating more detailed operations
performed during the operations 1llustrated 1n FIG. 4;

FIG. 6 1s an exemplary illustration of a rendered HTML
file;

FIG. 7, which comprises FIGS. 7A and 7B due to space
limitations, 1s the HTML source code illustrated in rendered
form in FIG. 6;

FIG. 8 illustrates the modifications performed on the
HTML source file of FIG. 7 resulting from some operations
illustrated 1n FIG. 4;

FIG. 9, which comprises FIGS. 9A and 9B due to space
limitations, 1llustrates an XML file, forming part of FIG. 3,
generated during the operations of FIG. 4 on the HTML
source file of FIG. 7;

FIG. 10 1llustrates a first XSL file, forming part of FIG. 3,
generated during the operations of FIG. 4 on the HTML
source file of FIG. 7;

FIG. 11, which comprises FIGS. 11A and 11B due to space
limitations, 1llustrates a second XSL file, forming part of FIG.
3, generated during the operations of FIG. 4 on the HITML
source file of FIG. 7; and

FIG. 12 illustrates an XML file used during the operations
of FIG. 4.

DETAILED DESCRIPTION

It 1s to be understood that the particular orders of steps or
operations described or shown herein are not to be understood
as limiting the scope of the general aspects of the invention
provided that the result for the intended purpose 1s similar. As
will be understood by those skilled in the art, it 1s often
possible to perform steps or operations 1n a different order yet
obtain the same result. This 1s often particularly true when
implementing a method of steps or operations using computer
technology.

To better understand the various portions described below,
a general overview 1s provided so as to provide an overall
context for ease of understanding. It 1s to be understood that
this overview 1s exemplary of an embodiment of the invention
1s not to be limiting on the scope of the invention.

In overview, an HTML file 1s input to the HTML-XML-
XSL processor (hereinafter the “code generator”) which gen-
erates the XML and XSL code which separates the content
and presentation data (or logic) contained within the HTML
file. In many 1nstances, the input HTML file will be a *“skel-
cton” or template HTML file with little or no content data.

US 7,496,838 B2

S

Initially, portions or regions of the mput HITML file are
marked to 1dentily those sections that are to be processed by
the code generator. In the exemplary embodiment, two dif-
ferent tags are used: a Regional tag; and a Value tag. The
Regional tag 1dentifies a section of the input HIML file that
are used for a particular task (e.g., generating and populating
a table). For each regional tag added to the input HTML file,
an XSL template will be created. In addition to the regional
tags, value tags are embedded 1n the mput HITML file and
identify the position of where a data value should be substi-
tuted during runtime processing of the generated XML and
XSL files by the XSLT processor (the XML and XSL files
created by the code generator). In the XSL file created by the
code generator, each value tag will be used to define a tem-
plate. The templates created by the code generator (one for
cach of the region tags and value tags) form part of the XSL
file that 1s created by the code generator.

The tags embedded in the input file can be created either by
user mput recerved by code generator or created by the code
generator itself. In the latter embodiment, 1t may be prefer-
able for the automatically created to tags (1.e., those tags
embedded 1n the mmput HTML file by the code generator) to be
verified as satisfactory by receipt of user confirmation data—
¢.g., receving user input indicating acceptance of the embed-
ded tags.

Given the general overview provided above, the descrip-
tion of the various components of the embodiments of the
invention described herein can now be better understood by
those of ordinary skill in the art.

An embodiment of the invention, computer system 100, 1s
illustrated 1n FIG. 1. Computer system 100, 1llustrated for
exemplary purposes as a networked computing device, 1s 1n
communication with other networked computing devices
(not shown) via network 108. As will be appreciated by those
of ordinary skill 1n the art, network 108 may be embodied
using conventional networking technologies and may include
one or more of the following: local area networks, wide area
networks, intranets, public Internet and the like. Computer
system 100 may interact with other networked computer sys-
tems (not shown) thus providing the functions described
herein 1 a distributed environment. That 1s, although
throughout the description herein an embodiment of the
invention 1s illustrated with aspects of the invention embodied
solely on computer system 100, as will be appreciated by
those of ordinary skill in the art, aspects of the invention may
be distributed amongst one or more networked computing
devices which interact with computer system 100 via one or
more data networks such as, for example, network 108. How-
ever, for ease of understanding, aspects of the invention have
been embodied 1n a single computing device—computer sys-
tem 100.

Computer system 100 includes processing system 102
which communicates with various iput devices 104, output
devices 106 and network 108. Input devices 104, two of
which are shown, may include, for example, a keyboard, a
mouse, a scanner, an imaging system (e.g., a camera, etc.) or
the like. Similarly, output devices 106 (only one of which 1s
illustrated) may include displays, information display unit
printers and the like. Additionally, combination input/output
(I/0) devices may also be 1n communication with processing
system 102. Examples of conventional I/O devices include
removable and fixed recordable media (e.g., floppy disk
drives, tape drives, CD-ROM drives, DVD-RW drives, etc.),
touch screen displays and the like.

Exemplary processing system 102 1s illustrated in greater
detall 1n FIG. 2. As illustrated, processing system 102
includes several components—central processing umt (CPU)

10

15

20

25

30

35

40

45

50

55

60

65

6

202, memory 204, network interface (I/F) 208 and /O I/F
210. Each component 1s 1n communication with the other
components via a suitable communications bus 206 as
required.

CPU 202 1s a processing unit, such as an Intel Penttum™,
IBM PowerPC™, Sun Microsystems UltraSparc™ processor
or the like, suitable for the operations described herein. As
will be appreciated by those of ordinary skill in the art, other
embodiments of processing system 102 could use alternative
CPUs and may include embodiments in which one or more
CPUs are employed. CPU 202 may include various support
circuits to enable communication between 1tself and the other
components of processing system 102.

Memory 204 includes both volatile and persistent memory
for the storage of: operational nstructions for execution by
CPU 202, data registers, application storage and the like.
Memory 204 preferably includes a combination of random
access memory (RAM), read only memory (ROM) and per-
sistent memory such as that provided by a hard disk drive.

Network I/F 208 enables communication between com-
puter system 100 and other network computing devices (not
shown) via network 108. Network I/'F 208 may be embodied
iIn one or more conventional communication devices.
Examples of a conventional communication device include
an Fthernet card, a token ring card, a modem or the like.
Network I'F 208 may also enable the retrieval or transmission
of mstructions for execution by CPU 202 {from or to a remote
storage media or device via network 108.

I/O I/'F 210 enables communication between processing
system 102 and the various I/O devices 104, 106. I/O I/F 210
may include, for example, a video card for interfacing with an
external display such as output device 106. Additionally, I/O
I/'F 210 may enable communication between processing sys-
tem 102 and a removable media 212. Although removable
media 212 1s illustrated as a conventional diskette other
removable memory devices such as Zip™ drives, tlash cards,
CD-ROMs, static memory devices and the like may also be
employed. Removable media 212 may be used to provide
instructions for execution by CPU 202 or as a removable data
storage device.

The computer mstructions/applications stored in memory
204 and executed by CPU 202 (thus adapting the operation of
computer system 100 as described herein) are illustrated 1n
functional block form 1n FIG. 3. As will be appreciated by
those of ordinary skill in the art, the delineation between
aspects of the applications illustrated as functional blocks 1n
FIG. 3 1s somewhat arbitrary as the various operations attrib-
uted to a particular application as described herein may, in
alternative embodiments, be subsumed by another applica-
tion.

As 1llustrated, for exemplary purposes only, memory 202
stores operating system (OS) 302, communications suite 304,
code generator 306, input HTML file 308, output XML f{ile
310, output XSL file(s) 312 and general data storage (which

includes an XLST processor) 314.

OS 302 1s an operating system suitable for operation with
a selected CPU 202 and the operations described herein.
Multitasking, multithreaded OSes such as, for example, IBM
AIX™ Microsoft Windows NT™, Linux or the like, are

expected 1n many embodiments to be preferred.

Communication suite 304 provides, through, interaction
with OS 302 and network I/'F 208 (FI1G. 2), suitable commu-
nication protocols to enable communication with other net-
worked computing devices via network 108 (FIG. 1). Com-
munication suite 304 may include one or more of such
protocols such as TCP/IP, ethernet, token ring and the like.

US 7,496,838 B2

7

Code generator 306 1s adapted to receive an input HIML
file 308 and output an XML file 310 and one or more XSL files
312. In the exemplary embodiment code generator 306 1s also
adapted to receive user input (such as from mouse 106B, FIG.
1). The user input recerved by code generator 306 1dentifies
those portions of input HI'ML file 308 that should be tagged
as “regions” or “values”. In alternative embodiments, code
generator 306 may be adapted to 1dentily portions of 1mnput
HTML file 308 as “regions” or “values” automatically. In this
alternative embodiment, such identified portions could
require user mput to verily that the automatically 1dentified
portions are suitable or desirable. The operations of code

generator 306 are better understood with reference the opera-
tions 1llustrated 1n flow chart form 1n FIGS. 4 and 5.

Input HTML file 308 1s a conventional HI'ML file that
includes both content and presentation data.

Output XML file 310 1s generated by code generator 306
based on mput HTML file 308. XML file 310 contains the
content data of HTML file 308.

In the exemplary embodiment, XSL files 312 includes two
separate XSL files: a data logic XSL file and a presentation
logic XSL file. However, 1t should be noted that these two
separate XSL files could be combined into a single file 1n
alternative embodiments. Separating XSL file 312 into two
files enables a first file (the data logic file—hereinafter XSL
datalogic 312a) to include the navigation logic to navigate the
generated XML file 310 and calls the templates defined 1n the
second file (the presentation logic file—hereinatter XSL pre-
sentation logic 3125). Advantageously, the creation of XSL
files 312a, 3126 distills from a the stylesheet the logical
aspects (stored in XSL data logic 312a) from the presentation
aspects (stored 1n XSL presentation logic 3125).

Operations 400, which are performed by code generator
306, are 1illustrated in flow chart form 1n FIGS. 4 and 5.
However, an understanding and detailed description of code
generator 306 will be better understood with reference to an
exemplary mput HIML file 308 and the resulting output
files— XML file 310, XSL data logic file 312a and XSL
presentation logic file 312b. Accordingly, an exemplary
HTML input file 308 (hereinaiter “SkiResort.html 308”) 1s
illustrated 1n source code form 1 FIG. 7. When SkiResort.h-
tml 308 1s rendered by an HI'ML browser (such as those
identified above), the rendered image generated 1s 1llustrated
in FI1G. 6. The exemplary XML output file 310 (hereinafter
“SR-Data.xml 310”") generated by code generator 306 as a
result of processing SkiResort.html 308 1s illustrated in FIG.
9. An exemplary intermediate file (heremafter “SR-Templa-
te.xhtml 800”’) generated during the processing of SkiRe-
sort.html 308 1s 1llustrated 1n FIG. 8. The exemplary data and
presentation logic XSL files 312 (hereinafter “SR-DatalLog-
ic.xsl 312a” and “SR-PresentationlLogic.xsl 3125, respec-
tively) also generated by code generator 306 are 1llustrated in

FIGS. 10 and 11, respectively.

As 1llustrated in FIG. 6, the rendered SkiResort.html 308 1s
a table which includes a number of rows of data providing ski
data about the various ski resorts 1n British Columbia. SkiRe-
sort.html 308 would typically be generated on request to
provide potential resort customers (e.g., skiers, vacationers,
ctc.) with up to the moment data about the ski conditions.
However, in HTML format, SkiResort.html 308 1s not 1n a
format that would easily enable or support web services to be
developed which exploits the data contained in rendered
report and included in the source file illustrated in FIG. 7.
Accordingly, 1t would advantageous to transform the data in
SkiResort.html 308 1nto an XML file that would support such
a desirable use.

10

15

20

25

30

35

40

45

50

55

60

65

8

Accordingly, SkiResort.html 308 1s input into code gen-
erator 306 (operation 402—FI1G. 4). Code generator 306 also
receives user input during operation identifying those por-
tions that are to be transformed 1nto XML and XSL files (1.¢.,
those regions from which presentation and data logic are to be
extracted). In SkiResort.html 308, the user input indicates a
selection of region 702 (FIG. 7) which spans FIGS. 7A and
7B. The user mput may be provided by the selection of an
extraction region using a graphical user interface (GUI)
which presents the source code illustrated 1n FIG. 7 to the
user. The user may then highlight, 1n manners known to those
of ordinary skill, those portions of interest.

As aresult of receipt of user input, code generator 306 will
insert additional “tags™ which 1dentify the start and termina-
tion points of individual regions mentioned above as
“Regional tags”. Accordingly, a regional tag 1s inserted at the
start of a each 1idenfified region (“<Template Region
name="TagNName”>"—where TagName 1s an 1dentifier for a
selected region) and at the termination of each identified
region (“</TemplateRegion>"). The TagName, which
unmiquely 1dentifies a selected region, may be created by code
generator 306 and, 11 desired, modified by a user. Accord-
ingly, a start and termination regional tag would be inserted 1n
the exemplary embodiment at the start and termination points
of region 702. It 1s to be noted that although only one such
region 1s selected from the SkiResort.html 308 source code
(FIG. 7), more than one region could be selected (and would
be expected to be selected 1n other situations). Additionally,
regions can be nested. That 1s, a portion of selected region 702
could be selected to form a second region within the first
selected region, 11 desired. In such a situation a second region
would be contained within a first region. As will be appreci-
ated by those of ordinary skill in the art, the second region
should be contained wholly or completely within the first
region otherwise malformed XML code will be generated. IT
a user selects a second region which 1s not wholly contained
within a first region (i.e., there 1s only a partial overlap), the
user may be provided with an error or warning message or,
alternatively, the second region could be automatically sepa-
rated 1nto two regions (e.g., regions three and four) by code
generator 306. In the latter instance, region three would be
completely or wholly contained within the first region and the
fourth region would be wholly or completely without (i.e.,
outside) the first region.

As noted above, 1n alternative embodiments, a GUI may be
provided to a user so as to assist the user 1n the selection and
embedding of tags into the input HTML file 308.

Once the regions have been “tagged” by code generator
306 (404), code generator 306 parses the input HTML file 308
to remove portions of HITML source code which are repeated.
Retferencing FIG. 7, 1t 1s to be noted that much of selected
region 702 repeats with only the data changing. For example,
data portions 704a-704¢ identified 1n FIG. 7 (and correspond
to rendered rows 604a-604¢g) repeat with only the data values
associated with the various columns 602a-602¢ (e.g., resort
name, snow depth, primary surface, lifts open and runs open)
changing between the various data regions 704. Conse-
quently, code generator 306 will parse SkiResort.html 308
and delete additional copies of the data portions 704. That 1s,
code generator 306 will keep the first repeating data portion
704 (1.e., data portion 704a) and delete those data portions
704 that are repetitive (1.e., data portions 7045-704g).

Following the removal of repetitive data 1n the selected
region 702 of SkiResorthtml 308, code generator 306
replaces the data values (1.e., those values which fall under
columns 602 1n FIG. 6) with “value tags™. Each value tag in
the exemplary embodiment follows the form “{ValueTag-

US 7,496,838 B2

9

Name}” where the ValueTagName uniquely identifies data
that would otherwise be present 1n the selected region 702.
The unique 1dentifiers for ValueTagName are, 1n the exem-
plary embodiment, suggested by code generator 306 and may
be modified by user iput to provide a more descriptive and
casily understood 1dentifier.

The intermediate data file generated as a result of the per-
formance of operations 402 and 404 is illustrated as SR-
Template.xhtml 800 1n FIG. 8. As should be apparent to those
of ordinary skill 1n the art, selected region 702 (FIG. 7) has
been transformed into regional template region 808 1n SR-
Template.xhtml 800. Regional template region 808 includes a
start regional tag 802 (“<TemplateRegion
name="SkiResort”’>") and a termination regional tag 806
(“</TemplateRegion>""). The repetitive data portions 7045-
7042 have been removed and the remaining data portion 704a
has been modified to become modified data portion 804. As
will be noted, the data values 1in data portion 704a (1.e., Apex
Mountain, 79-85”, Pack Powder, 3 of 5, and 60 of 60) have
been replaced with value tags in portions 810a-810e where
the ValueTagNames are {Resort}, {SnowDepth}, {Primary-
Surface}, {LiftsOpen}, and {RunsOpen}, respectively.

The intermediate file—SR-Template.xhmtl 800—may
only exist as a temporary file 1n either or both volatile and
persistent memory 204.

Once SR-Template.xhtml 800 has been created (as a result
of operations 402, 404—FI1G. 4), the mput file, SkiResort.h-
tml 308 1s processed (operation 406) by code generator 306 to

create output files 310 and 312 (operation 408)—SR-
Data.xml 310 (FIG. 9), SR-Datal.ogic.xsl 312a (FIG. 10) and
SR-PresentationlLogic.xsl 3126 (FIG. 11), respectively.

The generation of the output files 310 and 312 1s better
understood with reference to FIG. 5. Code generator 306
during operation 406 performs operations 502-514 to process

the intermediate file 312 and the mput HITML file 308 to
generate output files 310, 312.

Code generator 306 parses the intermediate SR-Templa-
te.xhtml file 800 to 1dentify all of the tags (regional and value
tags) 1n the SR-Template file 800 (502). In the exemplary
embodiment, one regional tag pair (start and termination tags
802, 806, respectively) and the value tags 810a-810¢ ({Re-
sort}, {SnowDepth}, {PrimarySurface}, {LiftsOpen}, and
{RunsOpen}, respectively) will be identified.

Using the information from the parsing (502), code gen-
erator 306 1s effectively using SR-Template.xhmtl 800 as an
HTML template file. Code generator 306 extracts the content
data from 1nput HTML {file 308 and generates a conventional

XML file as output—i.e., XML file 310.

The extraction of content data from input HTML file 308 so
as to generate XML file 310 1s performed 1n the exemplary
embodiment by code generator 306. However, a separate
extractor component could be used to implement this func-
tionality in alternative embodiments.

In the described implementation, code generator 306 cre-
ates an intermediate XSL file (1llustrated as intermediate XSL
file 1200 1n FIG. 12). In the exemplary embodiment, inter-
mediate XSL file 1200 15 used for internal processing only
and 1s not exposed to a user. However, intermediate file 1200
could, i alternative embodiments, be presented (i.e.,
exposed) to the user so that the user input could be recerved to
modily the behaviour of file 1200. That 1s, modifications to
file 1200 responsive to user input could be accepted by code
generator 306 so as to enable different or more precise data
extraction.

10

15

20

25

30

35

40

45

50

55

60

65

10

Intermediate XSL file 1200 1s used by code generator 306
to extract the data from the HTML mput file. After analyzing
the HTML template, code generator 306 determines XPaths
that specily the positions where data and repeating blocks of
HTML may occur. Region tags in the HITML template file
(e.g., SR-Template.xhtml 800 illustrated 1n FIG. 8) are used
to 1dentify the positions where blocks of HIML occur that
require extraction. Value tags in the HITML template are used
to 1dentity where a piece of data (typically a text node or

attribute node) 1s located within the block of HI'ML.

This generated XSL file 1200 provides the logic to perform
the task extracting the embedded data from the original
HTML file. The format of the XML file generated from
extracting the data depends on the structure and naming of the
Region and Value tags that have been used to specily the
HTML template.

To generate the intermediate XSL file 1200 (FIG. 12) xsl:
transform and xsl:output structures are initially created.
Additionally, a “seed” xsl:template structure 1s also create
which 1s matched to the root of the mput HITML file and 1s
used to mvoke the “Root” xsl:template also forming part of
the created XSL file 1200. Once these 1nitial structures have
been created, an xsl:template structure i1s created for each
region tag (including the “Root” region tag) in the HIML
template file (e.g., SR-Template.xhtml 800 1llustrated 1n FIG.
8). Each xsl:template structure so created 1s named to corre-
spond to the name of the associated region tag. If a region tag
1s nested within another region tag, then the XPath 1s deter-
mined to specity the position of the nested region tag’s con-
tent relative to 1ts parent region tag. Code generator 306 will
generate the following structure for each nested region tag
using the determined (1.e., computed) XPath:

<xsl:for-each select="computed-XPath-for-nested-region-tag™>

<xsl:call-template name="nested-region-name’/>
</xsl:for-each>

For each nested value tag (1.e., a value tag within a region tag),
the XPath 1s determined by code generator 306 and used to
specily the value tag’s content relative to 1ts parent region tag.
The determined XPath will then be used by code generator

306 to generate the following structure within intermediate
XSL file 1200:

<Value-Tag-Name:>
<xsl:copy-of select="computed-XPath-for-value-tag”>
</Value-Tag-Name>

As a result of the generation of the mntermediate XSL file,
output file 310 (see FIG. 9) can be generated by code genera-

tor 306 processing mtermediate XSL file 1200 and input
HTML 308.

In addition to generating an XML file from the input
HTML file 308, code generator 306 1s adapted to create two
XSL files—SR-DatalLogic.xsl 312a (FIG. 10) and SR-Pre-
sentationlLogic.xsl 3126 (FIG. 11), respectively (504—FIG.
5). The XSL files will include templates that will encapsulate
the presentation details of the mnput HITML file 308. During
operation 504, code generator simply creates the data and
presentation logic XSL files which contain initially only
minimal XSL information—the header and root elements
1002, 1102, respectively. Additionally, those non-selected
regions (1.e., those portions outside of selected region 702—

US 7,496,838 B2

11

FIG. 7) 1n the mmput HIML file 308 are efiectively copied
from the input HITML file 308 to the output XSL file 312 (af
there 1s only one file created) or the presentation logic file
(1.e., SR-Presentationlogic.xsl file 3125) 1f two XSL files are
created.

Code generator 306 performs operations 306-3514 to popu-

late the XSL files 312. For each regional tag pair 802, 860
(FI1G. 8) identified by code generator 306 (506), code genera-
tor 306 creates print template 1004 and handle templates
1006, 1106 (FIGS. 10 and 11, respectively) (508). Print tem-
plates (e.g., print template 1004) are responsible for produc-
ing the HTML nodes that are enclosed within a regional tag
pair of the intermediate file 800. As those of ordinary skill are
aware, XML documents are modeled as a tree of nodes. The
XML document 1s the parent node and each element 1s also
node. Although, HTML typically 1s referred to as included
“tags”, the production of the phrase “HTML nodes™ 1s used 1n
view of the terminology “nodes” common 1n describing XML
and XSL.

The print templates are employed by code generator 306 to
construct the XML tree in XML output file 310 and each print
template consists of an start tag (“<xsl:call-template
name="PrintName”>") and a termination tag (*“</xsl:call-
template>""). Handle templates (e.g., handle template 1006)
are employed simply to call the associated print template (1.e.,
those templates using the same i1dentifier—e.g., “SkiRe-
sort”’). Each handle template consists of an start tag (*<xsl:
template name="HandleName”>"") and a termination tag (“</
xsl:template>""). In the exemplary files used for example
purposes only, the regional tag pair 802, 806 (FI1G. 8) 1denti-
fied as “SkiResort” results 1n the creation during operation
508 by code generator 306 of handle template 1006 (F1G. 10)
identified as “handleSkiResort” (i.e., “handle” concatenated
with the i1dentifier of the selected regional tag pair) and the
print template 1004 identified as “printSkiResort” (1.e.,
“print” concatenated with the identifier of the selected
regional tag pair) in the SR-DatalLogic.xsl file 3124. Code
generator 306 also creates the handle template 1104 1n the
SR-PresentationlLogic.xsl file 3125b.

During the processing of a selected regional tag pair (e.g.,
regional tag pair 802, 806) code generator 306 processes any
value tags identified 1n the region bounded by the selected
regional tag pair (510). For each value tag identified in the
selected region (there are five such value tags—810a-810e—
in the exemplary intermediate file 800), an “xsl:param” code
1s added to the print template 1n the data logic file 312a. The
format of the “xsl:param” code added to the print template
COmprises a start tag (“<xsl:with-param
name="ValueTagldentifer’>") and a termination tag (“</xsl:
with-param>""). Within the “xsl:param” code of the print
handle a “xsl:value-of” code 1s added (following the form
“<xsl:value-of select="./ValueTagldentifter’/>"). The “xsl:
value-of” code will be used to output the value of the associ-
ated parameter.

In the example, five value tags are 1dentified 1n the selected
region. Accordingly, five value tag templates (comprising the
“xsl:param” and “xsl:value-o1” codes) are added to SR-Data-
Logic.xsl file 312a—namely value tag templates 1008a-
1008e.

After processing each value tag within the selected region
(510), code generator determines 1f there are any nested
regions (1.€., regions contained within) the region being pro-
cessed (314). In the example files, no such nested regions
exist and since there 1s only one region (region 702), code
generator 306 ceases operation having created XSL files 312.

However, assuming that a nested region did exist, code
generator would perform operations 508-514 for that nested

10

15

20

25

30

35

40

45

50

55

60

65

12

region. Additionally, code generator 306 would add code to
invoke the print template for the nested region inside the print
template of the containing region. That 1s, assume region 702
included a nested region. In this assumed example, code
generator would add XSL code inside the print template for
region 702 (1.e., print template 1004) to invoke the print
template of the nested region.

As a result of the foregoing, the presentation logic, data
logic and content data that was originally mixed into a single
file (anput HIML file 308) has been separated into three
filles—an XML file 310 that contains only content data; a first
XSL file—SR-DatalLogic.xsl file 312¢—that includes the
navigation logic to navigate the generated XML file 310 and
calls the templates defined in the second XSL file; and a
second XSL file—SR-PresentationlLogic.xsl file 31256—that
includes the formatting or presentation logic contained in the
mput HTML file 308.

As will be appreciated by those ordinary skill in the art,
when a user requests to view a web page (1.e., a rendering of
the data originally present in the mmput HITML file 308), the
web page server will need to process XML file 310 and XSL
files 312. Responsive to such a runtime request, a web server
will use an XSL processor to generate an HTML file from
XML and XSL files 310, 312, respectively. Unlike alternative
approaches known by the inventors of the present invention,
the XSL processor need handle only one data file related to
content data (1.e., only XML file 310) in contrast to other
approaches which require two files—an HI' ML template and
an XML imput file. As will be understood, the data logic file
312a, when processed by the XSL processor, imports the
presentation logic file 31256, thus enabling a runtime HI'ML
file to be generated responsive to a user request without sig-
nificant CPU processing required. That 1s, the HTML file
generated at runtime 1s similar to the original input HTML
file. The output displayed by rendering (1.e., processing) the
HTML file generated at runtime will appear 1dentical in most
instances to the output generated by rendering the original
input HTML file.

Those of ordinary skill 1n the art will understand that the
two output XSL files 312a, 3125 could be combined into a
single XSL file. However, there are advantages which may be
obtained in some environments by separating the logic related
to the data from the logic related to the presentation of the
data.

In the embodiment described herein, the print template 1s
not invoked directly but indirectly by calling the handle tem-
plate which corresponds to the print template. This indirect
invocation enables the insertion of “hooks” to be added.
These hooks are code inserted by other processes (e.g.,
another application) or by user input. Since 1 one embodi-
ment the data logic XSL file imports the presentation logic
XSL file, any templates which are similarly named in both
files are redefined 1n the XSL data logic file (i.e., 1t any
templates exist in both the data logic and presentation logic
XSL files, the template 1n the data logic XSL file takes pre-
cedence and overrides the similarly named templates
included 1n the presentation logic XSL file). Accordingly,
custom logic code can easily be inserted in the datalogic XSL
file without any modification required of the presentation
logic file. As persons of ordinary skill 1n the art will appreci-
ate, alternative embodiments of the invention may not imple-
ment the indirect imnvocation of the print template.

In further alternatives and as will be appreciated, the order
of some operations 400 and 406 (FIGS. 4 and 5) could be
rearranged and redefined. For example, operation 502 could
be removed and replaced or redefined such that code creator
306, after creating the base XSL files (operation 504) could

US 7,496,838 B2

13

parse the intermediate file 800 to 1dentify and then process
regional tag pairs individually. That 1s, code generator 306
could 1dentity a first regional tag pair, perform operations
508-514 and then parse intermediate file 800 to identity and
process the next regional tag pair as required.

Those skilled m the art will understand that modifications
to the above-described embodiment can be made without
departing from the essence of the invention. For example, 1n
one alternative, an embodiment of the present invention may
utilize the tagged HI'ML file at runtime. In such an embodi-
ment, the presentation.xsl file (i.e., an embodiment of XSL
presentation logic file 3126—FIG. 3) would not be generated
(since the presentation information would be accessed at
runtime directly from the tagged HTML file). The datalLog-
ic.xsl file (1.e., an embodiment of XSL data logic file 312a—
FIG. 3) would be generated appropnately to operate on two
document trees (the input XML document and the tagged
HTML document). As noted above, this approach may have
an 1mpact on runtime performance of the transformation).

While one (or more) embodiment(s) of this invention has
been illustrated 1n the accompanying drawings and described
above, 1t will be evident to those skilled 1n the art that changes
and modifications may be made therein without departing
from the essence of this mnvention. All such modifications or
variations are believed to be within the sphere and scope of
the invention as defined by the claims appended hereto. Other
modifications will be apparent to those skilled 1n the art and,
therefore, the invention 1s defined 1n the claims.

What 1s claimed 1s:
1. A method for convening a first markup file to a second
markup file, said method comprising:
iserting tags into said first markup file, wherein said tags
comprise a lirst tag i1dentifying data elements to be
extracted from said first markup file and a second tag
identifying a portion of said first markup file which
requires Conversion;
generating said second markup file from the data elements
extracted from said first markup file using the first tag 1in
said first markup file;
generating a conversion file using the second tag 1n said
first markup file, said conversion file, when processed
with said second markup file, adapted to generate a third
markup file stmilar to said first markup file; and
displaying output rendered by the third markup file on a
graphical user interface.
2. The method of claim 1 wherein said first tag comprises
a value tag and said second tag comprises a regional tag.
3. The method of claim 1 wherein said first markup file
comprises an HI'ML file, said second markup file comprises
an XML file and said conversion file comprises an XSL file.

4. The method of claim 1 wherein said generating said
second markup file comprises:

extracting said data elements 1dentified by said first tag.

5. The method of claim 4 wherein said generating said
conversion file comprises:
generating a template of said portion identified by said
second tag, said template for producing nodes 1dentified
by said second tag.
6. The method of claim 5 wherein said generating said
conversion file further comprises:
for each of said first tags 1n said portion identified by said
second tag, copying the portion i1dentified by said first
tag and replacing said data element with an identifier for
said data element, said i1dentifier replaced during pro-
cessing to generate said third markup file by a corre-
sponding data element from said second markup file.

10

15

20

25

30

35

40

45

50

55

60

65

14

7. The method of claim 1 wherein said conversion file
comprises a first conversion file and a second conversion file,
said first conversion file comprising data logic and said sec-
ond conversion file comprising presentation logic.

8. A computer readable media product storing data and
instructions, said data and instructions, when processed by a
computer system adapt said computer system to convert a first
markup file to a second markup file, said conversion compris-
ng:

inserting tags 1nto said first markup file, wherein said tags

comprise a lirst tag i1dentifying data elements to be
extracted from said first markup file and a second tag
identifying a portion of said first markup file which
requires conversion;

generating said second markup file from the data elements

extracted from said first markup file using the first tag 1n
said first markup file; and

generating a conversion file using the second tag in said

first markup file, said conversion file, when processed
with said second markup file, adapted to generate a third
markup file similar to said first markup {ile.

9. The computer readable media product of claim 8
wherein said first tag comprises a value tag and said second
tag comprises a regional tag.

10. The computer readable media product of claim 8
wherein said first markup file comprises an HI'ML file, said
second markup file comprises an XML file and said conver-
s1on file comprises an XSL file.

11. The computer readable media product of claim 8
wherein said generating said second markup file comprises:
extracting said data elements 1dentified by said first tag.

12. The computer readable media product of claim 11
wherein said generating said conversion file comprises:

generating a template of said portion i1dentified by said

second tag, said template for producing nodes identified
by said second tag.

13. The computer readable media product of claim 12
wherein said generating said conversion file further com-
Prises:

for each of said first tags 1n said portion 1dentified by said

second tag, copying the portion identified by said first
tag and replacing said data element with an identifier for
said data element, said identifier replaced during pro-
cessing to generate said third markup file by a corre-
sponding data element from said second markup file.

14. The computer readable media product of claim 8
wherein said conversion file comprises a first conversion file
and a second conversion file, said first conversion file com-
prising data logic and said second conversion file comprising
presentation logic.

15. An information handling system for converting a first
markup file to a second markup file, said system comprising;:

means for inserting tags into said first markup file, wherein

said lags comprise, a first tag identifying data elements
to be extracted from said first markup file and a second
tag 1dentifying a portion of said first markup file which
requires conversion;

means for generating said second markup file from the data

clements extracted from said first markup {file using the
first tog 1n said first markup file; and

means for generating a conversion file using the second tag

in said first markup file, said conversion file, when pro-
cessed with said second markup file, adapted to generate
a third markup file similar to said first markup file.

16. The system of claim 135 wherein said first tag comprises
a value tag and said second tag comprises a regional tag and
wherein said first markup file comprises an HTML file, said

US 7,496,838 B2

15

second markup file comprises an XML file and said conver-
s1on file comprises an XSL {ile.

17. The system of claim 15 wherein said means for gener-
ating said second markup file comprises means for extracting
said data elements 1dentified by said first tag, and wherein
said means for generating said conversion file comprises
means for generating a template of said portion identified by
said second tag, said template for producing nodes identified

16

by said second tag and for each of said first tags 1n said portion
identified by said second tag, means for copying the portion
identified by said first tag and means for replacing said data
element with an 1dentifier for said data element, said 1dentifier
replaced during processing to generate said third markup file

by a corresponding data element from said second markup
file.

	Front Page
	Drawings
	Specification
	Claims

