US007493621B2
a2 United States Patent (10) Patent No.: US 7.493,621 B2
Bradford et al. 45) Date of Patent: Feb. 17, 2009
(54) CONTEXT SWITCH DATA PREFETCHING IN 6,073,215 A * 6/2000 Snyderceeeerrrnnn.. 711/137
MULITTHREADED COMPUTER 6,202,130 B1* 3/2001 Scalesetal. 711/137
6,253,306 B1* 6/2001 Ben-Merretal. 712/207
(75) Inventors: Jeffrey Powers Bradford, Rochester, 6311260 B1* 10/200" Stilile ;l;le ’ 1213
MN (US); Harold F. Kossman, T) i ST)
ROCheS‘[er, MN ([JS)j Timﬂthy JOhn 6,535,962 Bl * 3/2003 Mayﬁeld etal. 711/137
Mullins, Rochester, MN (US) 6,574,712 B1* 6/2003 Kahleetal. 711/137
6,697,935 Bl 2/2004 Borkenhagen et al.
(73) Assignee: International Business Machines 6,845,501 B2* 1/2005 Thompson et al. 717/140
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 1534(b) by 944 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 10/739,738
CN 1276888 A 12/2000
(22) Filed: Dec. 18, 2003
(65) Prior Publication Data
US 2005/0138627 A1~ Jun. 23, 2005 (Continued)
OTHER PUBLICATIONS
(51) Int.CL
GO6F 9/46 (2006.01) U.S. Appl. No. 09/458,883, filed Dec. 10, 1999, by Puzak et al.
GO6F 12/00 (2006.01)
GO6F 926 (2006.01) Primary Examiner—Thomas Lee
Go6l 9/30 (2006.01) Assistant Examiner—Abdullah Al Kawsar
Gool’ 9/44 (2006.01) (74) Attorney, Agent, or Firm—Wood, Herron & Evans
(52) US.CL ...l 718/108; 718/102; 718/107;
711/204; 711/140; 711/123; 711/124; 711/125; (37) ABSTRACT
712/205;°712/207;°712/228; 712/229; 712/230;
712/237
(58) Field of Classification Search 718/1-108; An apparatus, program product and method initiate, in con-
711/137, 214, 140, 220-240, 123, 124, 125, nection with a context switch operation, a prefetch of data
711/3, 204, 213; 712/214, 228, 205, 239240, likely to be used by a thread prior to resuming execution of
712/207, 229, 230, 237 that thread. As a result, once 1t 1s known that a context switch
See application file for complete search history. will be performed to a particular thread, data may be
_ prefetched on behalf of that thread so that when execution of
(56) References Cited the thread 1s resumed, more of the working state for the thread

U.S. PATENT DOCUMENTS
5,872,985 A 2/1999 Kimura

1s likely to be cached, or at least 1n the process of being
retrieved 1nto cache memory, thus reducing cache-related
performance penalties associated with context switching.

20 Claims, 4 Drawing Sheets

5,893,159 A * 4/1999 Schneider 711/150
5,958,045 A * 9/1999 Pickettoovvviirninniinn..n 712/229
6,014,728 A * 1/2000 Barorocovvvveniinnn.n.. 711/133
/—12 /-12 [12
! { {
PROCESSOR PROCESSOR| oco |PROCESSOR
16
\(| CACHE
SYSTEM
28 28
\ P
261 APP || APP [cco| APP
14 \“"' OPEHATING SYSTEM
\ MAIN STORAGE
18
| FO SYSTEM.
20 1
NS J | .| MASS
= %ﬂ STORAGE
e e

US 7,493,621 B2

Page 2
U.S. PATENT DOCUMENTS 2006/0294347 Al* 12/2006 Zouetal. 712/244
6,976,147 B1* 12/2005 Isaacetal. 711/205 FOREIGN PATENT DOCUMENTS
7,260,704 B2* 8/2007 Cookseyetal. 711/213
2003/0023663 Al* 1/2003 Thompson et al. 709/108 CN 1300006 A 6/2001

2004/0163083 Al 8/2004 Wang et al.
2005/0149697 Al* 7/2005 Ennghtetal. 712/214 * cited by examiner

U.S. Patent Feb. 17,2009 Sheet 1 of 4 US 7,493,621 B2

12 12 12
- /[-
—7 — 10

i PROCESSOR FROCESSOR 000 PROCESSOH] /

e - k- il P

16

| cacHE
SYSTEM
28 — 28
26\. APP APP |ooo| APP j FIG 1
14 N OPERATING SYSTEM]
\ MAIN STORAGE
18
/O SYSTEM.
20 o4
=P STORAGE
N
44 42
12
---t-, 4 .

| | - | |
| BUFFER | BUFFER
| : | PROCESSOR _} — _:

/38

1 INSTRUCTION 1 DATA - DATA
CACHE CACHE ||| PREFETCHER

SOJ k32

INSTRUCTION
PREFETCHER

| — — — o

34
] L2 CACHE

16 — —

NG I ,_ FIG. 2

N L3 CACHE _J

14 '
—+ MAIN STORAGE l

U.S. Patent

*@NTEXT SWITCH
52

Feb. 17, 2009

50

Sheet 2 of 4

50

US 7,493,621 B2

FIG.3 \@NTEXI swrcH) FIG. §

v _

U SAVE STATE OF CURRENT (SAVE STATE OF CURRENT
THREAD (INCLUDING PREFETCH THREAD (INCLUDING PREFETCH
CONTROL DATA) CONTROL DATA)

2] T S
. DETERMINE NEXT [DETERMINE NEXT-NEXT
THREAD TO EXECUTE THREAD TO EXECUTE
\/ RETRIEVE PREFETCH CONTROL \J” RETRIEVE PREFETCH CONTROL
DATA FOR NEXT THREAD DATA FOR NEXT-NEXT THREAD
58 I 70 — T
\ INITIATE DATA AND/OR /' INTIATEDATAANDIOR |
INSTRUCTION PREFETCH ! INSTRUCTION PREFETCH 1 ‘\
60 _ v . v
\| RESTORE STATE OF NEXT THREAD RESTORE STATE OF NEXT THREAD
62 | 70 —
\| INITIATE EXECUTION OF NEXT \/' INTATEDATAANDIOR | /
THREAD | INSTRUCTION PREFETCH |
_ jo————————mm—————— - I
3 4 1
(_DONE) \| INITIATE EXECUTION OF NEXT
THREAD
v
(' DONE)
INITIATE
T STATE | DET. NEXT T2
EXECUTION | SAVET! | THREAD | o b1 | RESTORESTATETE Hexecyrion
FETCH T2 D/ %
FIG. 4
DET. NEXT | INITIATE
1 STATE T2
NEXT | PREFETCH | RESTORE STATE T2
EXECUTION [SAVETY | ol |7 o EXECUTION

FIG. b

FETCH T3 D/l %%
L . _

U.S. Patent Feb. 17,2009 Sheet 3 of 4 US 7,493,621 B2

80 38
HISTORY TABLE N STRIDE TABLE 86 82 | <
W - STRIDE
> _j—» ALLOCATION -
o CONTROLLER -]
K | — l ~ 84 a4
FROM *L R/W | o ~—1 INC/DEC CACHE
CACHE - / CONTROL | CONTROL | CONTROL
CONTROL 92 —7 —
98 / I 88 - PREFETCH ENGINE
FIG. 7 SAVE/RESTORE PORT
ADDRESS
o 1 ;
9 ~102 ~104 106 </
TAG J_ INDEX | OFFSET
! FIG. 8
108 110
TAG ARRAY) | DATA ARRAY)
TAG | DATA
+ ~116 | ~118 —
-7 I_Eﬁ > »DATA
CONTROL __T
kil __
12/ 114
+ Y
SAVE/RESTORE PORT SEND ADDRESS TO

NEXT CACHE LEVEL

U.S. Patent Feb. 17, 2009

130

INITIATE INSTRUCTION
PREFETCH

132) L
k RETRIEVE PROGRAM

COUNTER (PC) FROM
STATE INFORMATION

34]

I\ l ISSUE TOUCH
INSTRUCTION FOR PC

CACHE LINE

\ ISSUE TOUCH E
. INSTRUCTION(S) FOR
. NEXT N CACHE LINES

" INITIATE DATA
PREFETCH

| !

Sheet 4 of 4

0
& RETRIEVE BASE ADDRESS

AND STRIDE FROM STATE
INFORMATION

154 Vo

K MODIFY BASE ADDRESS !
BY X*STRIDE '

L-u--—--—-—-——.——.-.—._.-.....,..._..____._._.._.._. — e e wm w wie wre —w ol - -me om b

156 |
K WRITE BASE ADDRESS

AND STRIDE TO HW
DATA PREFETCHER
Y
(" DONE)
FIG. 11

140

INITIATE INSTRUCTION
PREFETCH

142 i

US 7,493,621 B2

(" RETRIEVE PROGRAM
COUNTER (PC) FROM STATE
INFORMATION

144 |

\/ INSTRUCT HW INSTRUCTION
PREFETCHER TO PREFETCH
STARTING AT PC CACHE LINE

160

\,C INITIATE DATA >
PREFETCH
162 "REFETC

(v

RETRIEVE CACHE HISTORY
FROM STATE INFORMATION
164 !
K ISSUE TOUCH
INSTRUCTIONS FOR
LAST N CACHE LINES
(_DONE)
FIG. 12

US 7,493,621 B2

1

CONTEXT SWITCH DATA PREFETCHING IN
MULITTHREADED COMPUTER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. Ser. No. 10/739,739,

filed on even date herewith by Jefirey P. Bradiord et al., and
entitled “CONTEXT SWITCH INSTRUCTION

PREFETCHING IN MULTITHREADED COMPUTER,”
which application 1s incorporated by reference herein.

FIELD OF THE INVENTION

The invention relates to computers and computer software,
and 1n particular to prefetching of instructions and data 1n a
multithreaded computer system.

BACKGROUND OF THE INVENTION

(Given the continually increased reliance on computers in
contemporary society, computer technology has had to
advance on many fronts to keep up with increased demand.
One particular subject of significant research and develop-
ment efforts 1s parallelism, 1.e., the performance of multiple
tasks 1n parallel.

A number of computer software and hardware technolo-
gies have been developed to facilitate increased parallel pro-
cessing. From a software standpoint, multithreaded operating
systems have been developed, which permit computer pro-
grams to concurrently execute in multiple “threads™ so that
multiple tasks can essentially be performed at the same time.
Threads generally represent independent paths of execution
for a program. For example, for an e-commerce computer
application, different threads might be assigned to different
customers so that each customer’s specific e-commerce trans-
action 1s handled 1n a separate thread.

From a hardware standpoint, computers increasingly rely
on multiple microprocessors to provide increased workload
capacity. Furthermore, some microprocessors have been
developed that support the ability to execute multiple threads
in parallel, effectively providing many of the same perfor-
mance gains attainable through the use of multiple micropro-
cessors. In contrast with single-threaded microprocessors
that only support a single path of execution, multithreaded
microprocessors support multiple paths of execution such
that different threads assigned to different execution paths are
able to progress 1n parallel.

Irrespective of the number of separate execution paths that
are supported i the underlying hardware, however, the oper-
ating systems in multithreaded computers are typically
designed to execute multiple threads on each individual
execution path, typically by allocating time slices on each
execution path to different threads. While the threads
assigned to a given execution path technically are not
executed 1n parallel, by enabling each thread to execute for a
pertod of time and switching between each thread, each
thread 1s able to progress 1n a reasonable and fair manner and
thus maintain the appearance of parallelism.

While multithreading 1n this nature can significantly
increase system performance, however, some ineificiencies
exist as a result of switching between executing different
threads 1n a given execution path. In particular, whenever an
execution path switches between executing different threads,
an operation known as a context switch much be performed.
A context switch typically consists of saving or otherwise
preserving the working state of the thread that was previously

10

15

20

25

30

35

40

45

50

55

60

65

2

being executed, and 1s now being switched out, and restoring
the working state of the thread about to be executed, or
switched 1n.

The working state of a thread includes various state infor-
mation that characterizes, from the point of view of a thread,
the state of the system at a particular point 1n time, and may
include various imformation such as the contents of the reg-
ister file(s), the program counter and other special purpose
registers, among others. Thus, by saving the working state
when a thread 1s switched out, or suspended, and then restor-
ing the working state when a thread 1s switched 1n, or
resumed, the thread functionally executes 1n the same manner
as 11 the thread was never interrupted.

One undesirable side effect of performing a context switch
in many environments, however, 1s the increased occurrence
of cache misses once a thread 1s switched back 1. Caching 1s
a technique that has been universally utilized 1n modern com-
puter architectures, and 1s used to address the latency prob-
lems that result from the speed of microprocessors relative to
the speed of the memory devices used by microprocessors to
access stored data.

In particular, caching attempts to balance memory speed
and capacity with cost by using multiple levels of memory.
Often, a computer relies on a relatively large, slow and 1nex-
pensive mass storage system such as a hard disk drive or other
external storage device, an intermediate main storage
memory that uses dynamic random access memory devices
(DRAM’s) or other volatile memory storage devices, and one
or more high speed, limited capacity cache memories, or
caches, implemented with static random access memory
devices (SRAM’s) or the like. Often multiple levels of cache
memories are used, each with progressively faster and smaller
memory devices. Also, depending upon the memory archi-
tecture used, cache memories may be shared by multiple
microprocessors or dedicated to individual microprocessors,
and may either be integrated onto the same integrated circuit
as a microprocessor, or provided on a separate integrated
circuit.

Moreover, some cache memories may be used to store both
instructions, which comprise the actual programs that are
being executed, and the data being processed by those pro-
grams. Other cache memories, often those closest to the
microprocessors, may be dedicated to storing only 1nstruc-
tions or data.

When multiple levels of memory are provided 1n a com-
puter architecture, one or more memory controllers are typi-
cally relied upon to swap needed data from segments of
memory addresses, often known as “cache lines”, between
the various memory levels to attempt to maximize the fre-
quency that requested data 1s stored in the fastest cache
memory accessible by the microprocessor. Whenever a
memory access request attempts to access a memory address
that 1s not cached 1n a cache memory, a “cache miss” occurs.
As a result of a cache miss, the cache line for a memory
address typically must be retrieved from a relatively slow,
lower level memory, often with a significant performance hat.

Caching depends upon both temporal and spatial locality to
improve system performance. Put another way, when a par-
ticular cache line 1s retrieved into a cache memory, there 1s a
good likelihood that data from that cache line will be needed
again, so the next access to data 1n the same cache line will
result 1n a “cache hit” and thus not incur a performance
penalty.

Other manners of accelerating performance 1n connection
with caching include techniques such as instruction prefetch-
ing, branch prediction and data prefetching. Instruction
prefetching, for example, 1s typically implemented 1 a

US 7,493,621 B2

3

microprocessor, and attempts to fetch instructions from
memory belfore they are needed, so that the instructions will
hopetully be cached when they are actually needed. Branch
prediction, which 1s also typically implemented 1n a micro-
processor, extends instruction prefetching by attempting to
predict which branch of a decision will likely be taken, and
then prefetching instructions from the predicted branch. Data
prefetching, which 1s often implemented 1n a separate com-
ponent from a microprocessor (but which may still be dis-
posed on the same integrated circuit device), attempts to
detect patterns of data access and prefetch data that is likely to
be needed based upon any detected patterns.

From the perspective of an executing thread, therefore, as a
particular thread executes, more and more of the instructions
and data used by a thread will progressively become cached,
and thus the execution of the thread will tend to be more
cificient the longer the thread 1s executed.

However, given that the same premise applies to all of the
threads executing 1n a multithreaded computer, whenever a
thread 1s suspended as a result of a context switch, and then 1s
later resumed as a result of another context switch, it 1s likely
that some or all of the istructions and data that were cached
prior to suspending the thread will no longer be cached when
the thread 1s resumed (principally due to the caching of
istructions and data needed by other threads that were
executed in the interim). A greater number of cache misses
then typically occur, thus negatively impacting overall system
performance. Prefetching and branch prediction, which rely
on historical data, also typically provide little or no benefit for
a resumed thread upon 1ts 1nitial resumption of execution, as
the prefetching of instructions and data cannot be initiated
until after the thread resumes its execution.

Therefore, a significant need has arisen in the art for a
manner of mimmizing the adverse performance impact asso-
ciated with context switching 1n a multithreaded computer.

SUMMARY OF THE INVENTION

The mnvention addresses these and other problems associ-
ated with the prior art by mitiating, in connection with a
context switch operation, a prefetch of data likely to be used
by a thread prior to resuming execution of that thread. Put
another way, once 1t 1s known that a context switch will be
performed to a particular thread, embodiments consistent
with the invention mitiate prefetching of data on behalf of that
thread so that when execution of the thread 1s resumed, more
of the working state for the thread 1s likely to be cached, or at
least 1n the process of being retrieved 1into cache memory. As
a result, in many 1instances the cache-related performance
penalties associated with context switching can be reduced,
and thus overall system performance can be increased.

These and other advantages and features, which character-
1ze the 1nvention, are set forth 1n the claims annexed hereto
and forming a further part hereof. However, for a better under-
standing of the ivention, and of the advantages and objec-
tives attained through 1ts use, reference should be made to the
Drawings, and to the accompanying descriptive matter, 1n
which there 1s described exemplary embodiments of the
ivention.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram of an exemplary apparatus incor-
porating context switch prefetching consistent with the inven-
tion.

FIG. 2 1s a block diagram of the interconnection of a
processor with a main storage via a cache system in the
apparatus of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a flowchart illustrating the program flow of a
context switch routine executed by the apparatus of FIG. 1.

FIG. 4 1s a functional timeline 1llustrating the sequence of
operations occurring during execution of the context switch
routine of FIG. 3.

FIG. 5 1s a flowchart illustrating the program flow of an
alternate context switch routine to that 1llustrated 1n FIG. 3.

FIG. 6 1s a functional timeline 1llustrating the sequence of
operations occurring during execution of the context switch
routine of FIG. 5.

FIG. 7 1s a block diagram of an exemplary implementation
of the data prefetcher referenced in FIG. 2.

FIG. 8 1s a block diagram of an exemplary implementation
of the L1 data cache referenced in FIG. 2.

FIG. 9 1s a flowchart 1illustrating the program flow of an
exemplary initiate instruction prefetch routine executed by
the apparatus of FIG. 1 during a context switch.

FIG. 10 1s a flowchart illustrating the program flow of
another exemplary initiate 1instruction prefetch routine
executed by the apparatus of FIG. 1 during a context switch.

FIG. 11 1s a flowchart illustrating the program flow of an
exemplary mitiate data prefetch routine executed by the appa-
ratus of FIG. 1 during a context switch.

FIG. 12 1s a flowchart illustrating the program flow of
another exemplary initiate data prefetch routine executed by
the apparatus of FIG. 1 during a context switch.

DETAILED DESCRIPTION

The embodiments discussed hereinafter utilize context
switch prefetching to pretfetch data likely to be used by a
thread prior to resumption of execution of the thread. In this
context, data that 1s likely to be used by a thread may be
considered to include both the 1nstructions that are executed
by a thread, as well as the data that 1s processed by those
instructions as a result of their execution.

As will become more apparent below, context switch
prefetching may be used to prefetch data for a thread in
connection with a context switch to that thread, or i1n the
alternative, 1n connection with a context switch to another
thread (e.g., when the thread for which the data 1s prefetched
will be resumed upon the next context switch). Moreover, the
prefetching may be soitware- or hardware-based, and may be
performed for mstructions, data to be processed by mnstruc-
tions, or both. Various methods of mitiating a prefetch,
including issuing a touch instruction, programming a hard-
ware prelfetcher and/or writing control data to a buffer, may
also be used.

Furthermore, the types of state information that may be
stored in connection with saving the working state of a thread,
and later used to initiate a prefetch during a context switch,
may vary in different embodiments. For example, for
prefetching instructions, state information such as a program
counter, branch prediction information, hardware prefetcher
state information, and/or cache state information such as tag,
array data, most-recently-used (MRU) data and/or way pre-
diction data (among others), may be used. Likewise, for
prefetching data processed by instructions, state information
such as cache history information, hardware prefetcher state
information, base addresses and strides used 1n connection
with data prefetching, and/or cache state information such as
tag array data, most-recently-used (MRU) data and/or way
prediction data (among others), may be used. Furthermore,
precisely when during a context switch a prefetch 1s initiated
can vary 1n different embodiments, e.g., before restoring a
working state, while restoring a working state, after restoring
a working state, or even during execution of another thread

US 7,493,621 B2

S

scheduled for execution prior to resumption of the thread for
which the prefetch 1s to be imtiated.

It will be appreciated that a number of other modifications
and vanations may be utilized 1n other embodiments consis-
tent with the invention. The invention is therefore not limited
to the specific embodiments disclosed hereinafter.

Turning now to the Drawings, wherein like numbers
denote like parts throughout the several views, FIG. 1 1llus-
trates a computer 10 incorporating context switch prefetching,
consistent with the mvention. Computer 10 generically rep-
resents, for example, any of a number of multi-user comput-
ers such as a network server, a midrange computer, a main-
frame computer, etc. However, 1t should be appreciated that
the mvention may be implemented in other computers and
data processing systems, e.g., 1n single-user computers such
as workstations, desktop computers, portable computers, and
the like, or 1n other programmable electronic devices (e.g.,
incorporating embedded controllers and the like), such as set
top boxes, game machines, efc.

Computer 10 generally includes one or more system pro-
cessors 12 coupled to a main storage 14 through one or more
levels of cache memory disposed within a cache system 16.
Furthermore, main storage 14 1s coupled to a number of types
of external devices via a system input/output (I/O) system 18,
¢.g., one or more networks 20, one or more workstations 22
and one or more mass storage devices 24. Any number of
alternate computer architectures may be used in the alterna-
tive.

Also shown resident 1n main storage 14 1s a typical soft-
ware configuration for computer 10, including an operating
system 26 (which may include various components such as
kernels, device drivers, runtime libraries, etc.) accessible by
one or more applications 28. As will become more apparent
below, context switch prefetching is typically implemented in
whole or 1 part in an operating system, and in particular,
within the thread management and scheduling components
thereol. Moreover, as will also become more apparent below,
context switch prefetching may be implemented with or with-
out dedicated hardware components and/or modifications to
conventional hardware components, and 1n particular, purely
via solftware executing on a conventional hardware platform.

In general, the software-implemented portions of the rou-
tines executed to implement the embodiments of the inven-
tion, whether implemented as part of an operating system or
a specific application, component, program, object, module
or sequence ol instructions, or even a subset thereotf, will be
referred to herein as “computer program code,” or simply
“program code.” Program code typically comprises one or
more nstructions that are resident at various times in various
memory and storage devices 1n a computer, and that, when
read and executed by one or more processors 1n a computer,
cause that computer to perform the steps necessary to execute
steps or elements embodying the various aspects of the inven-
tion. Moreover, while the invention has and hereinafter will
be described in the context of tully functioning computers and
computer systems, those skilled 1n the art will appreciate that
the various embodiments of the invention are capable of being
distributed as a program product in a variety of forms, and that
the invention applies equally regardless of the particular type
of computer readable signal bearing media used to actually
carry out the distribution. Examples of computer readable
signal bearing media include but are not limited to recordable
type media such as volatile and non-volatile memory devices,
floppy and other removable disks, hard disk drives, magnetic
tape, optical disks (e.g., CD-ROMs, DVDs, etc.), among oth-
ers, and transmission type media such as digital and analog
communication links.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In addition, various program code described hereinafter
may be 1dentified based upon the application within which 1t
1s 1mplemented 1n a specific embodiment of the mvention.
However, 1t should be appreciated that any particular program
nomenclature that follows 1s used merely for convenience,
and thus the invention should not be limited to use solely 1n
any specific application identified and/or implied by such
nomenclature. Furthermore, given the typically endless num-
ber of manners 1n which computer programs may be orga-
nized into routines, procedures, methods, modules, objects,
and the like, as well as the various manners 1n which program
functionality may be allocated among various software layers
that are resident within a typical computer (e.g., operating
systems, libraries, API’s, applications, applets, etc.), it should
be appreciated that the invention 1s not limited to the specific
organization and allocation of program functionality
described herein.

Those skilled 1n the art will recognize that the exemplary
environment illustrated i FIG. 1 1s not intended to limit the
present invention. Indeed, those skilled 1n the art will recog-
nize that other alternative hardware and/or software environ-
ments may be used without departing from the scope of the
ivention.

FIG. 2 next 1llustrates the interconnection of one of pro-
cessors 12 from computer 10 with main storage 14 via cache
system 16. In the 1llustrated implementation, cache system 16
1s shown 1ncluding three levels of cache memory, with a first
level (1) including separate instruction and data caches 30,
32, and with second and third level (L2 and L.3) caches 34, 36
configured to cache both instructions and data. As 1s known 1n
the art, each of caches 30-36 may be integrated onto the same
integrated circuit device or chip as processor 12, or may be
disposed on one or more external chips. Moreover, each of
caches 30-36 may be dedicated to processor 12, or shared by
processor 12 with one or more additional processors. Further-
more, as noted above, any processor 12 may include one or
more cores providing separate paths of execution, and one or
more cache memories may be dedicated to individual cores in
some 1mplementations.

Consistent with the invention, a context switch operation 1s
utilized to mitiate a prefetch of data likely to be used by a
thread, prior to resumption of execution of that thread. In this
regard, a prefetch of data may result in the retrieval of data
into any or all of the cache memories 1n a cache system.

Moreover, initiation of a prefetch may be performed
entirely 1n soitware, entirely 1n hardware, or using a combi-
nation of hardware and software. In this regard, for imple-
mentations that are wholly or partially reliant on hardware, a
hardware-based prefetcher, e.g., a data prefetcher 38, may be
used to provide data prefetching functionality. In addition, in
some embodiments, it may be desirable to additionally
include hardware-based prefetching of instructions, e.g.,
using an istruction prefetcher 40. In some embodiments, the
functionality of prefetchers 38 and 40 may be combined. In
other implementations, a cache controller may be configured
to be controlled directly to prefetch instructions and/or data
during a context switch as required.

A hardware-based prefetcher typically includes function-
ality to provide commands to a cache controller 1n cache
system 16 and/or to main storage 14 to initiate the retrieval of
data 1n a particular cache line. As will become more apparent
below, many conventional data prefetchers attempt to detect
patterns 1n data access, and prefetch data according to such
detected patterns. Instruction prefetchers, on the other hand,
often are incorporated directly 1nto a processor, and typically
prefetch based upon the mstruction stream, oiten by prefetch-
ing subsequent cache lines to that pointed to be the program

US 7,493,621 B2

7

counter, and optionally using branch prediction to prefetch
instructions from one or more decision paths.

To control a hardware-based prefetcher in response to a
context switch, a number of different configurations may be
used. For example, a prefetcher may be directly readable and
writable by a processor to implement software-based control.
In other embodiments, a builer, e.g., one of bulfers 42, 44,
which may be logical or physical 1n nature, may be used to
store prefetch control data that 1s read out by a prefetcher to
prefetch data. For example, 1n some embodiments, software
may write prefetch control data to such a buifer, and a
prefetcher may be configured to read out the prefetch control
data 1n response to detection of a context switch. In addition,
in some embodiments, a write to a buifer may be used to
trigger a prefetch by a hardware prefetcher.

Where 1mitiation of a prefetch 1s entirely implemented in
soltware, such 1mnitiation may be implemented, for example,
through the use of dedicated instructions, such as touch
istructions (e.g., dcbt 1n the PowerPC ISA), or through
execution of load or store mstructions to appropriate memory
addresses (which are then handled by the cache system if the
memory addresses are not cached.)

Now turning to FIG. 3, an exemplary implementation of a
context switch routine 50 1s illustrated. Routine 50 may be
executed, for example, by the scheduling logic of a multi-
threaded operating system Routine 50 may also be executed
by other operating system components and/or within a runt-
ime library, and may be triggered by a number of different
events. For example, a context switch may be triggered by
expiration of a hardware or software timer, €.g., once a time
slice allocated to a thread has expired. A context switch may
also be triggered by a thread voluntarily releasing or suspend-
ing, e.g., if the thread 1s waiting on a disk access. A context
switch may also be triggered by a preemptive action such as
a higher priority thread or an interrupt.

Routine 50 begins 1n block 52 by saving the working state
of the current thread being executed, including any prefetch
control data as needed to indicate what data and/or instruc-
tions should be prefetched prior to resumption of execution of
the thread. Next, block 54 determines which thread should be
executed, e.g., using any number of known thread scheduling
algorithms, e.g., a round-robin algorithm. Block 36 then
retrieves the stored prefetch control data for the next thread,
and block 38 mitiates a data and/or instruction prefetch on
behalf of the next thread, using any of the vaniations discussed
herein. Block 60 then restores the working state of the next
thread, 1n a manner generally known 1n the art. Execution of
the next thread 1s then resumed 1n block 62, and routine 50 1s
complete.

As shown 1n FIG. 4, which 1llustrates the chronological
progression during a context switch from a thread T1 to a
thread T2, initiation of a prefetch prior to restoring the work-
ing state of thread T2 enables the fetching of data and/or
instructions to occur 1n parallel with restoration in the work-
ing state of thread T2. As such, when thread T2 resumes
execution, some or all of the data and/or 1nstructions used by
the thread will be cached, or at least 1n the process of being,
cached.

As such, initiation of the prefetch during the context switch
of FIG. 4 occurs prior to resuming execution of thread 12, as
well as prior to restoring the working state for thread T2.
However, 1t will be appreciated that initiation of a prefetch
may occur in other sequences. For example, initiation of a
prefetch may occur concurrently with or otherwise during
restoration ol a working state, or even prior to saving the
working state of the thread being suspended. In addition, as

10

15

20

25

30

35

40

45

50

55

60

65

8

illustrated by routine 30' of FIG. S, 1nitiation of a prefetch on
behalf of a thread may occur prior to even the context switch
to that thread.

In particular, routine 50' 1llustrates an implementation of a
context switch routine where mitiation of a prefetch on behalf
of a thread occurs during a context switch to another thread
scheduled for execution prior to that thread, e.g., immediately
prior thereto. Routine 30' begins 1n block 64 by storing the
state of the current thread. Next, block 66 determines the
next-next thread to be executed, 1.e., the thread that will be
executed aiter the thread to which this context switch pertains
has resumed execution. Block 68 then retrieves the prefetch
control data for the next-next thread. Thereafter, block 70
initiates a prefetch of data and/or instructions on behalf of the
next-next thread, and blocks 72 and 74 respectively restore
the state of the next thread and 1nitiate execution of the thread.

As represented by block 70', which may be executed 1n lieu
of block 70, 1t may be desirable to initiate prefetching at other
points during routine 50', ¢.g., after restoring the state of the
next thread. In addition, in other embodiments, initiating a
prefetch may occur at any point in the context switch, and
may even occur during execution of the next thread, but prior
to the subsequent context switch to the next-next thread.

Thus, as illustrated in FIG. 6, the chronological progres-
sion of a context switch from a thread 11 to a thread T2 1s
illustrated. In this context switch, a next-next thread (here
designated as thread T3) i1s determined, and data and/or
instructions are prefetched during the context switch. Given
that the execution of thread T2 and the context switch to
thread T3 still must occur prior to usage of the data and/or
instructions prefetched on behalf of thread T3, 1t will be
appreciated that routine 50' 1n general provides additional
time to ensure that more necessary data and/or instructions
will be cached upon resuming execution of a suspended
thread.

It will also be appreciated that, in the context of the inven-
tion, itiation of a prefetch prior to resuming execution of a
thread does not necessarily result 1n the process of fetching
data and/or 1nstructions being complete as of resumption of
execution of the thread, or even that active data transfer will
be mitiated as of resumption of execution. So long as the
process of prefetching 1s mitiated prior to such resumption,
and typically while the thread 1s suspended, it 1s anticipated
that the latency associated with retrieving needed data and/or
instructions will be improved versus retrieving the data/in-
structions as needed during execution of the thread.

As noted above, the type of state information that may be
stored as part of the working state of a thread, and which may
be used to generate prefetch control data used in the initiation
of prefetching, may vary in different embodiments. For
example, for prefetching instructions, state information such
as a program counter, branch prediction information, hard-
ware prefetcher state information, and/or cache state infor-
mation such as tag array data, most-recently-used (MRU)
data and/or way prediction data (among others), may be used.
Likewise, for prefetching data processed by instructions,
state information such as cache history information, hardware
prefetcher state information, base addresses and strides used
in connection with data prefetching, and/or cache state infor-
mation such as tag array data, most-recently-used (MRU)
data and/or way prediction data (among others), may be used.

One exemplary implementation of hardware-based data
prefetcher 38, for example, includes a prefetch engine 80 with
a scheduler block 82 that interfaces with an increment/decre-
ment control block 84 that updates entries 88 1n a stride table
86. Each entry 88, 1n particular, includes a base address value
and a stride value, with the base address value representing a

US 7,493,621 B2

9

current address to be fetched, and the stride value represent-
ing the amount to add or subtract from the base address to
generate a next address to be fetched.

Data prefetcher 38 generally operates by attempting to
discern access patterns among memory accesses, and predict-
ing which data will likely be needed based upon those pat-
terns. More specifically, once a base address and stride value
are determined, the base address 1s fetched via a command
from scheduler 82 to the cache system, and the base address
1s summed with the stride value by increment/decrement
control block 84, with the new base address value written
back into the table. Scheduler 82 additionally arbitrates
between multiple entries, and throttles the 1ssuance of cache
tetch requests based upon cache workload mformation pro-
vided by the cache system.

Entries 88 may or may not each be associated with particu-
lar threads. The initial values stores in the entries are typically
determined by analyzing a history table 90 having entries 92
for the last N cache lines accessed (or alternatively the last N
addresses accessed). A stream allocation controller 94 per-
forms such analysis and stores appropriate values 1n stride
table 96 for regular strides that are detected 1n the data access
pattern.

In the 1llustrated embodiment, 1t may be desirable to store
state information from stride table 86, history table 90, or
both, 1n connection with context switch prefetching. In this
regard, 1t may be desirable to provide a read/write control
block 96 to provide a save/restore port for processor access to
the pretetcher. In addition, the prefetch control data that 1ni-
tiates prefetching on behalf of a thread may use the save/
restore port to update the state of the prefetcher, e.g., by
restoring the state of particular entries in either or both of
tables 86, 90. Where certain entries are only associated with
particular threads, for example, it may be desirable to save
and restore only those entries that are relevant for a particular

thread.

In addition, 1t may be desirable to provide the ability to
modily an entry in either table. For example, 1n the case of
stride-based prefetching, 1t may be desirable to redo one or
more previous lfetching operations. In such an instance, for
example, 1t may be desirable to subtract one or a multiple of
the stride value from the current base address stored as a result
ol a context switch, prior to storing the base address 1n the
stride value. In many instances, this results 1n repeating one or
more prior fetch operations that were performed prior to
suspension of a thread. In other embodiments, 1t may be
desirable to simply utilize the history table to 1dentify cache
lines that should be prefetched on behalf of a particular
thread. It will also be appreciated that the invention may be
used with other types of hardware prefetchers, e.g., those that
attempt to prefetch linked lists, irregular strides, etc.

As another example of state information that may be saved
and/or restored 1n connection with context-based prefetching,
FIG. 8 illustrates one implementation of data cache 32 1n
greater detail. In this implementation, data cache 32 1s a direct
mapped (non-associative) cache. The cache 1s accessed via

il

addresses 100 that are partitioned into tag, index and offset
ficlds 102, 104, 106. Index 104 1s used to index a tag array
108, which stores tags, and a data array 110, which stores
cachelines, inentries 112, 114, respectively. A decision block
116 compares the tag stored at an entry 112 1n tag array 110
with the tag field 102 of a provided address. Upon finding a
match (indicating a cache hit), the index 104 1s provided via a
block 118 to data array 110, resulting 1n the output of the
cache line stored at the indexed entry 114. Upon not finding a
match (indicating a cache miss), block 116 passes the address

10

15

20

25

30

35

40

45

50

55

60

65

10

to the next level of cache to request that the cache line for the
requested address be retrieved from that other cache.

From the perspective of context switch prefetching, it may
be desirable to retrieve the contents of tag array 108 and store
such contents as part of the state information for a thread, e.g.,
via a read/write control block 120. Thereafter, the tag data
may be used to request cache lines identified by the tag array
as being previously cached (it will be appreciated that the
index for a particular tag array entry can be derived from 1ts
position in the array when 1t 1s desirable to generate a cache
line for a tag array entry). Moreover, while cache 32 1s imple-
mented as a direct-mapped cache, in other embodiments asso-
ciative, or multi-way caches, may be used. In such instances,
it may also be desirable to store other cache state data, e.g.,
MRU data and/or way prediction data.

It will also be appreciated that analysis of data and/or
instruction access patterns may occur purely 1n software, e.g.,
by analyzing instruction data flow. The invention 1s therefore
not limited to the particular hardware implementations dis-
cussed herein.

Now turning to FIGS. 9-12, four specific implementations
of prefetch mitiation consistent with the invention are shown.
It will be appreciated that multiple of such routines may be
executed 1n any given context switch.

FIG. 9 illustrates an 1nitiate instruction prefetch routine
130 that implements software-based instruction prefetching.
Routine 130 begins in block 132 by retrieving a program
counter (PC) stored in the state information for a thread.
Block 134 then 1ssues a touch instruction, or any other appro-
priate memory access instruction, to the cache line pointed to
by the PC. Thereatfter, block 136 optionally imitiates prefetch-
ing for other cache lines. For example, 1t may be desirable to
initiate prefetching for the next N cache lines following that
identified by the PC. It may also be desirable 1n other embodi-
ments to prefetch other execution paths, e.g., using branch

prediction data incorporated into the state information such as
in a Branch Target Address Cache (BTAC).

FIG. 10 1llustrates an alternate mitiate instruction pretetch
routine 140 that implements hardware-based instruction
prefetching. Routine 140 begins 1n block 142 by retrieving the
PC stored 1n the state information for the thread. Block 144
then 1nstructs the hardware instruction prefetcher to prefetch
one or more cache lines starting with that identified by the PC.
As above, such prefetching may simply prefetch adjacent
cache lines and/or prefetch other cache lines based upon
branch prediction techniques.

FIG. 11 1llustrates an 1nitiate data prefetch routine 150 that
implements stride-based data prefetching. Routine 150
begins 1n block 152 by retrieving a base address and stride
value from the state information. Block 154 then optionally
modifies the base address by subtracting one or a multiple of
the stride value from the base address, effectively redoing
prior data accesses. Block 156 then writes the (potentially
modified) base address and stride value into a hardware data
prefetcher. As a result of such an update, the hardware data
prefetcher will then begin prefetching starting at the base
address.

FI1G. 12 illustrates an alternate 1nitiate data prefetch routine
160 that performs cache line- or record-based prefetching.
Routine 160 begins 1n block 162 by retrieving a cache history
from state information for the thread, e.g., using data
retrieved from a tag array and/or a history table. Block 164
then 1ssues touch instructions, or other appropriate memory
access mstructions, for the last N cache lines, thus effectively
repeating data access activities that occurred during prior
executions of a thread.

US 7,493,621 B2

11

Various additional modifications may be made to the 1llus-
trated embodiments without departing from the spirit and
scope of the mvention. Therefore, the invention lies 1n the
claims hereinatter appended.

What 1s claimed 1s:

1. A method of performing a context switch operation 1n a
multithreaded computer, the method comprising initiating a
prefetch of data likely to be used by a thread prior to resuming,
execution of the thread, wherein the data for which the
prefetch 1s mitiated 1s determined using state information
stored during a prior context switch from the thread, wherein
iitiating the prefetch further includes retrieving the state
information stored during the prior context switch from the
thread, wherein the state information includes hardware
prefetcher state information, wherein 1nitiating the pretetch
turther includes 1imitializing a hardware prefetcher using the
hardware prefetcher state information, wherein the hardware
prefetcher state information includes a base address value,
wherein the hardware prefetcher state information further
includes a stride value, wherein mitializing the hardware
prefetcher includes initializing the hardware prefetcher to
prefetch starting at an address calculated by subtracting at
least one of the stride value and a multiple of the stride value
from the base address, wherein initializing the hardware
prefetcher includes initializing the hardware prefetcher to
repeat at least one prefetch operation performed prior to the
prior context switch from the thread, wherein the state infor-
mation identifies at least one cache line accessed prior to the
prior context switch from the thread, and wherein 1nitiating
the prefetch further includes imitiating prefetching of the
cache line i1dentified by the state information.

2. The method of claim 1, wherein initiating the prefetch of
data likely to be used by a thread includes initiating a prefetch
of at least one 1nstruction likely to be executed by the thread.

3. The method of claim 1, wherein initiating the prefetch of
data likely to be used by a thread includes initiating a prefetch
of data likely to be processed by at least one instruction
executed by the thread.

4. The method of claim 1, further comprising;

restoring a working state for the thread; and

resuming execution of the thread upon restoration of the

working state therefor.

5. The method of claim 4, wherein initiating the prefetch 1s
performed while restoring the working state for the thread.

6. The method of claim 4, wherein initiating the prefetch is
performed prior to restoring the working state for the thread.

7. The method of claim 1, wherein the context switch
operation includes context switching to another thread sched-
uled for execution prior to a context switch to the thread.

8. The method of claim 7, wherein initiating the prefetch 1s
performed during at least one of restoring a working state for
the other thread and resuming execution of the other thread.

9. The method of claim 1, further comprising storing the
state information 1n connection with storing a working state
for the thread during a context switch from the thread.

10. The method of claim 1, wherein the state information
includes cache state information.

11. The method of claim 1, wherein 1nstructing the hard-
ware prefetcher 1s performed by an operating system in the
computer.

12. The method of claim 1, wherein initiating the prefetch
includes executing a touch instruction.

13. The method of claim 12, wherein executing the touch
instruction 1s performed by an operating system 1n the com-
puter.

14. The method of claim 1, wherein initiating the prefetch
includes storing prefetch control data for the thread n a

10

15

20

25

30

35

40

45

50

55

60

65

12

butfer, the method further comprising retrieving the prefetch
control data from the buffer and performing a preietch opera-
tion based upon the prefetch control data.

15. The method of claim 1, further comprising retrieving
the data into a cache memory 1n response to initiating the
prefetch.

16. A method of performing a context switch operation in
a multithreaded computer, the method comprising initiating a
prefetch of data likely to be used by a thread prior to resuming
execution of the thread, wherein the data for which the
prefetch 1s mitiated 1s determined using state information
stored during a prior context switch from the thread, wherein
iitiating the prefetch further includes retrieving the state
information stored during the prior context switch from the
thread, wherein the state information includes hardware
prefetcher state information, wherein mnitiating the prefetch
further includes mitializing a hardware prefetcher using the
hardware prefetcher state information, wherein the hardware
prefetcher state information 1mcludes a base address value,
wherein the hardware prefetcher state information further
includes a stride value, wherein mmitializing the hardware
prefetcher includes initializing the hardware prefetcher to
prefetch starting at an address calculated by subtracting at
least one of the stride value and a multiple of the stride value
from the base address, wherein the context switch operation
includes context switching to another thread scheduled for
execution prior to a context switch to the thread, wherein
initiating the pretetch 1s performed responsive to the thread
being scheduled for execution immediately after execution of
the other thread, wherein the state information identifies at
least one cache line accessed prior to the prior context switch
from the thread, and wherein mitiating the prefetch further
includes mnitiating prefetching of the cache line identified by
the state information.

17. A method of performing a context switch operation in
a multithreaded computer, the method comprising initiating a
prefetch of data likely to be used by a thread prior to resuming
execution of the thread, wherein the data for which the
prefetch 1s mitiated 1s determined using state information
stored during a prior context switch from the thread, wherein
iitiating the prefetch further includes retrieving the state
information stored during the prior context switch from the
thread, wherein the state information includes hardware
prefetcher state information, wherein mitiating the prefetch
further includes mitializing a hardware prefetcher using the
hardware prefetcher state information, wherein the hardware
prefetcher state information 1ncludes a base address value,
wherein the hardware prefetcher state information further
includes a stride value, wherein mmitializing the hardware
prefetcher includes initializing the hardware prefetcher to
prefetch starting at an address calculated by subtracting at
least one of the stride value and a multiple of the stride value
from the base address, wherein the state information 1denti-
fies at least one cache line accessed prior to the prior context
switch from the thread, wherein initiating the prefetch turther
includes initiating pretetching of the cache line 1dentified by
the state information, and wherein initiating prefetching of
the cache line i1dentified by the state information includes
executing a touch instruction to an address in the cache line.

18. A method of performing a context switch operation in
a multithreaded computer, the method comprising initiating a
prefetch of data likely to be used by a thread prior to resuming
execution of the thread, wherein the data for which the
prefetch 1s mitiated 1s determined using state information
stored during a prior context switch from the thread, wherein
initiating the prefetch further includes retrieving the state
information stored during the prior context switch from the

US 7,493,621 B2

13

thread, wherein the state information includes hardware
prefetcher state information, wherein imtiating the prefetch
turther includes 1nitializing a hardware prefetcher using the

hardware prefetcher state information, wherein the hardware
prefetcher state mnformation includes a base address value,
wherein the hardware prefetcher state information further
includes a stride value, wherein mitializing the hardware
prefetcher includes initializing the hardware prefetcher to
prefetch starting at an address calculated by subtracting at
least one of the stride value and a multiple of the stride value
from the base address, wherein the state information includes
cache state information and wherein the cache state informa-

10

14

tion includes at least one of tag array information, most
recently used information, and way prediction information.

19. The method of claim 18, wherein 1nitializing the hard-
ware prefetcher includes mitializing the hardware pretfetcher
to repeat at least one prefetch operation performed prior to the
prior context switch from the thread.

20. The method of claim 18, wherein the state information
identifies at least one cache line accessed prior to the prior
context switch from the thread, and wherein mitiating the
prefetch turther includes mitiating prefetching of the cache
line 1dentified by the state information.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

