US007487493B1
a2 United States Patent (10) Patent No.: US 7.487,493 B1
Faulkner 45) Date of Patent: Feb. 3, 2009

(54) METHOD AND APPARATUS FOR 2002/0178434 A1 11/2002 Fox et al.
DEVELOPING STANDARD ARCHITECTURE 2003/0023577 Al* 1/2003 Sundius et al.o...oc....... 707/1

COMPLIANT SOFTWARE FOR

PROGRAMMARLE RADIOS 2003/0093769 Al 5/2003 Kumar
(75) Inventor: Bow John Faulkner, Montague, NJ
(US) OTHER PUBLICATIONS

(73) Assignee: ITT Manufacturing Enterprises, Inc.,

Wilmington, DE (US) “An Introduction to a UML Platform Independent Model of a Soft-

ware Radio”, M. Barbeau et al., International Conference of Tele-
communications (ICT), Beying, China, 2002, pp. 1-6, retrieved from

the internet at <http://www.scs.carleton.ca/~barbeau/Publications/>
on Jun. 8, 2007 .*

“Using Rational Rose 4.0,” 1996, Rational Software Corporation, pp.
(21) Appl. No.: 10/747,453 i-xvi, 1-219.*

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 808 days.

(22) Filed: Dec. 30, 2003 (Continued)

Primary Examiner—Eric B Kiss

(51) Int. Cl. (74) Attorney, Agent, or Firm—ZEdell, Shapiro & Finnan,

Go6l’ 9/44 (2006.01) [1C

HO04M 3/00 (2006.01)
(52) US.CL o, 717/105, 717/107, 456/418 (57) ABSTRACT
(58) Field of Classification Search 717/103,

717/10°7;, 455/418

See application file for complete search history. A method and apparatus 1s described for generating a stan-

(56) References Cited dard software communication architecture (SCA) compliant
wavelorm application for a software defined radio. An appli-

U.S. PATENT DOCUMENTS cation shell generator 1s used to separate implementation of

5729748 A 3/1998 Robbins et al. soltware radio soitware resources from implementation of
5,835,771 A 11/1998 Veldhuizen software radio waveform functionality. In this manner, an
6,002,867 A 12/1999 Jazdzewski additional layer of abstraction is defined and enforced
gagggﬂﬁg i g; 3888 Eond ct al. between software resource objects that control access to a set
S cArSon of physical abstraction layer SCA core framework API’s and
6,041,180 A 3/2000 Perks et al. - ; : I; This addit; [ah : 1
6.093.215 A 7/9000 Buxton et al. wavelorm unctlong 1y. S :-31. 1tional a stractlop ayer
6.182.279 Bl 1/2001 Buxton assures that the physical abstraction layer API’s only interact
6,195,794 Bl 2/2001 Buxton with architecture compliant source code. The source code,
6,349,404 Bl 2/2002 Moore et al. derived from software resource templates, also assures port-
6,405,368 Bl 6/2002 Freyburger ability of the generated software radio waveform application
6,553,268 Bl 4/2003 Schwenke et al. to other SCA compliant platforms.
7,191,429 B2* 3/2007 Brassard etal. 717/104
2002/0073397 Al 6/2002 Yoshida et al.
2002/0095654 Al 7/2002 Fukase et al. 37 Claims, 4 Drawing Sheets
INITIATE 402 l an
w7 e P
CONFIGURED
n:;LHEE;; a4 CONNECTION "
™| CONFIGURED / * i
MODULE MOBIFY TEMPLATES TO

* REFLECT INTERFACE AND
RETRIEVE TEMPLATES 406 CONNECTION DEFINITIONS /

CONFiGURATION PARAMETERS
FOR SELECTED MODULE)

AND DEFINED /
CONFIGURED INTERFACES

i

MODIFY TEMPLATE TO
REFLECT MODULE AND /
INTERFACE DEFINITIONS /
CONFIGURATION PARAMETERS

STORE MODIFIED | 420

TEMPLATE FILES TO |/
TARGET DIRECTORY

* 421
POPULATE STUB REFERENCES __,J

AND SKELETCH OBJECTS WITH
WAVEFORM FUNCTIONALITY

* 424
COMPILE AND LOAD SOFTWARE

RADIO WAVEFORM APPLICATION TO —J
SCA COMPLAINT PLATFORM

US 7,487,493 Bl
Page 2

OTHER PUBLICATIONS

Quatrani, “Visual Modeling with Rationale Rose and UML”, Booch
& Jacobson—Addison/Wesley, Apr. 1998 ch. 1-12, Appendix A.
Kulp, James, “Status and Activity in the OMG Relevant to HPEC”,
Mercury Computer Systems, Inc, Sep. 2002,

Zeligsoft; “Waveform Builder” (including Waveform Bulder’s
Application View and Platform View): retrieved from the Internet:
www.zeligsoft.com; 10 pages, no date given.

Zeligsott; “Automated SCA Compliance; Model-driven automated
generation and validation of SDR application; Waveform Builder;
retrieved from the Internet: www.zeligsoft.com; 3 pages, no date
given.

Zeligsott; “Zeligsoft Inc. Announces the Release of Waveform
Builder 1.0 Offering Model-Based Software Radio Descriptor Gen-
eration and Validation™; retrieved from the Internet: www.zeligsoft.
com, 2 pages, no date given.

Zeligsoft, “Wavetorm Builder”; retrieved from the Internet; www.
zeligsoft.com; 1 page, no date given.

Zeligsoft; “Automated Generation”; retrieved from the Intenet: www.
zeligsoft.com; 1 page, no date given.

Zeligsoft; “Application Across Industries”; retrieved from the
Internet: www.zeligsoft.com; 1 page, no date given.

Zeligsott; “Quality by Construction”; retrieved from the Internet:
www.zeligsoft.com; 1 page, no date given.

Zeligsoft; “Model Portability”; retrieved from the Internet: www.
zeligsoft.com; 1 page, no date given.

Zeligsoft; “Professional Services”; retrieved from the Internet: www.
zeligsoft.com; 1 page, no date given.

Zeligsoft; “Automated Validation”; retrieved from the Internet: www.
zeligsoft.com; 1 page, no date given.

Zeligsott; “SCA Compliance™; retrieved from the Internet: www.
zeligsoft.com; 1 page, no date given.

Bordeleau, F. et al.; “Tools for Commercial Component Assembly”;
7 pages, no date given.

Hogg, J.; “Model-Driven®: Beyond Code Generation™; Zeligsoft,
May 20, 2004, Version 1.0; 26 pages.

Hogg, I.; “Applying UML 2 to Model-Driven Architecture”; IBM
Software Group, Oct. 17, 2003, Version 2.0; 46 pages.

“UML 2.0: Exploiting Abstration and Automation™; Editorials and
Opinions; SD Times; retrieved from the Internet; 4 pages, no date.
Zamora, J.P., et al.; “From a Specification Level PIM to a Design
Level PIM 1n the Context of Software Radios”; Third Workshop on
UML for Enterprise Applications: Model Driven Solutions for the
Enterprise; 19 pages, no date.

Willink, E.D.; “Definition of Reactive Systems Using the Waveform
Description Language™; SDR Forum and AFRL/IFG Waveform
Development Environment Workshop; Nov. 1, 2000; 30 pages.
Kovarik, V.; “Software Defined Radio”; Next Level Solutions; pp.
1-12.

Harris dmTK & Spectrum SCA BSP; “SCA Core Framework and
Toolset for SDR-3000 Series Software Define Radio Platform™;
Spectrum Signal Processing; Aug. 7, 2003, 5 pages.

“Joint Tactical Radio System (JTRS)”; Version 3.2, JROC Approved,
JROCM 087-03; Apr. 9, 2003.

“JTRS Policy 003; Joint Tactical Radio System (JTRS) Waveform
Specification Standardization™; Department of the Army; Aug. 27,
2003, 10 pages.

Szelc, D.; “API Position Paper”, SDRF-03-1-0030-V1.0; Jun. 18,
2003, 7 pages.

Ubnoske, M.; Software Communications Architecture (SCA); Apr.
2003; pp. 1-8.

“Jomnt Tactical Radio System (JTRS) SCA Developer’s Guide”;
Raytheon Company; Contract No. DAAB15-00-3-001 Document
No.: Rev. 1.1; Jun. 18, 2002; pp. 1-78.

Willink, E.D.; “Definition of Embedded Software using the
Waveform Description Language™; Software Defined Radio Forum;
Sep. 12, 2000; pp. 1-26.

“Software Communications Architecture Specification”; Modular
Software-programmable Radio Consortium; MSRC-5000SCA,

V2.2, Nov. 17, 2001.

* cited by examiner

US 7,487,493 B1

Sheet 1 of 4

Feb. 3, 2009

U.S. Patent

001

Ol

801

191

IVIELINT YIS

1IN
NOILJANNO)
— 901

LINN
11NAOW

LIN
VLN

]

(0}

SF1MY NOILYIHTY3IA IINVITWOD -
ST ++)-

S3113 VK -

53113 11V1dW11 101 VE¥0) -

$3114 J1V1d WAL TWX -

A401150d14 31VidWil

US 7,487,493 B1

Sheet 2 of 4

Feb. 3, 2009

U.S. Patent

Bl

-
r r

[i2:]He

——
{ipuueyy xowyg

m
w

'
i

D WapoOW—

S .7 110
4 : F

T Aiinaagyaeig

[AuuRy) g

H
o

b

_

o

m._qmm..i_
i

DR

o inospy

|

¥
t

l-_
r

F

- . 4
|

e

e |0

TAN
_
M

! i

I B

u:rnnu pay- g -
WoJ YSH— :

Candepy
naanpay

" |
3 . .

* '

-
1
]
i
|
'

%
+
'

——m o= sl e e

dl

woua o wwr - -

- - A e — uxs nif. nm
1 :
'

F— -

o W r——

nRAYRRY §araT 4DIH SHLM.

-

- hrmrreruraiong. S [l de

0v

1

r

|
I~ R

R N S . -

b
|

5
- . !
! 1 ; "
\ _ :
1 :
P . . R - —a

— A W AT T . i e

—— o ol — v e e — e —— e — L —me, T

b e o —r—rinm— Em o e oara, |

jauwy

— {05

T |
e FIRR I WSH

FIV I

]

D B
N 2awpajug jagaey
L

M
07 214

[

130 NUND

I

WO B9

| F

|

i]

L)

,EH

k

y——- - — .

I
m :
| 33ydepy e

W ADR]IAE| nu_mn pyy w3

B
m

LI
i !

—mm m . mam

.E.*_.“E.:u_:u_,_ ..

T

t

¢
POW.

‘ .
e

- H
juiassy

oy inf e g lmy

S A e mm e, ca e, E e e . = e —

R — - ———rwr—.. . WL —_—

1
|
|

b

by
_ i
L
—AILIS)

RS

r

2IRPIUL 3P Rel ,

| _ ¥
{000 OIPIY—T
_ w
- amdepy! | .
- mpng] ! |

— (04U} JAU1TU
 A3mNEaY
| jauug

|

]

L

n—. 1
|

j

i

|

e

LT I
——
-

r 1| |
u e rd—ne |

mm
A S|
_

—— s -

J_i

|

! |
3

T e e ol e mg]aem g mamr

- -’ -~ —— - — e r——_—— ..

i /1448 8® 0]

- WA -

e

nkpt

aseg iepdos)] sHIE -

—
Wil -

3 200 apozmog i

W oo 81T 91T My it

q0¢L

0Ll

0tl

490 (

48¢

e8{(
8L(

3041

9L

U.S. Patent

Feb. 3, 2009

ACTIVATE USER
INTERFACE 302

ADD

" | MODULE 304

CONFIGURE
aopED | 306
MODULE

308

ADDITIONAL

MODULES NEEDED
!

YES

NO

ADD
MODULE
INTERFACE

310

CONFIGURE
ADDED
INTERFACE

314

ARE

ves ~ ADDITIONAL

INTERFACES NEEDED
!

Sheet 3 of 4

I 316

FIG.3

ADD
CONNECTION
: |
CONFIGURE >0
ADDED
CONNECTION
320

ARE

ADDITIONAL

CONNECTIONS NEEDED
)

NO

VERIFY 312

ARCHITECTURE
MODEL

US 7,487,493 B1

U.S. Patent Feb. 3, 2009 Sheet 4 of 4 US 7.487.493 B1

INITIATE 02—
APPLICATION - }')
LT SELECT
DEFINED / 3
CONFIGURED
SELECT 404 CONNECTION 414
DEFINED /

CONHGURED

| MODIFY TEMPLATES TO

MODULE
! REFLECT INTERFACE AND
S 406 CONNECTION DEFINITIONS /
| RETRIEVE TEMPLATE. CONFIGURATION PARAMETERS
FOR SELECTED MODULE
AND DEFINED /
CONFIGURED INTERFACES

HAVE

NO

408 ALL INTERFACES _
- MODIFY TEMPLATE 10 SEEN BUILT
| REFLECT MODULE AND
INTERFACE DEFINITIONS /
(ONFIGURATION PARAMETERS By
STORE MODIFIED | *20
410 TEMPLATE FILES TO

HAVE | TARGET DIRECTORY
NO ALL MODULES
BEEN BUILT — - 422
: POPULATE STUB REFERENCES
' AND SKELETON OBJECTS WITH
ES - WAVEFORM FUNCTIONALITY

424

COMPILE AND LOAD SOFTWARE

RADIO WAVEFORM APPLICATION TO
SCA COMPLAINT PLATFORM

F1G.4

US 7,487,493 Bl

1

METHOD AND APPARATUS FOR
DEVELOPING STANDARD ARCHITECTURE
COMPLIANT SOFTWARE FOR
PROGRAMMABLE RADIOS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to the development of soft-
ware lfor programmable radios. In particular, the present
invention pertains to generating standard architecture com-
pliant wavelorm software applications for programmable
radios.

2. Description of the Related Art

A software defined or programmable radio (SDR) 1s analo-
gous to a computer in that users can tailor 1ts capabilities to
meet specific needs by using relatively generic hardware and
loading multiple software waveform applications that meet
identified requirements. A software defined radio or software
radio 1s tlexible, by virtue of being programmable, to accom-
modate various physical layer formats and protocols.

A soltware defined radio converts analog radio signals of
different frequencies 1into digital data. The bits are processed
by software running on a microprocessor. Soitware controls
functionality such as frequency, modulation, bandwidth,
security functions, and wavelorm requirements. Software-
programmable, hardware-configurable radio systems provide
increased interoperability, flexibility, and adaptability to sup-
port the varied operational requirements of specific user
populations. Such software radios are typically built upon an
open system architecture that supports technology insertion
through evolutionary acquisition or preplanned product
improvement. Soltware radios that support evolutionary
acquisition or preplanned product improvement may be
modularly upgraded with modified hardware and/or software
modules. For example, modular upgrades can be used to
expand data throughput rates per channel, to expand the num-
ber of communication channels supported, and/or to increase
levels of reliability, availability, and maintainability sup-
ported by the software radio.

One example of a software radio 1s the Joint Tactical Radio
(JTR) System (JTRS). A JTR 1s a software radio that 1s
independent of the hardware platform employed and based
upon the JTRS Software Communication Architecture
(SCA). The JTRS SCA 1s an open architecture framework
that tells designers how elements of hardware and software
are to operate in harmony within the JTRS. An SCA Hard-
ware (HW) Framework 1identifies mimimum design specifica-
tions that must be met by SCA compliant hardware devices,
or platforms. An SCA Core Framework defines a set of appli-
cation programming interfaces (API’s) that serve as an
abstraction layer between a software defined radio wavetform
application and services provided by an SCA compliant hard-
ware platform.

Unfortunately, although open software radio architectures,
such as the JTRS SCA, support customized designs, evolu-
tionary acquisition and preplanned product improvement, the
architectures are typically complex. The complexity of such
architectures poses unique challenges to software radio
development projects attempting to develop software radios
in compliance with the architecture. For example, implemen-
tation of a J'TRS SCA compliant radio set using conventional
software development techniques typically requires the
development team members to have a working knowledge of
multiple computer languages and technologies, including
CORBA, IDL, POSIX, XML, C++, multithreading, and

make-files.

10

15

20

25

30

35

40

45

50

55

60

65

2

Typically, developers experienced with a target waveform
to be supported by a JTR under development must surmount
this JTRS technology learning curve before they can contrib-
ute waveform specific knowledge to the development project.
Understanding the intricacies of the JITRS standard and
related technologies typically takes an experienced software
engineer a daunting six months. Added to this learning curve
are the technical demands and challenges posed by the execu-
tion and testing of the developed software in an event driven,
real-time radio set.

Another drawback associated with the JTRS SCA, 1s the
lack of an enforcement mechamism to ensure that software
radio developers adhere to SCA guidance. For example, SCA
guidance requires SCA compliant waveforms to be imple-
mented 1n a manner that 1s logically separated from the ser-
vices supported by an SCA compliant hardware platform.
Although the SCA provides for such separation via the SCA
core framework API’s, there 1s currently no way to ensure that
developers preserve the integrity ol the API based abstraction.

For example, wavelorm engineers who are unfamiliar with
designing soitware radios in compliance with the SCA open
architecture typically experience difficulty visualizing the
new radio set architecture because they are accustomed to
envisioning radio set resources and radio set wavelorms as
integrated entities. As a result, SCA architecture API related
guidance 1s oiten purposefully and/or inadvertently modified
and/or bypassed thereby violating the SCA core framework
abstraction of the services provided by the physical radio set
to the software radio wavetorm application. As a result, port-
ability of the software radio wavetorm application to other
SCA compliant physical platforms 1s compromised.

Hence, a need remains for a method and apparatus that
allows software communication architectures, such as the
JTRS SCA, to deliver timely and cost effective software
defined radio wavetorm applications that are modular, stan-
dard architecture compliant and portable to any standard
architecture compliant hardware platform capable of provid-
ing the physical services required by the software radio wave-
form functions. Typically such physical services include
receipt of mput from a human computer mput device or
keypad, transmission/receipt of physical radio signals, physi-
cal audio input/output via a radio device microphone/speaker,
physical modem access, physical network access, etc.

Preferably, such an approach would reduce the technical
programming knowledge and standard architecture specific
knowledge required of a wavelform engineer to implement a
standard architecture compliant software radio waveform
application. Further, such an approach should provide a soft-
ware radio development team with a structured development
environment that assures that software radio application
wavelorms are implemented in a manner that complies with
standard architecture guidance and preserves the integrity of
defined standard architecture abstraction layers.

OBJECTS AND SUMMARY OF THE
INVENTION

Therefore, 1n light of the above, and for other reasons that
may become apparent when the mvention 1s fully described,
an object of the present invention 1s to assure that software
radio wavetorm applications are implemented 1n a manner
that complies with standard architecture guidance and pre-
serves the integrity of architecture abstraction layers.

Another object of the present invention 1s to deliver sofit-
ware radio wavetorm applications that are modular, architec-
ture compliant and portable to any architecture compliant

US 7,487,493 Bl

3

hardware platform capable of providing the physical services
required by the software radio wavetform functions.

Yet another object of the present invention 1s to reduce the
technical programming skills and architecture specific
knowledge required of developers to implement an architec-
ture compliant software defined radio waveform application.

Still another object of the present invention 1s to reduce
developer time and development costs associated with the
development of architecture compliant software radio wave-
form applications.

A Turther object of the present invention 1s to improve the
consistency and reliability of software radio wavetorm appli-
cations.

A still further object of the present invention 1s to increase
soltware radio design options and the ability to tlexibly adapt

a soltware radio design to accommodate new requirements
and/or previously unforeseen conditions.

The aforesaid objects are achieved individually and in
combination, and 1t 1s not intended that the present invention
be construed as requiring two or more of the objects to be
combined unless expressly required by the claims attached
hereto.

A method and apparatus 1s described for generating a stan-
dard software communication architecture (SCA) compliant
wavelorm application for a software defined radio. An appli-
cation shell generator 1s used to separate implementation of
software radio soitware resources from implementation of
soltware radio waveform functionality. In this manner, an
additional layer of abstraction 1s defined and enforced
between software resource objects that control access to a set
of physical abstraction layer SCA core framework API’s and
wavelorm functionality. This additional abstraction layer
assures that the physical abstraction layer API’s only interact
with architecture compliant source code. The source code,
derived from soitware resource templates, also assures port-
ability of the generated software radio waveform application
to other SCA compliant platforms.

The above and still further objects, features and advantages
of the present invention will become apparent upon consid-
cration ol the following detailed description of specific
embodiments thereot, particularly when taken 1n conjunction
with the accompanying drawings wherein like reference
numerals 1n the various figures are utilized to designate like
components.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a software radio waveform
application shell generator 1n accordance with an exemplary
embodiment of the present invention.

FIG. 2 1s a schematic illustration of an exemplary shell
generator graphical user interface (GUI) displaying a sofit-
ware radio data abstraction model 1 accordance with an
exemplary embodiment of the present invention.

FI1G. 3 1s a process tflow diagram illustrating the manner in
which a standard architecture compliant data abstraction of a
software radio 1s built in accordance with an exemplary
embodiment of the present invention.

FI1G. 4 1s a process flow diagram 1llustrating the manner in
which a standard architecture compliant software radio wave-
form application shell 1s generated based upon a data abstrac-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion model of a software radio 1n accordance with an exem-
plary embodiment of the present invention.

L]
By

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

FIG. 1 1s a block diagram of a software radio waveform
application shell generator 100 1n accordance with an exem-
plary embodiment of the present invention. As shown 1n FIG.
1, shell generator 100 includes a user interface 102 which
communicates, via mtegrated module unit 104, integrated
interface unit 106, integrated connection unit 108 and a build
unmt 110, with a template repository 112 that contains config-
urable, soitware communication architecture (SCA) compli-
ant, software radio source code templates for use in producing
a software radio waveform application shell.

In accordance with the present invention, a user builds, via
user interface 102, a high-level architecture model of a soft-
ware radio wavelorm application under development. The
high-level architecture model includes modules, interfaces,
and connections presented to user interface 102 by module
unit 104, interface unit 106 and connection unit 108 based
upon soiftware code templates stored in template repository
112. Once the model 1s completed, build unit 110 1s used to
generate a software radio wavelform application shell based
upon the model using templates retrieved from template
repository 112.

In one non-limiting, representative embodiment, user
interface 102 1s a graphical user interface (GUI). As described
above, module unit 104, interface unit 106, and connection
umt 108 present module, interface and connection objects,
respectively, to user interface 102 based upon the software
radio source code templates stored within template repository
112. User interface 102 represents the defined objects as
graphics objects within the user interface. In this manner,
cach graphics object available to a user via graphical user
interface 102 for inclusion within a software radio high-level
architecture graphical model 1s associated with a complimen-
tary set of SCA compliant configurable software code tem-
plates stored within template repository 112. Once a graphics
object 1s added to a model, the graphical object may be
selected and a set of configuration parameters associated with
the graphical object may be edited to tailor the associated
configurable software templates to meet the needs of the
soltware radio waveform application under development.

A user defines an SCA compliant software radio wavetform
application shell by adding, deleting and configuring graph-
ics objects within graphical user interface 102. The manipu-
lated graphics objects represent the modules, module inter-
faces and communication connections (1.e., software
resources) that are used to support software radio wavetform
functions implemented within the final software radio wave-
form application. Building a graphical model of a software
radio’s high-level architecture 1n such a manner, results 1n an
SCA compliant data abstraction that defines the software
radio 1n terms of architecture compliant software resources,
without addressing the waveform functionality supported by
the respective architecture compliant software resources. The
focus of the software radio high-level architecture graphical
model 1s to define a data abstraction (1.¢., 1n terms of defined
soltware resources) and not wavetorm functionality (1.e., how
the software resources are used).

Once the architectural model i1s defined and the respective
components configured, a user can 1mitiate build unit or mod-
ule 110 to process the respective software radio software
resource components and configuration parameters and to
generate an SCA compliant software radio wavetorm appli-

US 7,487,493 Bl

S

cation shell. The SCA compliant software radio wavelorm
application shell includes sets of compatible software code
templates retrieved from template repository 112 based upon
the graphics objects (1.e., software resources) included within
the model. Build umit 110 modifies configurable software
code templates retrieved from template repository 112 based
upon connectivity relationships and configuration parameters
defined by the graphical model to implement a software radio
wavetorm application shell that includes fully operational,
SCA compliant, software radio soltware resource objects
(1.e., modules, iterfaces, and connections) that are compat-
ible with the SCA core framework API’s. For example, with
respect to the JTRS SCA, the generated code includes all
required CORBA IDL, XML, and C++ source code, as well as
the make-files required to compile executable code that can
be loaded and executed upon any SCA compatible hardware
platform that supports a minimum set of SCA core framework
services for which the software radio wavetorm application
was designed.

A software radio wavetorm application shell, or applica-
tion shell, generated using the SCA compliant template
repository software templates includes stub object references
(1.e., placeholder references) to skeleton software objects that
must be populated to implement functional wavetorm(s) sup-
ported by the software radio waveform application. Stub
object references embedded within the generated application
shell software resource object code and skeleton functional
wavelorm object code that corresponds to the inserted stub
object references provide context sensitive guidance to wave-
form developers regarding the functional wavetform objects
that must be completed in order to implement an SCA com-
pliant software radio waveform application that supports the
desired target wavelorm(s). Application shell functional
wavelorm objects are used to implement 1n a modular, 1s0-
lated manner, the functional waveform specific characteristic
of the software radio wavetorm application under develop-
ment. However, functional waveform objects are entirely
dependent upon the software resource objects that are gener-
ated by the software radio waveform application shell gen-
erator 100 of the present invention to access SCA core frame-
work services via the SCA compliant core framework API’s.

By controlling the generation of software radio waveform
application soiftware resource objects 1n such a manner, the
method and apparatus of the present invention defines and
enforces an additional layer of abstraction between software
resource objects that control access to the SCA core frame-
work API’s and the functional waveform objects that imple-
ment software radio application waveiform functionality. This
additional abstraction layer assures that the physical abstrac-
tion layer (e.g., SCA core framework) API’s are only
accessed by verified, architecture compliant, soltware
resource templates, assures that SCA guidance with respect to
use of the physical abstraction layer API’s 1s followed, and
assures portability of the generated software radio wavelorm
application to other SCA compliant platforms.

Preferably, user access to, and user configuration of, soft-
ware radio resources 1s controlled in accordance with a set of
SCA compliant rules. Such SCA compliant rules may be
defined by a rule set integrated within the application shell
generator source code and/or stored within template reposi-
tory 112. The rule set may be referenced by module unit 104,
interface unit 106, connection unit 108, and/or user interface
102 to guide a user’s mteraction with a software radio high-
level architecture model and/or may be enforced by build unit
110. Use of such a goverming rule set may be used to prevent
amodel from 1ncluding modules, interfaces, connections and/
or configuration parameters that are mncompatible and/or not

10

15

20

25

30

35

40

45

50

55

60

65

6

SCA compliant. For example, 11 a rule within the SCA com-
pliant rule set requires that a software radio model contains
only a single assembly controller module, module unit 104
and/or user interface 102 may deactivate remaining assembly
controller module objects/graphics objects available for
inclusion 1n a model once an assembly controller module has
been added to the model. By way of a second example, a rule
within the SCA compliant rule set may require inclusion
and/or exclusion of certain modules, interfaces, connections
and/or configuration parameters based upon modules, inter-
faces, connections and/or configuration parameters contained
within a model.

An SCA compliant rule set can be enforced using both
dynamic and/or manual verification techmiques. Dynamic
techniques may be used to automatically expand/restrict
available user interface selections and/or automatically con-
figure/reconfigure existing user selections to assure compli-
ance with the SCA compliant rule set. Manually mnitiated
techniques may be used to allow a user to periodically verily
all or part of a software radio model with the SCA compliant
rule set. For example, a user may request verification of all, or
a portion of, a software radio model by pressing a verification
button within the user interface. Depending upon the nature
of the SCA compliance rule, appropriate compliance mecha-
nisms may be implemented within and/or enforced by any
and/or all components of the software radio wavetorm appli-
cation shell generator 100, described above.

The shell generator of the present invention may be imple-
mented by any type of computer or processing system (e.g.,
personal computer, mainframe, etc.) or circuitry. The func-
tions of the shell generator modules may be distributed in any
manner among any quantity (e.g., one or more) of hardware
and/or soltware modules or units, computer or processing
systems or circuitry. Template repository 112 may be imple-
mented using a commercially available or specially devel-
oped database and/or directory/file system and/or any other
storage units.

Use of verified, architecture compliant software resource
templates preserves the integrity of the SCA core framework
API’s (1.e., the physical abstraction), thus assuring that a
developed software radio application 1s portable across SCA
compliant radio set platiorms. The software radio wavetorm
application shell generator of the present invention 1mcorpo-
rates methods and techniques that are important to the soft-
ware radio wavelorm application development communaity,
including;

a. Standard Naming Conventions—SCA compliant soft-
ware templates are used to implement a standard naming
convention across the generated application shell source
code, including: generated software resource objects, gener-
ated stub functional wavelorm object references, and gener-
ated skeleton functional wavetform objects. In this manner,
the soitware radio waveform application shell generator 100
promotes adherence to a consistent and meaningiul naming
convention across all software radio development projects
accessing the same template repository.

b. Software Reuse—Use of verified SCA compliant sofit-
ware templates across multiple software radio waveform
application development programs, promotes software reuse,
resulting 1 significant development time and development
cost reductions.

c. Consistency of Software Radio Designs—Use of veri-
fied SCA compliant software templates accessible via a con-
trolled user interface that includes dynamic/manual verifica-
tion of soltware resource components promotes consistent
implementation of SCA guidelines across software radio
designs.

US 7,487,493 Bl

7

d. Design Flexibility—Use of a verified, SCA compliant
template repository provides developers with numerous veri-
fied template based alternatives, thereby providing design
alternatives while the user interface and/or SCA compliance
verification rule set holds designs within a controlled range of
modification.

¢. Incremental Improvement— Verified templates may be
modified/1mproved and the new/revised template can be veri-
fied for SCA compliance and, once verified, made accessible
via the verified template library to multiple development pro-
grams, thus promoting incremental improvement and organi-
zation-wide consistency regardless of the geographical loca-
tion and/or security based compartmentalization of the
individual development teams.

f. Inspection, Verification and Validation—Configuration
management/review board management of template reposi-
tory 112 provides a clean management level control point for
monitoring templates for compliance with SCA base guid-
ance and evolutionary/strategic target architectures.

As described above, the software radio wavetorm applica-
tion shell generator 100 of the present mvention allows a
soltware radio application to be generated based upon a logi-
cal manipulation of high-level architectural components
(e.g., modules, mterfaces, communication connections, and
related configuration parameters). Preferably, such manipu-
lation 1s performed via a graphical user interface, as described
above, 1n which graphics objects, each associated with sets of
consistent verified templates, are manipulated to create a
graphical model of the software radio application. Use of
such high-level logical abstractions facilitate software radio
development and addresses additional 1ssues that are impor-
tant to the software radio development community, including;:

a. Elimination of Technology Learning Curves—Wave-
form developers no longer need to develop a detailed under-
standing of multiple programming technologies as well as the
intricacies of the governing standard communication archi-
tecture before becoming a contributing member of a devel-
opment team. Wavelorm engineers can contribute to a devel-
opment team without 1n-depth knowledge of the
implementation details.

b. Technology Independence—The logical abstraction of
the high-level software radio design establishes true indepen-
dence between the software radio design and the underlying
technology used to implement the software radio. The SCA,
SCA core infrastructure and/or SCA programming technolo-
gies can change without requiring every development engi-
neer to retrain.

c. Cyclical Design/Test, Bench Tests and Collaborative
Testing—A software radio application shell provides wave-
form developers with the software resource infrastructure
support required to execute/test functional waveform soft-
ware/code under development upon an SCA compliant plat-
tform. Use of application shell generator 100 allows develop-
ers to more easily bench-test new functional wavetform object
approaches/designs and to more easily collaborate with par-
allel design/implementation efforts by facilitating execution
ol collaborative milestone verification testing.

d. Adherence to Standard Architecture Guidance—The
development environment of the present imvention assures
that architecture guidance and abstraction layers remain pre-
served. The development environment prevents/discourages
developers from bypassing physical abstraction API’s and/or
implementing waveiorm functionality within physical device
modules.

¢. Traceability/Repeatability/Configuration Manage-
ment—Creation of a high-level model based upon high-level
objects and configurable parameters provides a concurrent

5

10

15

20

25

30

35

40

45

50

55

60

65

8

record of the software radio under development. The con-
structed model can be efficiently stored, configuration con-
trolled and used to generate subsequent application shells as
new/modified templates are added to the template repository,
thereby facilitating controlled, incremental change.

f. Development Resources/Development Cycle Time—
The ability to quickly generate a software application using a
verified library templates store based upon a high-level archi-
tectural model, greatly decreases development cycle time and
reduces personnel resources required to build a software radio
application.

g. Reduced Obsolescence—Reduced reliance upon the
underlying programming technologies and ability to quickly
regenerate software radio applications based on the current
store of verified templates allows change to be introduced 1n
a manner that 1s virtually transparent to concurrent develop-
ment projects. In this manner, risks associated with embedded
obsolescence 1s virtually eliminated.

FIG. 2 1illustrates an exemplary shell generator graphical
user interface displaying a software radio high-level architec-
ture model 1n accordance with an exemplary embodiment of
the present invention. As shown 1n FIG. 2, a graphical user
interface 200 1n accordance with the present mnvention can
include a title bar 202, drop-down menu bar 204, shortcut
icon bar 206, and a model development area 208.

Typically title bar 202 1dentifies a name assigned to the
application shell GUI and/or a file name assigned to the
current software radio high-level architecture model dis-
played 1n development area 208. Drop-down menu bar 204
presents drop-down menu items, each menu 1tem configured
to display a set of selectable menu options that can be invoked
by a user to build and configure a soiftware radio model.
Shortcut icon bar 206 presents 1cons that are shortcuts to often
used drop-down menu selectable menu options. Develop-
ment area 208 provides a drawing tablet based graphical area
in which a user can build a graphical high-level architecture
model of the software radio waveiorm application to be built.

With respect to the drop-down menu bar 204 shown in FIG.
2, file drop-down menu 210 presents options by which the
user interface iteracts with the directory and file system of
the computer platform/operation system upon which the
application shell generator 100 (FIG. 1) 1s executed. For
example, file drop-down menu 210 can present options by
which to open, close and/or save a file stored within the
operating system’s file directory that contains a defined soft-
ware radio model built using the application shell generator of
the present invention. File drop-down menu 210 may also
support menu options used to 1dentity to the application shell
generator the location of a template repository, specily a
directory location to which generated application shell files
are to be stored and/or to specity the file/directory location of
other information resources.

View drop-down menu 212 1s typically used to alter the
visual display of the software radio model. For example, view
drop-down menu 212 may support zoom-in and zoom-out
teatures for viewing all or portion of a software radio model
development area 208, thus allowing software radio graphical
models to use a development area 208 that 1s unrestricted in
s1ze. In addition, upon the user selecting a module, interface
or connection, the view drop-down menu 212 may support
options that allow the user to view configurable parameters
specific to the selected 1tem.

Tools drop-down menu 214 1s typically used to add, delete
and arrange the layout of graphical building blocks (i.e.,
module boxes, mterface boxes, and connection lines) of a
software radio model. For example, tools drop-down menu
214 may support operations to draw and align module boxes,

US 7,487,493 Bl

9

draw and attach interface boxes to module boxes, and to draw
and/or to position or shrink/expand connection lines between
modules and/or interfaces. In one representative embodi-
ment, a module box, interface box, and/or connection line
added to the model 1s generic until the respective component
1s associated with an SCA compliant module, interface and/or
connection wvia configuration drop-down menu 218,
described below.

Build drop-down menu 216 1s typically used to validate a
soltware radio model and/or to generate a fully operational
application shell based upon a complete and validated soft-
ware radio model. For example, build drop-down menu 216
may include an operation to verily a defined and/or config-
ured software radio model or selected portion of a model
against a set of applicable SCA compliance rules, as
described above, retrieved from the template repository. Once
amodel has been validated in such a manner, build drop-down
menu 216 may allow a user to access other drop-down menu
options that allow the user to generate a complete application
shell, or a portion of an application shell, based upon the
defined model or a selected portion of the defined model.

Configuration drop-down menu 218 1s used to associate an
SCA compliant set of module, mterface and/or connection
software templates defined within the template repository
with a graphical representation of a module, interface and/or
connection, respectively, that has been added to the model
with tools drop-down menu 214, as described above. Further,
configuration drop-down menu 218 allows a user to set user
configurable parameters associated with SCA compliant
modules, interfaces and/or connections. In one embodiment
of the present invention, module unit 104, interface unit 106
and connection unit 108 communicate with user interface 102
to dynamaically monitor software radio model development in
accordance with an SCA compliance rule set, as described
above. Based upon such dynamic monitoring, model configu-
ration parameters may be dynamically updated and modules,
interfaces and connections presented for selection by a user
via the user interface to retlect SCA compliant options based
upon the current state of the software radio model.

Model connections define communication conduits
between modules and/or module interfaces through which
one or more communication connections may be defined.
Configuration drop-down menu 218 can also be used to
define/configure the respective model connections. Each
defined connection establishes a communication path across
which control and/or data communication signals can pass. In
one embodiment, the application shell generator automati-
cally populates the user configurable configuration model
parameters with default values consistent with other modules,
interfaces and connections included and/or configured within
the model. Such default values may include defining a default
connection in accordance with an applied naming convention
and the stored SCA compliant rule set.

Help drop-down menu 220 1s typically used by a user to
access on-line help associated with operation of graphical
user mterface 200. Via help drop-down menu 220, a user can
access an index of useful instructions on the use and operation
of the application shell generator and associated user inter-
face features. In one embodiment, a user can select a model
teature within the user interface model development area 208,
and click upon help drop-down menu 218 to review helpiul
tips and guidance related to the selected feature.

As shown 1n FIG. 2, a graphical high-level architecture
model of the software radio wavetform application can
include modules, module interfaces and module/interface
connections. For example, assembly controller modules 224
and corresponding module interfaces 224 A-D represent a set

10

15

20

25

30

35

40

45

50

55

60

65

10

ol software resources that are to be included in the software
radio wavelform application under development. Interface
connections 240, as described above, define communication
conduits between modules and/or module 1ntertaces through
which data and/or control communication signals can pass.

The software radio model shown 1n FIG. 2 depicts several
exemplary conventions. Modules are displayed using bold-
lined boxes and interfaces supported by a module are dis-
played as consecutively adjacent boxes coupled to the module
from below. A connection 1s displayed as a line between two
modules, between a module and an interface, or between two
interfaces. A small solid box on one end of a connection
identifies that end of the connection as a user port and 1den-
tifies the module/interface associated with the user port as a
connection user. A small arrow on an end of a connection
identifies that end of the connection as a provider port and the
module/interface associated with the user port as a connec-
tion provider. As described above, tools drop-down menu 214
can be used to shrink connection lines 1n order to simplify the
graphical model layout. For example, as shown in FIG. 2 at
246 A-E, a connection can be depicted 1n the model without
extending the graphical representation of the connection to
the defined connection user. Another helptul technique that
simplifies interpretation of model connections 1s the use of
color codes. For example a red connection can designate use
of the connection to send/receive data; a blue connection can
designate use of the connection to send/recetve control infor-
mation.

A software radio module or interface depicted within FIG.
2 represents a set of software objects that implement the
teatures and capabilities of the respective module or interface.
By way of example, a connection user (i.e., identified by the
square end of a connection) can access all objects included
within a connection provider (i.e., 1dentified by the arrow end
ol a connection) and hence all features and capabilities sup-
ported by the connection provider module/interface. A mod-
ule iterface defines a select subset of soitware objects that
support a specific subset of operations. Therefore, a connec-
tion 1n which a module interface 1s defined as the connection
provider provides the connection user with access to only
those objects that implement the specific features and capa-
bilities included within the module interface.

The exemplary high-level architecture model of a software
radio wavetform application shown in FIG. 2 includes, by way
of example only, e1ght modules, seventeen module interfaces,
and twenty-three communication paths. Specifically, the
exemplary model includes: an assembly controller module
224 with human computer interface 224A, modem adapter
interface 2248, data adapter intertace 224C and red security
adapter interface 224D; a human computer input module 226;
an internet resource module 228 with internet control inter-
face 228 A and packet interface 228B; an audio adapter mod-
ule 230 with audio control interface 230A and packet inter-
face 230B; a traffic controller module 232 with traffic control
interface 232 A, packet intertace 232B and red channel inter-
tace 232C; a red security adapter module 234 with red secu-
rity adapter control interface 234 A and red channel interface
234B; a black security adapter module 236 with black secu-
rity adapter control mterface 236 A and black channel inter-
face 236B; and a modem adapter module 238 with modem
control interface 238A and black channel interface 238B.

The main assembly controller module 224 serves as the
soltware radio wavelorm application’s central controller and
1s configured to recerve input from and to coordinate opera-
tions performed by supporting software resource modules
defined within the model for the software radio wavetform
application under development. Typically, a software radio

US 7,487,493 Bl

11

includes only a single assembly controller. In one embodi-
ment, described above, the user can specity high-level, SCA
compliant, software radio characteristics via configuration
drop-down menu 218 and the application shell user interface
will present to the user a set SCA compliant assembly con-
troller modules consistent with the user specified character-
1stics. Additional modules, interfaces and connections are
typically added to the model and configured by a user, 1n a
similar manner, until the model includes a set of SCA com-
pliant software modules, interfaces and connections capable

of implementing the software resources needed to support the
soltware radio target wavetorm.

FI1G. 3 1s a process flow diagram illustrating the manner in
which the shell generator user interface builds a standard
architecture compliant data abstraction, or model, of a soft-
ware radio 1 accordance with an exemplary embodiment of
the present invention. The process tlow depicted in FIG. 3, 1s
independent of the nature of the user interface used. For
example, the same process flow shown 1n FIG. 3 can be used
with a graphics based user interface and/or a command line
based user interface. As shown 1n FIG. 3, upon activating, at
step 302, the application shell generator user interface, a
high-level architecture software radio wavetform application
model 1s mitiated by adding, at step 304, a software resource
module to the model and configuring, at step 306, the newly
added module as described above via module unit 104 (FIG.
1). Typically, the first module added to a model 1s configured
as an assembly controller module, as described above. A user
1s able to select any assembly controller that 1s stored 1n
template repository 112 (FIG. 1) and presented by module
unit 104 to user interface 102, as described above. Upon
determining, at step 308, that additional modules are
required, the process tlow returns to step 304 to allow the user
to add another software resource module.

Otherwise, upon determining, at step 308, that no addi-
tional modules are required, the user selects a module and
adds, at step 310, an interface to the selected module and
configures, at step 312, the new interface, as described above
via interface unit 106 (F1G. 1). Upon determining, at step 314,
that additional interfaces are required, the process tlow
returns to step 310 to allow the user to add another interface to
the same module or to another selected module.

Otherwise, upon determining, at step 314, that no addi-
tional interfaces are required, the user proceeds to add, at step
316, a communication connection between the defined mod-
ules and/or interfaces and to configure, at step 318, the
defined connection as described above via connection unit
108 (FIG. 1). Upon determining, at step 320, that additional
connections are required, the process tlow returns to step 316
to allow the user to add and configure additional connections.

Upon determining, at step 320, that all communication
connections required to support communications between the
software radio software resource modules have been defined,
the high-level architecture software radio wavelorm applica-
tion model can be optionally verified, as described above via
build unmit 110, against SCA compliant rules stored within
template repository 112 (FIG. 1). Vernilying the modules,
module interfaces, communication connections and associ-
ated configuration parameters, supports enforcement of SCA
guidance without requiring developers to possess 1n depth
knowledgeable of the chosen SCA. The stored SCA compli-
ant rules represent SCA expert knowledge stored as a set of
rules and conditions that can be applied to a high-level archi-
tecture soltware radio wavelorm application model, the mod-
el’s respective software resources and configuration param-
eters.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 4 1s a process flow diagram 1llustrating the manner 1n
which a standard architecture compliant software radio wave-
form application shell 1s generated based upon a high-level
architecture software radio data abstraction developed and
verified as described above with respect to FIG. 3. For
example, an application build process can be initiated by the
application shell generator user interface described with
respect to FIG. 2 via the build drop-down menu 216 or by
clicking upon a build shortcut icon 222 to cause build unit 110
(FI1G. 1) to mmitiate an application build process based upon the
software radio model displayed within the user interface.

With respect to FIG. 4, upon mitiating, at step 402, an
application build, build unit 110 (FIG. 1) selects, at step 404,
a defined/configured module from the architecture model and
retrieves, at step 406, from template repository 112 a set of
configurable software templates that 1s associated with the
selected module and the module’s defined/configured inter-
faces. The retrieved software templates may include files
written 1n any number of SCA compliant programming lan-
guages required to support the software radio under develop-
ment. In one exemplary embodiment, the retrieved template
files 1include templates written in XML, C++, IDL and text
based Makefiles. However, the present invention should not
be construed to be limited to the use of any specific SCA
and/or programming language and/or syntax structures.

At step 408, the build module modifies the retrieved tem-
plates 1n accordance with configuration parameters specified
by the user via user intertace 102 (FIG. 1) for the module and
cach module mterface. If, at step 410, the build unit deter-
mines that additional modules defined within the model
require processing, the process flow returns to step 404 and
another module 1s selected and processed, as described above.

If, at step 410, the build unit determines that all modules
defined within the model have been processed, the build
module selects, at step 412, a connection defined within the
model and further modifies, at step 414, the retrieved tem-
plates to reflect connection definitions and configurations. If,
at step 416, the build unit determines that additional connec-
tions defined within the model require processing, the process
flow returns to step 412 and another module connection 1s
selected and processed, as described above.

Upon determining, at step 416, that all connections defined
within the model have been processed, the build unit stores, at
step 420, the modified template files (1.e., the application
shell) to a file directory identified by the user interface, as
described above. In one embodiment, the stored files include
C++ source code, software resource module XML, general
purpose processor XML, CORBA IDL and make f{iles
required to generate a soitware radio waveform application
shell. Functional waveform stub references and functional
wavelorm skeleton objects embedded within the generated
application shell as placeholders are populated, at step 422,
with software instructions/code that implement wavetorm
specific fTunctionality. Once waveform functionality has been
added to the application shell, the software radio wavetorm
application 1s compiled and loaded, at step 424 upon a target
SCA compliant platform.

By separating implementation of software radio waveform
functionality (1.e., what the radio does) from implementation
of software radio software resources, as described above with
respect to FIG. 4, the method and apparatus of the present
invention defines and enforces an additional layer of abstrac-
tion between software resource objects that control access to
the SCA core framework API’s and the functional waveform
objects that implement soitware radio application wavetform
functionality. This additional abstraction layer assures that
the physical abstraction layer (e.g., SCA core framework)

US 7,487,493 Bl

13

API’s are only accessed by verified, architecture compliant,
soltware resource templates, assures that SCA guidance with
respect to use of the physical abstraction layer API’s 1s fol-
lowed, and assures portability of the generated software radio
wavelorm application to other SCA compliant platforms.

Further, the ability to quickly generate a software applica-
tion using verified library templates stored based upon a
high-level architectural model, as described above with
respect to FIG. 4, greatly decreases development cycle time
and reduces personnel resources required to build a software
radio application. A software radio application shell provides
wavelorm developers with the software resource inirastruc-
ture support required to execute/test functional waveform
soltware/code under development upon an SCA compliant
platiorm. Use of application shell generator 100 allows devel-
opers to more easily bench-test new functional wavelorm
object approaches/designs and to more easily collaborate
with parallel design/implementation efforts by facilitating
execution of collaborative milestone verification testing.

It may be appreciated that the embodiments described
above and illustrated 1n the drawings represent only a few of
the many ways of implementing a method and apparatus for
developing standard architecture compliant software for pro-
grammable radios. The present invention 1s not limited to the
specific embodiments disclosed herein, but may be used to
support any application generator that supports the genera-
tion of open architecture executable software for an open
architecture hardware platiorm.

The application generator described here can be imple-
mented 1n any number of units, or modules, and 1s not limited
to any specific soltware module architecture. Each module
can be implemented 1n any number of ways and 1s not limited
in 1mplementation to execute process flows precisely as
described above. The application generator described above
and 1illustrated 1n the flow charts and diagrams may be modi-
fied 1n any manner that accomplishes the functions described
herein. It 1s to be understood that various functions of the
application generator may be distributed 1n any manner
among any quantity (e.g., one or more) of hardware and/or
soltware modules or units, computer or processing systems or
circuitry. The application shell generator may execute on a
local computer, a remote computer, and/or any combination
of local and remote computers. Application shell generator
modules and/or mnformation stores accessed by the module
may be stored locally and/or distributed across any combina-
tion of local and remote computers. Local and/or remote
computers may be connected using any number of direct
connections and/or network based connections, including
local network (e.g., local area network) connections, wide
area network (WAN) connections and/or Internet based con-
nections. The application generator of the present invention 1s
not limited to use 1n the generation soitware radio wavetform
applications, but may be used to generate portable, standards
compliant software for execution upon a wide range of mili-
tary and civilian equipment. For example, the architecture
compliant applications generated using the application gen-
crator of the present mnvention can be implemented by any
number of personal or other type of computer or program-
mable device (1.¢., any programmable communication or pro-
cessing device). Further, use of the methods and apparatus of
the present invention for generating portable, standards com-
pliant executable applications containing tailored functional
capability may be applied to any future open/proprietary stan-
dard architecture based civilian and/or military program-
mable device.

The application shell generator may be implemented upon
any computer (e.g., personal computer, mainirame, worksta-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion, etc.). The application shell generator may be executed
within any available operating system that supports a com-
mand line and/or graphical user interface (e.g., Windows,
OS/2, Unix, Linux, DOS, etc.). The application shell genera-
tor user interface may employ a graphical user interface,
and/or a command line interface, and/or any manner of
receiving user input using local and/or remote mput devices.
The user interface may use any type and/or combination of
symbols for objects, imterfaces, input/output (I/O) ports and/
or any combination of user 1/O devices.

An application generated by the application shell genera-
tor, may be loaded upon any designated target platform
executing any proprietary standard or open standard compli-
ant hardware platform and/or any proprietary or open stan-
dards compliant operating system and/or application pro-
gram 1nterface. It 1s to be understood that the application shell
generator may be implemented 1n any desired computer lan-
guage, and could be developed by one of ordinary skill 1n the
computer and/or programming arts based on the functional
description contained herein and the flow charts illustrated 1n
the drawings. Moreover, the application shell generator soft-
ware may be available or distributed via any suitable medium
(e.g., stored on devices such as CD-ROM and diskette, down-
loaded from the Internet or other network (e.g., via packets
and/or carrier signals), downloaded from a bulletin board
(e.g., via carrier signals), or other conventional distribution
mechanisms).

It 1s to be understood that the application shell generator
may generate application files in any desired computer lan-
guage and/or combination of computer languages that form a
standalone executable and/or combination of executables that
interface with any standard and/or proprietary hardware
device, device operating system or API. An application gen-
crated with the application shell generator of the present
invention may be installed and executed on any operating/
hardware platform and may be performed on any quantity of
processors within the executing system or device.

The application shell generator may accommodate any
quantity and any type of data files and/or databases or other
structures and may store SCA compliant templates and/or
SCA verification rules 1n any desired file and/or database
format (e.g., ASCII, binary, plain text, or other file/directory
service and/or database format, etc.). Further, any references
herein to software performing various functions generally
refer to processors performing those functions under software
control. Such processors may alternatively be implemented
by hardware or other processing circuitry. The various func-
tions of the application shell generator may be distributed in
any manner among any quantity (e.g., one or more) of hard-
ware and/or soltware modules or units. Processing systems or
circuitry, may be disposed locally or remotely of each other
and communicate via any suitable communications medium
(e.g., hardwire, wireless, etc.). The software and/or processes
described above and 1llustrated in the flow charts and dia-
grams may be modified in any manner that accomplishes the
functions described herein.

From the foregoing description, 1t may be appreciated that
the present invention includes a method and apparatus for
developing standard architecture compliant software for pro-
grammable radios, wherein a software radio wavelorm appli-
cation shell generator efficiently and effectively develops
soltware defined radio wavelorm applications 1n accordance
with any selected software communication architecture.

Having described preferred embodiments of a method and
apparatus for developing standard architecture compliant
software for programmable radios, 1t 1s believed that other
modifications, variations and changes may be suggested to

US 7,487,493 Bl

15

those skilled in the art 1n view of the teachings set forth herein.
It 1s therefore to be understood that all such variations, modi-
fications and changes are believed to fall within the scope of
the present invention as defined by the appended claims.

What 1s claimed 1s:

1. A system for generating source code for a radio appli-
cation executable upon a software architecture compliant
radio platform, wherein said application includes a set of
soltware resources that communicate with the platform via a
set of software architecture compliant interfaces to provide
the application with access to physical services supported by
the platform, the system comprising:

a repository unit to store a plurality of configurable source
code templates each associated with and containing
source code implementing a corresponding soiftware
resource of said radio application; and

a processing system to generate said radio application
source code and including;:

a graphical user interface employing a plurality of user-
manipulable graphics objects representing said sofit-
ware resources of said radio application and corre-
sponding links between those resources to draw a
graphical model defining said radio application,
wherein said graphical user interface enables a user to
select a first set of graphics objects associated with
said templates and i1ndicating software resources to
include within the generated radio application source
code, to manipulate a second set of graphics objects to
indicate said links and specity relationships between
selected software resources and to specily configura-
tion parameters for the selected software resources,
and wherein said graphical user interface includes a
graphical development area to enable said user to
draw said graphical model defining said radio appli-
cation via arrangement of said first and second sets of
graphics objects within said graphical development
arearepresenting said selected software resources and
corresponding links; and

a build unit to analyze said graphical model and retrieve
said templates from said repository unit correspond-
ing to said software resources within said graphical
model represented by said selected first set of graph-
ics objects and to modify said retrieved templates in
accordance with said specified relationships and said
specified configuration parameters to generate said
radio application source code 1n accordance with said
specified relationships and said specified configura-
tion parameters.

2. The system of claim 1, wherein the generated application
source code includes one of stub references and skeleton code
configured to support inclusion of functional source code to
implement application specific functions.

3. The system of claim 1, wherein the software architecture
1s a Joint Tactical Radio System software communication
architecture.

4. The system of claim 1, wherein the generated application
source code includes source code of at least one programming
language compatible with the software architecture.

5. The system of claim 1, wherein the generated application
source code includes source code of at least one of C++,
CORBA IDL, and XML programming languages.

6. The system of claim 1, wherein said graphical develop-
ment area enables a user to define an application by at least
one of adding, deleting and configuring said first and second
sets ol graphics objects within the graphical development
area.

10

15

20

25

30

35

40

45

50

55

60

65

16

7. The system of claim 1, wherein the repository unit
includes a database.

8. The system of claim 1, wherein the repository unit
includes a directory file system.

9. The system of claim 1, wherein said specified relation-

ships between software resources include communication
connections between said software resources.

10. The system of claim 9, wherein said configuration
parameters include parameters that configure the specified
communication connections.

11. The system of claim 1, wherein said configurable tem-
plates 1include software resource interfaces each associated
with a software resource to provide limited access to services
supported by the associated software resource.

12. The system of claim 1, wherein said processing system
turther includes:

a verily module to verity at least one of configurable tem-
plates, relationships and configuration parameters speci-
fied by the user via the graphical user interface against a
software architecture compliant rule set associated with
the software architecture, wherein the rule set 1s stored
within the repository unit.

13. A method for generating source code for a radio appli-
cation executable upon a soiftware architecture compliant
radio platform, wherein said application includes a set of
software resources that communicate with the platform via a
set of software architecture compliant iterfaces to provide
the application with access to physical services supported by
the platform, the method comprising:

(a) storing a plurality of configurable source code tem-
plates each associated with and containing source code
implementing a corresponding soitware resource of said
radio application within a template repository and pro-
viding software resources to include within the gener-
ated radio application source code via a graphical user
interface employing a plurality of user-manipulable
graphics objects representing said software resources of
said radio application and corresponding links between
those resources to draw a graphical model defining said
radio application, wherein said graphical user interface
enables user selection of a first set of graphics objects
associated with said templates and indicating software
resources to include within the generated radio applica-
tion source code and user mampulation of a second set of
graphics objects to indicate said links;

(b) specitying relationships between selected software
resources via said graphical user interface and specify-
ing configuration parameters for the selected software
resources, wherein said graphical user interface includes
a graphical development area to enable said user to draw
said graphical model defining said radio application via
arrangement of said first and second sets of graphics
objects within said graphical development area repre-
senting said selected software resources and corre-
sponding links; and

(¢) analyzing said graphical model and retrieving said tem-
plates from said template repository corresponding to
said software resources within said graphical model rep-
resented by said selected first set of graphics objects and
modifying said retrieved templates 1n accordance with
said specified relationships and said specified contigu-
ration parameters to generate said radio application
source code 1n accordance with said specified relation-
ships and said specified configuration parameters.

14. The method of claim 13, wherein step (c) further
includes:

US 7,487,493 Bl

17

(c.1) generating said application source code to include one
of stub references and skeleton code configured to sup-
port 1nclusion of functional source code to implement
application specific functions.

15. The method of claim 13, wheremn step (c¢) further

includes:

(c.1) generating application source code that 1s compliant
with a Joint Tactical Radio System software communi-
cation architecture.

16. The method of claim 13, wheremn step (c¢) further

includes:

(c.1) generating application source code that includes
source code of at least one programming language com-
patible with the software architecture.

17. The method of claim 13, wherein step (c) further

includes:

(c.1) generating application source code that includes
source code of at least one of C++, CORBA IDL, and
XML programming languages.

18. The method of claim 13, wherein step (b) further

includes:

(b.1) defining an application by at least one of adding,
deleting and configuring said first and second sets of
graphics objects within said graphical development
area.

19. The method of claim 13, wherein step (a) further

includes:

(a.1) storing the plurality of configurable source code tem-
plates within a database.

20. The method of claim 13, wherein step (a) further

includes:

(a.1) storing the plurality of configurable source code tem-
plates within a directory file system.

21. The method of claim 13, wherein step (b) further

includes:

(b.1) specilying communication connections between
selected software resources.

22. The method of claim 21, wherein step (b.1) further

includes:

(b.1.1) configuring the specified communication connec-
tions.

23. The method of claim 13, wherein step (a) further

includes:

(a.1) storing templates corresponding to interfaces each
associated with a software resource to provide limited
access 1o services supported by the associated software
resource.

24. The method of claim 13, wherein step (c¢) further

includes:

(c.1) veritying at least one of configurable templates, rela-
tionships and configuration parameters against a soft-
ware architecture compliant rule set associated with the
soltware architecture.

25. The method of claim 24, wherein step (a) further

includes:

(a.1) storing the software architecture compliant rule set.

26. A program storage device having a computer readable

medium with computer program logic recorded thereon for
generating source code for a radio application executable
upon a soiftware architecture compliant radio platform,
wherein said application includes a set of software resources
that commumicate with the platform via a set of software
architecture compliant 1nterfaces to provide the application
with access to physical services supported by the platform,
said program storage device comprising:

a storage unit to store a plurality of configurable source
code templates each associated with and containing

10

15

20

25

30

35

40

45

50

55

60

65

18

source code implementing a corresponding soiftware
resource of said radio application 1n a repository unit;

a graphical user 1interface employing a plurality of user-

manipulable graphics objects representing said software
resources of said radio application and corresponding
links between those resources to draw a graphical model
defining said radio application, wherein said graphical
user interface enables a user to select a first set of graph-
1cs objects associated with said templates and indicating
soltware resources to include within the generated radio
application source code, to manipulate a second set of
graphics objects to indicate said links and specily rela-
tionships between selected software resources and to
specily configuration parameters for the selected soft-
ware resources, and wherein said graphical user inter-
face includes a graphical development area to enable
said user to draw said graphical model defining said
radio application via arrangement of said first and sec-
ond sets of graphics objects within said graphical devel-
opment area representing said selected software
resources and corresponding links; and

a build unit to analyze said graphical model and retrieve

said templates from said repository unit corresponding,
to said software resources within said graphical model
represented by said selected first set of graphics objects
and to modify said retrieved templates 1n accordance
with said specified relationships and said specified con-
figuration parameters to generate said radio application
source code 1n accordance with said specified relation-
ships and said specified configuration parameters.

277. The program storage device of claim 26, wherein the
generated application source code includes one of stub refer-
ences and skeleton code configured to support inclusion of
functional source code to implement application specific
functions.

28. The program storage device of claim 26, wherein the
soltware architecture 1s a Joint Tactical Radio System soft-
ware communication architecture.

29. The program storage device of claim 26, wherein the
generated application source code includes source code of at
least one programming language compatible with the soft-
ware architecture.

30. The program storage device of claim 26, wherein the
generated application source code includes source code of at
least one of C++, CORBA IDL, and XML programming
languages.

31. The program storage device of claim 26, wherein the
graphical development area enables a user to define an appli-
cation by at least one of adding, deleting and configuring said
first and second sets of graphics objects within the graphical
development area.

32. The program storage device of claim 26, wherein the
repository unit includes a database.

33. The program storage device of claim 26, wherein the
repository unmit imcludes a directory file system.

34. The program storage device of claim 26, wherein said
specified relationships between software resources includes
communication connections between said software
resources.

35. The program storage device of claim 34, wherein said
configuration parameters include parameters that configure
the specified communication connections.

36. The program storage device of claim 26, wherein said
configurable templates include software resource interfaces
cach associated with a software resource to provide limited
access to services supported by the associated software
resource.

US 7,487,493 Bl
19 20

37. The program storage device of claim 26, further com- software architecture compliant rule set associated with
prising;: the software architecture, wherein the rule set 1s stored
a verily module to verity at least one of configurable tem- within the repository unit.

plates, relationships and configuration parameters speci-
fied by the user via the graphical user interface against a k% %k

	Front Page
	Drawings
	Specification
	Claims

