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AUTOMATIC NEURAL-NET MODEL
GENERATION AND MAINTENANCE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the following com-

monly assigned, provisional applications:
(a) Ser. No. 60/3774,064, filed Apr. 19, 2002 and entitled

“PROCESSING MIXED NUMERIC AND/OR NON-NU-
MERIC DATA”;

(b) Ser. No. 60/374,020, filed Apr. 19, 2002 and entitled
“AUTOMATIC NEURAL-NET MODEL GENERATION
AND MAINTENANCE™;

(c) Ser. No. 60/374,024, filed Apr. 19, 2002 and entitled
“VIEWING MULTI-DIMENSIONAL DATA THROUGH
HIERARCHICAL VISUALIZATION;

(d) Ser. No. 60/374,041, filed Apr. 19, 2002 and entitled
“METHOD AND APPARATUS FOR DISCOVERING
EVOLUTIONARY CHANGES WITHIN A SYSTEM?”;

(e) Ser. No. 60/373,977, filed Apr. 19, 2002 and entitled
“AUTOMATIC MODEL MAINTENANCE THROUGH
LOCAL NETS”; and

(1) Ser. No. 60/3773,780, filed Apr. 19, 2002 and entitled
“USING NEURAL NETWORKS FOR DATA MINING™.

TECHNICAL FIELD

This application relates to neural nets. In particular, the
application relates to neural net model building and mainte-
nance.

DESCRIPTION OF RELATED ART

Humans use their abilities of pattern recognition 1n many
things they do, and particularly to solve problems. The fol-
lowing are some examples of how people use pattern recog-
nition to anticipate and/or detect problems and find solutions
to the problems:

(a) an experienced manager, based on her experience and
knowledge of customers’ buying patterns and her obser-
vations of current conditions (for example, weather, day
of the week, date, local economy, etc.), predicts the
number of units ol a merchandise that should be ordered
for the upcoming month; and

(b) a brewmaster samples his product over time and his
intuition and experience suggests to him changes to the
ingredients or process he should make to improve the
product.

Artificial neural network (*“neural net”) techniques provide
an information processing tool, with similar pattern recogni-
tion capabilities, which may be trained to provide an nput-
output model for assorted applications.

A typical neural net comprises a number of interconnected
neuron-like processing elements (or nodes) that send data to
cach other along connections. A processing element receives
a number of inputs, either from other processing elements or
directly from inputs of the network, and multiplies each of the
iputs by a corresponding weight and adds the results
together to form a weighted sum. It then applies a transier
tfunction (also referred to herein as “activation function™ and
“basis function”) to the sum to obtain a value known as the
state of the element. The state 1s then either passed on to one
or more other processing elements along weighted connec-
tions, or provided as an output of the network. Collectively,
states are used to represent information 1n the short term,
while weights represent long-term imformation or learning.
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Processing elements 1n a neural net may be organized into
layers. For example, a multi-layer hidden-layer net has an
iput layer, an output layer and one or more hidden layers
between the input layer and output layer. The outputs of the
input layer are passed to one of the hidden layers. Generally,
hidden layer processing elements allow the network to build
intermediate representations which combine mput data 1n
ways that help the neural net model to learn the desired
input-output mapping with greater accuracy through training.
Outputs of the hidden layers are passed to the output layer,
and the output layer produces one or more outputs.

Training 1s a process through which neural nets learn an
input-output model through exposure to data and adjustment
of the weights associated with connections between process-
ing nodes. A training process may involve the following steps:

1) Repeatedly presenting examples of a particular input/
output task to the neural net model;

2) Comparing the model output and a desired output to
measure error; and

3) Moditying model weights to reduce the error.

This process 1s repeated until further iteration fails to
decrease the error (or the error falls below a predetermined
minimum). The network then 1s said to be “trained”.

Through training with, for example, training sets of sample
data, neural nets can learn to extract relationships from the
data, similar to the way that humans learn from experience,
and, when 1n operation (often also called *“consultation™),
recall the learned relationships 1n order to extrapolate suitable
solutions 1 new situations (for example, not expressly rep-
resented 1n the training data). Traiming a neural net by apply-
ing sets of specific, selected samples helps the network to
develop a general input-output model. The trained model 1s
expected to output for each input pattern one or more output
values associated with the mput pattern, while maintaining
the appearance of a blackbox (1.e. the details or inner work-
ings, such as weights and nodes, within the trained model are
not readily apparent to a user or observer).

Selecting an appropriate net structure plays a substantial
role in building a neural net computational model of a func-
tional relationship or system. If it 1s assumed that no prior
knowledge of the problem 1s known and therefore only com-
monly-used node activation functions are used, the 1ssues in
the neural net generation process include the following. First,
a net type (for example, layers 1n the net) are selected. Once
the net type 1s selected, one determines an appropriate num-
ber and connectivity of nodes 1n the net as well as node
parameters.

FIG. 1 shows a plot of training error versus number of
nodes (ranging from one to twenty) in a hidden layer of a
conventional single hidden-layer net, for a sample data set of
seven mnputs and one output. As exemplified 1n FIG. 1, there
1s often no observable relationship between the training error
and the number of hidden-layer nodes. The number of nodes
used 1n a conventional neural net model typically 1s deter-
mined by experience and trial-and-error, which of course 1s
not suitable for automatic model building.

In addition, conventional neural nets are not conducive to
incremental and/or adaptive learning. The term “incremental
learning™, as used herein, means that (a) the net can be
expanded with new nodes added and (b) computation of a new
set of weights for the expanded net utilizes the weights from
before the expansion as a starting point rather than starting
from scratch. The term “adaptive learning”, as used herein,
means that after a neural net model has been established,
additional data can be used to update the model to achieve
better overall results. For example, neither incremental learn-
ing nor adaptive learning can be achieved efliciently by a
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hidden-layer net because the nonlinear processing by a hid-
den-layer net 1s widely distributed and interconnected across
the nodes, and therefore any adjustments to the weights based
on determined error also must be nonlinearly distributed.

Therefore, neural net model generation and maintenance
methodologies which facilitate incremental and adaptive
learning are needed.

SUMMARY

The disclosure provides a method of incrementally form-
ing and adaptively updating a neural net model. According to
one embodiment, the method includes (a) incrementally add-
ing to the neural net model a function approximation node,
and (b) determining function parameters for the function
approximation node and updating function parameters of
other nodes 1n the neural network model, by using the func-
tion parameters of the other nodes prior to addition of the
function approximation node to the neural network model.
Steps (a) and (b) may be repeated, 11 a model accuracy of the
neural net model with the function approximation node added
thereto 1s below a predetermined accuracy level.

According to one embodiment, a set of sample data pat-
terns 1s used to form a list of function approximation node
candidates, and the function approximation node 1s selected
from the list of function approximation node candidates. The
list of function approximation node candidates may be
formed by splitting the set of sample data patterns nto a
plurality of clusters 1n a first level of a cluster hierarchy,
determining that a selected cluster 1n the first level has a
population exceeding a predetermined size, and splitting the
selected cluster into two or more clusters and replacing the
selected cluster with the two or more clusters 1n anext level of
the cluster hierarchy. The clusters on each level of the cluster
hierarchy based on cluster size, to form a sorted list of func-
tion approximation node candidates.

The tunction parameters for the nodes in the neural net
model may be determined by applying a hierarchical k-means
clustering methodology to a set of sample data patterns. For
example, a function approximation node may be aradial basis
node, and a center and radius of the radial basis node are
determined through a hierarchical k-means clustering meth-
odology.

The method may further include monitoring a model accu-
racy of the neural net model while the neural net model 1s used
on-line, and adaptively updating the neural net model, 11 the
model accuracy of the neural net model 1s below a predeter-
mined threshold. The adaptive update may include incremen-
tally adding one or more additional nodes to the neural net
model, to represent new data. The new data may correspond
to a data range not represented 1n the set of sample data
patterns and/or to a change in system dynamics. The adaptive
update may include updating the function parameters of the
nodes 1n the neural net model. If the adaptive updating
reaches a limait, a full retrain of the neural net model may be
performed.

The additional nodes, according to one embodiment, may
be formed by applying a clustering methodology to new data
patterns. The clustering methodology may include, for
example, clustering the new data patterns into a number of
clusters which 1s approximately a number of the nodes 1n the
neural net model, determining that a selected cluster 1s far
away from positions associated with the respective nodes 1n
the neural net model, and adding to the neural net model an
additional node associated with the selected cluster and a
center of the selected cluster.
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An orthogonal least squares methodology may be applied
to determine a set of weights for the neural net model. The set
of weights may be adaptively updated by using new data
patterns and/or to compensate for system drift. The weights of
the nodes 1n the neural net model prior to the adaptive update
may be combined with a set of new weights based on a
forgetting factor. The forgetting factor may be determined
based on a cause of model degradation.

The present disclosure also provides a method of incre-
mentally forming a neural net model. In one embodiment, the
method includes applying a hierarchical clustering method-
ology to a set of sample data patterns to form a list of function
approximation node candidates; and incrementally applying
function approximation nodes from the list of function
approximation node candidates to form a model with an accu-
racy at or above a selected accuracy level.

According to another embodiment, the method 1ncludes
forming a plurality of function approximation nodes for the
neural net model by applying a hierarchical clustering meth-
odology to a set of sample data patterns, and applying an
orthogonal least squares methodology to determine a set of
weights associated with the function approximation nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present disclosure can be more readily
understood from the following detailed description with ref-
erence to the accompanying drawings wherein:

FIG. 1 shows a graphical representation of a plot of training,
error versus number of nodes 1n a hidden layer of a single-
layer hidden-layer net;

FIG. 2A shows a flow chart for a method of incrementally
forming a neural net model, 1n accordance with one embodi-
ment of the present disclosure;

FIG. 2B shows a flow chart for a hierarchical clustering
methodology, 1n accordance with one embodiment;

FIG. 2C shows a flow chart for a method of generating an
ordered list of candidate node functions, according to one
embodiment, using the hierarchical clustering methodology
shown 1n FIG. 2B;

FIG. 2D shows a tlow chart for a method of incrementally
constructing a model, according to one embodiment, using a
l1st of candidate node functions:

FIG. 3A shows a flow chart for a method of incrementally
forming and adaptively maintaining a neural net model at an
adequate accuracy level, according to one embodiment of the
present disclosure;

FIG. 3B shows a flow chart for a method of adaptively
updating a model to maintain accuracy of the model, accord-
ing to one embodiment, using new data;

FIG. 4 shows a schematic view of a functional link net
structure;

FIG. 5 shows a plot of data patterns and outputs produced
by amodel generated by applying methodologies provided by
the present disclosure, for a non-linear time series example;

FIG. 6 shows a plot of data patterns and outputs produced
by a model, generated and updated by applying methodolo-
gies provided by the present disclosure, for a non-linear time
series (with drift) example.

DETAILED DESCRIPTION

This disclosure provides tools (in the form of methodolo-
gies and systems) for neural net model generation and main-
tenance. Novel incremental and/or adaptive methodologies
for efliciently building adequately accurate neural net models
of mappings learned through training and for maintaining the
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accuracy ol the models are provided. The incremental meth-
odologies described herein provide efficiency, as compared
with other approaches, and the adaptive methodologies are
exercised 1n response to changes 1n a nature of the data or 1in
the system response.

In accordance with one embodiment, efficient incremental
improvement ol a model encompasses addition of nodes 1n an
appropriate manner and computation of improved system
model parameters recursively from the previously learned
model, which 1s thus improved incrementally.

In accordance with another embodiment, incremental
learning includes adding nodes from an ordered candidate list
sequentially based on gmidance provided by hierarchical clus-
tering. The architecture of the hierarchical clustering may be
binary beyond the first level and may have a maximum num-
ber of levels. The candidate list may be generated by sorting
the clusters first by level and then by cluster size. Nodes are
selected from the sorted list starting with functions from
top-level clusters. If accuracy of the model 1s not adequate,
more nodes are added sequentially until all nodes 1n the
candidate list are exhausted or until a desired accuracy 1is
obtained. This methodology may be applied to obtain a model
with adequate accuracy and having a moderate size.

Adaptive learning, 1n response to changes either in system
dynamics or to range of data or both, includes, in accordance
with one embodiment, a simple methodology for adjusting,
the network parameters and/or structure, without having to
undergo a complete retrain. Under this methodology, cluster-
ing of new data 1s used to determine 1 new nodes should be
added, and the top most linear weights for the existing nodes
and for any new nodes generated are computed by using only
the new data in combination with existing weights in the net,
according to a “forgetting factor” based on a determination of
a cause of degradation in performance of the original model
and also on number of patterns used for traiming.

An embodiment of the present disclosure may use a com-
bination of hierarchical clustering, radial basis function, and
linear orthogonal least squares methodologies to provide
incremental model building and adaptive maintenance.

An exemplary method for incrementally forming a neural
net model, 1n accordance with one embodiment of the present
disclosure, 1s described with reference to FIG. 2A. A hierar-
chical clustering methodology 1s applied to a set of sample
data patterns to form a list of function approximation node
candidates (step S21). Function approximation nodes
selected from the list of function approximation node candi-
dates are incrementally added to the neural net model to form
a model with an accuracy at or above a selected accuracy level
(step S22).

The method of incrementally forming a neural net model,
according to another embodiment, includes applying a hier-
archical clustering methodology to a set of sample data pat-
terns to form a list of function approximation node candi-
dates, and incrementally adding to the neural net model one or
more function approximation nodes selected from the list of
function approximation node candidates, until a model with
an accuracy at or above a selected accuracy level 1s obtained.
The function approximation node candidates may include
(Gaussian nodes, sigmoidal basis nodes, wavelet basis nodes,
ctc. The nodes may be non-linear.

A hierarchical clustering methodology, according to one
exemplary embodiment, 1s described with reference to FIG.
2B. The set of sample data patterns 1s split into a plurality of
clusters 1n a first level of cluster hierarchy (step S211). Select
a cluster 1n current (first) level and compare the population of
the cluster to a predetermined size threshold (step S212). If
the population of the cluster exceeds the threshold (step
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S213), the cluster 1s split into and replaced with two or more
clusters 1n a next level of the cluster hierarchy (step S214).
The process 1s repeated until no clusters exceeding the size
threshold remain (step S215).

A method of generating an ordered list of candidate node
functions, according to one exemplary embodiment (FIG.
2C), may use the methodology of F1G. 2B to develop a cluster
hierarchy. When all remaining clusters are moderate-sized
(e.g., population 1s below threshold) [steps S212-S215], a list
of candidate node functions may be generated by sorting the
clusters on each level of the cluster hierarchy, based on cluster
s1ze (step S216).

A method of incrementally constructing a moderately-
s1zed model with adequate accuracy, 1n accordance with one
embodiment (FIG. 2D), may use a list of candidate node
functions generated by applying, for example, the methodol-
ogy shown 1n FIG. 2C. If there are any node functions on the
candidate list (step S221), the first node function on the list 1s
selected and added to the model (step S222). New weights are
computed, along with a system error (or other accuracy indi-
cator (step S223). If the accuracy of the model 1s not adequate
(step S224), the process returns to step S221 to process any
candidate node functions remaining on the list.

A method, 1n accordance with another embodiment, for
incrementally forming a neural net model off-line and adap-
tively maintaining the neural net model at an adequate accu-
racy level and a moderate size 1s described with reference to
FIG. 3A. A function approximation node i1s incrementally
added to the neural net model (step S31). Function parameters
are determined for the function approximation node and func-
tion parameters of other nodes 1n the neural net model are
updated, by using new data and the existing function param-
cters of the other nodes prior to addition of the function
approximation node (step S32). Function approximation
nodes may be added to the neural net model (steps S31 and
S32) until the model has an adequate accuracy (see, for
example, FIG. 2D). The model formed ofi-line may be
deployed and used on-line (step S33). Accuracy of the model
1s monitored as new data 1s fed as mput to the model (step
S34). I the model 1s not adequately accurate (for example,
meet a minimum level of accuracy) [step S35], model param-
eters and/or structure may be updated adaptively (step S36).
The adaptive update may be necessitated, for example, by a
change 1n system dynamics or by drift in the system. The
neural net model may have poor accuracy for new data that 1s
not represented by (for example, far away from) any of the
clusters of sample data patterns which correspond to the
function approximation nodes. In this latter instance, the
adaptive update may use the new data to add additional nodes
to the model. See, for example, FIG. 3B and corresponding
discussion below.

I1 the limit for adaptive updating 1s reached (for example,
accuracy 1s not improved through adaptive update) [step
S37], preparation for full off-line retrain 1s performed (step
S38), and then the process restarts at step S21. On the other
hand, 1f the adaptive update improves the accuracy of the
model (step S37), the adaptively updated model 1s redeployed
and used on-line (step S33) and accuracy of the updated
model 1s monitored (step S34).

A method of adaptively updating a model to maintain accu-
racy of the model (for example, step S36), according to one
embodiment of the present disclosure (FIG. 3B), may be
applied 1n response to, for example, new data corresponding
to change 1n system dynamics and/or in range of data. The
new data 1s clustered into roughly the same number of clusters
as the number of current nodes in the model (step S361). For
clusters that are far away from the current nodes 1n the model,
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corresponding new nodes are added at the positions of the
cluster centers (and weights on output links of the new nodes
may be 1mitialized to zero) [step S362]. A set of new weights
1s computed for all (current and new) nodes based on the new
data (step S363). The new weights are combined with the
existing weights of the existing nodes by applying a forget-
ting factor (step S364). The forgetting factor may be selected
based on, for example, a cause of degradation 1n model per-
formance and/or on a number of training patterns.

Function parameters associated with the nodes in the neu-
ral net model may be generated by using a hierarchical
k-means clustering methodology. For example, the nodes
may include radial basis nodes, and the centers and radi1 of the
radial basis nodes are determined through the hierarchical
k-means clustering methodology.

Some neural nets may be trained to model or approximate
a Tunctional relationship between input and output, without
requiring training with every possible mput pattern. A rela-
tionship between input and output i1s described as “func-
tional” to signily that the input-output relationship can be
approximated by a mathematical function, for example, for
cach 1nput pattern the input pattern has only one associated
output value (e.g., if inputs x and y are 4 and 5, output z 1s
always 9; 11 x and vy are 94 and 73, z 1s always 26; etc.).

The functional relationship may be linear or non-linear.
Linearity 1s a mathematical property (applicable, {for
example, to a relationship between input and output of a
function) that output (y) 1s proportionally related to input (x)
[for example, y=2x, y=5-4x, etc.], such that a small/large
change 1n 1put produces a corresponding small/large change
in output. Once 1t 1s known that a problem embodies a linear
relationship between variables, the linear factor may be deter-
mined numerically, empirically and/or methodically through
well-known methods. However, 1n real life, the relationship
between independent variables in a mathematical problem 1s
typically non-linear (1.¢. there1s not such a fixed ratio). There-
fore, 1n order for a neural net to be a universal approximator
(which means that a network can be used to approximate any
function to arbitrary precision when enough nodes are pro-
vided win the net), the neural net should be capable of mod-
cling non-linear input-output relationships. Some neural nets
may be trained to capture nonlinearity and interactions
among 1ndependent varnables automatically without pre-
specification.

A Tunctional-link net (“FLN") 1s one type of neural net
which can be used to model a functional relationship between
input and output. A FLN may be used to approximate any
scalar function with a vector of inputs, X, and an outputy. The
structure of a FLN with non-linearity fully contained in a
tfunctional-link layer 1s 1llustrated in FIG. 4. The nodes in the
tfunctional-link layer have associated non-linear basis func-
tions. Examples of FLLNs are described in commonly owned
U.S. Pat. Nos. 4,979,126, 5,734,796, 6,134,53"7 and 6,212,
509 which are incorporated herein in their entirety by refer-
ence. Since a vector function may be decomposed into scalar
dimensions, and therefore may be approximated with mul-
tiple output nodes or multiple nets, the discussion of FLN 1n
this disclosure focuses on the case of one output node, such as
shown in F1G. 4, without loss of generality to cover the typical
circumstance in which there are multiple output nodes.

Hidden-layer nets and FLNs are two types of neural nets
that can serve as universal approximators. However, a loca-
tion of the non-linearity 1s different for the two types of nets.
For a multi-layer hidden-layer net, the activation function for
the ludden-layer nodes typically 1s non-linear. Although all
the weights are linear weights, any methodology used to train
such a net has to be non-linear. On the other hand, when a FLLN
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1s used, non-linearity may be fully contained in the func-
tional-link layer, and the rest of the net may be linear. There-
fore, linear training techmiques such as regression-based
training may be used with a FLN structure. Linear training
refers to techniques that solves the parameters 1n the net
through linear algebra techniques.

Although both types of nets (i.e., multi-layer hidden-layer
net and functional-link net) may be universal approximators,
how many nodes 1s enough varies according to the data and/or
the problem. Further, since the imitial set of weights and/or
function parameters in the net are usually randomly gener-
ated, the resulting trained net 1s usually just a local minimum
in the error space (e.g., the associated error appears to be at a
minimum). A result of a trained net being at a local minimum
1s that adding one more node may not reduce the model error
at all, 11 one does not try a significant number of different
initial weights and/or sets of parameter values. This 1s less of
a problem for the linearly trainable FLN, unless the randomly
generated parameter values cause the linear problem to be
close to singular (e.g., with an undefined mathematical
derivative at some point in the problem space). Therefore, the

problem of training error settling to a local minimum 1s much
more noticeable and likely to occur with hidden-layer nets.

The neural net model generation and maintenance meth-
odologies of the present disclosure (referred collectively
herein as “orthogonal functional-link net methodologies™ or
“OFLN methodologies”) may be applied to generate, 1n
accordance with a preferred embodiment, an efficient, high-
performance function approximation neural net. The OFLN
methodologies also include provisions for maintenance of the
subject net so that the net can be automatically updated 1n
accordance with data obtained from the system being mod-

eled.

A FLN with linear output nodes is selected as the net type
under the OFLN methodologies. An advantage of a FLN 1s
that linear regression training techniques, such as an orthogo-
nal least squares (OLS) learning methodology (discussed
below), can be used to achieve incremental and adaptive
learning.

Under the OFLN methodologies, the appropriate number
of function approximation nodes are considered together with
the parameters of the nodes. For radial-basis function
approximation nodes (discussed below), the parameters
include the location of the center and for some cases the
elfective radius. One may use a heuristic radius 1n combina-
tion with random centers, or place centers on randomly
selected existing patterns. A drawback, however, 1s thatitmay
be difficult to determine the quality of the parameters in terms
of their ability to represent the available data. Therelore,
multiple trials and/or user experience, 1.e. heuristics specific
to a problem, may be necessary to arrive at a good model.
Under the OFLN methodologies, the data speak for them-
selves, that 1s, the candidate center and radi values are gen-
erated through hierarchical clustering (discussed below).

Combining the advantages of radial-basis FLLN, hierarchi-
cal clustering and the orthogonal least squares methodology,
the OFLN methodologies may be applied to provide auto-
matic generation of suitable models of a system 11 a set of
training data 1s available. The model created by the OFLN
methodologies may also be updated adaptively. The combi-
nation of effective model building, which may be performed
periodically off-line as new data accumulate, and adaptive
model updating, which may be carried out on-line as new data
are available, provide the tools for maintaiming optimal per-
formance by the model.
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The OFLN methodologies provide a number of features,
including the following, which make the methodologies par-
ticularly suited for solving new and complex real-world prob-
lems:

(a) Learning: the subject methodologies develop solutions
by extracting relationships from data, 1n a manner analo-
gous to the way we learn from experience;

(b) Multi-dimensional: under the subject methodologies
all the features of a problem may be considered at once,
in parallel, 1n contrast to the human ability to analyze a
finite number of data streams at once, and conventional
sequential algorithms, which may require a great deal of
complex programming to solve a problem that has many
features:

(c) Non-linear: the subject methodologies are not bound to
conventional modeling or problem solving techniques
which require that some knowledge of the underlying
nature of the problem 1s known or assumed in advance
and the solution limited to that form; and

(d) Adaptive: the model may readily be updated to accom-
modate new data, continuously improving its knowl-
edge of the problem.

Orthogonal Least Squares Methodology

The orthogonal least squares (OLS) learning methodology
1s an incremental learning methodology.

A FLN may be trained to approximate the following scalar
function, if a set of observed associated mput-output pattern
pairs {(X,, y,)} is provided, where p=1, . . ., P (P being the
number of pattern pairs):

(1)

Using the net illustrated 1n FI1G. 4, the following linear sum
of a set of non-linear basis functions, {,(x) where =1, ..., J(]
being the number of nodes), may be used to represent the
approximation for the function 1n Equation (1):

$()=Zw /()

y=y(x)

(2)

Since Equation (2) 1s an approximation, there may be 1n
addition an error term on the right hand side of the equation to
make it a true equality. However, the error term 1s dropped in
Equation (2) in the interest of clarity. Although radial basis
functions such as Gaussians are frequently selected as 1 (x) in
Equation (2), other functions, such as sigmoids or wavelets,
may also be used. Substituting the known patterns into Equa-
tion (2), P simultaneous equations are obtained. Since P (1.¢e.,
the number of pattern pairs) 1s usually much larger than J,
(1.e., the number of function approximation nodes), the prob-
lem 1s over-specified and a solution can only be obtained 1n
the sense of least sum of squares-ot-error, or least squares.

If a traiming methodology based on least squares 1s used to
train the net, the larger the number of basis functions used, the
smaller the training error results, assuming the selected basis
functions do not cause the resulting linear system to be nearly
singular. However, the goal of course 1s to obtain an approxi-
mation that 1s truly representative of the implicit functional
relationship. The trained net may be tested with the aid of a
validation set (for example, a test set distinct from the training
set) of patterns. Small errors for the training set patterns alone
are not a satisfactory result of the learning process if a test
with the validation set reveals that the learned relationship 1s
not widely valid across the validation set (e.g., the learned
relationship does not yield an appropriate output when an
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The set of simultaneous equations obtained from Equation
(2) may be written 1n matrix form, as follows:

Chx) falx) o filx) [y ) (3)
filx2) falxz) oo filx2) |[rwiy | X2
: : : Wh '
fixy) fxy) o S | E ]| v
5 5 5 M :
S1xp) falxp) o filxp) Yp

or

(4)

Each of the non-linear tunctions 1 (x) are described in terms
of parameters. Though these parameters may also be varied in
the training process, they usually are pre-selected and remain
constant, while only the linear weights are adjusted, during
the training process for such a net structure.

Using a linear least squares technique, a solution for Equa-
tion (4) may be expressed as follows:

w=(FF)'FY ()

However, 1n actual computation, the weight vector w 1s
usually computed directly using singular value decomposi-
tion (SVD) or LU decomposition of F’F rather than the
pseudo-1nverse technique corresponding to Equation (5). The
computation is straightforward i1 F 1s fixed. A problem arises
when F 1s augmented during training as in the case of adding
function approximation nodes dynamically. Direct comput-
ing of w may require a whole new SVD or LU decomposition
of the augmented F’F, although the only change in F is an
added column.

Fw=y

In order to handle augmenting of F during training, the
OLS methodology provides an extra step of orthogonaliza-
tion. The extra step allows most of the results from a compu-
tation before F 1s augmented to be reused after F 1s augmented
in, for example, a recursive fashion.

In Equation (4), each row of the matrix F 1s a representation
ol a single pattern vector in terms of the J basis functions.
Accordingly, the matrix F 1s a representation of an entire set
of P pattern vectors in terms of the J basis functions. The
matrix F can also be considered as a row of column vectors 1,
as follows:

F=[f,f,. . . ] (6)

In the OLS methodology, a set of orthogonal vectors h may
be built from the 1 vectors in the Gram-Schmidt manner as
follows:

h=fil=H-C5 1k (7)

k-1
i, = fa —Z Cyih;
=1

The coefficients C,, are determined by the following
orthogonalization condition:

<h b, >=<hf,>-C, <hh>=0
so that

Cr=<hf>/<hh.> (8)
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With this notation, the matrix F may be rewritten as follow:

F=HA (9)

where A 1s an upper triangular matrix with the coelificients as
its elements and ones on 1ts diagonal.
Now Equation (4) may be rewritten as follows:

HAw=y (10)

By denoting

o=AwW (11)

the set of simultaneous equations 1s transformed to the fol-
lowing:

Hg=y (12)
The least squares solution for g 1s as follows:

g=(H'H)"'HY (13)

where HH is the following diagonal matrix:

(Hh 0 ... 0 ) (14)
e 0 Hh ... O
.0 0 . Wy

and therefore (H'H)™! is as follows:

(15)

0 0
|
P Y ’
(H'H) = pX )
|
0 0 —
\ g )

If another h vector 1s added to the representation, the new g
vector may be evaluated recursively as follows, which may be
shown with straightforward linear algebra:

(16)

hi+lyk+l}r

el = | &k
’ [ A1 e

The solution for w 1s then as follows:
w=A"lg (17)

Since A 1s an upper triangular matrix, the mverse matrix
A~" may also be computed recursively as follows:

A7l =1] (18)

Al =11]
(1 Chy ] [fh Chy ]
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A1 ¢k
Ap = 01 where ¢; = (Cyy, Crzy oov s Crpor)
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A}r{ —
0 |

Using the new g vector and the A~ matrix, the new weight
vector may be obtained using Equation (17).

Thus, a FLN with non-linearity fully contained 1n a func-
tional-link layer may be constructed incrementally by apply-
ing the OLS methodology. The OLS methodology provides a
natural control on the number of nodes. As nodes are added to
the net, the error of training generally reduces. The adding of
nodes stops when the target of training 1s reached or when
signs ol over-training are evident.

Hierarchical Clustering

The OLS methodology allows for easy addition of new
function approximation nodes during the time of training.
The next question 1s: what new node should be added, that 1s,
what parameters should be used 1n the new node function.

Random choice 1s one technique. The random vector FLN

uses randomly selected node parameters and applying the
OLS methodology to 1t may be a natural extension of this type
ol net. However, randomly selected parameters may not pro-
vide adequate coverage of the data distribution, and a number
of (random selection) trials may be desired to obtain a good
model such as described 1n the ensemble net technique.
The OFLN methodologies, in accordance with one
embodiment, uses radial basis function approximation nodes
in the functional-link layer. An advantage of using radial basis
functional-link layer nodes 1s that clustering methodologies
may be used to generate the centers and radi.

A k-means clustering methodology may be used for deter-
mining the centers and radii. Since the number of clusters
typically 1s unknown before traiming, hierarchical k-means
clustering (discussed below) may be used to generate node
parameters, 1n accordance with one embodiment. The hierar-
chical k-means clustering methodology 1s a divisive tech-
nique. The whole sample data set 1s first clustered into a small
number of clusters. Depending on the population of the
resulting clusters, large ones may be split further into smaller
clusters until the populations of the clusters are moderate or
the number of levels 1n the cluster hierarchy exceeds a
selected maximum. The limit on the number of levels 1s used
to control the maximum complexity of the resulting model.
The k-means methodology 1s used 1n each level of clustering.

There are several advantages to using hierarchical cluster-
ing versus single level clustering. For example, there 1s no
need to guess the number of clusters to be generated or the
radn of the clusters, as are required up front by some other
clustering methodologies. In addition, different levels in the
cluster hierarchy represent descriptions of data at different
levels of detail. The different levels 1s quite important 1n
building a model since, i order for the model to generalize
well, 1t 1s better to have a small number of nodes 1n the net as
long as the training error 1s acceptable. With different levels of
detail, the net may start with a coarse description on the first
level, and 1f the training error is not satisfactory, additional
detail may be added using results from lower level clusters
until the model 1s acceptable. This automatically results in
models of modest complexity.

Under many other methodologies, the number of nodes 1s
often chosen to be larger than necessary, in the interest of
obtaining suificient detail. Either forward selection or back-
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ward elimination, however, may be desired to control com-
plexity. With hierarchical clustering, the process 1s compa-
rable to forward selection. However, the number of
candidates 1s much smaller at any stage since only clusters 1n
the same or next level may be considered. For a small value of
k (for example, two) 1n generating next-level clusters, the
whole selection process may be eliminated since simply add-
ing the candidate which corresponds to the cluster with the
largest population among the remaining same-level or next-
level clusters achieves performance similar to that obtained
with forward selection. This simplification often may signifi-
cantly reduce the training time.

Adaptive Model Update

Even under the best circumstances, a model 1s only an
approximation of the underlying functional relationship or
system during a period of time when the data with which the
model was trained was collected. There are many factors
which contribute to a motivation to update the model.

If the same 1nputs are provided at different times, a model
should return the same computed output values. However, the
value 1s not necessarily representative of the functional rela-
tionship or system being modeled. Noise in observation typi-
cally causes the old computed value to be somewhat different
from the newly observed one.

The model also may be obsolete. In the use of a mathemati-
cal model of a system, the focus 1s on the inputs, and system
parameters are considered to be constant. However, after the
model 1s established, the system parameters may drift and
cause the underlying system behavior to shift. For example,
the further a driver steps on a brake pedal of a car, the faster
the car stops, and a model may be built to predict how fast the
car stops for a particular distance the brake pedal moves.
However, as the brake pads wear thin and brake fluid ages
over time, the same amount of travel 1n the brake pedal results
in the car stopping slower than before.

It 1s possible to compensate for minor changes due to noise
or system drift, by updating some appropriate parameters, for
example, the weights 1n the FLN model. Newly available data
may help to cancel noise in previous training data or to bring,
the model more up to date. In practice, it 1s difficult to deter-
mine whether the cause 1s noise or drift since normally both
exist and 1t 1s likely that noise effects are dominant 1n the short
term while drift might be responsible for secular effects and 1s
dominant for a longer term.

Another situation 1n which updating the model 1s desired 1s
when novel cases are 1dentified 1n newly available data. For
cases of novel data, changing weights associated with exist-
ing nodes may not be enough to represent the etfects of the
novel data. Adding new nodes associated with data regions in
which the novel cases exist may be used to address this
problem. Again, clustering may be used to determine the
position and spread of the new node function. With centers
from clustering results, it 1s easy to identify patterns that fall
outside of known regions.

While 1t 1s difficult to perform adaptive learning for the
conventional multi-layer hidden-layer net structure due to the
non-linearity within the training methodology, the adaptive
update for a FLN with non-linearity contained in the func-
tional-link layer, such as the net generated by the OFLN
methodologies, may be carried out as follows.

If a set of newly obtained associated pattern pairs {(x',,
y p)} 1s provided, in which p=1, ..., P', and P'1s much smaller
than the original number P of pattems in the training set, a
new F' matrix may be obtained using the same radial-basis
function approximation nodes supplemented with additional
nodes as warranted. A least squares solution w' equivalent to
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Equation (5) may be obtained. Assuming w represents the
current weights 1n the model, with zeros for links from the
additional nodes, the new weights w,___ may be obtained
using the following equation:

w . =(1-a)w+oaw’ (19)
where o 1s a parameter between O and 1. Determination of .
1s based on several parameters, such as the number of patterns
in the new set compared with the previous training set, con-
fidence level in the newly available set versus the previous
one, the estimated rate of change in the underlying system and
the time elapsed since the model was first established. One
way to compute the parameter a 1s to use the following
equation:

(20)

T (1-OP+P

where P and P' are the numbers of patterns 1n the training set
used to train the current model and 1n the newly available data
set, respectively. The parameter A 1s a forgetting factor. Its
value 1s also within [0, 1]. The higher the value of A, the less
clfect the existing weights w have on the new weightsw, . In
other words, the current weights are forgotten to a greater
extent. The advantage of introducing A 1s that it separates the
tangible part (1.¢., the number of patterns) from the intangible
parts of the determination process for the parameter .

Although adaptive learning may help to reduce differences
caused by both noise and drift, there 1s a distinction between
the two causes. To obtain a desired response, the input param-
cters may still be 1n the same neighborhood for differences
caused by zero-mean noise but may be progressively difierent
for differences caused by drift. In addition, the desired opera-
tions to update the model are also different. For the noise case,
the parameters in the existing model are treated with equal
importance. In contrast, for drift, they need to be forgotten.
The parameter A 1s provided for this purpose in Equation (20).

For adaptive updating of model parameters to work, the
general underlying principle 1n the functional relationship or
model may still be valid and the amount of change may be
small. If these conditions are not true, a completely new
model may be established. Even i1 the change 1s gradual, the
amount ol change may become significant over time. There-
fore, adaptive updating 1s best for a short-term solution. As
new data accumulates, a full retrain may be conducted, peri-
odically or when w,__ 1s sulficiently different from the or gi-
nal w. A difference between adaptwe update and full retrain 1s
that adaptive update keeps all existing nodes and only adjusts
the weights for them, while for full retrain all function
approximation nodes (and weights) are newly generated. Full
retrain may provide better performance but is also much more
time consuming. Performing an adaptive update to an on-line
model frequently coupled with installing a fully retrained
model from off-line periodically may be an effective tech-
nique to ensure that the model 1s always up to date.

Whether previous training data may be archived is a trade-
oif 1ssue. The adaptive updating does not require any of them.
Whether a full retrain uses them depends on whether the
retrain 1s called for by large amount of new data or by large
difference in weights. For the latter case (1.e. large difference
in weights) with a small amount of new data, retrain with all
or some of the previous training data may be desired. How-
ever, for fast changing situation, dropping old data may yield
better results. One technique that may work suificiently well
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for most situations 1s to keep a fixed amount of data, dropping
old ones as new ones are available.

EXAMPLES

A simple non-linear time series example 1s discussed
below to illustrate a process of automatic model generation
and updating by using OFLN methodologies. The example
may apply exemplarily to network performance and position-
ing of network centers.

A non-linear times series 1s simulated by the following
equation:

y(7) = [0.8 = 0.5exp(—y*(r = I))]y(r = 1) — (21)

[0.3 +0.9exp(—v*(r — I)]y(r =2) +
O.lsin(my(r — 1)) + e(r)

where e(t) 1s a zero mean noise sequence with variance 0.01.
The 1nitial conditions were set as y(0)=0.1 and y(-1)=0. The
previous two points are used to predict the value of the current
point.

Two thousand samples of the time series were generated.
The first 1000 patterns were used as the training set and the
remaining 1000 were used as the validation set. Gaussians
were used as the function approximation nodes. The centers
were determined by using cluster centers and the spreads
were determined by using the radii of the clusters. Hierarchi-
cal k-means clustering up to 3 levels with 3 clusters at the first
level and binary split at the next two levels were used. The
hierarchical clustering resulted 1n a total of 21 clusters. The
clusters were sorted based on ascending level and descending
population. The net started with 3 nodes corresponding to the
top-level clusters, and nodes were added from the list of
clusters sequentially. For an error target of Se-4, a total of 12
nodes were selected. An error for the validation set was also
less than Se-4, indicating good generalization capability of
the resulting model.

FI1G. 5 shows the training patterns, a noise-free limit cycle,
a limit cycle produced by the model when the model output
was fed back to the input, and positions of cluster centers from
different levels of clustering, for a simulated non-linear time
series and results from the FLLN model. The small dots corre-
spond to training patterns. The gray loop corresponds to the
noise-iree limit cycle. The black loop corresponds to the limit
cycle produced by the FLLN model when the output was fed
back to the mput. The large black circles correspond to the
positions of the centers of the first level clusters. The triangles
correspond to the second level clusters. The diamonds corre-
spond to selected third level clusters. The selected centers
appear to be at strategic positions and the limit cycle produced
by the model agrees well with the noise-free system limit
cycle.

To 1illustrate the process of maintaining optimal model
performance through a combination of adaptive model update
and periodic retraining of the model, a constant drift term 1s
added to the non-linear time series system corresponding to
Equation (21), as follows for t=1000:

y(7) = [0.8 = 0.5exp(—y* (1 — I)]y(r = 1) — (22)

[0.3 + 0.9exp(—v*(r — )]y —2) +
O lsin(zy(r — 1))+ 0.25 + e(2)
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Two additional training data sets containing S00 patterns 1n
cach set were generated. The error of consulting these pat-

terns using the original model was 0.00326. Adaptive learn-
ing was applied with each training set sequentially. The for-
getting factor used was 0.5 1n both cases. The resulting errors
of the modified models corresponding to the traiming data sets
were 0.00114 and 0.000713, respectively. A new model was
also built by using both new training data sets to simulate the
periodic retrain. Again, for an error target of Se-4, only 12
new nodes were used.

FIG. 6 shows limit cycles produced by the models at dif-
ferent stages when the output was fed back to the input as
compared to the noise-free limit cycle for the drifted system
corresponding to Equation (22). The gray dot loop corre-
sponds to the noise-free limit cycle. The solid gray loop
corresponds to the limit cycle produced by the original model.
The solid black loop corresponds to the limit cycle produced
alter the first adaptive learning. The asterisk dot loop corre-
sponds to the limit cycle produced after the second adaptive
learning. The plus dot loop corresponds to the new model
after full retrain with new data.

From FIG. 6, 1t 1s evident that adaptive learning may be
used to correct the model parameters so as to bring the model
outputs progressively closer to the target. However, as new
patterns accumulate to warrant a retrain, the new model per-
forms better than the adaptively updated model since the
retrained model 1s not affected by the old parameters in the
original model. In addition, centers may be tuned to the new
data set.

Therefore, an advantage of the OFLN methodologies over
other existing methodologies, such as backpropagation, 1s
that OFLN methodologies may be used to generate candidate
processing nodes automatically and efficiently by utilizing
knowledge of where the data points are situated. The OFLN
methodologies may also be used to dynamically adjust the
number of processing nodes to maintain or improve the fidel-
ity of the function approximation, without user intervention.
The functional-link net structure facilitates adaptive learning,
through which the FLN model may successiully perform the
tasks of learning with noisy training data, predicting a value
ol a current observation based on previous ones, and main-
taining accuracy in a presence of drift in the underlying func-
tional relationship or system (e.g., signal generation mecha-
nism).

Applications of the OFLN Methodologies

Neural net models formed and maintained through the
OFLN methodologies may be applied to provide computer
application software with abilities similar to human pattern
recognition and predictive skills. The methodologies may be
incorporated in a computer program or software module
stored 1n a computing system’s memory, on a computer read-
able medium and/or transmitted via a computer network and/
or other transmission media 1n one or more segments, which
1s executable on the computing system.

The following are just a few examples of such skills which
application soitware may be adapted to have.

Application software may be adapted to make predictions
based on the current state and on the historical trend, such as,
for example, predicting an amount of merchandise to order
from a supplier to avoid running out of mventory in the
upcoming month, while not keeping too much inventory (e.g.,
above what 1s needed for the month). Over time, the model
may be updated, by applying adaptive update methodologies,
to account for changes in fashion trends, economic condi-
tions, etc.
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Application software also may be adapted to emulate other
intelligent behavior, such as the following: (a) predictive
modeling: developing cause-and-effect models of systems
from data that describes the systems behavior, and predicting
the behavior of) the system based on new *“cause” data; and
(b) optimization: improving the performance of a system, or
solving a problem. If an operating point of the system has
drifted (e.g., caused by wear and tear) or system requirements

have changed (e.g., because of increased demand), the system
model may be adaptively updated.

The OFLN methodologies may be applied to, for example,
profiling (which 1s known in the information technology art as
“data mining™), to look for interesting patterns in data and
trying to explain them. The model 1s typically updated incre-
mentally as new data 1s gathered, because at least some of the
new data may not be represented in the existing model.

The OFLN methodologies may be applied to value predic-
tion. For example, an input to a FLN model may be a recipe
containing a list of ingredients and processing conditions for
producing rubber, polymers, glass, metals, petrochemicals,
food, etc., and resulting properties of the product. The FLN
model may be trained to model the production process. The
prediction model may be trained from historical product data
in a database corresponding to product properties for each
recipe. For example, a model trained to predict the properties
ol bread recipes may receive the amounts of various igredi-
ents and the baking conditions as inputs, and predict the
measurable qualities of the bread product. Alternatively, the
model may be trained to specily an appropriate recipe based
on input of the desired properties. The model may be adap-
tively updated to account for drift (e.g., equpment wear and
tear) or new data (e.g., as predicted recipes are tested). Addi-
tional recipes independently discovered may require updat-
ing the model incrementally.

The OFLN methodologies may be adapted for business
intelligence. For example, a local utility may be interested 1n
improving the way that they forecast the price of electric
power. Traditionally, managers decide on a daily basis which
plants are run 1n production, and how much power to buy or
sell on the spot market, based on forecasts of the next day’s
demand and price. These decisions also may be made on an
hour-by-hour basis for the following day, and so forecasts are
desired for each hour of the following day. A model may be
trained to predict the next day’s hourly demand for electric
power based on the previous 24-hours of outdoor temperature
and actual demand. The trained model may be adaptively
updated to account for social trends (for example, change
from five-day to four-day work week, which affects demand
for each day of the week).

Additional varnations may be apparent to one of ordinary
skill 1n the art from reading the following U.S. provisional
applications, which are incorporated herein by reference:

(a) Ser. No. 60/374,064, filed Apr. 19, 2002 and entitled
“PROCESSING MIXED NUMERIC AND/OR NON-
NUMERIC DATA™;

(b) Ser. No. 60/374,020, filed Apr. 19, 2002 and entitled
“AUTOMATIC NEURAL-NET MODEL GENERA-
TION AND MAINTENANCE”;

(c) Ser. No. 60/374,024, filed Apr. 19, 2002 and entitled
“VIEWING MULTI-DIMENSIONAL DATA
THROUGH HIERARCHICAL VISUALIZATION;

(d) Ser. No. 60/374,041, filed Apr. 19, 2002 and entitled

“METHOD AND APPARATUS FOR DISCOVERING
EVOLUTIONARY CHANGES WITHIN A SYS-
TEM™;
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(e¢) Ser. No. 60/373,977, filed Apr. 19, 2002 and entitled
“AUTOMATIC MODEL MAINTENANCE
THROUGH LOCAL NETS”; and

(1) Ser. No. 60/373,780, filed Apr. 19, 2002 and entitled
“USING NEURAL NETWORKS FOR DATA MIN-
ING”.

What 1s claimed 1s:

1. A computer-implemented method of incrementally
forming and adaptively updating a neural net comprising;:

(a) using a set of sample data patterns to form a hierarchical
list of function approximation node candidates, each
function approximation node candidate located at the
center of a hierarchically arranged cluster;

(b) incrementally adding to the neural net a function
approximation node selected from the list of function
approximation node candidates;

(c) computing function parameters for the function
approximation node and updating function parameters
of other nodes 1n the neural network by using the func-
tion parameters of the other nodes prior to addition of the
function approximation node to the neural network and

(d) storing an updated neural net including the function
approximation node and the updated function param-
eters for use during the recognition of one or more pat-
terns 1n a new set of data; and

(¢) using the updated neural net to improve the perfor-
mance of a system, wherein the new set of data com-
prises data that describes a behavior of the system.

2. The method of claim 1, wherein 11 an accuracy level of
the neural net with the function approximation node added
thereto 1s below a predetermined accuracy level, steps (b) and

C) are repeated.

3. The method of claim 1, wherein the list of function
approximation node candidates i1s formed by

splitting the set of sample data patterns into a plurality of
clusters 1n a first level of a cluster hierarchy,

determiming that a selected cluster 1n the first level has a
population exceeding a predetermined size, and

splitting the selected cluster into two or more clusters and
replacing the selected cluster with the two or more clus-
ters 1n a next level of the cluster hierarchy.

4. The method of claim 3 further comprising sorting the
clusters on each level of the cluster hierarchy based on cluster
s1ze, to form a sorted list of function approximation node
candidates.

5. The method of claim 1, wherein the neural network, 1s
adaptively updated by incrementally adding one or more
additional nodes to the neural net, to represent new data
corresponding to a data range not represented 1n the set of
sample data patterns.

6. The method of claim 1 further comprising:

monitoring an accuracy level of the neural net while the
neural net 1s used on-line; and

adaptively updating the neural net, 11 the accuracy level of
the neural net 1s below a predetermined threshold.

7. The method of claim 6, wherein the adaptive update
includes incrementally adding one or more additional nodes
to the neural net, to represent new data.

8. The method of claam 7, wherein the new data corre-
sponds to a change 1n system dynamics.

9. The method of claim 6, wherein the adaptive update
includes updating the function parameters of the nodes in the
neural net.

10. The method of claim 6, wherein 11 the adaptive updating
reaches a limit, a full retrain of the neural net, 1s performed.
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11. The method of claim 1 further comprising adaptively
updating the neural net by adding one or more additional
nodes to the neural net, based on new data patterns.

12. The method of claim 11, wherein the additional nodes
are formed by applying a clustering methodology to the new
data patterns.

13. The method of claim 12, wherein the clustering meth-

odology includes

clustering the new data patterns 1nto a number of clusters
which 1s approximately a number of the nodes in the
neural net;

determining that a selected cluster 1s far away from posi-
tions associated with the respective nodes 1n the neural
net; and

adding to the neural net an additional node associated with
the selected cluster and a center of the selected cluster.

14. The method of claim 11, wherein

a set of 1itial weights 1s determined for the nodes in the

neural net when the neural net 1s formed, and

when the additional nodes are added during adaptive

update, a set of new weights for the nodes 1n the neural
net 1s computed, and the 1mitial weights are combined
with the new weights for the nodes based on a forgetting
factor.

15. The method of claim 14, wherein the forgetting factor
1s determined based on a cause of neural net degradation.

16. The method of claim 1 further comprising applying an
orthogonal least squares methodology to determine a set of
weights for the neural net.

17. The method of claim 16, wherein the set of weights are
adaptively updated by using new data patterns.

18. The method of claim 16, wherein the set of weights are
updated to compensate for system driit.

19. The method of claim 1, wherein the function param-
cters for the nodes 1n the neural net are determined by apply-
ing a hierarchical k-means clustering methodology to a set of
sample data patterns.

20. The method of claim 1, wherein the Tunction approxi-
mation node 1s a radial basis node, and a center and radius of
the radial basis node are determined through a hierarchical
k-means clustering methodology.

21. The method of claim 1, wherein the function approxi-
mation node 1s a Gaussian node.

22. The method of claim 1, wherein the Tunction approxi-
mation node 1s a sigmoidal basis node.

23. The method of claim 1, wherein the function approxi-
mation node 1s a wavelet basis node.

24. The method of claim 1, wherein the function approxi-
mation node 1s non-linear.

25. A computer-implemented method of incrementally
forming a supervised learning neural net from data 1n the form
ol input-output pairs, comprising:

applying a hierarchical clustering methodology to a set of

sample data patterns to form a list of function approxi-
mation node candidates:

incrementally adding one or more function approximation

nodes to the supervised learning neural net until the
supervised learning neural net has an accuracy level ator
above a predetermined accuracy level, wherein the func-
tion approximation nodes are selected from the list of
function approximation node candidates; and
computing function parameters for the function approxi-
mation node and updating function parameters of other
nodes 1 the neural network, by using the function
parameters ol the other nodes prior to addition of the
function approximation node to the neural network;
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storing an updated supervised learning neural net, includ-
ing the function approximation node and the updated
function parameters for use during the recognition of
one or more patterns 1n a new set of data, and

using the updated neural net to improve the performance of
a system, wherein the new set of data comprises data that
describes a behavior of the system.

26. A computer system, comprising: a processor; and a
program storage device readable by the computer system,
tangibly embodying a program of instructions executable by
the processor to perform a method of incrementally forming
and adaptively updating a supervised learning neural net
formed from data in the form of iput-output pairs, the
method comprising:

(a) using a set of sample data patterns to form a hierarchical
list of function approximation node candidates, each
function approximation node candidate located at the
center of a hierarchically arranged cluster;

(b) incrementally adding to the supervised learning neural
net a function approximation node selected from the list
of function approximation node candidates;

(¢) determining function parameters for the function
approximation node and updating function parameters
of other nodes in the supervised learning neural network,
by using the function parameters of the other nodes prior
to addition of the function approximation node to the
supervised learning neural network; and

(d) storing the updated supervised learning neural net
including the function approximation node and the
updated function parameters for use during the recogni-
tion of one or more patterns 1n a new set of data, and

(¢) using the updated neural net to improve the perior-
mance of a system ~ wherein the new set of data com-
prises data that describes a behavior of the system.

277. A program storage device readable by a machine, tan-
gibly embodying a program of instructions executable by the
machine to perform a method of incrementally forming and
adaptively updating a supervised learning neural net from
data 1n the form of input-output pairs, the method comprising:

(a) using a set of sample data patterns to form a hierarchical
list of function approximation node candidate, each
function approximation node candidate located at the
center of a hierarchically arranged clusters;

(b) incrementally adding to the supervised learning neural
net a function approximation node selected from the list
of function approximation node candidates;

(¢) determining function parameters for the function
approximation node and updating function parameters
of other nodes 1n the supervised learning neural network,
by using the function parameters of the other nodes prior
to addition of the function approximation node to the
supervised learning neural network; and

(d) storing the updated supervised learning neural net
including the function approximation node and the
updated function parameters for use during the recogni-
tion of one or more patterns in a new set of data; and

(¢) using the updated neural net to improve the perfor-
mance of a system, wherein the new set of data com-
prises data that describes a behavior of the system.

28. The method of claim 1, wherein updating the function
parameters ol other nodes in the neural network comprises
computing a set of new weights for each other node 1n the
neural network.

29. The method of claim 1, wherein the hierarchical list of
function approximation node candidates comprises a plural-
ity of levels, each level including a plurality of clusters.
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30. The method of claim 1, wherein each function approxi-
mation node candidate 1s located at the center of a hierarchi-
cally arranged cluster, each hierarchically arranged cluster
comprises a population not exceeding a predetermined size
threshold.

31. The method of claim 25, wherein updating the function
parameters of the other nodes 1n the neural network comprises
computing a set of new weights for each other node 1n the
neural network.

32. The method of claim 25, wherein the list of function
approximation node candidates comprises a plurality of lev-
els, each level including a plurality of clusters.

33. The method of claim 25, wherein each hierarchically
arranged cluster comprises a population not exceeding a pre-
determined size threshold.

34. The method of claim 26, wherein updating the function
parameters of the other nodes 1n the neural network comprises
computing a set of new weights for each other node 1n the
neural network.
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35. The method of claim 26, wherein the list of function
approximation node candidates comprises a plurality of lev-
¢ls, each level including a plurality of clusters.

36. The method of claim 26, wherein each hierarchically
arranged cluster comprises a population not exceeding a pre-
determined size threshold.

37. The program storage device of claim 27, wherein
updating the function parameters of the other nodes in the
neural network comprises computing a set of new weights for
cach other node in the neural network.

38. The program storage device of claim 27, wherein the
list of function approximation node candidates comprises a
plurality of levels, each level including a plurality of clusters.

39. The program storage device of claim 27, wherein each
hierarchically arranged cluster comprises a population not

exceeding a predetermined size threshold.
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