US007480911B2
a2 United States Patent (10) Patent No.: US 7.480,911 B2
Lee et al. 45) Date of Patent: Jan. 20, 2009
(54) METHOD AND APPARATUS FOR 6,633,916 B2* 10/2003 Kauffman 709/229
DYNAMICALLY ALLOCATING AND 6,647,508 B2* 11/2003 Zalewskietal. 714/3
DEALILOCATING PROCESSORS IN A 6,754,828 B1* 6/2004 Marisetty et al. 726/2
1.OGICAL PARTITIONED DATA 6,792,497 B1* 9/2004 Goldetal. 710/317
6,859,892 B2 2/2005 Boldingetal. 714/34
PROCESSING SYSTEM 6,968,441 B1* 11/2005 Schneecccevvenene.. 711/173
2002/0016891 Al 2/2002 Noeletal. 711/153
(75) Inventors: Van Hoa Lee, Cedar Park, TX (US); 2002/0091786 A1* 7/2002 Yamaguchi et al. 709/213
David R. Willoughby, Austin, TX (US) 2002/0108074 Al 8/2002 Shimooka etal. 714/25
_ 2002/0152344 A1 10/2002 Holmetal. 710/260
(73) Assignee: International Business Machines 2003/0028739 Al 2/2003 Lietal. ...cccococerenne... 711/170
Corporation, Armonk, NY (US)
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 FOREIGN PALENT DOCUMENTS
U.S.C. 154(b) by 1319 days. EP 0405724 A2 2/1991
(21) Appl. No.: 10/142,545 (Continued)
(22) Filed: May 9, 2002 OTHER PUBLICATIONS
_ o Davidson et al., “Dynamic Addition/Deletion of a Parallel CPU”,
(65) Prior Publication Data IBM Technical Disclosure Bulletin, vol. 20, No. 6, Nov. 1977, pp.
US 2003/0212884 A1 Nov. 13, 2003 2191-2192.
(Continued)
(51) Int. CL.
GO6F 9/46 (2006.01) Primary Examiner—Andy Ho
(52) U.SeCle oo, 718/104; 719/319 (74) Attorney, Agent, or Firm—Duke W. Yee; Diana L.
(58) Field of Classification Search 718/104, Roberts-Gerhardt; Wayne P. Bailey
718/106; 719/319
See application file for complete search history. (57) ABSTRACT
(56) References Cited A method, apparatus, and computer instructions for manag-

U.S. PATENT DOCUMENTS

ing a set ol processors. In response to a request to deallocate
a processor assigned to a partition within the logical parti-
tioned data processing system, the processor 1n the set of
processors, 1s stopped. In response to stopping the processor,
the processor 1s placed 1n an 1solated state 1n which the pro-
cessor 1s 1solated from the partition. The processor 1s then
placed 1n a pool of resources for later reassignment.

32 Claims, 5 Drawing Sheets

5,784,702 A 7/1998 GQGreensteinet al. 711/173
5,808,855 A * 4/1999 Onoderaetal. 718/1
6,012,151 A * 1/2000 Manoccccovvevenvinnnnnn.. 714/11
6,247,109 Bl 6/2001 Kleinsorge etal. 712/13
6,330,656 B1* 12/2001 Bealkowskietal. 712/13
6,332,180 B1* 12/2001 Kauffman et al. 711/153
6,363,468 Bl 3/2002 Allisonccovvvvvnnvennnnnn. 711/173
6,381,682 B2* 4/2002 Noeletal. 711/153
500~

RECEIVE REQUEST TO
DEALL CCATE A PROCESSOR

302
PROCESSOR
SELECTED?

504~

SELECT PROCESSOR

2

S06~

CHANGE STATE OF
PROCESSOR 10 STOPPED

!

208~ s10P PROCESSOR EXECUTION

'

510~

REMOVE RESOURCES USED
TG ACCESS PROCESSOR

!

512~

CHANGE STATE OF
PROCESSOR TO [SOLATED

!

14| DEALLOCATE PROCESSOR

!

516~

CHANGE. STATE OF
PROCESSOR TO DEALLOCATED

i

518

UPDATE PARTITION 1D

!

5201

SEND ALERT MESSAGE

END

US 7,480,911 B2

Page 2
U.S. PATENT DOCUMENTS JP 2002041304 2/2002
2003/0126396 Al 7/2003 Cambleetal. 711/173 OTHER PUBLICATIONS
2003/0131042 Al 7/2003 Awadacetal. 709/104 _ |
2003/0131214 A1l 7/2003 Downer et al. .o.vovvevn..... 712/13 Leeetal, Method and Apparatus for Managing Memory Blocks in a
Logical Partitioned Data Processing System.
FOREIGN PATENT DOCUMENTS Lee et al., Method and Apparatus for Dynamically Managing Input/
Output Slots 1n a Logical Partitioned Data Processing System.
JP 04346136 12/1992
JP 06103092 4/1994 * cited by examiner

U.S. Patent Jan. 20, 2009 Sheet 1 of 5 US 7,480,911 B2
JTAG/12C BUSSES
101 10\2 10\3 104 191
[PROCESSOR] [PROCESSOR] [PROCESSOR] [PROCESSOR] [MEMORY |- |p~ 194
- - ATTN SIGNAL 135
_ SYSTEM BUS
| - SERVICE
MEMORY PROCESSOR
108~ CONTROLLER/ /0 106 PCL BUS
CACHE BRIDGE .
160 110 SERVICE PROCESSOR 106
MAILBOX INTERFACE ISA | NVRAM
OCAL AND ISA BUS ACCESS BUS
PASSTHROUGH _
MEMORY PCI/ISA OP
" F'C% 3B1U3 193-"| BRIDGE PANEL
R 194 Pl BUS 176 136
LOCAL . I TO 193 1
IMEMORYI i AW /0 |4 PCI 1/0
. HOST &~ stoT | ADAPTER
- BRIDGE | 439_-{ BRIDGE
_ SLOT [~ ADAPTER
PCl o01-To- | 119
MEMORY HOST B oy 171 170 121 190
BRIDGE BRIDGE N 4
163 115 119 1/0 | PCI /0
LOCAL BUS 114 BUS
| MEMORY PCI BUS — 1/0 | PCI 1/0
196 SLOT ADAPTER
PC] PCI-TO-
HOST == PO 173 439 149 00
BRIDGE BRIDGE
123 I301127 _ PCI 1/0
o] BUS ADAPTER
199 i 194 SLOT
f PCI BUS 1/0 | GRAPHICS
144 SLOT ADAPTER
100 PCI pel-To-|
DATA PROCESSING HOST == PCl 175 154 149 e
SYSTEM BRIDGE BRIDGE
141 PC}4§US 1/0 || HARD DISK
PCI SLOT [~ ADAPTER
FIC. 1 140 e 142
150

U.S. Patent Jan. 20, 2009 Sheet 2 of 5 US 7,480,911 B2

FIG. 2
LOGICAL PARTITIONED PLATFORM
200
| PARTITION | PARTITION | PARTITION PARTITION
205 205 207 209

I 0S | L 0S |] | | |

21 000 2@ 204 206 / 21/

FIRMWARE FIRMWARE FIRMWARE F[RMWARE
L OADER | OADER L OADER LOADER

PARTITION MANAGEMENT FIRMWARE (HYPERVISOR) 210

PARTITIONED HARDWARE

232 234
1/0 1/0
ADAPTER | | ADAPTER
PROCESSORI |PROCESSOR‘ |PROCESSORl PROCFSSOR
248 / 250
290 27

1/0 1/0

0
E :| ADAPTER ADAF’TER
SERVICE
IPROCESSORl | STORAGE l NVRAW
1/0 1/0
ADAPTER | | ADAPTER
260 26
MEMORY MEMORY MEMORY MEMORY 255) 238
1/0 /o
ADAPTER ADAPTER

CONSOLE

U.S. Patent Jan. 20, 2009 Sheet 3 of 5 US 7,480,911 B2

[/0 SLOT
PR%EEOR ASSIGNMENT
TABLE
500
STATUS/ SYSTEM
FIG. 3 COMMAND RESOURCE

TABLE TABLE

SYSTEM MEMORY

INTERRUPT
MMIO TABLE I L I
314 316 318

FIG. 4

400 SEND REQUEST TO OPERATING
SYSTEM TO DEALLOCATE PROCESSOR

302

4072

PROCESSOR NO

AVAILABLE?

YES
CHANGE PARTITION D

404

SEND REQUEST TO OPERATING
406-"1 SYSTEM TO ADD PROCESSOR

END

U.S. Patent Jan. 20, 2009 Sheet 4 of 5 US 7,480,911 B2

FIG. 5

500 RECEIVE REQUEST TO
DEALLOCATE A PROCESSOR

FIG. 6

(START)
YES

| 600~ | RECEIVE REQUEST TO

202

PROCESSOR
SELECTED?

ALLOCATE A PROCESSOR
NO
U] SELECT PROCESSOR 602~ ASSIGN PROCESSOR
T0 PARTITION
006~ CHANGE STATE OF 604 CHANGE STATE OF
PROCESSOR TO STOPPED PROCESSOR TO ISOLATED
208
STOP PROCESSOR EXECUTION DISPATCH AND

6061 STOP PROCESSOR

REMOVE RESOURCES USED - -
910 TO ACCESS PROCESSOR CHANGE STATE OF

608-"1 PROCESSOR TO STOPPED

CHANGE STATE OF

512 PROCESSOR TO ISOLATED 610 CONFIGURE PROCESSOR

DEALLOCATE PROCESSOR CHANGE STATE OF

PROCESSOR TO RUNNING
612 TO GIVE PARTITION
CONTROL OF PROCESSOR

014

CHANGE STATE OF

516~ | PROCESSOR TO DEALLOCAIED

END

UPDATE PARTITION 1D

518"

520 SEND ALERT MESSAGE

END

U.S. Patent Jan. 20, 2009

FIG. 7

700
IS

THERE A TRIGGERING
EVENT?

YES

NO

/02
YES

IS THE EVENT
“q0_to_0S"?

NO
704

IS THE EVENT
*“go_to_global
processor_pool”?

YES

NO
706

[S THE EVENT
“turn_off_myself”?

NO

714 ~_

YES

Sheet 5 of 5

TAKE PROCESSOR OUT OF SYSTEM

/08

END

US 7,480,911 B2

/10

BRANCH TO THE ADDRESS
SETUP BY OPERATING
SYSTEM AND EXECUTE

CODE FROM THERE

/12

CALL HYPERVISOR TO
CHANGE NVRAM STAIE
FROM ISOLATED TO
UNALLOCATED

GO TO GLOBAL PROCESSOR
POOL MANAGER'S CONTROL
LOOP AND WAIT FOR
FUTURE DISPAICH

US 7,480,911 B2

1

METHOD AND APPARATUS FOR
DYNAMICALLY ALLOCATING AND
DEALLOCATING PROCESSORS IN A
LOGICAL PARTITIONED DATA
PROCESSING SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

The present invention 1s related to the following applica-
tions entitled: “Method and Apparatus for Managing Memory
Blocks 1n a Logical Partitioned Data Processing System”,

Ser. No. 10/142,574 (status: 1ssued as U.S. Pat. No. 6,941,436
on Sep. 6, 2005), and “Method and Apparatus for Dynami-
cally Managing Input/Output Slots 1n a Logical Partitioned
Data Processing System”, Ser. No. 10/142,524 (status: aban-
doned), all filed even date hereof, assigned to the same
assignee, and incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to an improved data
processing system, and in particular, to a method and appa-
ratus for managing components 1n a data processing system.
Still more particularly, the present invention provides a
method and apparatus for managing processors in a logical
partitioned data processing system.

2. Description of Related Art

A logical partitioned (LPAR) functionality within a data
processing system (platform) allows multiple copies of a
single operating system (OS) or multiple heterogeneous oper-
ating systems to be simultaneously run on a single data pro-
cessing system platform. A partition, within which an oper-
ating system 1mage runs, 1s assigned a non-overlapping
subset of the platform’s resources. These platform allocable
resources 1nclude one or more architecturally distinct proces-
sors within their interrupt management area, regions of sys-
tem memory, and mnput/output (I/0) adapter bus slots. The
partition’s resources are represented by the platform’s firm-
ware to the OS 1mage.

Each distinct OS or image of an OS runmng within the
platform 1s protected from each other such that software
errors on one logical partition cannot atfect the correct opera-
tion of any of the other partitions. This 1s provided by allo-
cating a disjoint set of platform resources to be directly man-
aged by each OS image and by providing mechanisms for
ensuring that the various images cannot control any resources
that have not been allocated to the OS. Furthermore, software
errors 1n the control of an operating system’s allocated
resources are prevented from affecting the resources of any
other image. Thus, each 1image of the OS (or each different
OS) directly controls a distinct set of allocable resources
within the platform.

With respect to hardware resources in a LPAR system,
these resources are disjointly shared among various parti-
tions, themselves disjoint, each one seeming to be a stand-
alone computer. These resources may include, for example,
input/output (I/0O) adapters, memory dimms, non-volatile
random access memory (NVRAM), and hard disk drives.
Each partition within the LPAR system may be booted and
shutdown over and over without having to power-cycle the
whole system.

In reality, some of the IO devices that are disjointly shared
among the partitions are themselves controlled by a common
piece of hardware, such as a host Peripheral Component
Interface (PCI) bridge, which may have many 1/O adapters

10

15

20

25

30

35

40

45

50

55

60

65

2

controlled or below the bridge. The host bridge and the 1/0
adapters connected to the bridge form a hierarchical hardware
sub-system within the LPAR system. Further, this bridge may
be thought of as being shared by all of the partitions that are
assigned to its slots.

Currently, when a system administrator wants to change
resources given to different partitions, the partitions affected
by the change must be brought down or shut down before
these resources can be deallocated from one partition and
reallocated to another partition. This type of deallocation and
allocation capability 1s called static logical partitioning. This
type of capability causes a temporary disruption of normal
operation of the aflected partitions. This temporary disrup-
tion of normal operation may affect users or other clients of
the LPAR system.

Therefore, 1t would be advantageous to have an improved
method, apparatus, and computer 1nstructions for managing
partitions in a LPAR system without requiring a disruption in
operations of the affected partitions.

SUMMARY OF THE INVENTION

The present mvention provides a method, apparatus, and
computer instructions for managing a set of processors. In
response to a request to deallocate a processor assigned to a
partition within the logical partitioned data processing sys-
tem, the processor in the set of processors, 1s stopped. In
response to stopping the processor, the processor 1s placed in
an 1solated state 1n which the processor 1s 1solated from the
partition. The processor 1s then placed 1n a pool of resources
for later reassignment.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereot, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 1s a block diagram of a data processing system 1n
which the present invention may be implemented;

FIG. 2 1s a block diagram of an exemplary logical parti-
tioned platform 1n which the present invention may be imple-
mented;

FIG. 3 1s a diagram illustrating LPAR tables 1n accordance
with a preferred embodiment of the present invention;

FIG. 4 1s a flowchart of a process used for reallocating a
processor from one partition to another partition 1n accor-
dance with a preferred embodiment of the present invention;

FIG. 5 1s a flowchart of a process used for deallocating a
processor in accordance with a preferred embodiment of the
present invention;

FIG. 6 1s a flowchart of a process used for allocating a
processor to a partition in accordance with a preferred
embodiment of the present invention; and

FIG. 7 1s a flowchart of a process used for a spin loop
solftware state machine in accordance with a preferred
embodiment of the present invention.

(L]
By

ERRED

DETAILED DESCRIPTION OF THE PR.
EMBODIMENT

With reference now to the figures, and 1n particular with
reference to FIG. 1, a block diagram of a data processing
system 1n which the present invention may be implemented 1s

US 7,480,911 B2

3

depicted. Data processing system 100 may be a symmetric
multiprocessor (SMP) system including a plurality of proces-
sors 101,102, 103, and 104 connected to system bus 106. For
example, data processing system 100 may be an IBM
RS/6000, a product of International Business Machines Cor-
poration 1n Armonk, N.Y., implemented as a server within a
network. Alternatively, a single processor system may be
employed. Also connected to system bus 106 1s memory
controller/cache 108, which provides an interface to a plural-
ity ol local memories 160-163. 1/O bus bridge 110 1s con-
nected to system bus 106 and provides an interface to I/O bus
112. Memory controller/cache 108 and I/O bus bridge 110
may be integrated as depicted.

Data processing system 100 1s a logical partitioned (LPAR)
data processing system. Thus, data processing system 100
may have multiple heterogeneous operating systems (or mul-
tiple mstances of a single operating system) running simul-
taneously. Each ol these multiple operating systems may have
any number of soltware programs executing within it. Data
processing system 100 1s logical partitioned such that differ-
ent PCI 1/O adapters 120-121, 128-129, and 136, graphics
adapter 148, and hard disk adapter 149 may be assigned to
different logical partitions. In this case, graphics adapter 148
provides a connection for a display device (not shown), while
hard disk adapter 149 provides a connection to control hard
disk 150.

Thus, for example, suppose data processing system 100 1s
divided 1nto three logical partitions, P1, P2, and P3. Each of
PCI I/O adapters 120-121, 128-129, 136, graphics adapter
148, hard disk adapter 149, each of host processors 101-104,
and each of local memories 160-163 1s assigned to one of the
three partitions. For example, processor 101, local memory
160, and I/O adapters 120, 128, and 129 may be assigned to
logical partition P1; processors 102-103, local memory 161,
and PCI I/O adapters 121 and 136 may be assigned to parti-
tion P2; and processor 104, local memories 162-163, graphics
adapter 148 and hard disk adapter 149 may be assigned to
logical partition P3.

Each operating system executing within data processing
system 100 1s assigned to a different logical partition. Thus,
cach operating system executing within data processing sys-
tem 100 may access only those I/O units that are within its
logical partition. Thus, for example, one instance of the
Advanced Interactive Executive (AIX) operating system may
be executing within partition P1, a second instance (1image) of
the AIX operating system may be executing within partition
P2, and a Windows 2000 operating system may be operating
within logical partition P1. Windows 2000 1s a product and
trademark of Microsoit Corporation of Redmond, Wash.

Peripheral component interconnect (PCI) host bridge 114
connected to I/0 bus 112 provides an interface to PCI local
bus 115. A number of PCI input/output adapters 120-121 may
be connected to PCI bus 115 through PCI-to-PCI bridge 116,
PCI bus 118, PCI bus 119, /O slot 170, and I/O slot 171.
PCI-to-PCI bridge 116 provides an interface to PCI bus 118
and PCI bus 119. PCI I/O adapters 120 and 121 are placed into
I/0 slots 170 and 171, respectively. Typical PCI bus imple-
mentations will support between four and eight I/O adapters
(1.e. expansion slots for add-in connectors). Each PCI I/O
adapter 120-121 provides an interface between data process-
ing system 100 and input/output devices such as, for example,
other network computers, which are clients to data processing
system 100.

An additional PCI host bridge 122 provides an interface for
an additional PCI bus 123. PCI bus 123 1s connected to a
plurality of PCI I/O adapters 128-129. PCI I/O adapters 128-
129 may be connected to PCI bus 123 through PCI-to-PCI

10

15

20

25

30

35

40

45

50

55

60

65

4

bridge 124, PCI bus 126, PCI bus 127, I/O slot 172, and I/O
slot 173. PCI-to-PCI bridge 124 provides an interface to PCI
bus 126 and PCI bus 127. PCI I/O adapters 128 and 129 are

placed into I/O slots 172 and 173, respectively. In this manner,
additional I/O devices, such as, for example, modems or
network adapters may be supported through each of PCI I/O
adapters 128-129. In this manner, data processing system 100
allows connections to multiple network computers.

A memory mapped graphics adapter 148 inserted into I/O
slot 174 may be connected to I/O bus 112 through PCI bus
144, PCI-to-PCI bridge 142, PCI bus 141 and PCI host bridge
140. Hard disk adapter 149 may be placed mto I/O slot 175,
which 1s connected to PCI bus 145. In turn, this bus 1s con-
nected to PCI-to-PCI bridge 142, which 1s connected to PCI
host bridge 140 by PCI bus 141.

A PCI host bridge 130 provides an interface for a PCI bus
131 to connect to I/O bus 112. PCI I/O adapter 136 1s con-
nected to I/O slot 176, which 1s connected to PCI-to-PCI
bridge 132 by PCI bus 133. PCI-to-PCI bridge 132 1s con-
nected to PCI bus 131. This PCI bus also connects PCI host
bridge 130 to the service processor mailbox interface and ISA
bus access pass-through logic 194 and PCI-to-PCI bridge
132. Service processor mailbox interface and ISA bus access
pass-through logic 194 forwards PCI accesses destined to the
PCI/ISA bridge 193. NVRAM storage 192 1s connected to the
ISA bus 196. Service processor 135 1s coupled to service
processor mailbox interface and ISA bus access pass-through
logic 194 through 1ts local PCI bus 195. Service processor 135
1s also connected to processors 101-104 via a plurality of
JTAG/1?C busses 134. JTAG/I°C busses 134 are a combina-
tion of JTAG/scan busses (see IEEE 1149.1) and Phillips I°C
busses. However, alternatively, JTAG/I*C busses 134 may be
replaced by only Phillips I°C busses or only JTAG/scan bus-
ses. All SP-ATTN signals of the host processors 101, 102,
103, and 104 are connected together to an interrupt 1nput
signal of the service processor. The service processor 135 has
its own local memory 191, and has access to the hardware

OP-panel 190.

When data processing system 100 1s mitially powered up,
service processor 135 uses the JTAG/I°C busses 134 to inter-
rogate the system (host) processors 101-104, memory con-
troller/cache 108, and I/O bridge 110. At completion of this
step, service processor 135 has an inventory and topology
understanding of data processing system 100. Service pro-
cessor 1335 also executes Built-In-Self-Tests (BISTs), Basic
Assurance Tests (BATs), and memory tests on all elements
found by interrogating the host processors 101-104, memory
controller/cache 108, and I/0O bridge 110. Any error informa-
tion for failures detected during the BISTs, BATs, and
memory tests are gathered and reported by service processor
135.

If a meaningtul/valid configuration of system resources 1s
still possible after taking out the elements found to be faulty
during the BISTs, BAT's, and memory tests, then data pro-
cessing system 100 1s allowed to proceed to load executable
code mto local (host) memories 160-163. Service processor
135 then releases the host processors 101-104 for execution
of the code loaded 1nto local memory 160-163. While the host
processors 101-104 are executing code from respective oper-
ating systems within the data processing system 100, service
processor 135 enters a mode of monitoring and reporting
errors. The type of items monitored by service processor 135
include, for example, the cooling fan speed and operation,
thermal sensors, power supply regulators, and recoverable
and non-recoverable errors reported by processors 101-104,

local memories 160-163, and I/O bridge 110.

US 7,480,911 B2

S

Service processor 135 1s responsible for saving and report-
ing error information related to all the monitored 1tems 1n data
processing system 100. Service processor 135 also takes
action based on the type of errors and defined thresholds. For
example, service processor 135 may take note of excessive
recoverable errors on a processor’s cache memory and decide
that this 1s predictive of a hard failure. Based on this determi-
nation, service processor 135 may mark that resource for
deconfiguration during the current running session and future
Initial Program Loads (IPLs). IPLs are also sometimes
referred to as a “boot” or “bootstrap”.

Data processing system 100 may be implemented using,
various commercially available computer systems. For
example, data processing system 100 may be implemented
using IBM eServer 1Series Model 840 system available from
International Business Machines Corporation. Such a system
may support logical partitioning using an OS/400 operating
system, which 1s also available from International Business
Machines Corporation.

Those of ordinary skill 1n the art will appreciate that the
hardware depicted 1n FIG. 1 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used 1n addition to or 1n place of the hardware
depicted. The depicted example 1s not meant to 1imply archi-
tectural limitations with respect to the present invention.

With reference now to FI1G. 2, a block diagram of an exem-
plary logical partitioned platform 1s depicted 1in which the
present invention may be implemented. The hardware 1n logi-
cal partitioned platform 200 may be implemented as, for
example, data processing system 100 1n FIG. 1. Logical par-
titioned platform 200 includes partitioned hardware 230,
operating systems 202, 204, 206), 208, and hypervisor 210.
Operating systems 202, 204, 206, and 208 may be multiple
copies of a single operating system or multiple heterogeneous
operating systems simultaneously run on platform 200. These
operating systems may be implemented using OS/400, which

are designed to interface with a hypervisor. Operating sys-
tems 202,204, 206, and 208 are located 1n partitions 203, 205,

207, and 209.

Additionally, these partitions also include firmware load-
ers 211, 213, 215, and 217. Firmware loaders 211, 213, 215,
and 217 may be implemented using IEEE -1275 Standard
Open Firmware and runtime abstraction software (RTAS),
which 1s available from International Business Machines
Corporation. When partitions 203, 205, 207, and 209 are
instantiated, a copy of the open firmware 1s loaded into each
partition by the hypervisor’s partition manager. The proces-
sors associated or assigned to the partitions are then dis-
patched to the partitions” memory to execute the partition
firmware.

Partitioned hardware 230 1includes a plurality of processors
232-238, a plurality of system memory units 240-246, a plu-
rality of mput/output (I/O) adapters 248-262, and a storage
unit 270. Partitioned hardware 230 also includes service pro-
cessor 290, which may be used to provide various services,
such as processing of errors 1n the partitions. Each of the
processors 232-238, memory units 240-246, NVRAM stor-
age 298, and I/O adapters 248-262 may be assigned to one of
multiple partitions within logical partitioned platform 200,
cach of which corresponds to one of operating systems 202,
204, 206, and 208.

Partition management firmware (hypervisor) 210 performs
a number of functions and services for partitions 203, 205,
207, and 209 to create and enforce the partitioning of logical
partitioned platform 200. Hypervisor 210 1s a firmware
implemented virtual machine identical to the underlying
hardware. Hypervisor software 1s available from Interna-

10

15

20

25

30

35

40

45

50

55

60

65

6

tional Business Machines Corporation. Firmware 1s “soft-
ware” stored 1n a memory chip that holds 1ts content without
clectrical power, such as, for example, read-only memory
(ROM), programmable ROM (PROM), erasable program-
mable ROM (EPROM), electrically erasable programmable
ROM (EEPROM), and non-volatile random access memory
(non-volatile RAM). Thus, hypervisor 210 allows the simul-
taneous execution of mdependent OS 1mages 202, 204, 206,
and 208 by virtualizing all the hardware resources of logical
partitioned platform 200.

Operations of the different partitions may be controlled
through a hardware management console, such as console
264. Console 264 1s a separate data processing system from
which a system admimistrator may perform various functions
including reallocation of resources to different partitions.

P

T'urning next to FIG. 3, a diagram illustrating LPAR tables
1s depicted 1n accordance with a preferred embodiment of the
present invention. In this example, LPAR tables are located in
NVRAM 300 and system memory 302. NVRAM 300 may be
implemented as NVRAM 298 1n FIG. 2, and system memory
302 may be implemented as memory 244 in FIG. 2. The
information in these tables 1s used for identifying what
resources are assigned to particular partitions as well as status
information.

In this example, n NVRAM 300, these tables include
processor table 304, drawer table 306, input/output (1/0) slot
assignment table 308, status/command table 310, and system
resource table 312. Processor table 304 maintains a record for
cach of the processors located within the LPAR data process-
ing system. Each record in this table may include, for
example, an ID of the logical partition assigned to the pro-
cessor, a physical location 1D, a processor status, and a pro-
cessor state.

Drawer table 306 includes a record for each drawer within
the LPAR system in which each record may contain drawer
status and the number of slots. A drawer 1s a location within a
frame. Each drawer has some maximum number of slots into
which processor nodes, I/0 devices, and memory boards are
mounted. Frames provide a mounting as well as power for
various components.

I/0 slot assignment table 308 includes a record for each slot
in the LPAR system and may, for example, include a location
code, an I/0 device ID, and an ID of the partition assigned to
the slot.

System memory 302 includes translation control entry
(TCE) table 314, memory mapped input/output (MMIO)
table 316, and interrupt table 318. These tables contain infor-
mation used to identily resources used to access 1/0 slots. For
example, TCE table 314 may include translation control
entries (1CEs) for direct memory access (DMA) addresses
for each slot. Additionally, memory mapped input/output
(MMIQ) addresses for slots are located in MMIO table 316.
Further, 1nterrupts assigned to the different slots also may be
identified 1n interrupt table 318. This information 1s con-

trolled and accessible by a hypervisor, such as hypervisor 210
in FIG. 2.

Status/command table 310 includes a record for each par-
tition. This table may include a command state of the parti-
tion, a current command for the partition, and a last command
for the partition.

System resource table 312 maintains information regard-
ing resources available for the system. This table may include,
for example, a maximum number of slots, a maximum num-
ber of processors, a maximum number of drawers, total
memory installed, total memory allocated for the partitions,
and time 1information.

US 7,480,911 B2

7

Turning now to FIG. 4, a flowchart of a process used for
reallocating a processor from one partition to another parti-
tion 1s depicted 1 accordance with a preferred embodiment of
the present invention. The process 1llustrated in F1G. 4 may be
implemented in a hardware management console, such as
console 264 1n F1G. 2. The steps may be implemented through
a user 1mtiating each of the steps or through a user mput
selecting a processor and the partitions involved in the
dynamic reallocation with the process mitiating each step
based on a response from the operating system. In this
example, the request 1s to deallocate a processor from a {first
partition and have that processor allocated to a second parti-
tion.

The process begins by sending a request to the operating
system to deallocate a processor from a first partition (step
400). This request will include a processor ID to identity the
processor 1n this example. A determination 1s then made as to
whether the processor 1s available (step 402). This determi-
nation basically monitors for an availability of the processor
in a global pool of processors. If a processor 1s unavailable,
the process continues to return to step 402. Otherwise, the
partition ID in the table of available processors 1s changed
trom the first partition to the second partition (step 404). This
partition ID 1s changed 1n a processor table, such as processor
table 304 1n FI1G. 3. Thereafter, a request 1s sent to the oper-
ating system in the second partition to add that processor (step
406) with the process terminating thereafter.

The figures described below 1llustrate the processes
employed by the operating system, firmware loader, and the
hypervisor to deallocate and allocate a processor. In these
examples, the processes are ones that are initiated 1 response
to requests from a console.

With reference now to FIG. 5, a flowchart of a process used
for deallocating a processor 1s depicted in accordance with a
preferred embodiment of the present invention. The process
illustrated 1n FIG. 5 may be implemented 1n a logical parti-
tioned data processing system such as logical partitioned
plattorm 200 1n FIG. 2.

The process begins by recetving a request to deallocate a
processor (step 500). In these examples, the request 1s
received from the operating system for the partition. Next, a
determination 1s made as to whether a processor 1s selected
(step 502). If a processor 1s not selected, a processor 1s
selected (step 504). In this example, the processor 1s selected
by the operating system based on some policy or set of rules.
For example, to respond to this unspecific deallocation
request, the operating system decides which processor will be
chosen based on attributes such as, for example, the processor
interrupt priority and the workload of the processor.

The state of the processor 1s changed to stopped (step 506),
and the processor execution 1s stopped (step 508). Step 506 1s
iitiated by the operating system to dispatch the selected
processor to make a RTAS call. In this example, the call 1s a
rtas_stop_seli() call. In response to this call, the selected
processor 1nitiates a call to the hypervisor, such as hypervisor
210, to change the state of the processor from running to
stopped. In this state, the processor enters a loop, also referred
to as a rtas_spin_loop() 1n which the processor waits for a
trigger event to be sent from another processor 1n the parti-
tion. Additionally, the operating system will make a query to
ensure that the selected processor has changed to a stopped
state. This query may be made by the operating system
through a rtas_query_stopped state() call to the RTAS com-
ponent of the firmware loader.

Resources used to access the processor are removed (step
510). Step 510 1s performed to 1solate the processor from the
partition. In these examples, the 1solation means that the

10

15

20

25

30

35

40

45

50

55

60

65

8

processor can no longer act as an interrupt server. In other
words, the processor can no longer receive and handle inter-
rupts. The resources that are removed 1n this example include
removing external interrupt sources, which specily the pro-
cessor as the server and disable a global server queue that
routes any external interrupts to the processor. This 1solation
1s performed by the RTAS making a call to the hypervisor in
response to the call from the operating system. Then, the state
of the processor 1s changed to 1solated (step 512).

After the processor has been 1solated, the operating system
1s ready to return the processor to a global pool of available
processors. The processor 1s unallocated (step 514) and the
state of the processor 1s changed to unallocated (step 516).
The deallocation 1s mnitiated by the operating system making
the call to deallocate the processor. In this example, the call 1s
artas_set_indicator() call made to the firmware loader, which
includes the RTAS. The presently available rtas_set indica-
tor() call 1s modified to handle new types of indicators which
are used by the mechanism of the present invention to perform
the intended functions. The RTAS performs the deallocation
by sending an unallocation or triggering event to the proces-
sor currently 1n the rtas_spin_loop(). This event 1s acknowl-
edged by the processsor, which 1n turn, sends a call to the
hypervisor to send the processor back to the global pool of
available processors. The processor resets its partition regis-
ter identifier to zero to indicate that 1t 1s now 1n an unallocated
state. The unallocation or triggering event 1s also referred to
as a “go to glocal proccesor pool” event. The partition 1den-
tifier 1s updated by setting this ID to zero to indicate that the
processor 1s now 1n the global pool of available processors
(step 518). This update 1s made 1n a table, such as processor
table 304 1s located in NVRAM 300 in FIG. 3. An alert
message 1s sent (step 520) and the process terminates there-
alter. This alert message 1s sent to a hardware management
console, such as console 264 1n FIG. 2. This alert message 1s
used to indicate that the processor has been deallocated.

Returning again to step 502, if a processor 1s selected, the
process proceeds to step 506 as described above.

Turning now to FIG. 6, a flowchart of a process used for
allocating a processor to a partition 1s depicted 1n accordance
with a preferred embodiment of the present invention. The
process 1llustrated 1n FIG. 6 may be implemented 1n a logical
partitioned data processing system, such as logical parti-
tioned platform 200 1n FIG. 2.

The process begins by receiving a request to allocate a
processor (step 600). The request 1n this step may be mitiated
by an operator or system administrator at a console, such as
console 264 1n FIG. 2. The operating system receives a grant
to allocate a processor, which may or may not indicate which
processor 1s to be allocated. If a processor 1s not 1dentified,
then a call 1s made to 1dentity the processor. The operating
system makes a call to have the processor assigned to the
partition. The processor 1s then assigned to the partition (step
602). This assignment may be initiated using a rtas_set_indi-
cator() call. In response to recerving this call from the oper-
ating system, the RTAS changes the state of the processor to
1solated from unallocated (step 604).

The processor 1s dispatched and stopped (step 606). Upon
being dispatched to the partition, the processor mitializes its
partition ID register and other hypervisor resource registers.
Each processor has a partition ID register 1n 1ts hardware. All
processors belonging to the same partition must have the
same partition ID value (obtained from the LPAR processor
table) written 1nto their internal partition ID registers. When
the new processor 1s dispatched into the new partition, the
processor’s internal partition ID register 1s set to the same
partition ID of the other processors already in the partition.

US 7,480,911 B2

9

Processor hardwares use the partition ID for their normal
operations. Similarly, there are other processor special regis-
ters such as page-table register, real-mode-offset register,
real-mode-size register, etc., which are required to be 1nitial-
1zed to the same values as used by the other processors
already 1n the partition. The processor 1s stopped by being
placed into a software state machine rtas_spin_loop() where
the processor executes a spin loop process in which the pro-
cessor waits for a triggering event to execute additional
instructions. The state of the processor i1s changed to stopped
(step 608). This 1s the result of the operating system making
a call to unisolate the processor for configuration by the
operating system. This state change 1s initiated by a call to the
RTAS, such as artas_set_indicator() call in which a parameter
1s included to 1indicate the state change that 1s desired. In turn,
the state of the processor 1s changed from 1solated to stopped
by the RTAS making a call to the hypervisor to change this
state.

When the processor first enters the spin loop, as a result of
step 604, the operating system may not know 11 the processor
1s successiully 1n the spin loop. Step 608 changes the state
from 1solated to stopped and 1s a mechanism for the operating
system to confirm that the processor 1s indeed in the parti-
tion’s RTAS state machine rtas_spin_loop(). As a result of
step 608, the processor 1s now ready to be dispatched into the
control of the OS’s kernel processor resource manager.

The processor 1s configured (step 610). This configuration
1s 1nitiated by the operating system. In this example, a
rtas_configure_connector() call 1s made to the RTAS. The
configuration performed may include, for example, setting up
the processor to function as an interrupt server. Additionally,
a global server queue may be enabled to route interrupts to
this processor.

The state of the processor 1s changed to running to give full
control of the processor to the operating system kernel (step
612) with the process terminating thereaiter. This step 1s
initiated by the operating system when it 1s ready to use a
processor. The operating system may send a call, such as
rtas_start_cpu(), to the RTAS to request control of the pro-
cessor be given to the operating system. In response, the
RTAS calls the hypervisor to set the state of this processor
from stopped to running. Thereatiter, the RTAS sends a trig-
gering event to cause the processor to begin execution of
instructions at a target address for the operating system. This
triggering event may include a memory buifer address for the
argument to the sub-routine at the target address. In response
to this change of state, the processor acknowledges the event,
exits the spin loop state, sets the memory builer address
provided into 1ts register and branches to the sub-routine
provided at the target address.

With reference now to FIG. 7, a tlowchart of a process used
for a spin loop software state machine 1s depicted in accor-
dance with a preferred embodiment of the present invention.
The process illustrated 1n FIG. 7 may be implemented 1n a
processor, such as processor 232 in FIG. 2. The process
illustrated 1n FIG. 7 1s a more detailed description of the
events occurring when a processor enters a spin loop state,
such as that mitiated by a rtas_spin_loop() call. This state 1s
also the stopped state, which occurs when the processor
executes steps 1n the spin loop process described below.

The process begins by determining whether a triggering
event has occurred (step 700). These events are specific
instructions or parameters that may be passed 1n a call to the
processor to cause the processor to perform a function or
execute selected code. It a triggering event has occurred, a
determination 1s then made as to whether the event is
“o0_to_OS” (step 702). If the event 1s not “go_to_0OS”, a

10

15

20

25

30

35

40

45

50

55

60

65

10

determination 1s made as to whether the event 1s “go_to_glo-
balprocessor_pool” (step 704). If the event 1s not “go_to_glo-
balprocessor_pool”, a determination 1s made as to whether
the event 1s “turn_ofl_mysell” (step 706). If the event 1s
“turn_ofl_mysell”, the processor 1s taken out of the system
(step 708) and the process terminates thereaiter. An event
taking the form of “turn_ofl_myself” occurs 11 the processor
has been 1dentified as being a bad processor or a processor
having a malfunction at runtime.

Returning again to step 706, 1t the event 1s not
“turn_ofl_mysell”, the process returns to step 700 as
described above. If none of the triggering events are present,
the process continues to return to step 606 1n a “loop™, also
referred to as a “spin loop”’.

With reference again to step 704, if the event 1s
“00_to_globalprocessor_pool”, the hypervisor 1s called to
change the NVRAM state from 1solated to unallocated (step
712). The state 1s changed 1n a processor table, such as pro-
cessor table 304 1n FIG. 3. The process then executes in the
global processor pool manager’s processor control loop and
waits for future dispatch (step 714) with the process termi-
nating thereatter.

Referring again to step 702, 1f the event 1s a “go_to_0OS”,
the processor branches to the address setup by the operating
system and executes the code from there (step 710) with the
process terminating thereafter. Step 710 illustrates the pro-
cessor entering a running state from a stopped state. The
processor has changed state from 1solated to stopped betore 1t
can respond to the “go_to_OS” event to enter the running
state 1n step 710.

Referring again to step 700, if a triggering event has not
occurred, the process returns to the start.

Thus, the present invention provides an improved method,
apparatus, and computer mstructions for allowing dynamic
deallocation and allocation of processor resources 1n a logical
partitioned data processing system. This process allows a user
or system administrator to send a request to deallocate a
processor from one partition and have that processor allo-
cated to another partition. The operating system 1nitiates the
steps needed to deallocate the processor from the partition
and place 1t mto a global pool for reallocation. When the
reallocation 1s detected, the processor may then be allocated
to another partition by changing the partition ID 1n a proces-
sor table, such as processor table 304 1n FIG. 3. Thereaftter, the
user may send a request to the operating system 1n partition 2
to grant the processor to that partition with the operating
system then performing the steps needed to allocate the pro-
cessor. All of these steps are performed without having to
terminate operation of either of the affected partitions.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed 1n the form of a computer read-
able medium of instructions and a variety of forms and that
the present 1invention applies equally regardless of the par-
ticular type of signal bearing media actually used to carry out
the distribution. Examples of computer readable media
include recordable-type media, such as a tloppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual use
in a particular data processing system.

US 7,480,911 B2

11

The description of the present invention has been presented
for purposes of 1illustration and description, and 1s not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. For example, the
particular components 1llustrated as participating 1 the
dynamic allocation and deallocation of processors are an
operating system, a RTAS, and a hypervisor. These particular
components are described for purposes of illustration and are
not mtended to limit the manner in which the processes for the
dynamic allocation may be implemented. The embodiment
was chosen and described 1n order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method 1n a logical partitioned data processing system
for managing a set of processors in the logical partitioned data
processing system, the method comprising:

responsive to a request to deallocate a processor assigned

to a partition within the logical partitioned data process-
ing system, stopping the processor, wherein the proces-
sor belongs to the set of processors, and wherein the
request 1s received from a first operating system runnming,
in the partition;

responsive to stopping the processor, placing the processor

in an 1solated state, wherein the processor is 1solated
from the partition;

placing the processor 1n a pool of resources for later reas-

signment; and

responsive to an allocation request to allocate the proces-

sor, assigning the processor to another partition, wherein
the another partition 1s different from the partition, and
wherein the allocation request 1s received from a second
operating system runmng in the second partition.

2. The method of claim 1, wherein placing the processor in
an 1solated state occurs by disabling an ability of the proces-
sor to handle iterrupts.

3. The method of claim 1, wherein placing the processor in
a pool of resources for later reassignment causes the proces-
sor change to an unallocated state which 1s a different state
than the 1solated state.

4. The method of claim 1, wherein the method performs
deallocation of the processor in a dynamic basis.

5. The method of claim 1, wherein deallocation of the
processor occurs without terminating execution of the parti-
tion.

6. The method of claim 1, wherein the allocation request 1s
initiated by a user, and further comprising steps of:

placing the processor 1n a spin loop soitware state, wherein

the processor waits for a trigger event while 1n the spin
loop software state, wherein the trigger event causes the
processor to begin executing instructions;

configuring the processor for use by the another partition;

initializing resources used to access the processor;

sending control of the processor to the another partition;
and

sending the triggering event to the processor to 1nitiate the

executing of the instructions.

7. The method of claim 6, wherein the triggering event
includes a memory address parameter of an address that
specifies where to mitiate the executing of the instructions.

8. The method of claim 1, wherein the processor 1s stopped
by the processor mitiating a call to a hypervisor to change a
state of the processor from running to stopped, wherein the
hypervisor enforces the partitioning within the logical parti-

10

15

20

25

30

35

40

45

50

55

60

65

12

tioned data processing system to enable simultaneous execu-
tion of a plurality of operating systems by the logical parti-
tioned data processing system.
9. A method 1n a logical partitioned data processing system
for managing processors in the logical partitioned data pro-
cessing system, the method comprising:
responsive to a request to deallocate a processor assigned
to a partition within the logical partitioned data process-
ing system, placing the processor mto a spin loop sofit-
ware state machine to place the processor 1n a stopped
state, wherein the request 1s recerved from a first oper-
ating system running in the partition;
1solating the processor from the partition, wherein the par-
tition 1s unable to access the processor; and

deallocating the processor after the processor has been
isolated from the partition, wherein the deallocating of
the processor 1s mitiated by a call made by the first
operating system that results 1n a triggering event being
sent to the processor that causes the processor to exit the
spin loop software state machine.

10. The method of claim 9, wherein the deallocating step
takes the processor out of the spin loop software state
machine and places the processor into a pool for reallocation
such that the processor 1s capable of being, but 1s not vet,
allocated to a partition.

11. The method of claim 9, wherein the partition 1s a first
partition and further comprising:

responsive to recerving an allocation request to allocate the

processor to a second partition after the processor has
been deallocated, allocating the processor to the second
partition 1n a state 1n which the second partition 1s unable
to access the processor, wherein the allocation request 1s
received from a second operating system running in the
second partition;

placing the processor mto a spin loop software state

machine;

unisolating the processor from the partition after placing

the processor 1n to the spin loop software state machine;
and

placing the processor mto a running state in which the

processor begins executing code at an address desig-
nated by the second partition.

12. The method of claim 11, wherein the step of placing the
processor 1nto a running state comprises sending a triggering,
event to the processor that causes the processor to exit the spin
loop software state machine.

13. The method of claim 12, wherein deallocation and
allocation of the processor occurs without terminating execu-
tion of the first partition and the second partition.

14. The method of claim 11 further comprising:

configuring the processor for use 1n the second partition.

15. A logical partitioned data processing system for man-
aging a set of processors, the logical partitioned data process-
Ing system comprising:

a bus system;

a communications unit connected to the bus system:;

a memory connected to the bus system, wherein the

memory includes a set of instructions; and

a processing unit having a set of processors connected to

the bus system, wherein the processing unit executes the
set of mstructions to stop a processor in which the pro-
cessor belongs to the set of processors 1n response to a
request to deallocate a processor assigned to a partition
within the logical partitioned data processing system,
wherein the request 1s received from a first operating
system running in the partition; place the processor 1n an
1solated state 1n which the processor 1s 1solated from the

US 7,480,911 B2

13

partition in response to stopping the processor; place the
processor 1n a pool of resources for later reassignment:
and assign, responsive to an allocation request to allo-
cate the processor, the processor to another partition,
wherein the another partition 1s different from the parti-
tion, and wherein the allocation request 1s recerved from
a second operating system running in the second parti-
tion.

16. A logical partitioned data processing system for man-
aging processors 1n the logical partitioned data processing
system, the logical partitioned data processing system com-
prising:

a bus system:;

a communications unit connected to the bus system;

a memory connected to the bus system, wherein the

memory includes a set of instructions; and

a processing unit connected to the bus system, wherein the

processing unit executes the set of instructions to place a
processor in the processing unit into a spin loop software
state machine to place the processor in a stopped state 1n
response to a request to deallocate a processor assigned
to a partition within the logical partitioned data process-
ing system, wherein the request 1s recerved from a first
operating system running in the partition; isolate the
processor from the partition in which the partition 1s
unable to access the processor; and deallocate the pro-
cessor alter the processor has been 1solated from the
partition, wherein the deallocate of the processor 1s 1ni-
tiated by a call made by the first operating system that
results 1n a triggering event being sent to the processor
that causes the processor to exit the spin loop software
state machine.

17. A logical partitioned data processing system for man-
aging a set of processors 1n the logical partitioned data pro-
cessing system, the logical partitioned data processing sys-
tem comprising;:

stopping means, responsive to a request to deallocate a

processor assigned to the partition within the logical
partitioned data processing system, for stopping the pro-
cessor, wherein the processor belongs to the set of pro-
cessors, and wherein the request 1s recerved from a first
operating system runmng in the partition;

first placing means, responsive to stopping the processor,

for placing the processor 1n an 1solated state, wherein the
processor 1s 1solated from the partition;

second placing means for placing the processor in a pool of
resources for later reassignment; and

assigning means, responsive to an allocation request to
allocate the processor, for assigning the processor to
another partition, wherein the another partition 1s differ-
ent from the partition, and wherein the allocation request
1s recerved from a second operating system running in
the second partition.

18. The logical partitioned data processing system of claim
17, wherein placing the processor in an 1solated state occurs
by disabling an ability of the processor to handle interrupts.

19. The logical partitioned data processing system of claim
17, wherein placing the processor 1n a pool of resources for
later reassignment causes the processor to change to an unal-
located state which 1s a different state than the 1solated state.

20. The logical partitioned data processing system of claim
17, wherein the method performs deallocation of the proces-
sor 1n a dynamic basis.

21. The logical partitioned data processing system of claim
17, wherein deallocation of the processor occurs without
terminating execution of the partition.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

22. The logical partitioned data processing system of claim
17, further comprising;:

placing means for placing the processor i a spin loop

software state, wherein the processor waits for a trigger
event while 1n the spin loop software state, wherein the
trigger event causes the processor to begin executing
instructions;

configuring means for configuring the processor for use by

the another partition;

initializing means for mnitializing resources used to access

the processor;

first sending means for sending control of the processor to

the another partition; and

second sending means for sending the triggering event to

the processor to 1nitiate the executing of the 1instructions.

23. The logical partitioned data processing system of claim
22, wherein the triggering event includes a memory address
parameter ol an address that specifies where to mnitiate the
executing of the instructions.

24. The logical partitioned data processing system of claim
17 wherein the processor 1s stopped by the processor 1nitiat-
ing a call to a hypervisor to change a state of the processor
from running to stopped, wherein the hypervisor enforces the
partitioning within the logical partitioned data processing
system to enable simultaneous execution of a plurality of
operating systems by the logical partitioned data processing
system.

25. A logical partitioned data processing system for man-
aging processors 1n the logical partitioned data processing
system, the logical partitioned data processing system com-
prising:

placing means, responsive to a request to deallocate a pro-

cessor assigned to a partition within the logical parti-
tioned data processing system, for placing the processor
into a spin loop software state machine to place the
processor 1n a stopped state, wherein the request 1s
received from a {irst operating system running in the
partition;

1solating means for 1solating the processor from the parti-

tion, wherein the partition 1s unable to access the pro-
cessor; and
deallocating means, responsive to a call made by the first
operating system that results 1n a triggering event being,
sent to the processor that causes the processor to exit the
spin loop software state machine, for deallocating the
processor after the processor has been 1solated from the
partition.
26. The logical partitioned data processing system of claim
235, wherein the deallocating means takes the processor out of
the spin loop soitware state machine and places the processor
into a pool for reallocation such that the processor 1s capable
of being, but 1s not yet, allocated to a partition.
277. The logical partitioned data processing system of claim
25, wherein the partition 1s a first partition and wherein the
placing means 1s a first placing means and further comprising;:
allocating means, responsive to receiving an allocation
request to allocate the processor to a second partition
after the processor has been deallocated, for allocating
the processor to the second partition 1n a state 1n which
the second partition 1s unable to access the processor,
wherein the allocation request 1s received from a second
operating system runmng in the second partition;

second placing means for placing the processor 1nto a spin
loop software state machine;

unisolating means for unisolating the processor from the

partition aiter placing the processor in to the spin loop
software state machine; and

US 7,480,911 B2

15

third placing means for placing the processor 1n to a run-
ning state in which the processor begins executing code
at an address designated by the second partition.

28. The logical partitioned data processing system of claim
2’7, wherein the third placing means comprises means for
sending a triggering event to the processor that causes the
processor to exit the spin loop software state machine.

29. The logical partitioned data processing system of claim
28, wherein deallocation and allocation of the processor
occurs without terminating execution of the first partition and
the second partition.

30. The logical partitioned data processing system of claim
2’7 further comprising:

configuring means for configuring the processor for use in
the second partition.

31. A computer program product in a computer readable
recordable medium for managing a set of processors 1 a
logical partitioned data processing system, the computer pro-
gram product comprising;

first 1nstructions, responsive to a request to deallocate a
processor assigned to a partition within the logical par-
titioned data processing system, for stopping the proces-
sor, wherein the processor belongs to the set of proces-
sors, and wherein the request i1s received from a first
operating system runmng in the partition;

second 1nstructions, responsive to stopping the processor,
for placing the processor 1n an 1solated state, wherein the
processor 1s 1solated from the partition;

16

third instructions for placing the processor i a pool of
resources for later reassignment; and

fourth instructions, responsive to an allocation request to
allocate the processor, for assigning the processor to
another partition, wherein the another partition 1s differ-
ent from the partition, and wherein the allocation request
1s recerved from a second operating system running in
the second partition.

32. A computer program product in a computer readable

10 recordable medium for managing processors in the logical

15

20

25

partitioned data processing system, the computer program
product comprising:
first instructions, responsive to a request to deallocate a
processor assigned to a partition within the logical par-
titioned data processing system, for placing the proces-
sor 1nto a spin loop software state machine to place the
processor 1 a stopped state, wherein the request 1s
received from a {irst operating system running in the
partition;
second instructions for 1solating the processor from the
partition, wherein the partition is unable to access the
processor; and
third instructions for deallocating the processor after the
processor has been i1solated from the partition, wherein
the deallocating of the processor 1s mitiated by a call
made by the first operating system that results 1n a trig-
gering event being sent to the processor that causes the
processor to exit the spin loop software state machine.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

