12 United States Patent

US007480745B2

(10) Patent No.: US 7.480,745 B2

Dahneke et al. 45) Date of Patent: *Jan. 20, 2009
(54) METHOD AND APPARATUS FOR (51) Int.Cl.
MAINTAINING PERIPHERAL DEVICE GO6F 3/00 (2006.01)
SUPPORT INFORMATION (52) U.S.CL oo 710/15; 710/8; 710/16;
710/17;710/18; 710/19; 719/321
(75) Inventors: Bart Dahneke, Provo, UT (US); Ted (58) Field of Classification Search None
Wayne Tronson, Provo, UT (US); See application file for complete search history.
Michael John Cowley, Provo, UT (US);
Victor Hugo Parra, Lindon, UT (US) (56) References Cited
(73) Assignee: Novell, Inc., Provo, UT (US) .5, PALENT DOCUMENTS
| | o | 2002/0174206 Al* 11/2002 Moyer et al. ...oovven...... 709/221
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 % ited by examiner
U.S.C. 154(b) by 0 days. J
| _ | | _ Primary Examiner—Alan Chen
This patent 1s subject to a terminal dis- (74) Attorney, Agent, or Firm—King & Schickli, PLLC
claimer.
(37) ABSTRACT
(21) Appl. No.: 11/803,589
_— A method and apparatus for maintaining a computing device
(22) Filed May 15, 2007 1s provided. An indication of an end of persistence for a
(65) Prior Publication Data peripheral device 1s recerved. Monitoring 1s performed for an
event related to the end of persistence. Support information
US 2007/0245039 Al Oct. 18, 2007 associated with the peripheral device 1s removed from the
computing device based on detection of the event related to
Related U.S. Application Data the end of persistence.
(63) Continuation of application No. 10/073,571, filed on

Feb. 11, 2002, now Pat. No. 7,330,913.

18 Claims, 5 Drawing Sheets

RECEIVE INDICATION OF
END OF PERSISTENCE
FOR A PERIPHERAL

DEVICE \

!

\120

STORE AN
PERSIS

OF THE END OF

INDICATOR
TENCE

AN

!

\140

160

MONI/TOR

EVENT RELATED TO THE
END OF PERSISTENCE

-

FOR AN

100

180

/

REMOVE SUPPORT
INFORMATION
ASSOCIATED WITH THE
PERIPHERAL DEVICE

/

L Ol
gl 20
E 7V YIS 71 7 R S— YIINI |

US 7,480,745 B2

Sheet 1 of S

Jan. 20, 2009

U.S. Patent

rJ

81 YINYIS 97

zp A~ 4INIIS dIIH|
o YIAYIS ddi

e " 4IOVNVYW INIHd

4JIA3d
oc INIOV HIINIYd ___INdNI

143

dILNIdd
vOO0T

e i

8¢

YIUINIdd SJOLINOW

Senmrt T et

6/ 49

. N N IN3I1D

_J\E_ém: dl/d1 | _\SmmE_

OINI
E_ém: dIIH/ddl| | yodans
¥S
9IANOJ |
LS

FR m w YISMOYE |

AYONIN

U.S. Patent Jan. 20, 2009 Sheet 2 of 5 US 7,480,745 B2

RECEIVE INDICATION OF
END OF PERSISTENCE

FOR A PERIPHERAL

DEVICE
120
STORE AN INDICATOR
OF THE END OF
PERSISTENCE
140
160

MONITOR FOR AN
EVENT RELATED TO THE

END OF PERSISTENCE

/ 180

100

REMOVE SUPPORT

INFORMATION
ASSOCIATED WITH THE
PERIPHERAL DEVICE

B

FIG. 2

U.S. Patent

200/

Jan. 20, 2009 Sheet 3 of 5

PROVIDE
REPRESENTATION OF
PHYSICAL LOCATION OF
PERIPHERAL DEVICE

RECEIVE INDICATION VIA
THE REPRESENTATION
THAT ACCESS TO THE
PERIPHERAL DEVICE IS

DESIRED

RETRIEVE SUPPORT
INFORMATION
ASSOCIATED WITH THE
PERIPHERAL DEVICE

INSTALL RETRIEVED
SUPPORT INFORMATION

FIG. 3

US 7,480,745 B2

220

240

260

280

v "OId

. ﬂmzﬂ_a_”_ 1T

US 7,480,745 B2

100() pu
v bplg [/eAON

Wooy ejpaw AqQ JojoD 00STE Q N M.

S

Sheet 4 of S

759

Jan. 20, 2009

) = Ec.__ﬂ._.up#mgﬂa?_wﬂl_ﬁm.mmr.m“q.wm.hﬂ:”&_; @T aippy|
Wud (e |ACISIH SooARd uoiees | BwoH yseuey doig YEg yoeg
P ¥l 0 &IP B ® «° =+
 diey S0 sawosed man 1P e(4 |
X~ | Jesojdx3 JetLIeIu} BOSOUONK - unyseipeysoopddinnboyLegsol oF s9 Lkiduy

e _m_m—

U.S. Patent
B

00f

G Old

US 7,480,745 B2

<MeU =owWvij—18b.10¢
0§ ‘8°CZ°S 100z 0Wlj—oDp—8|I{D]OA=82Ud}S|s1ad
3Nyl =40102f | =se1doaipy—=06ZIsiedpd=suoi do—.18A1ip
xogbsw=adA|—inse.
oosydy/ddi/ewpbusNgieriss/ /diy=jin—isutid
[|DsUI—48jUlid~do=uonDiedo
0s={ybrey 00 I =Yipim
ddi—[teaoN—x/uoypolddo=3441 GIGWI>
UOHD|IDISUI 8dDISION 404 TWIHs

Sheet 5 of 5

<123r80/>
<xogbsw=73N7TvA 8dAj—jnssi=3YN WVYVI>
<00S¥dy,/dd|/sWDUSNGI8AI8S / /:AY=TNTVA [dN—JBjulId=JNVYN WYYVdI>
<[|pjsul—ad ulid—do=3NTVA uoypiedo=JNVYN WVYVd>
L <XD0'ddINII.=3SVE3IA0I
2250001 L0JZ14—-6168—VPl | —0PDL—/L645Z/95:PISI2 =0ISSVTID

1IJ4rg0~>
uonpbjio¢sul 31 404 TWIH

Jan. 20, 2009

U.S. Patent

US 7,480,745 B2

1

METHOD AND APPARATUS FOR
MAINTAINING PERIPHERAL DEVICEL
SUPPORT INFORMATION

This application claims priority and benefit as a continua-

tion application of U.S. patent application Ser. No. 10/073,
571, entitled “Method and Apparatus for Maintaining Periph-

eral Device Support Information,” filed on Feb. 11, 2002 now
U.S. Pat. No. 7,330,913.

FIELD OF THE INVENTION

The present invention relates to maintaining relationships
between a computing device and a peripheral device and,
more particularly, to a method and apparatus for automati-
cally removing support information from a computing
device.

BACKGROUND OF THE INVENTION

Conventionally, before a computing device can use a
peripheral device, some setting up must take place at the
computing device. This setup process 1s referred to hereinat-
ter as installation of the peripheral device. For example, the
computing device might need to know some information
about the peripheral device being installed and/or the com-
puting device might need to know some information regard-
ing, for example, how to activate the peripheral device, and
how to configure and control information sent to or recerved
from the peripheral device (referred to hereinafter collec-
tively as “support information”). Oftentimes, at least some of
this support information 1s provided to the computing device
in the form of configuration files and/or an installed set of
executable instructions known as a device driver (e.g., a
printer driver). The device driver can then be utilized with, for
example, a processor and operating system of the computing
device to activate and use the peripheral device. Accordingly,
different device drivers are typically made available for dii-
terent combinations of peripheral devices, operating systems,
and/or processors.

In some cases, 1t 15 undesirable to continually maintain
such support information on a computing device. For
example, when the relationship between a computing device
and a peripheral device 1s transient 1n nature (e.g., the user 1s
merely visiting the location in which the peripheral device 1s
located), the user of the computing device and/or the admin-
istrator responsible for the peripheral device might not want
such support information to be maintained on the computing
device. A user of a computing device might also want to avoid
keeping such support information 1n an effort to help keep the
number of peripheral devices associated with the computing
device manageable and/or to remove invalid peripheral
devices from the computing device.

SUMMARY OF THE INVENTION

In one embodiment, the present mvention relates to a
method for maintaining a computing device. An indication of
an end of persistence for a peripheral device 1s recerved.
Monitoring 1s performed for an event related to the end of
persistence. Support information associated with thy periph-
eral device 1s removed from the computing device based on
detection of the event related to the end of persistence.

In another embodiment, the present invention relates to a
computing device having memory and a provider set of
executable 1nstructions. The provider set of executable
instructions are operable to receive an indication of an end of

10

15

20

25

30

35

40

45

50

55

60

65

2

persistence for a peripheral device capable of being operably
connected to the computing device, to monitor for an event
related to the end of persistence, and to remove support infor-
mation associated with the peripheral device from the
memory based on detection of the event related to the end of
persistence.

Still a further embodiment of the present invention relates
to a system including a peripheral device and a computing
device. The computing device has memory and 1s capable of
accessing the peripheral device. The computer device 1s oper-
able to receive an indication of an end of persistence for the
peripheral device, to monitor for an event related to the end of
persistence, and to remove support information associated
with the peripheral device from the memory based on detec-
tion of the event related to the end of persistence.

These and additional advantages and novel features of the
present invention will become apparent to those skilled 1n the
art from the following detailed description, which 1s simply,
by way of 1illustration, various modes contemplated for car-
rying out the invention. As will be realized, the invention 1s
capable of other diflerent aspects, all without departing from
the imnvention. Accordingly, the specification 1s intended to be
illustrative 1n nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly
pointing out and distinctly claiming the present invention, 1t 1s
believed that the same will be further understood from the
following description taken 1n conjunction with the accom-
panying drawings 1n which:

FIG. 1 1s a schematic diagram of a system in which one
embodiment of the present invention can be utilized;

FIG. 2 1s a flow diagram of a method for maintaining
peripheral device support information according to an illus-
trative embodiment of the present invention;

FIG. 3 depicts a tlow diagram of a method for installing
support information according to an illustrative embodiment
of the present invention;

FIG. 4 depicts an installation interface according to an
illustrative embodiment of the present invention; and

FIG. 5 1s sample code illustrating an interface between an
HTML file and a supplemental component according to an
illustrative embodiment of the present invention.

The embodiments set forth 1n the drawings are illustrative
in nature and are not intended to be limiting of the invention
defined by the claims. Moreover, individual features of the
drawings and the mvention will be more fully apparent and
understood 1n view of the detailed description.

DETAILED DESCRIPTION

One embodiment of the present invention relates to main-
taining peripheral device support information associated with
a computing device. For purposes of illustration only, the
exemplary description presented herein will focus on such an
embodiment wherein the computing device 1s a general pur-
pose computer and the peripheral device1s a printer. As can be
appreciated, however, the teachings of the present invention
could be extended to embodiments wherein the computing
device 1s something other than a general purpose computer
(e.g., a special purpose computer, a personal digital assistant,
a digital telephone, a photo printer, a printer, a facsimile
apparatus, a storage device, a portable digital audio player, a
scanner, a camera, a video recorder, a cable box, a satellite
receiver, a stereo, aradio, a television, a digital versatile disk

(“DVD”) player, a video cassette recorder (“VCR”), and the

US 7,480,745 B2

3

like) and/or the peripheral device 1s something other than a
printer (e.g., a special purpose computer, a personal digital
assistant, a digital telephone, a photo printer, a facsimile
apparatus, a storage device, a portable digital audio player, a
scanner, a camera, a video recorder, a cable box, a satellite 5

receiver, a stereo, a radio, a television, a digital versatile disk
(“DVD”) player, a video cassette recorder (“VCR”), and the

like).

FIG. 1 1s a schematic block diagram of a network 10
comprising a collection of interconnected computing 1©
devices, 1n which certain embodiments of the present mnven-
tion might be utilized. As can be appreciated, aspects of the
present invention can also be utilized im embodiments
wherein computing devices are not interconnected. Refer-
ring, however, to the embodiment illustrated in FIG. 1, com- 15
puter 12 1 network 10 might comprise a processor, such as
central processing unit (CPU) 20, memory 22 and an mput/
output (I/0) unit (not shown), which may be interconnected

by a system bus (not shown).

Memory 22 may comprise, for example, storage locations 20

composed of random access memory (RAM) devices that are
addressable by CPU 20 and the I/O unit. An operating system
(OS) 24, portions of which could be resident in memory 22
and executed by CPU 20, can be used to functionally organize
computer 12 by, inter alia, mvoking network operations 1n
support of application programs (e.g., browser application
36) executing on the CPU. It will be apparent to those skilled
in the art that other processor and memory means, including
various computer readable media, may be used to, for
example, store and execute instructions pertaining to the
inventive method and apparatus described herein.

25

30

The I/0 unit can connect computer 12 to a transmission
medium 26, and oftentimes, to a mass storage device, such as
local data store 30, and/or local printer 28. The I/O umt can
receive mformation, such as control and data signals, from an
iput device 34 (e.g., a keyboard or mouse) and/or provide
that information to CPU 20 for storage/retrieval of informa-
tion to/from date store 30, for output to printer 28 and/or for
transier/retrieval over transmission medium 26.

35

40
Transmission medium 26 may comprise, for example, a

local area network (LAN) or a collection of LANSs cooperat-
ing to form a larger network, such as the Internet. Collec-
tively, the LANs may be configured to form a topology of
inter-networked computing devices that communicate by 45
exchanging data packets according to a predefined set or
protocols. Communication among the computing devices
may be ellected by reliable commumnication over, for
example, Transmission Control Protocols/Internet Protocol
(TCP/IP) sessions. It should be noted that other conventional 5,
techniques and protocols, such as Remote Procedure Calls
(RPC) or the Internet Packet Exchange (IPX) protocol, may
also be used with embodiments of the present invention.

Although aspects of the present invention can be used 1n a
variety ol network, architectures, including a peer-to-peer 55
network, 1n the embodiment 1llustrated 1n FIG. 1, network 10
1s organized 1n accordance with a client-server architecture,
wherein computer 12 may comprise a personal computer or
workstation configured as a “client” (computer 12 will here-
inafter be referred to by example as client 12) for interaction 60
with users and computing device 18 i1s configured as a
“server” (computing device 18 will hereinafter be referred to
by example as server 18) that performs services directed by
the client. For example, server 18 may be configured as a print
server having a locally-attached printer 19. In another 65
embodiment of the invention, a printer 14 may be directly-
attached to transmission medium 26.

4

In one exemplary embodiment of the present invention, for
example, server 18 might include components such as printer
agent 38 and print manager 39. When embodied 1n software,
these components could, for example, generally interact with
an operating system on server 18, such, as the NetWare oper-
ating system available from Novell, Inc., to provide a print
server configured to provide print services to client 12 of
network 10. For example, printer agent 38 can be a software
component executing on a server representing a local, remote
or network-attached printer. In another embodiment, a printer
agent may be embedded into a printer, such as printer 14,
which can be arranged to attach directly to network 10.

Printer agent 38 manages a physical print device, such as
printer 19, for example (or a print function of a multi-function
device). Printer agent 38, for example, might embody the
printer, print queue, print server, and spooler functions asso-
ciated with conventional queue-based printing. Printer agent
38 might be a component of a printing architecture, such as
the Novell Distributed Print Services (NDPS) printing archi-
tecture. One potential advantage of using NDPS might
include that the components of the NDPS architecture are
independent of any single protocol or operating system and,
as such, may be ported to different environments based, for
example, upon the International Standards Organization
10175 Document Printing Application standard and Internet
Engineering Task Force RFC 1739.

According to one exemplary embodiment, printer agent 38
may be implemented as part of print manager 39, such as the
NDPS manager component of the NDPS architecture. A
NDPS manager can manage a printer agent, such as to enable
creation of the printer agent and to enable such an agent to
share resources. For example, a NDPS manager can manage
and support one or more printer agents running at a node by
providing common support and access for naming, protocol,
file, object database, and other network services. A NDPS
manager can be a NetWare Loadable Module (NLM) that
runs on a NetWare print server. An agent 38 may further be
embodied as a software application configured to run 1n other
environments, such as one icluding an as such as the Win-
dows 9x, 2000, ME, XP, or NT, or DOS, Umix, Linux or Apple
OSs, or embedded directly into a printer or print server appa-
ratus.

Other components (not shown) of the NDPS architecture
might include, for example, a printer device subsystem
(PDS), a port handler (PH) and a printer gateway, the latter
comprising a soltware bridge that directly links a printer
agent to a corresponding printer. For example, a PDS can be
an NLM that resides in memory on a print server and retrieves
printer-specific information from local storage on the server.
A PDS might be used to create a printer agent for a printer
which 1s not directly attached to a network and for a printer
that 1s directly attached to the network, but that does not
include an NDPS gateway, for example. A PH might be used
to ensure that the PDS can communicate with a printer regard-
less of the type of physical port or interface being used.

Printer agent 38 can also be an NLM that contains infor-
mation about a printer 1t represents. Such information might
include a printer’s network address, name, status or other
characteristics, and can be communicated to client 12 and
managed by a system administrator. Printer agent 38 can
support central management of printers on network 10, as
well as the creation and management of print jobs. In one
view, printer agent could thus be seen as a liaison between a
client and a printer, so that each print request goes from the
client to the printer by way of the printer agent.

Printer agent 38 might receive requests from and send
replies to client 12 1n compliance with a protocol, such as the

US 7,480,745 B2

S

IPP protocol. As noted, the NDPS architecture can be proto-
col-independent and may support other protocols, such as the
Hypertext Transier Protocol (HTTP), the LPR protocol or the
RPC Protocol, instead of or in addition to IPP.

Referring to FIG. 2, one exemplary embodiment of the
present invention 1s related to a method 100 for maintaining,
peripheral device support information associated with a com-
puting device. According to method 100, at act 120, a com-
puting device might receive an indication of an end of persis-
tence for a peripheral device associated with or capable of
being associated with the computing device. At act 140, the
computing device might store an indicator of the end of
persistence. At act 160, the computing device could monitor
for an event related to the end of persistence. At act 180, the
support information associated with the peripheral device 1s
removed.

An exemplary embodiment of one such method will now
be described 1 more detail with respect to the apparatus
illustrated 1n FIG. 1, wherein client 12 1s a computing device
and printers 14, 19 are peripheral devices. An end of persis-
tence for a printer 1s identified. In one embodiment, the end of
persistence can be selected from a list of options (e.g., via a
web-based management tool). For example, the end of per-
sistence might be selected from one of the following options:
reboot, login, a specified time, an elapsed period of time, after
X print jobs, expiration of account balance, forever, etc. The
end of persistence could be selected, for example, by an
administrator of the peripheral device, a user of the comput-
ing device, or by detault.

As can be understood, support imformation might be
removed based on the detection of anyone of a plurality of
events that might be related to an end of persistence. For
example, an end of persistence might be related to an event or
events that are not related to the computing device and/or the
user. For example, support information for a printer might be
removed based on the determination that the computing
device can no longer access the printer (e.g., when an admin-
istrator of a network temporarily or permanently removes a
printer from a network). According to one such embodiment,
a user of the computing device from which the support infor-
mation will be removed might be prompted to confirm that the
support information should be removed before removing the
same.

In one embodiment, the identified end of persistence 1s set
during 1nstallation of the printer onto client 12. Referring now
to FIG. 3, a method 200 of installing a peripheral device 1s
provided that can be used with an embodiment of the present
invention. For example, at act 220, a representation of the
physical location of the peripheral device can be provided. At
act 240, an 1indication 1s recerved via the representation that
access 1o the peripheral device 1s desired. Based on the indi-
cation, support information associated with the peripheral
device can be retrieved, as shown 1n act 260. The support
information can be installed on the computing device, as
shown 1n act 280.

For example, referring again to the apparatus shown in
FIG. 1, printer 14 or 19 could be 1nstalled onto client 12 using
an 1installation interface that can be accessed by multiple
computing devices, even 1f those computing devices may
have different environments (e.g., different hardware compo-
nents and/or operating systems). One approach to such an
embodiment might include providing the installation inter-
face 1n the form of a file written 1n a mark-up language, such
as the hypertext mark-up language (“HTML”’). Such a file can
be stored on a server or printer, for example, or can be stored
in a data store accessible by a web server, for example.
According to one embodiment, a computing device such as

10

15

20

25

30

35

40

45

50

55

60

65

6

client 12 can run an appropriate browser application (e.g.,
browser 36) that provides access to the installation intertace.
For example, one such browser might include the Internet
Explorer™ browser currently marketed by the Microsofit
Corporation of Redmond, Wash.

Referring now to FIG. 4, according to one exemplary
embodiment of the present invention, installation interface
300 comprises a representation 310 of the physical location of
a printer in relation to an area encompassing that location. For
example, representation 310 might comprise a graphics-
based representation, such as one wherein the printer 1s rep-
resented by an associated 1con 320 arranged on a map of the
area 1n accordance with its actual physical location. In an
exemplary embodiment, icon 320 might comprise a graphical
representation of the printer and/or a character-based descrip-
tion of the printer.

According to one embodiment of the present invention, if a
user of client 12 desires to perform some operation related to
a printer (e.g., printing to the printer), the user might indicate
that desire via the client. In an embodiment wherein the
representation comprises a graphics-based representation
(such as representation 310) on a display device (e.g., monitor
32) associated with client 12, and the client 1s associated with
an mput device capable of providing input information to the
client (e.g., a pomnting device, such as a mouse), the user
might use the input device to indicate the printer (e.g., by
clicking on the icon of the desired printer) to which the
operation 1s related. For example, a user of client 12 might
desire to print using printer 14 or 19. In an exemplary embodi-
ment of the present mvention, the acts necessary to perform
the desired operation are performed 1n response to an indica-
tion received from the user while viewing the representation.

Further according to one such exemplary embodiment,
representation 310 can be provided in the form of an HIML
file allowing a user viewing the representation (e.g., via
browser 36) to select a printer and, 1n response, retrieve and
install (if necessary) support imformation (e.g., a printer
driver, font metric file, and configuration files and 1informa-
tion, such as Postscript Printer Description (“PPD™) files,
Generic Printer Description (“GPD”) files, and/or adminis-
trator-selected settings) to allow client 12 to access the
printer.

For example, with reference to FIGS. 1 and 4, 1con 32 can
be linked to instructions for performing the respective retriev-
ing and installation operation(s), such that appropriate
istructions are invoked upon a selection of a printer by the
user. According to one exemplary embodiment of the present
invention, the selection of i1con 320 may invoke another
HTML file specific to the selected printer (which might be
stored on the printer, a server associated with the printer, or a
data store). When accessed by browser 36, the printer-specific
HTML file causes the 1dentified end of persistence to be set,
and retrieves and 1nstalls the support information onto client
12.

Current conventional browsers are limited 1n their func-
tionality with respect to interactions with computing devices.
Accordingly, 1n one embodiment of the present invention, a
supplemental component 1s provided on client 12 that allows
actions related to a printer to be taken on computing devices.
Such a supplemental component might comprise, for
example, ActiveX controls, Netscape plug-ins, and the like,
and will herematfter be referred to by example as plugin 44.
Plugin 44 can serve as an HITML interface to commands and
functions related to the printer.

For example, an 1indication might be provided within the
printer-specific HITML file that, when acted on by browser 36,
invokes plugin 44. In an exemplary embodiment, for

US 7,480,745 B2

7

example, the printer-specific HTML file might include an
embedded 1nstruction (e.g., with Netscape, the HIML ele-
ment <EMBED>; with Internet Explorer, the HTML element
<OBIJECT>) that, when processed by browser 36, invokes
plugin 44 to cause the 1dentified end of persistence to be set.
In an embodiment where end of persistence 1s set during
installation, the embedded instruction might also be used to
invoke a plugin to cause appropriate support information to be
retrieved and/or installed on client 12. In an exemplary
embodiment, plugin 44 1s used to set the end of persistence,
and to retrieve and 1nstall the support information.

For example, FI1G. 5 represents sample HI ML code foruse
with the Internet Explorer browser and HTML code for use
with the Netscape Navigator browser. Both samples 1llustrate
a way in which to interface with a plug-in. As illustrated, the
sample Netscape HITML code passes a parameter corre-
sponding to the end of persistence to the plugin. For example,
in the Netscape code, this 1s 1llustrated by the command line
“persistence=volatile-date-time:2001,3,22,8,30.” Accord-
ingly, the plug-in will cause the identified printer to be
installed on the client and the printer will be removed from the
client at 8:30 AM on Mar. 22, 2001.

The plug-in can also pass other parameters related to
operations of the printer. For example, the sample code for
Internet Explorer passes the parameters operation, printer-
URL, and result-type to the plugin (shown 1n the sample code
as 1enipp.ocx). According to the illustrated embodiment, the
operation parameter 1s used to tell the plug-in which opera-
tion (e.g., op-printer-install) to perform. The op-printer-in-
stall operation, for example, installs the indicated printer (see
below) to the client. The printer-url parameter 1s used to
indicate to which printer the operation should be directed
(e.g., the Internet Printing Protocol compliant printer associ-
ated with the umiform resource locator (“URL”) http://
server DNSname/1pp/hp4500).

The result-type parameter 1s used to tell the plug-in how to
report the results of the requested operation. For example, the
sample code 1s telling the plug-in to report the results of the
installation operation to the user via a message box. A further
list of exemplary parameter 1dentifiers and supported opera-
tions that can be used to define an interface between an
HTML page and a plugin can be found in Appendix A of the
document entitled “1Print Administration Guide”, Novell,
Inc., July 2001 (which can be accessed by the URL http://
www.novell.com/documentation/lg/nw6p/index.html).
which 1s hereby incorporated by reference.

Plug-in 44 can call into client 12 to perform the desired
operation (e.g., setting persistence, retrieving and installing
support information, etc.). For example, 1n one exemplary
embodiment, a print provider 46 1s installed on client 12 and
plug-1n 44 calls into the print provider to perform the opera-
tion. According to such an embodiment, plugin 44 acts as a
communication conduit from browser 36 to print provider 46.

Print provider 46 can be used to set the end of persistence
and/or to retrieve and 1nstall the printer on client 12. Among
other features, print provider 46 can also be used to allow
printing from applications running on client 12 and to provide
a standard set of printer folder operations (e.g., add/delete
printers, set default, pause/resume printer, list/deletejobs,
etc.). As one of the exemplary embodiments described herein
has been discussed in terms of setting persistence during
installation, installation according to an exemplary embodi-
ment of the present invention will now be discussed.

In one embodiment, print provider 46 utilizes commands
and functions compliant with the Internet Printing Protocol
(“IPP”’) to communicate with respect to a printer (e.g., with
printer agent 38). For example, print provider 46 can be used

10

15

20

25

30

35

40

45

50

55

60

65

8

to translate OS-dependent requests to IPP requests and to
send those requests to an appropriate IPP server. IPP 1s an
application level protocol that can be used for distributed
printing using internet tools and technologies. IPP can, for
example, provide a universal way for a user to find out about
the capabilities of a printer, submit a print job to a printer,
check on the status of a printer or print job, and cancel a print
job. Utilizing IPP, a printer located anywhere on the Internet
can be made accessible to a computing device.

In an embodiment utilizing IPP, appropriate support 1s
provided on client 12 in the form of an IPP library (1.e.,
support 1s provided for the protocol functions and commands
in the environment of the client). IPP 1s currently built on top
of the HyperText Transfer Protocol (“HTTP”). HI'TP defines
how messages are formatted and transmitted, and what
actions Web servers and browsers, for example, should take 1n
response to various commands. For example, IPP traffic 1s
sent as a Multipurpose Internet Mail Extensions (MIME)—
type using HTTP’s feature for posting information. Cur-
rently, IPP 1s transierred using the H1'TP/1.1 protocol, which
has the ability to perform multiple transfers over a single
Transmission Control Protocol (*I'CP”) connection and 1s
currently the most widely accepted protocol 1n the Internet
marketplace. Accordingly, appropriate support 1s also pro-
vided on client 12 1n the form of an HTTP library, which can
be combined with the IPP library in one embodiment (e.g.,.
IPP/HTTP library 48).

HTTP currently runs over TCP/IP. TCP/IP 1s a communi-
cations protocol wherein TCP provides transport functions
that ensure that the total amount of bytes sent 1s correctly
received. TCP enables two hosts to establish a connection and
exchange streams of data. TCP guarantees delivery of data
and that the packets will be delivered 1n the same order 1n
which they were sent. Meanwhile, the IP part provides rout-
ing capabilities. Accordingly, appropriate support 1s also pro-
vided on the client 1n the form of a TCP/IP library 50 (e.g.,
Winsock). Additional support can also be provided to enable
use of other potentially advantageous protocols, such as the
Secure Sockets Layer (“SSL”) and Transport Layer Security
(““TLS”) security protocols.

In accordance with one exemplary embodiment, during an
installation operation, for example, print provider 46 can be
adapted to query a printer to be installed (or a server corre-
sponding to the printer) to filter out appropriate support infor-
mation from the support information made available to all
potential clients of the printer. For example, print provider 46
might query an IPP server 40 (e.g., via HI'TP server 42)
associated with server 18 with an IPP request to filter out
appropriate support information for client 12 from the sup-
port information made available to all potential clients of
printer 19. In an embodiment utilizing NDPS, IPP server 40
can recerve such an IPP request, translate the request to NDPS
and send the request to print manager 39.

According to one embodiment of the present invention, IPP
server 40 enables access to all of the printers associated with
print manager 39. IPP server 40 can comprise a soiftware
module running on a server (e.g., server 18) or a printer (e.g.,
printer 14). For example, IPP server 40 could comprise a
NLM, which could be written in anyone of a number of
programming languages, such as Visual Basic, Java, C, C++,
or PERL. An IPP server could be registered as a Common
Gateway Interface (“CGI”) process, for example.

In an exemplary embodiment, print provider 46 and IPP
server 40 are in compliance with the printer installation exten-
sion of IPP, which 1s documented 1n the Internet Engineering,

Task Force (IETF) Internet Drait entitled “Internet Printing
Protocol (IPP): Printer Installation Extension” (Jul. 17,

US 7,480,745 B2

9

2001), and which 1s hereby incorporated by reference.
According to one such embodiment, IPP server 40 uses the
printer description attribute “client-print-support-files-sup-
ported” to represent relevant information about all of the
support files available for the printer it supports. Fields of this
attribute could include, for example, those identifying the
URI (e.g., according to one of the 1tp, http, or 1pp schemes) of
where to obtain the support files for each operating system,
processor, document format, and natural language a printer
supports, the operating system types, processor types, docu-
ment formats, and natural languages supported by the set of
support files, the mechanism used to compress the set of
support files, the type of the support files (e.g., printer-driver,
ppd, updf, and gpd), and the name by which the support files
will be installed on a client. Additional fields of this attribute
could also 1nclude those 1dentifying the policy for automatic
loading, the file size, the version number, the creation date
and time, human readable text describing the set of support
files, and the mechanism used to ensure the integrity and
authenticity of the set of support files.

Values of an exemplary “client-print-support-files-sup-
ported” printer description attribute might include, for
example:

uri=1pp://mycompany.com/myprinter?drv-id=Model Y.gz <
os-type=windows-95<cpu-type-x86-32<
document-format=application/postscript<
natural-language=en<compression=gzip <
file-type=printer-driver<
client-file-name=CompanyX-Model Y-driver.gz<
policy=manufacturer-recommended <

According to one such embodiment, print provider 46
could 1ssue a Get-Printer-Attributes request to IPP server 40,
wherein the “client-print-support-files-filter” operation
attribute 1s supplied 1n the request as a filter. According to
such an embodiment, the filter value imdicates 1 which sup-
port files print provider 46 1s interested. Filter values provided
by print provider 46 can include uri-scheme (e.g., {tp, http,
and 1pp), type of operating system, type ol processor, docu-
ment format, and natural language.

In an exemplary embodiment, IPP server 40 returns only
the wvalues of the *“client-print-support-files-supported”
printer description attribute that match the filter. An example
of a “client-print-support-files-filter” filter value could be:

os-type=windows-93<cpu-type=x86-32<document-
format=application-postscript<natural-language=en,
de<

A matching response might be the following string values:

uri=ipp://mycompany.com/myprinter?drv-id=ModelY.gz<
os-type=windows-95 <cpu-type=x86-32<«
document-format=application/postscript<
natural-language=en<compression=gzip<

file-type=printer-driver<
client-file-name=CompanyX-Model Y-driver.gz<
policy=manufacturer-recommended<

digital-signature=smimex<
uri=ftp://mycompany.com/root/drivers/win95/CompanyX/ModelY.gz<
os-type=windows-93 <cpu-type=x86-32<«

document- format=application/postscript,application/vnd.hp-PCL<
natural-language=en,ir<compression=gzip <
file-type=printer-driver<
client-file-name=CompanyX-ModelY-driver. gz<
policy=manufacturer-recommended<

digital-signature=smime<

10

15

20

25

30

35

40

45

50

55

60

65

10

If the above request had also contained the “uri-scheme™ field
in the filter, such as uri-scheme=1pp<, then only the first value
would have been returned.

Accordingly, print provider 46 can receive a list of the
potential support files that meet the requirements of client 12.
Print provider 46 can then choose from the returned list which
of the support files to use and know where to get them. For
example, IPP server 40 might be queried to identify the sup-
port information that corresponds to the environment of client
12 (e.g., operating system, processor, preferred natural lan-
guage, and preferred document format, for example, a page
description language (PDL) such as Postscript of PCL).

If one of the URIs returned 1s, for example, an IPP URI,
print provider 46 can retrieve the support files from the cor-
responding IPP resource via, for example, a Get-Client-Print-
Support-Files operation. According to such an embodiment,
IPP server 40 returns a “client-print-support-files-supported™
attribute that identifies the properties of the returned support
files and the support files that match the request. Moreover,
print provider 46 might also retrieve the support files through
other means, such as by using an FIP Get of HI'TP Get
operation.

Although the support information can be stored on a printer
and/or a server associated with a printer, such information
might also be stored and downloaded from repositories of
different sorts, such as data store 16. In an exemplary embodi-
ment, the support information 1s stored 1n a central repository
for network resources, such as the Resource Management
System available from Novell, from which print manager 39
can obtain the support information. Data store 16 may also be
configured as a database for storing information relating to,
¢.g., objects that represent components of a printing architec-
ture that may be advantageously used with the present inven-
tion.

According to one embodiment of the present invention, the
support information for a particular client 1s compressed nto
a single file. For example, the support information can be
stored 1n a .z1p format. In a further exemplary embodiment,
when the support information 1s compressed into a single file,
the file 1s time-stamped (e.g., with the date and time of the
creation of the single file). In still a further embodiment of the
present invention, the support information 1s stored with an
in-memory index, which can speed download times.

In such an embodiment, print provider 46 could compare
the time-stamp of the support information with a time-stamp
associated with support information already installed on cli-
ent 12 (e.g., such a time-stamp could be stored on a database
of configuration information associated with the client)
betore downloading the support information. For example, 1T
the time-stamp of the existing support information 1s later
than the time-stamp of the newly identified support informa-
tion, then the downloading of the newly 1dentified support
information can be avoided.

In a further embodiment, upon receiving an indication that
access to a peripheral device 1s desired, a determination 1s
made as to whether any components (e.g., print provider 46
and/or plug-in 44) are needed on client 12. If needed, the
components can, for example, be pushed to client 12 via a
compressed file that automatically decompresses and installs
itsellf.

In one embodiment, after support information 1s down-
loaded, print provider 46 can read any information files, add
the support information (e.g., a printer driver) to client 12, add
the printer to the client (e.g., by 1nstalling the printer 1n the
Windows printer {ile), and finalize any printer driver settings.
With respect to the end of persistence, print provider 46 can,
for example, write a setting to a database of configuration

US 7,480,745 B2

11

settings 52 associated with the client (e.g., the local machine
of the Windows Registry database). For example, in an
embodiment where client 12 1s running a Windows operation
system, 1 the end of persistence has been set to a particular
time and date, that time and date can be written to the Registry
database. Print provider 46 can monitor for an event corre-
sponding to the 1dentified end of persistence, and remove the
printer and associated support information 34 from the client
when that event 1s triggered.

For example, print provider 46 can cause an event moni-
toring thread 56 to be run on client 12. According to an
exemplary embodiment, thread 56 1s run in the background.
Event monitoring thread 56 can be started each time client 12
1s rebooted. In an exemplary embodiment, event monitoring
thread 56 1s started when a spooler mode or printer spooler
loads on client 12.

In an embodiment wherein client 12 utilizes a Windows
operating system, event monitoring thread 56 can, for
example, momitor the Registry database to see 11 the event
related to the identified end of persistence has come to pass. In
one embodiment, event monitoring thread 56 always moni-
tors, for example, the Registry database. In another embodi-
ment, event monitoring thread 56 periodically monitors, for
example, the Registry database (e.g., once every 15 seconds,
once every hour, etc.). When the event comes to pass or 1s
triggered, event monitoring thread 56 removes the printer and
its associated support information from client 12.

For example, 1n an embodiment wherein the end of persis-
tence has been set as a specific date and time, the date and time
can be stored in configuration settings database 52. Event
monitoring thread 56 monitors current time versus the time
written to database 52. When the current time becomes equal
to the time written 1n database 52, thread 56 removes the
printer and its associated support information.

A further example 1s now given wherein the end of persis-
tence has been set to reboot. According to such an embodi-
ment, thread 56 checks to see if client 12 has been rebooted
since the printer and its associated support information was
installed. It so, thread 56 removes the printer and 1ts associ-
ated support information.

Among other advantages, embodiments of the present
invention can allow mobile employees, business partners, and
customers, for example, to access a peripheral device from a
variety of locations (including remote locations), such as by
using an Internet connection. Moreover, such access can be
provided without having to involve an administrator, for
example, on configuration 1ssues. Furthermore, according to
an exemplary embodiment of the present invention, support
information nstalled on a computing device to enable such
access can be scheduled for automatic removal.

The specific illustrations and embodiments described
herein are exemplary only in nature and are not intended to be
limiting of the invention defined by the claims. The 1llustra-
tions and embodiments are not intended to be exhaustive nor
to limit the invention to the precise form disclosed. Many
alternatives, modifications, and variations will be apparent to
those skilled 1n the art 1n light of the above teaching. Accord-
ingly, the present invention 1s itended to embrace all alter-
natives, modifications, and variations that fall within the spirit
and broad scope of the attached.

The mvention claimed 1s:
1. A method for maintaining a computing device connected
or not to a peripheral, device, comprising:
receiving an indication of an end of persistence for the
peripheral device regardless of whether the peripheral
device 1s actually connected to the computing device;

10

15

20

25

30

35

40

45

50

55

60

65

12

by the computing device, monitoring for an event related to
the end of persistence regardless of whether the periph-
cral device 1s actually connected to the computing
device; and

by the computing device, fully automatically removing a

device driver associated with the peripheral device
based on detection of the event related to the end of
persistence, wherein the monitoring and the fully auto-
matically removing the device driver occurs regardless
of whether the computing device 1s networked or main-
tains a network connection.

2. The method for maintaining a computing device accord-
ing to claim 1, further comprising storing an indicator of the
end of persistence.

3. The method for maintaining a computing device accord-
ing to claim 2, wherein the storing an indicator comprises
storing the indicator in a database of configuration settings
associated with the computing device.

4. The method for maintaining a computing device accord-
ing to claim 3, wherein the monitoring for the event comprises
monitoring the database of configuration settings associated
with the computing device.

5. The method for maintaining a computing device accord-
ing to claim 1, wherein the monitoring for the event comprises
running an event monitoring thread.

6. The method for maintaining a computing device accord-
ing to claim 5, further comprising booting the computing
device and starting the event monitoring thread after booting
the computing device.

7. The method for maintaining a computing device accord-
ing to claim 1, further comprising installing the peripheral
device on the computing device prior to the monitoring for the
event.

8. A computing device configured as a client computer,
comprising;

a memory; and

a provider set of executable instructions operable to receive

an 1ndication of an end of persistence for a peripheral
device regardless of whether the peripheral device is
connected to the computing device, to monitor for an
event related to the end of persistence, and to fully auto-
matically remove a device driver associated with the
peripheral device from the memory based on detection
of the event related to the end of persistence, wherein the
executable 1nstructions are operable for the monitoring
and the fully automatically removing the device driver
regardless of whether the computing device 1s net-
worked or maintains a network connection.

9. The computing device according to claim 8, wherein a
database of configuration information 1s stored in the memory
and wherein the provider set of executable instructions 1s
operable to write an indicator of the end of persistence into the
database.

10. A computing environment system, comprising;
a peripheral device; and

a computing device having memory and capable of access-
ing the peripheral device, the computing device being
operable to recerve an indication of an end of persistence
for the peripheral device regardless of whether the
peripheral device 1s connected to the computing device,
to momitor for an event related to the end of persistence,
and to fully automatically remove a device driver asso-
ciated with the peripheral device from the memory based
on detection of the event related to the end of persis-
tence, wherein the computing device 1s capable of the
monitoring and the fully automatically removing the

US 7,480,745 B2

13

device driver regardless of whether the computing
device 1s networked or maintains a network connection.

11. A method for maintaining a computing device con-

nected or not to a peripheral device, comprising:

receiving an indication of an end of persistence for the
peripheral device regardless of whether the peripheral
device 1s connected to the computing device;

by the computing device, monitoring for an event related to
the end of persistence;

by the computing device, detecting the event; and

by the computing device, fully automatically removing a
device driver associated with the peripheral device
based on the detecting, wherein the monitoring, the
detecting and the fully automatically removing the
device driver occurs regardless of whether the comput-
ing device 1s networked or maintains a network connec-
tion.

12. The method of claim 11, wherein the monitoring for the
event related to the end of persistence further includes assess-
ing whether a volatile date and time has been reached.

13. The method of claim 11, further including setting the
end of persistence of the peripheral device.

14. The method of claim 13, wherein the setting further
includes 1mvoking a plugin.
15. The method of claim 13, wherein the setting occurs

during 1installing the peripheral device on the computing
device.

5

10

15

20

25

14

16. The method of claim 15, wherein the mstalling further
includes selecting of a peripheral device 1con.
17. A method for maintaining a computing device con-
nected or not to the computing device, comprising;:
recerving an indication of an end of persistence for a
peripheral device regardless of whether the peripheral
device 1s connected to the computing device;
monitoring for an event related to the end of persistence;
and
by the computing device, fully automatically removing a
device driver associated with the peripheral device
based on detection of the event related to the end of
persistence, wherein the monitoring and the fully auto-
matically removing the device driver occurs regardless
of whether the computing device 1s networked or main-
tains a network connection.
18. A method for maintaining a computing device con-
nected or not to a peripheral device, comprising:
receving an indication of an end of persistence for the
peripheral device regardless of whether the peripheral
device 1s connected to the computing device;
monitoring for an event related to the end of persistence;
detecting the event; and
by the computing device, fully automatically removing a
device driver associated with the peripheral device
based on the detecting.

¥ ¥ # ¥ o

	Front Page
	Drawings
	Specification
	Claims

