12 United States Patent

US007480683B2

(10) Patent No.: US 7.480,688 B2

Meckley et al. 45) Date of Patent: Jan. 20, 2009
(54) PHASE PERSISTENT AGILE SIGNAL (56) References Cited
SOURCE METHOD, APPARATUS, AND
COMPUTER PROGRAM PRODUCT U5 PATENT DOCUMENTS
5473274 A 12/1995 Reilly et al.
(75) Inventors: Jeffrey L. Meckley, Glenville, PA (US); 5,644,602 A 7/1997 Critchlow et al.
Thomas P. McGrath Lutherville M) 5,770,977 A * 6/1998 Uurtamoceceeeneenn.n. 331/40
e " L 5,963,607 A * 10/1999 Romano etal. 708/271
(US); William F. McClelland, 7,034,624 B1* 4/2006 Gentileoo........... 331/34
Finksburg, MD (US); Robert J. 2003/0174784 ALl* 9/2003 Samarasooriyaetal. 375/308
Baummer, Jr., Towson, MD (US) 2005/0248374 Al1* 11/2005 Kushnickcc.c....... 327/105
(73) Assignee: AAI Corporation, Hunt Valley, MD * cited by examiner
US
(US) Primary Examiner—Chat C Do
(*) Notice: Subject to any disclaimer, the term of this (74) Ar_mm??’ Agent, o ‘Fzrm—Venable LLP; James R.
patent 1s extended or adjusted under 35 Burdett; Jefirt A. Kaminski
U.S.C. 154(b) by 408 days. (57) ABSTRACT
21) Appl. No.: 11/289,783 , L
(1) Appl.- No A phase persistent agile signal source method, apparatus,
(22) Filed: Nov. 30. 2005 and/or computer program product provides a direct digital
’ synthesizer (DDS) clock rate, provides a frequency tuning
(65) Prior Publication Data word (F1'W) for a desired output frequency, provides a DDS
update for a desired DDS update rate, provides an equivalent
US 2006/0136537 Al Jun. 22,2006 frequency least significant bit (LSB) for the desired DDS
o update rate, provides a current phase of an LSB accumulator,
Related U.S. Application Data and generates a coherent phase of the desired output ire-
(60) Provisional application No. 60/631,602, filed on Nov. quency based on the DDS clock rate, F1'W, DDS update rate
30, 2004. to the DDS, equivalent LSB for the desired DDS update rate,
and current phase of the LSB accumulator. The coherent
(51) Int. Cl. phase can be the fraction portion of the result obtained from
G06G 1/02 (2006.01) the multiplication of the F'TW and the current phase of the
(52) USuClLi oo 708/271 LSB accumulator.
(58) Field of Classification Search 708/2°70-277

See application file for complete search history.

19 Claims, 2 Drawing Sheets

100
Y
, T T T T T T T T TS s eSS D | - T —l
! EQUIVALENT PHASE : :
 ACCUMULATOR 150 i
i FREQUENCY 132 -
b T#g%; . i UENCYWORD, FReqQUENCY
l E (FTW) ;
140 |
(X | COHERENT PHASE | py)1cp
5 1o i DIRECT
TS E SYNTHESIZER /
LSBACCUNULATOR = : s
124 o_.._DQ%iLOCK CLOCK L
3 ADD g A
¥ 122 B
' | EQUIVALENT CURRENT 3
| FREQUENCYLSB ¢ PHASE OF B
. + PERDDS UPDATE 70 | LSBACCUMULATOR | |
DS CLOCKM ¢ i1 DDSUPDATE] e

@\
~ .
~ | Ol
L
1
—
L
< e Y .
e~ | “
2 2 X
NN [goe 3 o %0079 S
1 yolvInAngavesy | 0¢! 31¥dN SO 43 ¢ !
X 10 39YHd O 'gSTAININDIYA ! |
| I O Y -1 1
- i 3 aay
= _ TN el ¥
- 0L} %001 500 X 3
° (5q0) X ¥
7> C Y437ISTHINAS LR q%.mﬁ.:.%mmm.m.mu 4
WiI9I “ ._. “
s} 193410 “ 0l m
N _ “
= 3SVHd INRFHOD ! & m
S m m
w i w
ANINOIH = oM AonanDaed ONINDL [™~08} m
“ ctl AIN3ND3Y “
m 05} YOLYINANOIY »
e oo 35WHd INSTVAINDS |

00}

U.S. Patent

U.S. Patent Jan. 20, 2009 Sheet 2 of 2 US 7,480,688 B2

o0
PROVIDE DDS CLOCK A0~
0
PROVIDE DDS UPDATE RATE
PROVIDE FREQUENCY WORD FOR %)
DESIRED DDS OUTPUT
DETERMINE EQUIVALENT 40
FREQUENCY LSB
DETERMINE CURRENT PHASE 50
OF LSB ACCUMULATOR
DETERMINE 60
COHERENT PHASE

PROVIDE FREQUENCY WORD, COHERENT 210
PHASE, DDS CLOCK, AND DDS UPDATE TO DDS

GENERATE PHASE CORERENT 260
AGILE SIGNAL

FIG. 2

US 7,480,688 B2

1

PHASE PERSISTENT AGILE SIGNAL
SOURCE METHOD, APPARATUS, AND
COMPUTER PROGRAM PRODUCT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/631,602, filed Nov. 30, 2004,

which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to signal generating,
methods and devices and, more particularly, to a phase per-
sistent agile signal source method, apparatus, and/or com-
puter program product.

2. Description of the Related Art

Signal frequency generation can be achieved in a number
of ways including direct digital frequency synthesis, phase-
locked-loop 1frequency synthesis, fractional-N frequency
synthesis, etc. Advances 1n integrated circuit technology over
the recent past have resulted 1n more widespread use of direct
digital synthesizers (DDSs) 1n signal frequency generation.
DDSs generate programmable analog output wavetforms with
high resolution and accuracy, and are able to rapidly switch
between output frequencies. A DDS generates a waveiorm by
storing the points of the wavetorm 1n digital format, and then
recalling them to generate the waveform. The rate at which
the DDS completes one wavetform governs the output fre-
quency.

The DDS output frequency 1s changed by changing the
phase increment of the phase accumulator. The phase incre-
ment determines how many data points the DDS skips
between the ones 1t sends to the digital-to-analog converter
(DAC). The DDS accumulates the skip values to determine
the values that are sent to the DAC. This accumulator has
history of all prior programmed frequencies. When the DDS
output frequency changes from a first frequency to a second
substantially higher or lower frequency, and then back to the
first frequency, the second occurrence of the first frequency
normally does not have the same phase as the first occurrence
of the first frequency. This 1s due to the history of all prior
frequencies stored in the accumulator of the DDS. It would be
desirable to track phase of the output frequency of a DDS to
maintain the time continuous phase of the DDS output fre-
quency when the DDS 1s programmed to any other arbitrary
output frequency. If the DDS output frequency 1s repro-
grammed to a previous DDS output frequency, the phase
would then be continuous, as though it never left the original
frequency.

Theretfore, a need exists for a phase persistent agile signal
source method, apparatus, and/or computer program product.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a phase
persistent agile signal source method, apparatus, and/or com-
puter program product. The phase persistent agile signal
source method, apparatus, and/or computer program product
provides a direct digital synthesizer (DDS) clock rate, pro-
vides a frequency tuning word (F'TW) for a desired output
frequency, provides a DDS update for a desired DDS update
rate, provides an equivalent frequency least significant bit
(LSB) for the desired DDS update rate, provides a current
phase of an LSB accumulator, and generates a coherent phase

10

15

20

25

30

35

40

45

50

55

60

65

2

of the desired output frequency based on the DDS clock rate,
FTW, DDS update rate to the DDS, equivalent LSB for the
desired DDS update rate, and current phase of the LSB accu-
mulator.

The DDS update rate 1s a sub multiple of the DDS clock
rate. The maximum usable DDS update rate can be deter-
mined by the time required to write to all applicable internal
DDS registers and the time required for the DDS update
command to propagate to the output of the DDS. The equiva-
lent frequency LSB of the desired DDS update rate can be
obtained by multiplying the LSB of the FTW, typically one,
by the DDS clock rate and dividing by the DDS update rate.
The addition of the current phase of the LSB accumulator and
the equivalent frequency LSB can be the current phase of the
L.SB accumulator. The coherent phase can be the fractional
portion of the product resulting from the multiplication of the
FTW and the current phase of the LSB accumulator. The
fractional portion of the coherent phase can be that portion of
the product that 1s less than 360 degrees with the LSBs trun-
cated to fit the size of the phase register in the DDS.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a phase persistent agile signal
source according to the present invention.

FI1G. 2 1s a flow chart of phase persistent agile signal source
process according to the present invention.

DETAILED DESCRIPTION OF THE PR
EMBODIMENTS

(L]
=]

ERRED

Embodiments of the present invention 1s present invention
1s a phase persistent agile signal source method, apparatus,
and/or computer program product. The mvention disclosed
herein 1s, of course, susceptible of embodiment 1n many dif-
ferent forms. Shown 1n the drawings and described herein
below 1n detail are preferred embodiments of the invention. It
1s to be understood, however, that the present disclosure 1s an
exemplification ol the principles of the invention and does not
limit the mvention to the 1llustrated embodiments.

Referring to the drawings, FIG. 1 shows phase persistent
agile signal source circuitry 100 according to an embodiment
of the present mvention. The phase persistent agile signal
source circuitry 100 includes an equivalent phase accumula-
tor 150 and a DDS 170. The phase persistent agile signal
source circuitry 100 may be configured to provide phase
tracking for any and all frequencies within the limitations of
the DDS process. This allows each frequency to maintain its
time continuous phase while the DDS 1s programmed to any
other arbitrary frequency. When a Irequency 1s repro-
grammed to a previous frequency, the phase 1s continuous, as
though 1t never lett the original frequency.

The phase persistent agile signal source circuitry 100 can
be configured as circuitry according to the desires of the user,
such as 1n the form of a field programmable gate array, a
digital signal processing microprocessor, a plurality of dis-
crete digital logic blocks, software, combinations thereof, etc.
The DDS 170 can be configured 1n the form of any desired
DDS circuitry. The DDS 170 has components that may
include a phase accumulator, phase-to-amplitude conversion
circuitry, and a digital-to-analog converter (DAC). The DDS
170 produces a desired frequency output that depends on a
reference clock frequency and a binary number programmed
into the frequency register that is referred to as the Frequency
Tuning Word (FITW) 132. The FTW 132 provides the main
input to the phase accumulator. I a look-up table 1s used for
the phase-to-amplitude circuitry, the phase accumulator com-

US 7,480,688 B2

3

putes a phase (angle) address for the look-up table. The look-
up table outputs the digital value of an amplitude correspond-
ing to that phase (angle) address.

The DAC converts the digital value of the amplitude to a
corresponding value of analog voltage or current. To generate
a fixed-frequency sine wave, for example, a constant value
(e.g., the phase increment determined by the FTW 132) 1s
added to the phase accumulator with each clock cycle. If the
phase increment 1s large, the phase accumulator steps quickly
through the look-up table and generates a high frequency
output wavetorm. If the phase increment 1s small, the phase
accumulator takes many more steps and generates a lower
frequency output waveform.

An equivalent phase accumulator may include a program-
mable register for programming the FTW 132. The equivalent
phase accumulator has a least significant bit (LSB) accumu-
lator 110 with addition (ADD) logic 112 and a register (REG)
114 for tracking the phase of the lowest frequency the DDS
170 1s capable of generating. An equivalent frequency LSB
tor a desired DDS update rate 122 1s provided as input to the
ADD logic 112. The current phase 124 of the LSB accumu-
lator 1s added to the equivalent frequency LSB for a desired
DDS update rate 122 1n the ADD logic 112 to generate the
current phase 124 of the LSB accumulator for the next DDS
update. The equivalent frequency LSB for the desired DDS
update rate M 122 1s equal to the LSB of the FTW 132 times
the DDS clock rate 160 divided by the DDS update rate. The
current phase 124 of the LSB accumulator 1s multiplied by the
FTW 132 to produce the coherent phase. The fractional por-
tion of the coherent phase 1s written to the phase register of the
DDS 170 along with the write of the FTW 132 to the fre-
quency register. The FTW 132 1s multiplied by the current
phase 124 of the LSB phase accumulator to produce the
coherent phase 140 that 1s based on the DDS clock rate, FTW,
DDS update rate to the DDS, equivalent LSB for the desired
DDS update rate, and current phase of the LSB accumulator.
The FTW 132, coherent phase 140, DDS clock 160 and DDS
update are provided to the DDS 170.

The FTW 132 1s multiplied by time in the phase accumu-
lator of the DDS 170 to produce the instantaneous phase of
the currently programmed frequency. Time 1s the product of
the period of the DDS clock 160 and the number of occur-
rences of that clock. This function 1s duplicated in the equiva-
lent phase accumulator circuitry 150 1n order to maintain
continuous phase control. The multiplication of the FTW 132
1s extracted 1nto a separate operation to allow one phase
accumulator the ability to track the phase of any frequency the
DDS 170 can generate. The LSB accumulator 110 may be
clocked at a division of the DDS clock 160 because 1t 1s not
necessary or practical to clock the LSB accumulator 110 at
the same rate as the DDS accumulator. The size of the LSB
accumulator 110 1s equal to the si1ze of the phase accumulator
of the DDS 170. The multiplication of the FTW 132 sent to
the DDS 170 and the instantaneous value of the current phase
of the LSB accumulator 110 utilize all the bits 1n these values
to maintain the precision required for continuous phase con-
trol. Some most significant bits (MSBs) of the FTW 132 can
be dropped oif if they are not utilized (always zero) to
decrease the size of the multiplier. The fractional portion of
the product can be loaded 1nto the phase accumulator of the
DDS 170. If the DDS 170 does not allow access to loading the
phase accumulator, the phase accumulator should be reset
and the fractional portion of the coherent phase should be
loaded into the phase ofiset register of the DDS 170. The
L.SBs of the fractional portion of the coherent phase can be
dropped to match the size of the phase offset register in the

DDS 170.

10

15

20

25

30

35

40

45

50

55

60

65

4

The following exemplary table compares the known DDS
phase for a 10 MHz signal to the phase calculated by the
coherent phase algorithm of the present invention for signal
switching between 10 MHz and 45 MHz in an Analog Device
ADO9838. The AD9858 contains a thirty-two bit phase accu-
mulator that 1s clocked at a one GHz rate. The known phase 1s
generated by accumulating the FTW 132 1n a thirty-two bat
register. The FITW 132 1s equal to the desired output ire-
quency times 2°* divided by 1e”. The phase word is defined in
this example to be the top fourteen bits of the accumulated
FTW. The phase 1n degrees can be found from the phase word
by multiplying the phase word by 360 divided by 2'7.

The calculated phase 1s generated by a coherent phase
algorithm according to an embodiment to the present mven-
tion. In this algorithm a thirty-two bit counter increments by
240 every 240 nanoseconds (ns). This counter 1s multiplied by
the thirty-two bit FTW 132 to find the coherent phase for the
current F'TW 132. This multiplication generates a sixty-four
bit result, labeled bits sixty-three down to zero. Bits thirty-one
down to eighteen are equal to the fourteen bit phase word. The
method accumulates only time, so i1t can find the coherent
phase for any frequency at a 240 ns interval by multiplying the
phase counter by the frequency. The 240 ns interval 1s dictated
by the speed of writing to all required DDS 170 registers and
the latency of the commanded update through the DDS 170.
A faster counter could accumulate the value of one every
nanosecond, which would allow the coherent phase to be
determined every nanosecond. By changing the speed of the
counter and/or 1ts accumulated value the coherent phase for
any interface speed and output latency of the DDS 170 can be

generated. This allows the method to be tailored to any DDS
device, not just the AD9838 DDS.

Known
Time(ns) DDS Phase for 10 MHz
Calculated Phase for 10 MHz
240 143.99 143.99
480 288 288
720 71.982 71.982
960 215.99 215.99
1200 359.9% 359.98%
1440 143.99 143.99
1680 288 288
1920 71.982 71.982
2160 215.99 215.99
2400 359.9% 359.98
2640 143.99 143.99
2880 288 288
3120 71.982 71.982
3360 215.99 215.99
3600 359.9% 359.98%
Calculated Phase for 45 MHz
3840 143.99 288
4080 288 215.99
4320 71.982 143.99
4560 215.99 71.982
4800 359.9% 359,98
5040 143.99 288
5280 288 215.99
5520 71.982 143.99
5760 215.99 71.982
6000 359.9% 359.9%
6240 143.99 288
6480 288 215.99
Calculated Phase for 10 MHz
6720 71.982 71.982
6920 215.99 215.99
7200 359.9% 359.98

US 7,480,688 B2

S
-continued
Known
Time(ns) DDS Phase for 10 MHz

7440 143.99 143.99
7680 288 288
7920 71.982 71.982
8160 215.99 215.99
8400 359,08 359.08
8640 143.99 143.99
&8O 288 288
9120 71.982 71.982
9360 215.99 215.99
9600 359,98 359.08
9840 143.99 143.99

A computer program product implementation of an
embodiment of the present invention embodies phase persis-
tent agile signal source instructions on a computer readable
medium that carry out the method of the present mvention.
Referring to FIG. 2, the phase persistent agile signal source
instructions, when executed by a processor, carry out steps
200 that can provide a DDS clock rate (step 210), provide a
DDS update rate a desired DDS update rate (step 220), pro-
vide an FTW for a desired output frequency (step 230), pro-
vide an equivalent LSB for a desired DDS update rate (step
240), determine a current phase of an LSB accumulator (step
250), determine a coherent phase for the provided FTW (step
260), provide the FTW, coherent phase, DDS clock rate, and
DDS update rate to the DDS (step 270), and generate a phase
coherent agile signal (step 280) based on the DDS clock rate,
FTW, DDS update rate to the DDS, equivalent LSB for the
desired DDS update rate, and current phase of the LSB accu-
mulator. The computer program product performs the func-
tions of the phase persistent agile signal source described
above.

Attached Appendix A shows an example of phase coher-
ency simulation code. Attached appendix B shows an
example of coherent phase algorithm code. Attached appen-

Input:

10

15

20

25

30

35

6

dix C shows an example of automatic test bench for phase
accumulator code. The codes shown 1n Appendices A, B, and
C are merely exemplary and can be configured in any desired
code according to the desires of the user.

In summary, a phase persistent agile signal source method,
apparatus, and/or computer program product according to an
embodiment of the present invention provides a direct digital
synthesizer (DDS) clock rate, provides a frequency tuning
word (FT'W) for a desired output frequency, provides a DDS
update for a desired DDS update rate, provides an equivalent
frequency least significant bit (LSB) for the desired DDS
update rate, provides a current phase of an LSB accumulator,
and generates a coherent phase of the desired output fre-
quency based on the DDS clock rate, FTW, DDS update rate
to the DDS, equivalent LSB for the desired DDS update rate,
and current phase of the LSB accumulator.

-

T'he providing an equivalent frequency step can obtain the
equivalent frequency LSB of the desired DDS update rate by
multiplying the LSB of the FTW, typically one, by the DDS
clock rate and dividing by the DDS update rate. The providing
a current phase step can add the current phase of the LSB
accumulator to the equivalent frequency LSB for the desired
DDS update. The generating a coherent phase step can gen-
crate the coherent phase by multiplying the FI'W by the
current phase of the LSB accumulator and utilizing a frac-
tional portion of the result. The fractional portion of the
coherent phase can be that portion of the product that 1s less
than 360 degrees with the LSBs truncated to fit the size of the
phase register 1 the DDS.

While the invention has been described with references to
its preferred embodiments, 1t will be understood by those
skilled 1n the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the true spirit and scope of the invention. In
addition, many modifications may be made to adapt a par-
ticular situation or material to the teaching of the invention
without departing from 1ts essential teachings.

APPENDIX A

PHASE COHERENCY SIMULATION

Frequency 1 in Hz
Frequency 2 in Hz

Output:

Column 1: Time 1n nanoseconds
Column 2: AD9858 phase value for frequency 1
Column 3: Time 240-3600ns (rows 1-15) Calculated phase for frequency 1
Time 3840-6480ns (rows 16-27) Calculated phase for frequency 2
Time 6720-9840ns (rows 28-41) Calculated phase for frequency 1
note: overflow 1s due to converting numbers to their corresponding 32 bit values which
models the 32 bit values used in hardware.
function [phase_ comparison]=phase_ coherency({frequencyl, frequency2)
result 1s an array of the counter value and the corresponding phase value for the

frequency

q=quantizer([32,0],"wrap’);
r=quantizer([64,0], " wrap’);
Frequency Tuning Word 1

FITW1=frequencyl1*2732/1e9;
forces F'TW to the 32 bit value it would have 1in hardware (drops fraction and keeps frequency

within allowable range)

FIWI1=num2bimn(q,FTW1);

FIWI1=bin2num(q,FTW1);

Frequency Tuning Word 2

forces FTW to the 32 bit value 1t would have 1in hardware (drops fraction and keeps frequency

within allowable range)
FITW2=num2bin(q,FTW2);

US 7,480,688 B2
7

APPENDIX A-continued

PHASE COHERENCY SIMULATION

FITW2=bin2num(q,FTW2);
9858 Actual phase
accum_ value=FTW1;
create an array of the 9858 phase accumulator values
the 9858 accumulates the F'TW at 1 GHz (every 1 ns)
the index of accum__value array is the time in 1ns steps
for 1=1:10000
accum_ value(i+1)=accum_ value(1)+FTW1;
end;
phase=num2bin(g,accum__value);
pull off the bits for the phase word (upper 14 bits)
phase=phase(:,1:14);
phase__word=bin2num(q,phase);
FPGA calculated coherent phase
phase__counter=240;
the phase counter accumulates 240 at 4.166 MHz (every 240ns)
the index of the phase_ counter 1s the time 1n 240ns steps
for j=10000/240
phase_ counter(j+1)=phase_ counter(j)+240;

end;
forces the phase counter to the 32 bit value it would have in hardware
phase_ counter=num2bin(qg,phase__counter);
phase counter=bin2num(qg,phase_counter);
calculate the coherent phase by multiplying the phase counter by the FTWs
changes to frequency 2 at 3840ns and back to frequency 1 at 6720ns.
for m=1:10000/240
1 m<16
coherent_ phase(m)=phase_ counter(m)*FTW1;
end;
i m>=16
coherent_ phase(m)=phase_ counter(m)*FTW2;
1f m>=2%
coherent__phase(m)=phase__counter(m)*FTW1;
end;
end:;
the coherent phase equals the first 14 bits of the lower 32 bit word from
the 64 bit product of phase__counter x F'TW
this corresponds to bits 31 downto 18 in vhdl
(matlab index 1 to 64 versus vhdl index 63 downto 0)
coherent_ phase=num2bin(r,coherent_phase);
coherent_ phase=coherent_phase(:,33;46);

coherent_ phase=bin2num(q,coherent_phase);
for m=1:10000/240

compare values of FPGA calculated coherent phase and 9858 actual phase
every 240ns
the index of the phase_ comparison array 1s time 1n 240ns steps
for k=1:10000/240
time
phase_ comparison(k,1)=k*240;
value of 9858 phase word converted into degrees at increments of 240ns

phase_ comparison(k,2)=phase_ word(k*word)*360/2714;
coherent phase converted into degrees calculated by FPGA

phase__comparison(k,3)=coherent_ phase(k)*360/2714;

end:;

APPENDIX B

COHERENT PHASE ALGORITHM

The IEEE standard 1164 package, declares std__logic, rising_edge(), etc. library IEEE;
use IEEE.std__logic_ 1164.all;

use IEEE.std_ logic arith.all;

use IEEE.std_ logic_ unsigned.all;
library SYNOPSYS;
use SYNOPSYS.attributes.all;
entity phase acc is
port (
current_ freq: in STD_ LOGIC__VECTOR (31 downto 0);
current__phase: in STD__ LOGIC__ VECTOR (31 downto 0);
reset: iIn STD_ LOGIC;
clk 62:1m STD LOGIC;
timeO: 1n std__logic;
sweep: 1 std__logic;
coherent_ phase: out STD_ LOGIC__VECTOR (13 downto O)

US 7,480,688 B2

9

APPENDIX B-continued
COHERENT PHASE ALGORITHM

);
end phase_ acc;
architecture phase_ acc_arch of phase acc is
SIGNAL freq_ fraction: STD_LOGIC_VECTOR(12 DOWNTO 0);
SIGNAL div_by_ 4: STD_LOGIC__VECTOR(1 DOWNTO 0);
SIGNAL acc_cnt: STD__LOGIC__ VECTOR(13 DOWNTO 0);
SIGNAL sync__acc_ cnt: STD__LOGIC__ VECTOR(13 DOWNTO 0);
SIGNAL mult_out: STD__LOGIC__VECTOR(35 DOWNTO 0);
SIGNAL adder_ out: STD_ LOGIC_VECTOR(13 DOWNTO 0);
SIGNAL latch_ sweep: STD__ LOGIC;
SIGNAL div__by_ 4tc: STD__ LOGIC;
SIGNAL ce_ 15m: STD_ LOGIC;
SIGNAL no_ fraction: STD_ LOGIC;
Xi1linx CoreGen 14 bit unsigned adder.
component add__14u
port (
A: INstd_logic. VECTOR(13 downto 0);
B: IN std__logic VECTOR(12 downto 0);
Q: OUT std__logic. VECTOR(26 downto 0));
end component;
Xilinx CoreGen 14 bit by 13 bit unsigned multiplier.
component multil4x13u
port (
a: IN std__logic_ VECTOR(13 downto 0);
b: IN std__logic VECTOR(12 downto 0);
q: OUT std__logic. VECTOR(26 downto 0));
end component;
begin
Divide 62.5MHz clock by 4 to generate 15.625MHz clock enable.
div4d__counter:process (reset, clk_ 62)
begin
ifclk_ 62="1"and clk_ 62'event then
if reset="1" then
div_by_ 4 <=*007;
else
div_by 4 <=div_by_ 4+ 1;
end 1f;
end 1f;
end process;
Terminal count for update counter.
div__by_ 4tc <= “1’ when (div__by_ 4(1 downto 0) = “117) else “0’;
Deglitch and sync terminal count from update counter.
update_ geglitch:process (clk_ 62)
begin
if clk_ 62="1"and clk_ 62'event then
ce__15m <=div__by_ 4ic;
end 1if;
end process;
Accumulator / Counter to keep track of phase for a 953.6743164 Hz signal.
update__new__data:process (reset, clk 62)
begin
ifclk 62="1"and clk_ 62'event then
if reset="1" then
acc_cnt(13 downto 0) <= “00000000000000” then
elseif ce_ 15m="1"then
acc_ cnt(13 downto 0) <= acc__cnt(13 downto 0) + 1;
end 1f;
end 1if;
end process;
Sample phase accumulator, and sweep mput at the start of update cycle.

New data from this module should be present after 6 clocks from the update strobe.

update_ new__ data:process (reset, clk 62)
begin
if clk_ 62="1"and clk_ 62'event then
if reset="1"then
latch__sweep <= “0’;
sync__acc_ cnt(13 downto 0) <= “000000000000007;
elseif timeO="1" then
latch__sweep <= sweep;
sync_acc_cnt(13 downto 0) <= acc__cnt(13 downto 0);
end 1f;
end 1f;
end process;
Dedicated Resource 18 x 18 Multiplier block for frequency to phase conversion.
Coregen 14 x 13 unsigned multiplier, latency = 3 clocks.
freq_ to_ phase : multildx13u
port map (

10

US 7,480,688 B2

11

APPENDIX B-continued

COHERENT PHASE ALGORITHM

clk=> clk 62,

a =>sync_ acc_ cnt(13 downto 0),
b => freq_ fraction(12 downto 0),
q => mult_ out(26 downto 0));

Generate fractional part of frequency for phase correction of current frequency.

freq_ fraction(12 downto 0) <=0 & current_ freq(11 downto 0);
Coregen 14 x 14 unsigned adder for phase correction, latency = 1 clock.
phase correct__adder : add_ 14u
port map (
A =>mult_ out(25 downto 12),
B => current__phase(13 downto 0),
C => adder_ out(13 downto 0)),
CLK =>clk_ 62;
Multiplexer to synchronize phase coherent output.
In sweep mode do not alter the phase data.
sync_ phase:process (clk_ 62, reset, latch__sweep)
begin
if clk_ 62'event and clk_ 62="1" then
if reset="1"then
coherent_ phase(13 downto 0) <= “00000000000000”;

12

clse
case latch__sweep 1s
when ‘0’ => coherent_ phase(13 downto 0) <= adder_ out(13 downto 0);
when ‘1’ => coherent_ phase(13 downto 0) <= current_ phase(13 downto 0);
when others => NULL;
end case;
end 1f;
end 1f;

end process;
end phase_acc_ arch;

APPENDIX C

AUTOMATIC TEST BENCH FOR PHASE ACCUMULATOR

library 1eee,synopsys;
use 1eee.std__logic_ unsigned.all;

use ieee.std_ logic_ arith.all;

use leee.std__logic_ 1164.all;
use synopsys.attributes.all;
entity phase__acc_ th 1s
end pahse_acc_ tb;
architecture TB__ ARCHITECTURE of phase__acc__tb is
Component declaration of the tested unit
component phase__acc
port(
current_ freq : in std_ logic_ vector(31 downto 0);
current_ phase : 1mn std__logic_ vector(31 downto 0);
reset : 1n std__logic;
clk_ 62 :1n std_ logic;
timeO : in std__logic;
sweep : 1n std__logic;
coherent_ phase : out std_ logic_ vector(13 downto 0));
end component;
Stimulus signals - signals mapped to the input and inout ports of
tested entity
signal current_ freq : std_ logic_ vector(31 downto 0);
signal current_ phase : std_ logic_ vector(31 downto O);
signal current_ freq tb :std logic vector(31 downto 0);
signal current_ phase_tb :std_ logic vector(31 downto 0);
signal reset : std__logic;
signal clk_ 62 : std_ logic;
signal timeO : std__logic;
signal timeOstamp : std__logic;
signal sweep : std__logic;
Observed signals - signals mapped to the output ports of tested entity
signal coherent_ phase : std_ logic_ vector(13 downto 0);
Add your code here . . .
shared variable end_ sim : boolean := false;
constant clk_ period: time := 16 ns;
begin
Unit under test port map
UUT : phase_acc

35

40

45

50

55

60

65

APPENDIX C-continued

AUTOMATIC TEST BENCH FOR PHASE ACCUMULATOR

port map (
current_ freq => current_ freq,
current_ phase => current_ phase,
reset => reset,
clk_ 62 =>clk 62,
time0 => time0,
sweep => sweep,
coherent__phase => coherent__phase,
);

Add your stimulus here . . .

Generate 62.5 MHz clock every 16nsec.
Generate Time) Stamp every 240nsec, 16nsec wide.
clock__gen: process

begin

if end__sim=false then
clk 62 «= ‘0’;
timeOstamp <= ‘0’;
walt for clk_ period/2;
clk 62 «<="°1";--1;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 <="°1";-=-2;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 «<="°1"; —-3;
walt for clk__period/2;
clk 62 <= °0’;
walt for clk_ period/2;
clk 62 «<="°1"; —-4;
walt for clk_ period/2;
clk 62 <= "°0’;
walt for clk_ period/2;
clk 62 <= "°1"; --35;
walt for clk_ period/2;
clk_ 62 <= °0’;
walt for clk_ period/2;

US 7,480,688 B2

13

APPENDIX C-continued

AUTOMATIC TEST BENCH FOR PHASE ACCUMULATOR

clk 62 <= "°1"; —-6;
walt for clk_ period/2;
clk. 62 <= *0’;
walt for clk_ period/2;
clk 62 <="°1"; --7;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 <= "°1"; —-8;
walt for clk_ period/2;
clk. 62 <= *0’;
walt for clk_ period/2;
clk 62 «=°1"; --9;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 «<="°1"; —-10;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 «<="°1"; —-11;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 «="°1";--12;
walt for clk__period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk 62 «="°1";--13;
walt for clk_ period/2;
clk 62 <= *0’;
walt for clk_ period/2;
clk. 62 «="°1";--14;
walt for clk_ period/2;
clk. 62 <= *0’;
walt for clk_ period/2;
clk 62 «="°1";--15;
walt for clk_ period/2;
clse
wait;
end if;
end process;
Generate Time 0 Stamp which occurs every 240ns, align with Update
strobe.
StimeO__strobe:process (TimeOstamp, clk_ 62)
begin
if clk_ 62="1"and clk_ 62'event then
if timeO="1" then
current_ freq(31 downto 0) <= current_ freq_ th(31
downto 0);
current_ phase(31 downto 0) <= current_ phase tb(31
downto 0);
end 1f;
end 1f;
end process;
DDS Frequency = ((FI'W x SYSCLK) / 2 to the nth)
FTW = current__freq.
SYSCLK = 1GHz.
n =32 (2 to the nth = 4294967296).
FTW1 =125 MHz = 0x20000000.
FTW?2 = 80.00040054 MHz = 0x147AEROO.
stim: process
begin
Test Reset.
current_ freq_ tb(31 downto 0) <= X*00000000"’;
current_ phase_ th(31 downto 0) <= X*00000000’;
reset <= “17;
sweep <= ‘07;
walt for 480 ns;
reset <= “0’;
wait for 480 ns;
Frequency 1.
current_ freq_ tb(31 downto 0) <= X*20000000’;
wait for 4800 ns;
Frequency 2.
current_freq tb(31 downto 0) <= X*147AER00;
wait for 1200000 ns;

10

15

20

25

30

35

40

45

50

55

60

65

14

APPENDIX C-continued

AUTOMAITIC TEST BENCH FOR PHASE ACCUMULATOR

Phase Offset.
current_ phase th(31 downto 0) <= X*“000001000”;
wait for 4800 ns;
end__sim := true;
wait;
end process;
end TB_ ARCHITECTURE;
configuration TESTBENCH__FOR_ phase_ acc of phase_ acc tbis
for TB__ ARCHITECTURE
for UUT : phase__acc
use entity work.phase__acc(phase__acc__arch);
end for;
end for;
end TESTBENCH__FOR_ phase_ acc;
configuration TIMING__FOR-phase of phase__acc_ tb 1s
for TB_ ARCHITECTURE
for UUT : phase__acc
The user should replace :
ENTITY_NAME with an entity name from a backnoted VHDL file,
ARCH NAME with an architecture name from a backnoted VHDL file,

and uncomment the line below
use entity work. ENTITY_ NAME (ARCH_ NAME);

end for;
end for;
end TIMING__FOR__phase_ acc;

We claim:

1. A phase persistent agile signal source method compris-
ng:

providing a direct digital synthesizer (DDS) clock rate;

providing a frequency tuning word (FTW) for a desired
output frequency;

providing a DDS update for a desired DDS update rate;

providing an equvalent frequency least significant bit
(LSB) for the desired DDS update rate;

providing a current phase of an LSB accumulator; and

generating a coherent phase of the desired output ire-
quency based on at least the DDS clock rate, FTW, DDS
update rate to the DDS, equivalent LSB for the desired
DDS update rate, and current phase of the LSB accumu-
lator to maintain a time continuous phase of an output
signal with the desired output frequency when the DDS
1s programmed to another output frequency and then
back to the desired output frequency.

2. The method according to claim 1, wherein said provid-
ing an equivalent frequency step further comprises obtaining
the equivalent frequency LSB of the desired DDS update rate
by multiplying the LSB of the FTW by the DDS clock rate
and dividing by the DDS update rate.

3. The method according to claim 1, wherein said provid-
ing a current phase step further comprises adding the current
phase of the LSB accumulator to the equivalent frequency

L.SB for the desired DDS update.

4. The method according to claim 1, wherein said generat-
ing a coherent phase step further comprises generating the
coherent phase by multiplying the FTW by the current phase
of the LSB accumulator and utilizing the fractional portion of
the result.

5. The method according to claim 4, wherein said fractional
portion of the coherent phase 1s that portion of the coherent
phase that 1s a fraction of a full cycle where a tull cycle 1s
comprised of 360 degrees.

6. A phase persistent agile signal source apparatus com-
prising:

US 7,480,688 B2

15

an equivalent accumulator; and

a direct digital synthesizer (DDS) communicatively con-
nected to the equivalent phase accumulator and having a
clock rate,

wherein said phase persistent agile signal source apparatus
1s configured to operate at a sub-multiple of the clock
rate to phase track an output frequency of the DDS to
maintain a time continuous phase of an output signal
having an output frequency of the DDS when the DDS 1s
programmed to another output frequency and then back
to the original frequency, and

wherein said equivalent accumulator further comprises:

a least significant bit (LSB) accumulator a programmable
register to program a frequency tuning word; and

provides an equivalent frequency least significant bit;
provides a DDS update rate; and
generates a coherent phase of the LSB accumulator.

7. The apparatus according to claim 6, wherein said LSB

accumulator comprises: addition logic; and a register to store
the current phase at the occurrence of a DDS update for a
desired DDS update rate.

8. The apparatus according to claim 7, wherein said addi-

tion logic receives an equivalent frequency LSB for the
desired DDS update rate.

9. The apparatus according to claim 6, wherein said appa-
ratus 1s configured to obtain an equivalent frequency least
significant bit for a desired DDS update rate by multiplying a
least significant bit of the frequency tuning word by a direct
digital synthesizer clock rate and dividing by the direct digital
synthesizer update rate.

10. The apparatus according to claim 6, wherein said appa-
ratus 1s configured to add a current phase of the least signifi-
cant bit accumulator to the equivalent frequency least signifi-
cant bit for a desired DDS update.

11. The apparatus according to claim 10, wherein the frac-
tional portion of the coherent phase 1s a portion of the coher-
ent phase that 1s a fraction of a full cycle where a full cycle 1s
comprised of 360 degrees.

12. The apparatus according to claim 6, wherein said appa-
ratus 1s configured to generate a coherent phase by multiply-
ing the frequency tuning word by a current phase of the LSB
accumulator and utilizing a fractional portion of the result.

5

10

15

20

25

30

35

40

16

13. A computer program product including a computer
readable medium with phase persistent agile signal source
instructions embodied thereon for carrying out steps compris-
ng:

providing a direct digital synthesizer (DDS) clock rate;

providing a frequency tuning word (FTW) for a desired

output frequency;

providing a DDS update for a desired DDS update rate;

providing an equivalent frequency least significant bit

(LSB) for the desired DDS update rate;

providing a current phase of an LSB accumulator; and

generating a coherent phase of the desired output fre-

quency based on the DDS clock rate, FIT'W, DDS update
rate to the DDS, equivalent LSB for the desired DDS
updaterate, and current phase of the LSB accumulator to
maintain a time continuous phase of an output signal
with the desired output frequency when the DDS 1s
programmed to another output frequency and then back
to the desired output frequency.

14. The computer program product according to claim 13,
wherein said providing an equivalent frequency step further
comprises obtaining the equivalent frequency least signifi-
cant bit for the desired DDS update rate by multiplying the
least significant bit of the FITW by the DDS clock rate and
dividing by the DDS update rate.

15. The computer program product according to claim 13,
wherein said providing a current phase step further comprises
adding the current phase of the LSB accumulator to the
equivalent frequency least significant bit for a desired DDS
result.

16. The computer program product according to claim 13,
wherein said generating a coherent phase step further com-
prises generating the coherent phase by multiplying the F'T'W
by the current phase of the LSB accumulator and utilizing a
fractional portion of the result.

17. The computer program product according to claim 16,
wherein the fractional portion of the coherent phase 1s a
portion of the coherent phase that 1s a fraction of a full cycle
where a full cycle 1s comprised of 360 degrees.

18. The computer program product according to claim 13,
further comprising coherent phase algorithm code.

19. The computer program product according to claim 13,
further comprising phase coherency simulation code and
automatic test bench for phase accumulator code.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

