12 United States Patent

US007478371B1

(10) Patent No.: US 7.478,371 B1

Gove 45) Date of Patent: Jan. 13, 2009
(54) METHOD FOR TRACE COLLECTION 7,140,008 B2* 11/2006 Chilimbi et al. 717/158
7,143,396 B2* 11/2006 Suresh 717/130
(75) Inventor: Darryl J. GOV@,, Sunnyvalej CA (US) 2005/0071819 A1l1* 3/2005 C&ly&]fl&k()ti etal. 717/128
. .
(73) Assignee: Sun Microsystems, Inc., Santa Clara, cited by examiner
CA (US) Primary Lkxaminer— luan Q Dam
Assistant Examiner—Thuy Dao
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Martine Penilla &
patent 1s extended or adjusted under 35 Gencarella, LLP
U.S.C. 154(b) by 714 days.
(37) ABSTRACT
(21) Appl. No.: 10/690,056
_ A method 1s provided for obtaining data to be used 1n evalu-
(22) Filed: Oct. 20, 2003 ating performance ol a computer processor. More specifi-
cally, the method provides for efficiently obtaining traces
(1) Int. Cl. from an applicati fi j imulati
pplication program for use in a simulation of a
GO6F 9/44 (2006.01) computer processor. The method uses both an original code
(52) U-S- Cl- 717/128; 717/1 30; 7 1 7/15 1 ; deﬁning the application program and an instrumented Version
7177158 of the original code (“instrumented code”). The method
(58) Field of .Cla.ssiﬁcation Search - 717/130 includes appor‘[ionjng 1 total time of execution of the app]i-
See application file for complete search history. cation program between the original code and the instru-
(56) References Cited mented code. Transition of execution between the original

and 1nstrumented codes 1s conducted through either modifi-
cation of function calls or through consultation with a map-
ping ol instruction address correspondences between the

U.S. PATENT DOCUMENTS

6026236 A * 2/2000 Fortin et al. w..oovveve..... 717/127 .S)
6,804,814 B1* 10/2004 Ayersetal. 117/135 original and mnstrumented codes.

6,898,785 B2* 5/2005 Ramasamy et al. 717/129

7.137.105 B2* 11/2006 Madsen et al. ..oo.o...... 717/128 20 Claims, 7 Drawing Sheets

(Start)
3011 |

> Execute from Original Code

303 _k >

Trigger Switch from Original Code to Instrumented Code

305 “K
Y

Switch Execution to Instrumented Code

307 1
4

Execute from Instrumented Code

300 .
Y

Generate Traces

3111
v

Trigger Switch from Instrumented Code to Original Code

3131

Switch Execution to Original Code

!)_315

NO End of Program
Reached?

Yes
h J
(Stop)

U.S. Patent Jan. 13, 2009 Sheet 1 of 7 US 7,478,371 B1

Driver Emulator Traces
Fig. 1A
Feedback
105 107 109
. Performance
Traces Simulator Data

Fig. 1B

U.S. Patent Jan. 13, 2009 Sheet 2 of 7 US 7,478,371 B1

Original Code Instrumented Code

Instruction1 = p--=-cmcccmcmmmceeee Instruction 1
Instruction2 = p------mmmcmmmmmenao Instruction 2

Instruction 3 .- .
— T Teell Instrumentation
Instruction 4 pel 0 TSl

Instruction 5 S N Instruction 3
s Instruction 4

. . Instrumentation

Instruction 5

Instruction N }

- Irist?uc"cion N

Fig. 2

US 7,478,371 Bl

Sheet 3 of 7

Jan. 13, 2009

U.S. Patent

(doig)

SO A

¢ ‘b4

¢PeYdesY

welbold Jo pu3

apo) [eulbuO 0} UuoiNd8X3 YoIMS

Lete

apoN jeulbup 0} 8poH peluswnisu| wolj youms Jabbu |

ON

mpml\\

A

, Ui

Sodkl] ajelaust)

d L so0e

9pO~) pPBIUBWINIISU| WOL) 8]NJ9XT

I L s08

ap0) PAJUBWINISU| 0} UCIINISXT YIIMS

I L soe

BP0) pajusWNIISU] 01 9p0) [eulbuO wol) youms 1abbu |

g J(0t

apo) jeuIibu() woij 8)ndsxy »

| H 10E
(s)

U.S. Patent Jan. 13, 2009 Sheet 4 of 7 US 7,478,371 B1

From Operation 303

— A 4

Reach Next Function Call in Original Code

403
.

Specify Return Address Based E)n Ad.d.ress of Corresponding
Function Call in Instrumented Code

| s

Execute Function Using Original Code |

I J

Return from Function to Instrumented Code Using Specified l

Return Address

\ 4
To Operation 307

Fig. 4

U.S. Patent Jan. 13, 2009 Sheet 5 of 7 US 7,478,371 B1

From Operation 311

! f 501

Reach Next Function Call in Instrumented Code

!)" 503

Specify Return Address Based on Address of Corresponding
Function Call in Original Code

)" 505

Execute Function Using Instrumented Code

!)"‘ 507

Return from Function to Original Code Using Specified Return—|

Address

v
To Operation 301

Fig. 5

U.S. Patent Jan. 13, 2009 Sheet 6 of 7 US 7.478.371 B1

From Operation 303

j‘ 601

' Consult Instruction Address Map to Identify Address of Instruction
in Instrumented Code Corresponding to Subsequent Instruction in
Original Code

f 603

Complete Execution of Current Instruction in Original Code

l f 605
Transfer Control to Instruction in Instrumented Code |
Corresponding to Subsequent Instruction in Original Code

To Operation 307

Fig. 6

U.S. Patent Jan. 13, 2009 Sheet 7 of 7 US 7,478,371 B1

From Operation 311

701)‘ 703

Execute Subsequent
> Instruction from
Instrumented Code

Subsequent Instruction Yes
Directed to Instrumentation?

b __J7

Consult Instruction Address Map to ldentify Address of Instruction
in Original Code Corresponding to Subsequent Instruction in
Instrumented Code

_ I S B

| Complete Execution of Current Instruction in Instrumented Code

— 709
- v @

Transfer Control to Instruction in Original Code Corresponding to
Subsequent Instruction in Instrumented Code

To Operation 301

Fig. 7

US 7,478,371 Bl

1
METHOD FOR TRACE COLLECTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer pro-
cessor design. More specifically, the present invention relates
to evaluation of computer processor performance.

2. Description of the Related Art

When designing a computer processor (“processor’”), the
processor performance 1s olten evaluated by observing
behavior of the processor during execution of one or more
benchmark applications. Typically, the processor being
designed has not yet been manufactured; therefore, a simula-
tion of the processor 1s used to execute the benchmark appli-
cations. Input for the simulation of the processor 1s repre-
sented as a set of instructions to be performed by the
processor. Observation of the processor behavior during
simulation 1s useful for identifying aspects of the processor
design that can be improved. Since processors are generally
expected to execute a broad spectrum of applications, it 1s
desirable to establish a set of input instructions for simulation
of the processor that 1s representative of a similarly broad
spectrum of applications.

In view of the foregoing, a need exists for a method for
establishing a set of input instructions to be used 1n stmulation
ol a processor. It 1s desirable that the method be sufficiently
elficient to allow establishment of a set of instructions that 1s
representative of a broad spectrum of applications.

SUMMARY OF THE INVENTION

Broadly speaking, an invention 1s disclosed for a method
for obtaining data to be used 1n evaluating performance of a
computer processor. More specifically, the present invention
provides a method for efficiently obtaining traces from an
application program (“program’) for use 1n a simulation of a
computer processor. The traces represent a record of events
associated with execution of portions of the program. The
traces are suitable for use in a simulation of the computer
processor under evaluation. Performance results obtained
from the simulation can be used to optimize a design of the
computer processor.

The method of the present invention uses both an original
code defiming the program and an imnstrumented version of the
original code (“instrumented code”). The method includes
apportioning a total time of execution of the program between
the original code and the mstrumented code. The apportion-
ment of the total time of execution between the original code
and instrumented code 1s defined to balance an acquisition of
traces from the instrumented code with an acceptable total
time of execution. Furthermore, apportionment of execution
time between the original code and the istrumented code 1s
defined such that the each of the original code and the instru-
mented code 1s executed 1n an alternating manner, thus allow-
ing traces to be obtained from various portions of the pro-
gram. In one embodiment, transition of execution between
the original and instrumented codes 1s conducted through
modification of function calls. In another embodiment, tran-
sition of execution between the original and instrumented
codes 1s conducted using a mapping of instruction address
correspondences between the original and instrumented
codes.

In one embodiment, a method for obtaining traces 1s dis-
closed. The method includes executing an original set of
instructions. Execution 1s then switched from the original set
of mstructions to an instrumented version of the original set of

10

15

20

25

30

35

40

45

50

55

60

65

2

instructions. The method turther includes generating traces
through execution of one or more instrumentation instruc-
tions contained within the instrumented version of the origi-
nal set of instructions.

In another embodiment, another method for obtaining
traces 1s disclosed. The method includes executing an original
code. The method also includes an operation for switching
execution from the original code to an instrumented code. The
instrumented code 1s then executed. In conjunction with
executing the istrumented code, the method further includes
generating traces. An operation 1s also provided for switching
execution from the istrumented code back to the original
code.

In another embodiment, a computer readable media con-
taining program instructions for obtaining traces 1s disclosed.
The computer readable media includes program instructions
for executing an original code. Program instructions are also
provided for switching execution from the original code to an
istrumented code and executing the instrumented code. The
computer readable media further includes program instruc-
tions for generating traces in conjunction with executing the
instrumented code. Program instructions are also provided
for switching execution from the instrumented code back to
the original code.

Other aspects of the imnvention will become more apparent
from the following detailed description, taken in conjunction
with the accompanying drawings, illustrating by way of
example the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken 1n conjunction with the accompanying drawings in

which:

FIG. 1A 1s an illustration showing a process used to obtain
traces for a program;

FIG. 1B 1s an 1llustration showing a process used to inform
processor design decisions;

FIG. 2 1s an illustration showing a relationship between an
original code and an mnstrumented version of the original
code, 1 accordance with one embodiment of the present
invention;

FIG. 3 1s anillustration showing a flowchart of amethod for
obtaining traces from a program, in accordance with one
embodiment of the present invention;

FIG. 4 1s anillustration showing a flowchart for amethod of
using a function call to implement the switch of execution
from the original code to the instrumented code as required by
operation 305 of FIG. 3, in accordance with one embodiment
of the present invention;

FIG. S1s anillustration showing a flowchart for amethod of
using a function call to implement the switch of execution
from the instrumented code to the original code as required by
operation 313 of FIG. 3, in accordance with one embodiment
of the present invention;

FIG. 6 1s anillustration showing a flowchart for amethod of
using an address map to implement the switch of execution
from the original code to the instrumented code as required by
operation 305 of FIG. 3, 1n accordance with one embodiment
of the present invention; and

FIG. 7 1s anillustration showing a flowchart for a method of
using an address map to implement the switch of execution
from the instrumented code to the original code as required by
operation 313 of FIG. 3, in accordance with one embodiment
of the present invention.

US 7,478,371 Bl

3
DETAILED DESCRIPTION

The present invention provides a method for obtaining data
to be used 1n evaluating performance of a computer processor.
More specifically, the present invention provides a method for
cificiently obtaining traces from an application program
(“program”) for use 1n a simulation of a computer processor.
The traces represent a record of events associated with execu-
tion of portions of the program. The traces are suitable for use
in a simulation of the computer processor under evaluation.
Performance results obtained from the simulation can be used
to optimize a design of the computer processor.

The method of the present invention uses both an original
code defining the program and an instrumented version of the
original code (“instrumented code”). The method includes
apportioning a total time of execution of the program between
the original code and the mstrumented code. The apportion-
ment of the total time of execution between the original code
and 1nstrumented code 1s defined to balance an acquisition of
traces Ifrom the instrumented code with an acceptable total
time of execution. Furthermore, apportionment of execution
time between the original code and the istrumented code 1s
defined such that the each of the original code and the instru-
mented code 1s executed 1n an alternating manner, thus allow-
ing traces to be obtained from various portions of the pro-
gram. In one embodiment, transition of execution between
the original and instrumented codes 1s conducted through
modification of function calls. In another embodiment, tran-
sition of execution between the oniginal and nstrumented
codes 1s conducted using a mapping of instruction address
correspondences between the original and instrumented
codes.

In the following description, numerous specific details are
set forth 1n order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
some or all of these specific details. In other 1nstances, well
known process operations have not been described 1n detail in
order not to unnecessarily obscure the present invention.

It should be appreciated that the present invention can be
implemented 1n numerous ways, including as a process, an
apparatus, a system, a device, or a method. Several exemplary
embodiments of the invention will now be described 1n detail
with reference to the accompanying drawings.

When designing a computer processor (“processor’”), the
processor performance 1s analyzed by executing a wide range
of programs (e.g., real applications, benchmark applications,
etc. ...) ona virtual simulation of the processor. Examples of
data obtained from the virtual simulation of the processor
include a number of cycles required per instruction and a rate
at which instructions are completed. Additional examples of
data obtained from the virtual simulation of the processor
include information regarding locations where instruction
processing stalls occur within the processor, frequencies at
which stalls occur, and a significance of particular stalls. The
data obtained from the virtual simulation of the processor 1s
used to provide feedback for optimizing the processor design.

The virtual stmulation of the processor 1s performed using,
traces obtained from a program. Each trace represents a
record of events associated with processing one or more
instructions of the program. The record of events constituting
a trace can include a variety of information such as an mstruc-
tion address being performed, an 1nstruction type being per-
formed, and data mmvolved 1in performing the instruction. It
should be appreciated by those skilled in the art that traces can
include many other types of information not specifically cited
in the present exemplary discussion. Additionally, each trace

5

10

15

20

25

30

35

40

45

50

55

60

65

4

can represent a variable sized portion of a program. For
example, a trace can represent a range of instructions 1n a
program extending from a single instruction to all mstruc-
tions. Once obtained, the traces are run through a simulator to
provide a virtual simulation of the processor activity.

FIG. 1A 1s an illustration showing a process used to obtain
traces for a program. A driver 101 represents a computing
system (1.€., processor and associated devices) that 1s used to
direct an emulation of the program. The driver 101 commu-
nicates mstructions and data associated with the program to
an emulator 103. The emulator 103 represents a virtual com-
puting system capable of generating traces 105 of the pro-
gram. The emulator 103 emulates each communicated
istruction that 1s received. In one embodiment, instrumen-
tation 1nstructions embedded within a set of instructions
defining the program direct the emulator to generate traces
105. The emulator 103 effectively acts as a processor; how-
ever, 1n various embodiments, the emulator 103 will execute
the program at a rate that 1s hundreds of thousands times
slower than an actual processor. Therefore, time requirements
associated with the process of obtaining a trace via the emu-
lator 103 may not scale to time requirements of the driver 101
(1.e., actual processor running at normal speed). Additionally,
when multiple processors are interfaced to execute a pro-
gram, time requirements associated with the emulator 103
may cause all of the multiple processors to be slowed down.

The driver 101 can be scaled to operate at a slower rate that
1s more compatible with execution of the program by the
emulator 103. It 1s possible, however, for the characteristics of
driver 101 to be a function of the scale that 1s applied to the
driver 101. Thus, there 1s a potential that the driver 101 will
operate differently when scaled down than when allowed to
operate at a normal speed. For example, when the driver 101
1s scaled down 1n speed to accommodate the emulator 103,
timeout requirements and associated etlects that would be
manifested at normal operating speed of the driver 101 may
be artificially biased by the scaled down speed of the driver
101. Furthermore, a bias introduced into the characteristics of
the driver 101 can propagate forward through the emulator
103 to the traces 105. Therefore, traces 105 obtained from the
emulator 103 that 1s driven by the scaled down driver 101 may
not be representative of execution of the program 1n real time.
Thus, 1t1s beneficial to have a method for obtaining traces that
does not require the driver 101 to be scaled to accommodate
a slower speed at which the emulator 103 can execute the
program. As discussed later, the present mvention provides
such a method.

FIG. 1B 1s an 1llustration showing a process used to inform
processor design decisions. The traces 103 of the program as
obtained from the emulator 103 are communicated to a simu-
lator 107. The simulator 107 1s a virtual representation of an
actual processor to be analyzed. The simulator 107 1s capable
of recerving the traces 105 and using the information contain
within the traces 105 to perform a true simulation of the
associated processor activity. Performance data 109 pertain-
ing to the associated processor activity 1s provided by the
simulator 107. The performance data 109 can be used as
teedback for optimizing a design of the processor. In one
embodiment, the processor design 1s virtual optimized 1n the
simulator 107 through numerous 1terations using the perfor-
mance data 109.

The simulator 107 operates at a much slower (tens of
thousands to hundreds of thousands times slower) speed than
a physical processor. Therefore, simulation of entire pro-
grams 1s oiten not feasible. For example, consider a program
that normally executes to completion in 60 minutes on a
physical processor. If the simulator 107 1s capable of operat-

US 7,478,371 Bl

S

ing at Yioooo the speed of the physical processor, a trace of the
entire program will be executed by the processor 1n 600000
minutes or about 417 days. Thus, performing a simulation
using a trace representing every instruction in a program
incurs a high cost. As an alternative to developing a trace for
an entire program, a number of smaller traces can be devel-
oped, with each smaller trace representing a portion of the
entire program. In one embodiment, the smaller traces are
developed to provide a representative sample of the entire
program. The smaller traces are then executed by the simu-
lator 107 to obtain processor performance data that 1s repre-
sentative of the program as a whole. In one embodiment, the
smaller traces are generated by a number of instrumentation
instructions inserted in the set of instructions defining the
program.

FIG. 2 1s an 1llustration showing a relationship between an
original code and an instrumented version of the original
code, 1n accordance with one embodiment of the present
invention. The original code includes a number of struc-
tions extending from instruction 1 to mstruction N, where N
represents the total number of istructions. The instrumented
version of the original code (“instrumented code™) includes
one or more mstrumentation mstructions 1n addition to each
of instructions 1 to N contained 1n the original code. The
instrumentation nstructions serve to generate traces repre-
senting records of events associated with processing one or
more of instructions 1 to N. An arrangement of instrumenta-
tion mstructions within the mnstrumented code can be defined
as necessary to provide required trace generation. Instrumen-
tation of a program for generating traces can cause the pro-
gram to execute 3 to 10 times slower than normal, depending
on the number and 1nvasiveness of instrumentation instruc-
tions present. Thus, the amount of trace generation needs to
be balanced against the amount of time required to generate
the traces. The present mvention provides a method for effi-
ciently obtaining traces that are representative of an entire
program within an acceptable amount of time.

The method of the present invention obtains traces for a
program through utilization of both the original code and the
instrumented code of the program. The method includes
executing the program by alternating between the original
code and the instrumented code. When executing the program
using the original code, execution will proceed at a normal
rate. However, when executing the program using the instru-
mented code, execution will proceed at a slower rate due to
trace generation. In one embodiment, both the original code
and the mstrumented code are executed using a physical
processor, as opposed to an emulator. In another embodiment,
the original code 1s executed using a physical processor and
the instrumented code 1s executed using an emulator. Also, in
one embodiment, a third-party program 1s provided for direct-
ing a transier of execution between the original code and the
istrumented code.

Various conditions can be applied for causing execution to
alternate between the original code and the instrumented
code. In one embodiment, alternating execution between the
original code and the mstrumented code 1s directed on a time
basis. For example, the original code may be allowed to
execute 90% of the time and the mstrumented code executes
the remaiming 10% of the time. It should be appreciated,
however, that a time balance between execution of the origi-
nal code and the mnstrumented code can be defined 1n any
manner suitable for a particular situation. In one embodiment,
the time allowed for execution of the instrumented code 1s
dispersed throughout the program. With respect to the present
example, the original code may be directed to execute for
separated periods of about 0.9 second with intervening execu-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion of the instrumented code for a period of about 0.1 second.
If 1t 15 considered that the instrumented code executes three
times slower than the original code and the orniginal code
executes at normal speed, the application program will
execute to completion 1n about 120% of the normal execution
time. Thus, 1n the present example, a number of traces will be
obtained from distributed locations throughout the program
with an associated increase 1n execution time of about 20%.
Hence, the method of the present mvention allows for etfi-
cient generation of a number of traces that are representative
ol a statistical sampling of the program. Furthermore, since
the method of the present invention provides for generation of
traces with a relatively minor increase 1n execution time of a
program, traces can be obtained more easily for a broader
spectrum of programs. Thus, a compilation of traces repre-
senting a broad spectrum of programs can be made available
during subsequent simulation to render a more complete
analysis of processor performance.

FIG. 3 1s anillustration showing a flowchart of a method for
obtaining traces irom a program, in accordance with one
embodiment of the present invention. The method includes an
operation 301 1 which an original code i1s executed. The
original code represents an original set of instructions defin-
ing the program to be executed during normal operation.
Execution of the original code 1s performed using an actual
computing system. The method further includes an operation
303 for triggering a switch of execution from the original
code to an 1mstrumented code. The instrumented code repre-
sents an mnstrumented version of the original code, 1.€., an
instrumented version of the original set of instructions. In one
embodiment, triggering the switch of execution from the
original code to the mnstrumented code 1s based on an elapsed
time ol execution. For example, the triggering ol operation
303 can be defined to occur such that the original code
accounts for a particular percentage of the execution time on
average. In one embodiment, the triggering of operation 303
1s defined to occur such that the original code accounts for at
least 90%, on average, of the elapsed time of execution. It
should be appreciated, however, that other embodiments can
define the triggering of operation 303 to result 1n different
percentages of original code execution time (e.g., 80%, 85%,
95%, 99%, etc. . . .) that are consistent with a particular
objective associated with obtaining traces from the program.
Furthermore, the triggering of operation 303 1s defined to
cause the switch of execution from the original code to the
instrumented code to occur at a next location of known state
in the original code.

The method continues with an operation 305 1n which
execution 1s switched from the original code to the instru-
mented code. The switching of execution from the original
code to the mstrumented code occurs at a location of known
state 1n the original code. In an operation 307, the instru-
mented code 1s executed. In one embodiment, execution of
the imstrumented code 1s performed using an emulator
capable of generating traces of the program. During execus-
tion of the mstrumented code, an operation 309 1s performed
in which traces of the program are generated. The traces are
generated through execution of one or more instrumentation
instructions contained within a portion of the mstrumented
code being executed.

The method further includes an operation 311 for trigger-
ing a switch of execution from the mstrumented code back to
the original code. In one embodiment, triggering the switch of
execution from the mstrumented code to the original code 1s
based on an elapsed time of execution. For example, the
triggering ol operation 311 can be defined to occur such that
the imstrumented code accounts for a particular percentage of

US 7,478,371 Bl

7

the execution time on average. In accordance with the
embodiment previously discussed with respect to the trigger-
ing of operation 303, the triggering of operation 311 1is
defined to occur such that the instrumented code accounts for
less than 10%, on average, of the elapsed time of execution. It
should be appreciated, however, that other embodiments can
define the triggering of operation 311 to result 1n different
percentages (e.g., 20%, 15%, 5%, 1%, etc. . . .) of nstru-
mented code execution time that are consistent with a par-
ticular objective associated with obtaining traces from the
program. Furthermore, the triggering of operation 311 1s
defined to cause the switch of execution from the instru-
mented code to the original code to occur at a next location of
known state 1n the instrumented code. Also, the triggering of
operation 311 1s defined to cause the switch of execution from
the instrumented code to the original code to occur at an
instruction that 1s common to both the instrumented code and
the original code.

The method continues with an operation 313 1n which
execution 1s switched from the mstrumented code to the origi-
nal code. The method continues by reverting back to opera-
tion 301 1n which the original code 1s executed. Additionally,
an operation 3135 1s provided for terminating the method at the
end of the program.

FI1G. 4 1s anillustration showing a flowchart for amethod of
using a function call to implement the switch of execution
from the original code to the instrumented code as required by
operation 303 of FIG. 3, in accordance with one embodiment
ol the present invention. In an operation 401, a next function
call 1s reached 1n the original code. The next function call 1n
the original code 1s also present 1n the instrumented code.
Thus, instruction addresses are available for the next function
call in both the original code and the instrumented code. An
operation 403 1s provided for specilying the address of the
next function call 1n the instrumented code as a return address
to be used upon completing execution of the associated func-
tion. In an operation 403, the function in the original code
corresponding to the next function call 1s executed. Upon
completing execution of the function in operation 405, an
operation 407 1s performed 1n which the return address speci-
fied 1n operation 403 1s used to return control from the func-
tion to the 1nstrumented code. Therelore, control 1s returned
to the instrumented code upon completing execution of the
function as if the function had been called from the instru-
mented code rather than the original code. The method then
continues with operation 307 of FIG. 3, in which execution of
the program continues using the mstrumented code.

FI1G. 5 1s anillustration showing a flowchart for amethod of
using a function call to implement the switch of execution
from the instrumented code to the original code as required by
operation 313 of FIG. 3, 1n accordance with one embodiment
of the present mvention. The method shown 1n FIG. 5 1s
similar to the method shown 1n FI1G. 4, with the exception that
control 1s being transferred from the mstrumented code to the
original code. In an operation 501, a next function call 1s
reached in the instrumented code. The next function call in the
instrumented code 1s also present 1n the original code. Thus,
instruction addresses are available for the next function call in
both the instrumented code and the original code. An opera-
tion 503 1s provided for specifying the address of the next
tunction call 1n the original code as a return address to be used
upon completing execution of the associated function. In an
operation 503, the function in the instrumented code corre-
sponding to the next function call 1s executed. Upon complet-
ing execution of the function 1n operation 503, an operation
507 1s performed 1in which the return address specified 1n
operation 503 1s used to return control from the function to the

10

15

20

25

30

35

40

45

50

55

60

65

8

original code. Therefore, control 1s returned to the original
code upon completing execution of the function as if the
function had been called from the original code rather than the
instrumented code. The method then continues with opera-
tion 301 of FIG. 3, 1n which execution of the program con-
tinues using the original code.

The method of using function calls to implement the switch
of execution between the original code and the mstrumented
code, as described with respect to FIGS. 4 and 5, 1s relatively
casy to implement, but is restricted by the availability of
function calls 1n the program. Therefore, trace characteristics
will be dependent upon a number of function calls available
for switching execution between the original and instru-
mented codes and a size of the associated functions. Ideally,
the number of function calls and size of the associated func-
tions 1s adequate to allow a switch of execution between the
original and mstrumented codes to occur at or near a desired
frequency. However, 1n cases where the function calls are not
adequately defined, another method for switching execution
between the original the instrumented codes 1s available as
described below with respect to FIGS. 6 and 7.

FIG. 6 1s anillustration showing a flowchart for a method of
using an address map to implement the switch of execution
from the original code to the instrumented code as required by
operation 305 of FIG. 3, in accordance with one embodiment
ol the present invention. The method of FIG. 6 1s based upon
an address map defined to 1dentily correspondences between
instruction addresses in the original code and 1instruction
addresses 1n the instrumented code. Thus, for each instruction
address 1n the original code, the address map specifies a
corresponding 1nstruction address 1n the mstrumented code.
In an operation 601, the address map 1s consulted to 1dentity
an 1nstruction address 1n the mstrumented code that corre-
sponds to a subsequent 1nstruction 1n the original code. The
subsequent instruction in the original code represents an
instruction 1n the original code that would be performed 1f
execution of the original code were to continue upon com-
pleting execution of a current imstruction in the original code.
In an operation 603, execution of the current instruction in the
original code 1s completed. Upon completing execution of the
current instruction in operation 603, an operation 605 1s per-
formed 1n which the instruction address 1n the mstrumented
code 1dentified 1n operation 601 1s used to transfer control
from the original code to the instrumented code. The method
then continues with operation 307 of FIG. 3, 1n which execu-
tion of the program continues using the mstrumented code.

FIG. 71s anillustration showing a flowchart for amethod of
using an address map to implement the switch of execution
from the instrumented code to the original code as required by
operation 313 of FIG. 3, in accordance with one embodiment
of the present invention. In an operation 701, a determination
1s made as to whether a subsequent instruction 1n the 1nstru-
mented code represents an instrumentation instruction. Since
instrumentation instructions are not present in the original
code, an instrumentation instruction address 1n the instru-
mented code will not have a corresponding instruction
address 1n the original code. Therefore, 11 1t 1s determined that
the subsequent instruction in the instrumented code corre-
sponds to an mstrumentation 1nstruction, an operation 703 1s
performed to continue execution of the instrumented code
through the subsequent instruction and repeat the determina-
tion of operation 701. Upon determining 1n operation 701 that
the subsequent 1nstruction 1n the mstrumented code does not
correspond to an instrumentation instruction, the method
continues with an operation 705. As with the method of FIG.
6, the method of FIG. 7 1s based upon the address map defined
to 1dentity correspondences between instruction addresses in

US 7,478,371 Bl

9

the original code and instruction addresses in the instru-
mented code. In the operation 703, the address map 1s con-
sulted to 1dentily an mnstruction address 1n the original code
that corresponds to the subsequent instruction 1n the instru-
mented code. In an operation 707, execution of the current
instruction in the mstrumented code 1s completed. Upon com-
pleting execution of the current instruction 1n operation 707,
an operation 709 1s performed in which the instruction
address 1n the original code identified 1n operation 705 1s used
to transier control from the instrumented code to the original
code. The method then continues with operation 301 of FIG.
3, in which execution of the program continues using the
original code.

With the above embodiments 1n mind, 1t should be under-
stood that the invention may employ various computer-imple-
mented operations involving data stored in computer sys-
tems. These operations are those requiring physical
manipulation of physical quantities. Usually, though not nec-
essarily, these quantities take the form of electrical or mag-
netic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. Further, the manipu-
lations performed are oiten referred to in terms, such as
producing, identifying, determining, or comparing.

Any of the operations described herein that form part of the
invention are useful machine operations. The 1nvention also
relates to a device or an apparatus for performing these opera-
tions. The apparatus may be specially constructed for the
required purposes, or 1t may be a general-purpose computer
selectively activated or configured by a computer program
stored 1n the computer. In particular, various general-purpose
machines may be used with computer programs written in
accordance with the teachings herein, or 1t may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The invention can also be embodied as computer readable
code on a computer readable medium. The computer readable
medium 1s any data storage device that can store data which
can be thereafter be read by a computer system. Examples of
the computer readable medium include hard drives, network
attached storage (NAS), read-only memory, random-access
memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and
other optical and non-optical data storage devices. The com-
puter readable medium can also be distributed over a network
coupled computer systems so that the computer readable code
1s stored and executed 1n a distributed fashion.

While this invention has been described 1n terms of several
embodiments, 1t will be appreciated that those skilled in the
art upon reading the preceding specifications and studying the
drawings will realize various alterations, additions, permuta-
tions and equivalents thereol. It 1s therefore intended that the
present invention includes all such alterations, additions, per-
mutations, and equivalents as fall within the true spirit and
scope of the invention.

What 1s claimed 1s:

1. A method for obtaining traces of a program, comprising:

(a) obtaining an original set of instructions which define
the program, wherein the original set of instructions
does not include an instrumentation 1nstruction;

(b) obtaiming an instrumented version of the original set of
instructions, wherein the instrumented version of the
original set of instructions includes each 1nstruction 1n
the original set of 1nstructions and a number of instru-
mentation 1structions defined to generate traces,
wherein the number of instrumentation instructions are
dispersed 1n a substantially uniform manner throughout
the instrumented version of the original set of nstruc-
tions;

10

15

20

25

30

35

40

45

50

55

60

65

10

(¢) executing the original set of 1nstructions;

(d) switching execution from the original set of instructions
to the instrumented version of the original set of instruc-
tions upon encountering a first trigger condition,
wherein the first trigger condition 1s an elapsed time of
execution of the original set of instructions, wherein
encountering the first trigger condition causes the
switching ol execution from the original set of instruc-
tions to the instrumented version of the original set of
instructions to occur at a next location of known state 1n
the original set of istructions;

(¢) executing the instrumented version of the original set of
instructions so as to generate traces through execution of
one or more of the number of mstrumentation 1nstruc-
tions;

(1) switching execution from the instrumented version of
the original set of instructions back to the original set of
instructions upon encountering a second trigger condi-
tion, wherein the second trigger condition 1s an elapsed
time of execution of the instrumented version of the
original set of instructions, wherein encountering the
second trigger condition causes the switching of execu-
tion from the mnstrumented version of the original set of
instructions back to the original set of instructions to
occur at a next location of known state 1n the instru-
mented version of the original set of mstructions; and

(g) repeating operations (c) through (1),

wherein each of the first trigger condition and the second
trigger condition 1s a respective temporal period defined
independently from an instruction present in either the
original set ol instructions or the instrumented version of
the original set of mstructions.

2. A method for obtaining traces of a program as recited 1n
claim 1, wherein the switching of execution from the original
set of instructions to the instrumented version of the original
set of 1structions occurs at a location of known state 1n the
original set of 1nstructions.

3. A method for obtaining traces of a program as recited 1n
claim 1, wherein the first trigger condition 1s defined such that
execution of the original set of instructions accounts for more
than about 90 percent of a total elapsed time of execution of
the program.

4. A method for obtaining traces of a program as recited 1n
claim 1, wherein the next location of known state in the
instrumented version of the original set of instructions corre-
sponds to an 1nstruction common to both the istrumented
version of the original set of nstructions and the original set
ol 1nstructions.

5. A method for obtaining traces of a program as recited 1n
claim 1, wherein the second trigger condition 1s defined such
that execution of the instrumented version of the original set
of mstructions accounts for less than about 10 percent of a
total elapsed time of execution of the program.

6. A method for obtaining traces of a program as recited in
claim 1, wherein execution of the instrumented version of the
original set of 1nstructions 1s performed by an emulator.

7. A method for obtaining traces of a program, comprising:

(a) executing an original code which defines the program,
wherein the original code does not include an instrumen-
tation 1nstruction;

(b) switching execution from the original code to an instru-
mented code upon reaching a next location of known
state 1n the original code after having executed the origi-
nal code for a specified first time period, wherein the
istrumented code includes each instruction present 1n
the original code and a number of instrumentation
istructions dispersed 1n a substantially uniform manner

US 7,478,371 Bl

11

throughout the mstrumented code, wherein the number
ol instrumentation instructions are defined to generate
fraces;

(c) executing the instrumented code so as to generate traces
through execution of one or more of the instrumentation
instructions;

(d) switching execution from the mstrumented code back
to the original code upon reaching a next location of
known state in the instrumented code after having
executed the instrumented code for a specified second
time period; and

(e) repeating operations (a) through (d),

wherein each of the specified first time period and the
specified second time period 1s a respective temporal
period defined independently from an 1nstruction
present 1n either the original code or the mstrumented
code.

8. A method for obtaining traces of a program as recited in
claim 7, wherein the first and second time periods are speci-
fied such that execution of the original code accounts for more
than about 90 percent of the total elapsed time of execution of
both the original code and instrumented code.

9. A method for obtaining traces of a program as recited in
claim 7, wherein the next location of known state in each of
the instrumented code and original code corresponds to an
instruction common to both the instrumented code and the
original code.

10. A method for obtaining traces of a program as recited 1in
claim 7, wherein the first and second time periods are speci-
fied such that execution of the instrumented code accounts for
less than about 10 percent of the total elapsed time of execu-
tion of both the original code and 1nstrumented code.

11. A method for obtaining traces of a program as recited 1n
claim 7, wherein both switching execution from the original
code to the mstrumented code and switching execution from
the instrumented code back to the original code are performed
using return addresses during processing ol function calls.

12. A method for obtaining traces of a program as recited 1n
claim 7, further comprising:

defiming a map of instruction addresses, the map of instruc-
tion addresses 1dentifying correspondences between
instruction addresses in the original code and 1nstruction
addresses 1n the instrumented code.

13. A method for obtaiming traces of a program as recited 1n
claim 12, wherein both switching execution from the original
code to the mstrumented code and switching execution from
the instrumented code back to the original code are performed
using the map of 1nstruction addresses.

14. A computer readable storage medium containing pro-
gram instructions for obtaining traces of a program, compris-
ng:

program 1nstructions for executing an original code,
wherein the original code does not include an instrumen-
tation 1nstruction;

program 1nstructions for switching execution from the
original code to an instrumented code upon reaching a
next location of known state 1n the original code after
having executed the original code for a specified first
time period, wherein the mstrumented code includes
cach mnstruction present 1n the original code and a num-

10

15

20

25

30

35

40

45

50

55

12

ber of nstrumentation instructions dispersed 1n a sub-
stantially uniform manner throughout the mstrumented
code, wherein the number of instrumentation instruc-
tions are defined to generate traces;

program instructions for executing the instrumented code

s0 as to generate traces through execution of one or more
of the instrumentation nstructions; and

program 1nstructions for switching execution from the

istrumented code back to the original code upon reach-
ing a next location of known state 1n the mstrumented
code after having executed the mnstrumented code for a
specified second time period,

wherein each of the specified first time period and the

specified second time period 1s a respective temporal
period defined independently from an instruction
present 1n either the original code or the mstrumented
code.

15. A computer readable storage medium containing pro-
gram 1nstructions for obtaining traces of a program as recited
in claim 14, wherein the first and second time periods are
specified such that execution of the original code accounts for
more than about 90 percent of the total elapsed time of execu-
tion of both the original code and 1nstrumented code.

16. A computer readable storage medium containing pro-
gram instructions for obtaining traces of a program as recited
in claim 14, wherein the next location of known state 1n each
of the instrumented code and original code corresponds to an
instruction common to both the instrumented code and the
original code.

17. A computer readable storage medium containing pro-
gram 1nstructions for obtaining traces of a program as recited
in claim 14, wherein the first and second time periods are
specified such that execution of the instrumented code
accounts for less than about 10 percent of the total elapsed
time ol execution of both the original code and instrumented
code.

18. A computer readable storage medium containing pro-
gram instructions for obtaining traces of a program as recited
in claim 14, wherein the program instructions for switching
execution from the original code to the instrumented code and
the program 1instructions for switching execution from the
instrumented code back to the original code are defined to use
return addresses during processing of function calls to etfect
the switching.

19. A computer readable storage medium containing pro-
gram 1nstructions for obtaining traces of a program as recited
in claim 14, further comprising:

program 1nstructions for defining a map of instruction

addresses, the map of nstruction addresses 1dentifying
correspondences between instruction addresses 1n the
original code and instruction addresses 1n the instru-
mented code.

20. A computer readable storage medium containing pro-
gram instructions for obtaining traces ol a program as recited
in claim 19, wherein the program instructions for switching
execution from the original code to the instrumented code and
the program 1instructions for switching execution from the
instrumented code back to the original code are defined to use
the map of 1nstruction addresses to effect the switching.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

