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ADAPTIVE CACHE SIZING BASED ON
MONITORING OF REGENERATED AND
REPLACED CACHE ENTRIES

The present application claims priority from U.S. Provi-
sional Patent Application No. 60/634,557, (now abandoned),
entitled “A System for Managed Program Execution and
Runtime Code Mamipulation,” by Derek L. Bruening,
Viadimir L. Kinansky, Timothy G. Garnett and Saman P.

Amarasinghe, filed Feb. 18, 2003, incorporated by reference
herein 1n 1ts entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This mnvention was made with government support 1n part

by Defense Advanced Research Projects Agency awards
DABT63-96-C-0036, N66001-99-2-891702, and F29601-

01-2-00166, and by a grant from the LCS Project Oxygen.
The government has certain rights 1in the invention.

BACKGROUND OF THE INVENTION

As modern applications become larger, more complex, and
more dynamic, building tools to manipulate these programs
becomes 1ncreasingly difficult. At the same time the need for
tools to manage applications grows. Information-gathering
tools are needed for program analysis, introspection, and
instrumentation to aid in software development, testing,
debugging, and simulation. There 1s also a need for tools that
modily programs for optimization, translation, compatibility,
sandboxing, etc.

Many modern applications are assembled and defined at
runtime, making use of shared libraries, virtual functions,
plug-ins, dynamically-generated code, and other dynamic
mechanisms. The amount of program information available
statically 1s shrinking. Static tools have necessarily turned to
teedback from profiling runs, but these provide only an esti-
mate of program behavior. In many cases, the complete pic-
ture of a program’s runtime behavior 1s only available at
runtime.

Consider an important modern application, the web server.
Today’s web servers are built for extension by third-party
code, 1n the form of dynamically-loaded modules (e.g., Inter-
net Server Application Programming Interface (ISAPI) com-
ponents used to provide dynamic data and capabilities for
web sites). Even the designers of the web server programs
cannot anticipate all of the third-party code that will be
executed when the web server 1s 1 actual use.

Some runtime systems that gather information about or
allow for manipulation of applications make use of a code
cache implemented 1n software. Code 1s placed in the code
cache so that it can be used for various purposes. When
executing a single application in 1solation, there may be no
reason to limit the size of the code cache. However, when
executing many programs simultaneously, memory usage can
become problematic and can be reduced by imposing a bound
on the size of the code cache. However, cache bounds come
with a performance cost, and the trick 1s to pick the bound
with the best space and performance tradeoil.

Many systems with a software code cache use a hard coded
size limit. When the size limit 1s reached, the entire cache 1s
flushed. The limait 1s set generously, and 1t 1s assumed that 1t
will rarely be reached. This may work when executing a
benchmark suite, but a generous hard coded size limit 1s not as
well suited when targeting disparate applications like desktop
programs.
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2
SUMMARY OF THE INVENTION

A runtime code manipulation system 1s provided that sup-
ports code transformations on a program while 1t executes.
The runtime code manipulation system uses code caching
technology to provide efficient and comprehensive manipu-
lation of an unmodified application running on an operating
system and hardware. The code cache includes a system for
automatically keeping the code cache at an appropriate size
for the current working set of an application running.

One embodiment of a system for automatically changing
the size of a cache comprises removing old entries in the
cache using an eviction policy, inserting new entries in the
cache, maintaining information about regenerated entries and
replaced entries, and resi1zing the cache based on a function of
the information about regenerated entries and replaced
entries.

One embodiment of a system for automatically changing
the size of a software code cache comprises removing an old
code fragment from the soitware code cache based on an
eviction policy and adding a new code fragment 11 the sofit-
ware code cache 1s full, maintaining a count of replaced code
fragments 1n response to removing the old code fragment,
determining whether the new code fragment 1s regenerated
based on whether the new code fragment has previously been
in the soitware code cache, maintaining a count of regener-
ated code fragments, and resizing the software code cache 1f
a ratio of regenerated code fragments to replaced code frag-
ments 1s beyond a certain threshold.

In one embodiment, one or more processor readable stor-
age devices have processor readable code embodied on the
processor readable storage devices, the processor readable
code 1s for programming one or more processors to perform a
method comprising removing an old entry from a cache using
an eviction policy after the cache 1s full, adding a new entry to
the cache, determining whether the new entry was previously
in the cache, incrementing a count of regenerated entries 1f the
new entry was previously in the cache and resizing the cache
based on the count of regenerated entries and a number of
removed entries.

One embodiment includes an apparatus capable of auto-
matically changing the size of a cache. The apparatus com-
prises one or more storage devices, one or more communica-
tion 1interfaces, and one or more processors 1 communication
with said one or more storage devices and said one or more
communication interfaces. The one or more processors are
programmed to perform a method comprising receiving a
new entry to add to the cache, adding the new entry without
evicting entries 11 the cache 1s not full, removing an old entry
and adding the new entry if the cache 1s full, maintaining a
count of removed entries, determining whether the new entry
has previously been in the cache, incrementing a count of
regenerated entries if the new entry has previously been 1n the
cache, determining a ratio of regenerated entries to replaced

entries, and resizing the cache if the ratio 1s beyond a certain
threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s ablock diagram depicting a runtime code manipu-
lator with a running application and a hardware platiorm.

FIG. 2 1s a block diagram depicting more detail of the
runtime code manipulator with a running application and a
hardware platform.

FIG. 3 depicts the runtime code manipulator.

FIG. 4 depicts sample code.
FIGS. SA and 5B depict sample code.
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FIG. 6 1s a block diagram depicting one embodiment of a
fragment.

FIG. 7 1s a block diagram depicting a fragment eviction
policy.

FIG. 8 1s a flow chart describing one embodiment of a
process of adding a code fragment 1nto the code cache and
changing the size of the code cache.

FIGS. 9A and 9B depict a sample code cache fragment
with separate exit stubs.

DETAILED DESCRIPTION

FIG. 1 depicts a Runtime Code Mampulator (RCM) 10,
application 20 and platform 30. RCM 10 1s a flexible software
layer that comprehensively interposes itself between applica-
tion 20 and the underlying platform 30. RCM 10 acts as a
running control point, allowing custom tools to be embedded
inside it.

RCM 10 allows code transformations on any part of a
program while 1t executes. RCM 10 extends existing code
caching technology to allow efficient, transparent, and com-
prehensive manmipulation of an individual, unmodified appli-
cation 20, running on a stock operating system and commod-
ity hardware (platform 30).

FI1G. 2 illustrates the high-level design of RCM 10. FIG. 2
depicts RCM 10, including code cache 100, context switch
102, dispatch 104 and basic block builder 106. Platform 30
includes hardware 108 and operating system 110. Hardware
platform 30 1s 1n communication with code cache 100 and
dispatch 104 in order to run application 20. Dispatch 104
communicates with code cache 100 via context switch 102.
Dispatch 104 1s also 1n communication with basic block
builder 106 and application 20.

RCM 10 executes application 20 by copying the applica-
tion code 1nto code cache 100, one basic block at a time. Code
cache 100 1s entered via context switch 102 from RCM 10’s
dispatch state to that of the application. The cached code can
then be executed natively, avoiding emulation overhead.
However, shifting execution into code cache 10 that occupies
the application’s own address space complicates transpar-
ency. One lesson 1s that RCM 10 should be fully transparent
and avoid affecting the behavior of the program 1t 1s execut-
ing.

In one embodiment, 1n order to reach the widest possible
set of applications (to be universal and practical), RCM 10
targets the most common architecture, IA-32 (a.k.a. x86), and
the most popular operating systems on that architecture, Win-
dows and Linux (both of which are examples of operating
system 110 depicted 1n FIG. 2). The efficiency of a runtime
code manipulation system depends on the characteristics of
the underlying hardware, and the Complex Instruction Set
Computer (CISC) design of IA-32 requires a significant effort
to achieve elliciency. To be universal, RCM 10 must handle
dynamically-loaded, generated, and even modified code.
Every write to application code must be detected, and system
calls that load or unload shared libraries must be monitored.
Further challenges arise because RCM 10 resides on top of
operating system 110; for example, multiple threads compli-
cate its cache management. In some embodiment, RCM 10
can dynamically bind its code cache size to be deployable on
production systems without disturbing other programs on the
same machine by exhausting memory resources.

RCM 10 1s able to observe and manipulate every applica-
tion instruction prior to its execution by building upon known
techniques of code caching, linking, and trace building. FIG.
3 shows the components of RCM 10 and the flow of operation
between them. FIG. 3 depicts dispatch 104 1n communication
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with basic block builder 150, trace selector 152, basic block
cache 160, indirect branch lookup 162 (via context switch
102) and Trace Cache non-control-flow mstructions 174 (via
context switch 102). “Indirect Branch Stays on Trace 166”
connects to Trace Cache non-control-flow instructions 174,
indirect branch lookup 162, and 1tself. Trace cache 164 and
basic block cache 160 also loop to themselves. The process
starts at dispatch 104. Context switch 102 separates the code
cache from RCM 10 code (though 1t all executes in the same
process and address space). Application code 1s copied 1nto
the two caches, with control transiers (shown by arrows 1n the
figure) modified 1n order to retain control.

FIG. 3 concentrates on the tlow of control 1n and out of the
code cache 100, which 1s the bottom portion of the figure. The
cached application code looks just like the original code with
the exception of its control transfer 1nstructions, which are
shown with arrows in the figure, and which must be modified
to ensure that RCM 10 retains control. RCM 10 populates the
code cache one basic block at a time and then links the blocks
together. The code cache enables native execution to replace
emulation, bringing performance down from a several hun-
dred times slowdown for pure emulation. Linking of direct
branches reduces slowdown further, to around three times
native performance. Adding in indirect branch linking, by
using a fast lookup of the variable indirect branch target,
pushes that performance further, down under two times. One
twist on linking 1s to separate the stubs of code required for
the unlinked case from the code for the block itself. Further
performance gains are achieved by buwlding traces i a
slightly different manner from other systems, and by a novel
scheme of eliding unconditional control transfers when build-
ing basic blocks.

RCM 10 copies application code 1nto 1ts code cache i units
of basic blocks, which are sequences of mstructions ending
with a single control transfer instruction. A typical basic
block consists of six or seven instructions taking up twenty or
thirty bytes, although some blocks can be quite large, in the
thousands of bytes. FIG. 4 shows an example basic block
from an application. FIG. 4 shows an example basic block
consisting of three IA-32 mstructions: an add, a compare, and
a conditional direct branch. RCM 10’s basic blocks are dii-
ferent from the traditional static analysis notion of basic
blocks. RCM 10 considers each entry point to begin a new
basic block, and follows 1t until a control transfer 1s reached,
even 11 1t duplicates the tail of an existing basic block. This 1s
for simplicity of code discovery. Unlike static analyzers,
RCM 10 does not have the luxury of examining an entire code
unit such as a procedure. At runtime such information may
not be available, nor 1s there time to spend analyzing 1t

The application’s code 1s executed by transferring control
to corresponding basic blocks 1n the code cache. At the end of
cach block, the application’s machine state 1s saved and con-
trol returned to RCM 10 (a context switch) to copy the next
basic block. FIG. 5A shows what the example block looks like
inside of RCM 10’s code cache. Belore the targets of 1ts exits
have materialized 1n the cache, they point to two exit stubs
(stub0 and stubl). Fach stub records a pointer to a stub-
specific data structure so RCM 10 can determine which exit
was taken. At first glance, putting the second stub {irst seems
like an optimization to remove the jump targeting 1t, but RCM
10 uses that jump for linking, and 1t 1s not worth optimizing
for the rare unlinked case. Each exit stub records a pointer to
its own data structure (dstub0 or dstub1) before transferring
control to the context switch, so that RCM 10 can figure out
which branch was taken. The pointer 1s stored 1n a register that
first needs to be spilled because this two-1nstruction combi-
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nation 1s more efficient than a ten-byte (slowly-decoded)
store of the pointer directly to memory.

Copying each basic block into a code cache and executing
it natively reduces the performance hit of interpretation.
However, RCM 10 1s still interpreting each control transfer by
going back to find the target. If the target 1s already present 1n
the code cache, and 1s targeted via a direct branch, RCM 10
can link the two blocks together with a direct jump, avoiding
the cost of a subsequent context switch. FIG. 5B shows how
the exit stubs of the example block of FIGS. 4 and SA are
bypassed completely after linking. For example, the “jle”
instruction references fragment42 rather than stub0 and the
“ymp” 1nstruction references fragment8 instead of stubl. The
performance improvement of linking direct control transters
1s dramatic as expensive context switches are replaced with
single jumps.

Linking may be done either proactively, when a fragment 1s
created, or lazily, when an exit 1s taken. Proactive linking is a
better choice for IA-32. In either case, data structures must be
kept to record the outgoing links of each fragment. The
incoming links must also be kept, in order to efficiently delete
a single fragment: otherwise, all other fragments must be
searched to make sure all links to the dead fragment are
removed, or alternatively space must be wasted with a place-
holder 1n the dead fragment’s place. Single-1ragment deletion
1s important for cache consistency. Incoming link records are
also required to quickly shift links from one fragment to
another for things like trace head status changes or replacing
a fragment with a new version of itself. Incoming links to
non-existent fragments must be stored as well, for which
RCM 10 use a future fragment data structure as a placeholder.
Once an actual fragment at that target 1s bult, 1t replaces the
future fragment and takes over its incoming link list. Future
fragments can also be used to keep persistent state across
fragment deletions and re-creations, such as for cache capac-
ity and trace head counters.

RCM 10 1s able to undo linking on demand, for building
traces, bounding time delay of delivering signals, fragment
replacement, and when deleting a fragment. Unlinking
requires either incoming link information or using a prefix on
cach fragment. RCM 10 uses incoming link information, as 1t
1s already needed for proactive linking and other features.

The actual process of linking and unlinking boils down to
modifying the exits of a fragment. Examining F1G. 5A and its
unlinked version FIG. 5B shows that each branch exiting a
fragment either points to 1ts corresponding exit stub (the
unlinked state) or points to its actual fragment target (the
linked state). Switching from one state to the other on IA-32
takes a single 32-bit store, which, 11 the targets do not straddle
cache lines or 11 the lock prefix 1s used, 1s atomic on all recent
IA-32 processors and thus can be performed 1n the presence
of multiple threads without synchronization.

Once an exit from a basic block 1s linked, the correspond-
ing exit stub 1s not needed again unless the exit 1s later
unlinked. By locating the exit stubs 1n a separate cache from
the basic block body, RCM 10 can delete and re-create exit
stubs on demand as they are needed. This both compacts the
cache, reducing the working set size of the program, and
reduces overall memory usage by deleting stubs no longer
needed.

Indirect branches cannot be linked 1n the same way as
direct branches because their targets may vary. To maintain
transparency, original program addresses must be used wher-
ever the application stores indirect branch targets (for
example, return addresses for function calls). These
addresses must be translated to their corresponding code
cache addresses 1n order to jump to the target code. This
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translation 1s performed as a fast hash table lookup 1nside the
code cache (avoiding a context switch back to RCM 10).

To mmprove the efficiency of indirect branches, and to
achieve better code layout, basic blocks that are frequently
executed 1n sequence are stitched together into a unit called a
trace. The superior code layout and inter-block branch elimi-
nation in traces provide a significant performance boost. One
ol the biggest benefits of traces 1s 1n avoiding indirect branch
lookups by inlining a popular target of an indirect branch into
a trace (with a check to ensure that the actual target stays on
the trace, falling back on the tull lookup when the check fails).
This explains why their biggest impact 1s often on bench-
marks with many indirect branches.

Trace building 1s also used as a hardware 1nstruction fetch
optimization and the Pentium 4 contains a hardware trace
cache. Although the Pentium 4 hardware trace cache stitches
together IA-32 micro-operations, i1t 1s targeting branch
removal just like a software trace cache, and there 1s some
competition between the two. The hardware cache has a
smaller window of operation, but its el

ects are noticeable.

The NET trace creation scheme 1s specifically designed for
low-overhead, incremental use. Despite 1ts simplicity, 1t has
been shown to identily traces with comparable quality to
more sophisticated schemes. NET operates by associating a
counter with each trace head. A trace head 1s either the target
of a backward branch (targeting loops) or an exit from an
existing trace (called a secondary trace head). The counter 1s
incremented on each execution of the trace head. Once the
counter exceeds a threshold (usually a small number such as
fifty), trace creation mode 1s entered. The next executing tail
(NET) 1s taken to be the hot path. This means that the next
sequence of basic blocks that 1s executed after the trace head
becomes hot 1s concatenated together to become a new trace.
The trace 1s terminated when 1t reaches a backward branch or
another trace or trace head.

RCM 10 modifies NET to not consider a backward indirect
branch target to be a trace head. Consequently, where NET
would stop trace creation at a backward indirect branch, RCM
10 continues. This has both an advantage and a disadvantage.
The advantage 1s that more indirect branches will be inlined
into traces, where with the NET scheme, haltf of the time a
trace will stop at an indirect branch. The disadvantage 1s that
in pathological situations (e.g., a recursive loop where the
recursive call 1s indirect) unlimited loop unrolling can occur.
The advantage 1s worth the extra unrolling, and a maximum
trace size limits potential code bloat.

In one embodiment 1t 1s noted that more trace heads do not
result in better traces. Since trace creation stops upon reach-
ing a trace head (to avoid code duplication), more trace heads
canresult in many tiny traces. By selectively eliminating trace
heads that are targets of indirect branches, RCM 10 tries to
build traces across those branches. However, RCM 10’s trace
building scheme does do poorly in some extreme cases. An
example 1s a threaded interpreter, where indirect branches are
used almost exclusively, causing RCM 10 to build no traces.

An average trace consists of four basic blocks, about 29
instructions. More than one 1n two traces contains an inlined
indirect branch, one of the goals of trace building. Traces
reduce RCM 10’s indirect branch translation overhead sig-
nificantly.

To increment the counter associated with each trace head,

the simplest solution 1s to never link any fragment to a trace
head, and perform the increment insidde RCM 10. As there will

never be more than a small number of increments before the
head 1s turned 1nto a trace, this 1s not much of a performance
hit. Another strategy 1s to place the increment 1nside the trace
head fragment 1tself. However, this requires replacing the old
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fragment code once the fragment 1s discovered to be a trace
head (which often happens after the fragment 1s already 1n the
code cache, when a later backward branch 1s found to target
it). The cost of replacing the fragment overwhelms the per-
formance improvement from having the increment nlined
(remember, the increment only occurs a small number of
times—RCM 10°s default 1s fifty). A different strategy 1s to
use a shared routine inside the cache to perform the incre-
ment. When discovering that a fragment 1s a trace head, all
fragments pointing to 1t can be changed to mstead link to the
increment routine. This link change 1s most easily done when
incoming links are recorded. The increment routine incre-
ments the counter for the target trace head and then performs
an 1indirect branch to the trace head’s code cache entry point.
Since a register must be spilled to transfer information
between the calling fragment and the increment routine, the
routine needs to restore that register, while keeping the 1ndi-
rect branch target available. Only two options allow both:
storing the indirect branch target 1n memory, or adding a
prefix to all potential trace heads (all basic blocks, unless
blocks are replaced once they are marked as trace heads,
which 1s expensive) that will restore the register containing,
the target to 1ts application value. RCM 10 stores the target in
memory, though this has ramifications for self-protection.
Incrementing the counter without leaving the code cache
drastically reduces the number of exits from the cache.

Indirect branches targeting trace heads present some com-
plications. For the first increment method of not linking to
trace heads, the hash table(s) used for indirect branches must
not contain trace heads at all, to avoid directly targeting a trace
head and skipping i1ts counter increment. The most straight-
forward way 1s to use two separate hashtables, one for basic
blocks and one for traces, with only the trace hash table being,
consulted when resolving an 1ndirect branch. However, this
can result in terrible performance on programs with patho-
logical trace building problems, such as the threaded inter-
preters mentioned above, since basic blocks will never be
indirectly linked to other basic blocks. One solution 1s to use
a different hash table for basic block indirect branch lookup
that contains both non-trace-head basic blocks and traces, but
that requires support for fragments to exist in multiple hash
tables simultaneously. A simpler solution that preserves a
one-hashtable-per-fragment 1nvariant 1s to have two disjoint
hashtables: one that contains trace heads and one that con-
tains all non-trace heads, both traces and basic blocks. For the
second increment method, the indirect branch lookup routine
must be modified to check whether 1ts target 1s a trace head. IT
so, 1t should transfer control to the shared increment routine
and pass 1t a pointer to the target fragment.

To avoid losing the trace head count due to eviction of the
trace head from the cache for capacity reasons, 1t 1s best to use
persistent trace head counters. When a trace head 1s deleted,
its count can be stored 1n the future fragment data structure
used to store incoming links for a deleted or not-yet-created
fragment. Once the trace head 1s re-created, the existing count
can be transtierred so that it does not start at zero. Persistent
trace head counters are important for maintaining trace build-
ing progress, and thus performance, when the basic block
cache size 1s limited.

Once a trace head’s counter exceeds the trace threshold, a
new trace 1s built by executing basic blocks one at a time.
Each block’s outgoing exits are unlinked, so that after execu-
tion 1t will come back to RCM 10 1n order to have the subse-
quent block added to the trace. Each block 1s marked as
un-deletable as well, to avoid a capacity miss that happens to
evict this particular block from ruiming the trace being built.
After bemng copied into the trace-in-progress and being
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executed to find the subsequent basic block, the current block
1s re-linked and marked as deletable again. Then the next
block 1s unlinked and the process repeats. Once the subse-
quent block 1s known, 1f the just-executed block ends 1n a
conditional branch or indirect branch, that branch 1s inlined
into the trace. For a conditional branch, the condition 1s
reversed if necessary to have the fall-through branch direction
keep control on the trace. The taken branch exits the trace. For
an mdirect branch, a check 1s iserted comparing the actual
target of the branch with the target that will keep 1t on the
trace. If the check fails, the trace 1s exited.

Once a trace 1s built, all basic blocks targeted by its outgo-
ing exits automatically become secondary trace heads. This
ensures that multiple hot tails of a trace head will all become
traces. The trace head that caused trace creation 1s removed
from the code cache, as its execution 1s replaced by the new
trace. The shape of basic blocks has a large impact on trace
creation because it changes the trace heads.

Traces and basic blocks are treated in the same manner
once they are copied to the cache. The term fragment 1s used
to refer to either a basic block or a trace 1n the code cache.
Both types of fragment are single-entry, multiple-exit, linear
sequences of structions.

One example of a layout of a fragment 1n the code cache 1s
depicted 1in FIG. 6. Header 220 includes four bytes used to
point to the Fragment data structure corresponding to the
fragment 1n that cache slot, for traversing the physical order of
fragments in the cache. For an empty fragment slot, the
header points to an Empty Slot (see empty slot 310 of FI1G. 7)
data structure, and the subsequent fields are absent. Prefix 222
1s the prefix code for the fragment used to optimize transier of
control from RCM 10’s indirect branch lookup routine by
shifting state restoration to the target, where registers and
condition codes may not need to be restored if they are not
live. Body 224 1s the code for the body of the fragment. Direct
Exit Stubs 226 includes the code for any direct exit stubs. It1s
best to relocate these and combine them all 1n a separate area,
but they can also be located immediately after the fragment
body. Indirect Exit Stubs 228 includes the code for any indi-
rect exit stubs. The Copy of Original Application Code 230 1s
used to store a copy of the original code for use when handling
self-modifying code. Alignment Padding 232 1s added to a
fragment slot to achieve better cache line and word alignment.
Padding 1s added to the end of a fragment, so the beginning
becomes aligned only due to the padding added to the previ-
ous fragment. In one embodiment, Prefix 222, Direct Exit
Stubs 226, Indirect Exit Stubs 228 and the Copy of Original
Application Code 230 are optional.

A simple optimization may be performed when an uncon-
ditional jump or call instruction 1s encountered while building
a basic block. Instead of stopping the block at the control
transier, 1t can be elided and the block continued at its target,
which 1s statically known. This 1s an 1in1tial step toward build-
ing traces. Eliding unconditional control transfers provides a
code layout benefit. However, it leads to duplicated code 1t the
unconditional target 1s also targeted by other branches, since
those other targets will build a separate basic block. If there
are few such duplications, however, eliding unconditionals
can result i less memory use because there are fewer basic
blocks and therefore fewer corresponding data structures. It
has been found that the performance and memory 1impact of
cliding unconditionals varies significantly by application.

Care must be taken to maintain application transparency
when eliding unconditionals. If the target 1s invalid memory,
or results 1n an infinite loop, the basic block builder should not
prematurely trigger that condition. RCM 10 checks the target
of the branch to see 11 1t will result 1n a read fault (at the same
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time that RCM 10 checks 1ts memory region for cache con-
sistency purposes). A maximum basic block size 1s used.

Eliding unconditionals impacts trace building, since elid-
ing backward unconditionals changes which blocks will
become trace heads. The SPEC CPU 2000 benchmark apsi 1s
particularly sensitive to eliding. It has basic blocks that are
joined by backward unconditional jumps. ITRCM 10 does not
clide such a jump, the second block will be 1ts own trace head,
and RCM 10 will never end up placing the two blocks adja-
cent to each other, since traces always stop upon meeting
other traces or trace heads. It RCM 10 does elide the jump, the
second block will not be a trace head, but RCM 10 will have
achieved superior code layout. Not considering a backward
unconditional jump to mark trace heads could make a ditter-
ence, but the second block 1s often also targeted by a back-
ward conditional jump. Eliding has an additional impact on
building traces at call sites. When not eliding, a single basic
block will represent the entrance of a callee. This makes it
more diflicult to create call-site-specific traces that cross 1nto
the callee. Eliding can enable the creation of more specific
traces by ensuring that a trace that reaches the call site also
reaches into the callee.

RCM 10 should avoid interfering with the semantics of a
program while 1t executes. RCM 10 should translate every
machine context that the operating system hands to the appli-
cation, to pretend that the context was originally saved 1n the
application code rather than the code cache. This happens 1n
exception and signal handlers. Additionally, Windows pro-
vides a GetThreadContext Win32 API routine, and a corre-
sponding system call, that enables one thread to obtain the
context of another thread. RCM 10 intercepts this call and
translates the context so that the target thread appears to be
executing natively istead of 1n the code cache. Context trans-
lation takes several steps, each bringing the code cache con-
text closer to the state 1t would contain natively. The first step
1s translating the program counter from the code cache to 1ts
corresponding application address. One option 1s to store a
mapping table for each fragment. RCM 10°s approach, to
save memory, 15 to re-create the fragment from application
code, keeping track of the original address of each instruction,
and then correlating the code cache address to the address
pointed at in the reconstruction at the same point 1n the frag-
ment. Since RCM 10°s cache consistency management
ensures that the original application code cannot have
changed since building a fragment, RCM 10 only needs to
store the starting address of a basic block, and the starting
addresses of each block making up a trace. RCM 10 then
rebuilds the fragment as though it were encountering new
code, making sure to store the original address of each
instruction. It this 1s a trace, RCM 10 rebuilds each constitu-
ent block. Finally, RCM 10 walks through the reproduction
and the code cache fragment 1n lockstep, until 1t reaches the
target point 1n the code cache fragment. The application
address pointed at by the corresponding istruction in the
reconstructed fragment 1s the program counter translation.
The second step 1s ensuring that the registers contain the
proper values.

Context translation can be limited to only controlled points
outside of the code cache, and points inside where a fault can
arise. In the absence of optimizations and other code trans-
formations, only inserted code for indirect branches cause
problems here (the load of the indirect branch target could
tail). In this case several registers must have their application
values restored to complete the translation.

RCM 10 does not currently restore register values in the
presence of optimizations. Full translation for RCM 10 1s
simpler than for systems that are interrupted at arbitrary times
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with events that cannot be delayed. These systems must be
built to roll back or forward to a clean state from any location,
not just at the few code transformation points of our base
system (without optimizations).

Any system that caches copies of application code must
ensure that each copy 1s consistent with the original version 1n
application memory. The original copy might change due to
dynamic modification of the code or de-allocation of
memory, €.g., the unmapping of a file containing the code,
such as a shared library. Unmapping of files 1s relatively
frequent 1 large Windows applications, which load and
unload shared libraries with surprising frequency. On most
architectures, software must 1ssue explicit requests to clear
the instruction cache when modifying code, facilitating the
tracking ol application code changes. In contrast, IA-32
keeps the instruction cache consistent in hardware, making
every write to memory a potential code modification. While
applications that dynamically modily code are rare, on Win-
dows the loader modifies code sections for rebinding and
rebasing (Windows shared libraries do not use position-inde-
pendent code). Furthermore, re-use of the same memory
region for repeated dynamic generation of code must be
treated as code modification. Finally, actual self-modifying
code 15 seen 1n a few applications, such as Adobe Premiere
and games like Doom.

Memory unmapping that affects code 1s nearly always
unloading of shared libraries, but any file unmap or heap
de-allocation can contain code. Unmapping 1s a relatively
simple problem to solve, as 1t, like 1nstruction cache consis-
tency on other architectures, involves explicit requests to the
kernel. RCM 10 need only watch for the system calls that
unmap files or free areas of the address space. On Linux, these
are munmap and mremap; on Windows, NtUnmapViewO1-
Section, NtFreeVirtualMemory, and NtFreeUserPhysi-
calPages. When RCM 10 see such a call, RCM 10 must flush
all fragments that contain pieces of code from that region.
RCM 10 use the same flushing scheme as for responding to
memory modification.

Unlike memory unmapping, the application does not need
to 1ssue an explicit request when writing to code. Therelfore,
RCM 10 must monitor all memory writes to detect those that
alfect code. This can be done by instrumenting each write or
by using hardware page protection. Page protection provides
better performance since there 1s no cost in the common case
ol no memory modifications, in contrast to the always-present
overhead of instrumentation.

RCM 10’s cache consistency invariant 1s this: to avoid
executing stale code, every application region that 1s repre-
sented 1n the code cache must either be read-only or have 1ts
code cache fragments sandboxed to check for modifications.
RCM 10 keeps an executable list of all memory regions that
have been marked read-only or sandboxed and are thus
allowed to be executed. The list 1s mnitially populated with
memory regions marked executable but not writable when
RCM 10 takes control. Both the Windows and Linux execut-
able formats mark code pages as read-only, so for the com-
mon case all code begins on our executable list. The list 1s
updated as regions are allocated and de-allocated through
system calls (RCM 10 does not track intra-process memory
allocations through calls like malloc).

When execution reaches a region not on the executable list,
the region 1s added, but 1f 1t 1s not already read-only, RCM 10
marks 1itread-only. If a read-only region 1s written to, RCM 10
traps the fault, flushes the code for that region from the code
cache, removes the region from the executable list, marks the
region as writable, and then re-executes the faulting write.
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For error transparency, RCM 10 must distinguish write
faults due to page protection changes from those that would
occur natively. When RCM 10 recerves a write fault targeting
an area of memory that the application thinks 1s writable, that
fault 1s guaranteed to belong to RCM 10, but all other faults 5
must be routed to the application. Additionally, RCM 10 must
intercept Windows” QueryVirtualMemory system call and
modily the information it returns to pretend that appropnate
areas are writable. I the application changes the protection on
a region RCM 10 has marked read-only, RCM 10 must update 10
its information so that a later write fault will properly go to the
application.

Memory modification also occurs with trampolines used
for nested function closures, which are often placed on the
stack. As the stack 1s unwound and re-wound, the same 15
address may be used for a different trampoline later in the
program. RCM 10 1nvalidates the first trampoline when 1t 1s
written to, whether by subsequent use of the stack for data or
generation of a later trampoline. Additionally, the Windows
loader directly modifies code in shared libraries for rebasing. 20
The loader also modifies the Import Address Table for rebind-
ing a shared library, and this table 1s often kept in the first page
of the code section. This means that modifications ofthe table
look like code modifications 11 the entire section 1s treated as
one region. It 1s difficult to determine whether a percerved 25
code modification 1s being performed by the loader or not
without knowing the internal data structures of the loader
itself.

Read-only code pages do not work when the writing
instruction and the target are on the same page (or same 30
region, ifregions are larger than a page). These situations may
involve actual self-moditying code (such as 1n Adobe Pre-
miere) or false sharing (writes to data near code, or generation
of code near existing code). Marking code pages as read-only
also fails when the code 1s on the Windows stack, for reasons 35
explained below.

To make forward progress when the writer and the target
are 1n the same region, RCM 10 marks the region as writable
and uses sandboxing. One strategy 1s for each fragment from
a writable region to verily only that 1ts own code 1s not stale, 40
by storing a copy of 1ts source application code. At the top of
the fragment a check 1s 1inserted comparing the current appli-
cation code with the stored copy, which must be done one byte
at a time—comparing a hash 1s not good enough as a code
modification could end up not changing the hash. If the code 45
copy 1s different, the fragment 1s exited and immediately
flushed. If the check passes, the body of the fragment is
executed, but with an added check after each memory write to
detect whether code later 1n the fragment 1s being modified. If
any of these checks fails, RCM 10 again exits the fragment 50
and immediately flushes 1t. In either flushing case, RCM 10
removes only the fragment in question from the cache. This
technique incurs a sizable space penalty for sandboxed frag-
ments, as they store a copy of the original application code
and instrumentation code at the beginning and after each 55
write. Even though IA-32 processors from the Pentium
onward correctly handle modifying the next instruction, Intel
strongly recommends executing a branch or serializing
instruction prior to executing newly modified code, but RCM
10 cannot rely on this. 60

Unlike UNIX operating systems, Windows does not sup-
port an alternate exception handling stack. If an exception
occurs while the stack pointer 1s pointing to imnvalid or unwrit-
able memory, the process 1s silently killed. Control does not
reach user mode at all, as the kernel kills the process when 1t 65
fails to store arguments for the exception dispatcher on the
user stack, and the application has no means of recovery.

12

Thus, RCM 10 cannot mark any stack region as read-only, as
a resulting write fault will kill the process. When RCM 10
adds a code region on the stack to the executable list, instead
of marking 1t read-only RCM 10 marks 1t for sandboxing. To
identify the stack, RCM 10 considers both the current stack
pointer and the thread’s nitial assigned stack, although the
stack pointer could change at any time, spelling disaster 11 it
later points to memory RCM 10 made read-only. This 1s a
pathological case, the intersection of two rare events: stack
pointer region changes and writable code regions. Future
work could address this by watching writes to the stack
pointer (optimizing checks for the common writes of stack
pushes and pops), which should have a relatively low over-
head.

Sandboxing may be a better general choice than making
pages read-only for cases of false sharing, where many writes
to data on the same page can be more expensive with page
protection than the cost of sandboxing the code, depending on
how frequently executed the code 1s.

For utilizing page protection, regions must be at least as
large as pages, though they can be smaller for sandboxing. If
regions are too large, a single code modification will flush
many fragments, which is expensive. On the other hand, small
regions create a longer executable list and potentially many
more protection system calls to mark code as read-only. Large
regions work well when code 1s not being modified, but small
regions are more tlexible when small pieces of scattered code
are being occasionally modified. When regions are frequently
modified, sandboxing may be best choice. Another consider-
ation 1s the pattern of code modification. If code modification
and subsequent execution are two separate phases, large
regions are best. But, 1f code 1s modified and immediately
executed, repeatedly, small regions are good for separating
the writer from the target and avoiding unnecessary tlushing.

RCM 10 uses an adaptive region granularity to fit regions to
the current pattern of code modification. RCM 10’s 1nitial
region definition 1s a maximal contiguous sequence of pages
that have equivalent protection attributes. Since nearly all
code regions are read-only to begin with and are never written
to, these large regions work well. On a write to a read-only
region containing code, RCM 10 splits that region into three
pieces: the page being written (which has i1ts fragments
flushed and 1s marked writable and removed from our execut-
able list), and the regions on either side of that page, which
stay read-only and executable. If the writing instruction 1s on
the same page as the target, RCM 10 marks the page as
seli-modifying. RCM 10’s executable list merges adjacent
regions with the same properties (the same protection privi-
leges, and whether self-moditying), resulting 1n an adaptive
split-and-merge strategy that maintains large regions where
little code 1s being modified and small regions 1n heavily
written-to areas of the address space.

RCM 10 could also mark a page as seli-modifying 11 1t 1s
written to more times than executed from. As mentioned in
the previous section, self-modifying code 1s the best choice
for a page primarily used for data that has a few pieces of
rarely-executed code on 1t.

Whatever region s1izes RCM 10 uses, RCM 10 must be able
to map a region to a list of fragments in the code cache
containing code from that region. Since RCM 10 elides
unconditional control transfers, even a basic block might
contain code from several widely separated regions.

Before mapping a region to fragments, a check that the
region actually contains code that has been executed saves
unnecessary work. Since RCM 10 must worry about code
being removed on any unmapping, many potential flushes are
only a data file being unmapped. RCM 10 tests for any over-
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lap between the unmap region and the list of executable
regions. Another optimization, for thread-private caches, 1s to
store a list of executed-from memory regions for each thread,
which can be quickly consulted to determinate whether a
thread needs to have any of 1ts fragments flushed.

Once these 1nitial region overlap checks indicate that there
are fragments to flush, RCM 10 must identify the fragments 1n
the target. region. RCM 10 stores a list of fragments with each
executable list region entry (for thread-private caches, with
the thread-private executable list entries). To save memory
RCM 10 embeds linked list pointers in the fragment data
structure 1tself and use 1t as the entry 1n the first region that a
fragment touches. Separate dedicated data structures called
MultiEntry are placed 1n the fragment list for each additional
region the fragment occupies, with all entries for a single
fragment chained together 1n a separate linked list that crosses
the region lists. These lists are set up when a basic block or a
trace 1s created, with each new page encountered, either
through eliding an unconditional or simply walking off the
edge of the previous page, triggering a potential addition of a
new region. With these per-region fragment lists, flushing
simply walks the list of fragments that must be flushed, and
ignores all other fragments. This ties flushing to the region
granularity on the executable list, as RCM 10 must flush an
entire region at a time. Still, this 1s an improvement over most
other systems which flush their entire caches on any cache
consistency event.

Even when using thread-private code caches, a memory
unmapping or code modification affects all threads” caches,
since they share the same address space. This 1s the one
operation on thread-private caches that requires synchroniza-
tion.

OnIA-32, to support all applications, RCM 10 must follow
sequential consistency. To do so requires immediate 1nvali-
dation of all affected fragments from the code cache of every
thread. Otherwise, stale code could be executed. Because any
code could be modified at any time, and there 1s no efficient
mechanism to 1dentify where a thread 1s inside the code cache
to the granularity of a fragment, the only way to do this 1s to
use a brute-force approach: suspend all threads and forcibly
move those that are executing inside of to-be-imnvalidated
code. Threads may have legitimate reasons to be executing
inside of a to-be-deleted region, as that region may contain
data that was written to instead of code (false sharing). No
thread can be resumed until the target code 1s not reachable
inside the code cache. If writes to code regions are frequent,
suspending all threads 1s too heavyweight of a solution.

RCM 10 distinguishes between code and data. In one
embodiment RCM 10 only needs to worry about consistency
of code. The key observation 1s that ensuring that no thread
enters a stale fragment can be separated from the actual
removal of the fragment from the cache. The first step can be
done atomically with respect to threads in the code cache by
unlinking the target fragments and removing them from the
indirect branch lookup table(s). The actual deletion of the
fragments can be delayed until a sate point when all threads 1n
question have left the code cache on their own. This prevents
any new execution of stale code, leaving only the problem of
handling a thread currently inside of a stale fragment. Here
RCM 10 turn to the relaxed consistency model. If the appli-
cation 1s properly synchronized, and every application syn-
chronization operation terminates 1ts containing fragment,
then RCM 10 can always let a thread finish executing a
to-be-deleted fragment without actually executing stale code
in a manner that could not occur natively. For example, 1f
thread A modifies some code, then thread B cannot legiti-
mately execute the newly modified code until it has synchro-
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nized with A, which requires exiting its current fragment. I
all stale fragments are unlinked, then B will not be able to
enter or re-enter any stale fragment after the synchronization
operation. This consistency model 1s essentially sequential
consistency when only considering data or only considering
code, but weak consistency when considering all of memory.
Code writes will never be seen out of order, and of course data
writes are not affected at all. The only re-ordering with
respect to sequential consistency that might occur 1s between
a data write and a code write.

This consistency relaxation matches the limitations of our
self-modifying sandboxing, which employs a check at the top
ol each fragment, rather than unlinking, to bound the stale
code window to a single fragment body. If RCM 10 could
identify all application synchronization operations and never
build fragments across them, neither the consistency model
relaxation nor the sandboxing method would break any appli-
cation in a way that could not occur natively. However, RCM
10 cannot efficiently i1dentily all possible synchronization
operations. For example, an implicitly atomic single-word
operation can be used as a condition variable, and RCM 10
cannot afford to break fragments on every memory access on
the chance that 1t might be a condition variable. Fortunately,
for synchronizing more than two threads, an explicitly atomic
operation that locks the memory bus (using the lock prefix or
the xchg instruction) 1s required. Thus, if RCM 10 breaks
fragments at such instructions, RCM 10 should be safe for all
but certain two-thread-only synchronization code.

The cases that do break the model are pathological, involv-
ing one thread waiting for another to write to code before
executing 1t. Given that Intel discourages executing modified
code without a branch or serializing instruction first, the
implementation can be relaxed further, only breaking frag-
ments on loops and system calls, and still catch the vast
majority of synchromization cases since synchronization 1s
usually separate enough from any transition to modified code
that it should be 1n a separate fragment. The only violating
case 1s a trace (since 1t must inline a conditional branch) that
reads a condition variable prior to jumping to some target
code, with another thread setting that condition variable after
modifying the code. Not building traces that bridge compiled
code modules and generated code regions further narrows the
window 1n which stale code can be executed.

To implement non-precise flushing that allows a delay
between the flush and the actual deletion of the flushed frag-
ments, RCM 10 must accomplish only one thing at the time of
the flush: prevent any new executions of the targeted frag-
ments. This requires unlinking and removing them from the
indirect branch lookup table. RCM 10 then adds the region
being tlushed to a queue of to-be-deleted fragments, for dele-
tion when the code cache 1s free of threads. With this unlink-
ing strategy, atomic unlinking 1s required even with thread-
private code caches. Our linking 1s designed to be a single
write, which can be made atomic by aligning 1t to not straddle
a cache line boundary, or by using the lock prefix. The hash-
table removal must also be safe to be done while another
thread 1s examining the table from the code cache, which may
incur a performance impact for thread-shared caches.

Even for the unlinking stage, RCM 10 must synchronize
with each thread. One synchronization model centers around
whether a thread might be reading or modifying linking infor-
mation, memory region information, or trace imnformation for
the fragments in question, or not. For the most part this boils
down to whether the thread 1s 1n the code cache or in RCM 10
code, but there are some exceptions, such as most system call
handlers, which consist of RCM 10 code but do not access
linking information.
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The thread that 1s performing the flush sets a flag to prevent
new threads from being created or old threads from dying and
then marches through the thread list, checking whether each
thread 1s accessing link information or not. The majority of
threads are in the code cache, and thus not accessing link
information, but if one 1s, the flusher must set a tlag and wait
tor the thread to reach a non-linking state. For thread-shared
caches, all threads must by synchronized with simultaneously
before acting on the target fragments, while thread-private
caches require only one thread at a time. Once the target
thread(s) are at a safe point, the flusher checks whether they
have any fragments in the flush region, and i1 so, 1t unlinks
them and removes them from the hashtable, adding them to a
queue of to-be-deleted fragments. As each thread 1n the code
cache (only one for thread-private, of course) exits, 1t checks
the queue and 11 1t 1s the last thread out performs the actual
deletion of the fragments. Thread-shared caches can use a
barrier preventing re-entry to bound the time until all threads
exi1t the cache, or periodically suspend all threads (with a low
frequency this techmque can perform well—it 1s when forced
to use 1t on every consistency event that suspension perior-
mance 1s problematic).

Other caching systems either do not support threads or use
the brute-force suspend-all-threads algorithm for any frag-
ment deletion. These systems often do not fully handle cache
consistency, and so only perform deletions on rarer cache
capacity events. Consistency events are much more common
in programs that use dynamically-generated code, and a more
efficient solution, like ours, 1s needed.

Cache consistency has a significant impact on general
cache management. Arbitrary fragments can be mnvalidated at
any time, leading to holes in the cache, which complicate
multi-fragment deletion. Deleting 1n batches 1s ordinarily
more ellicient, since a contiguous group can be deleted at
once, and 1 memory unmappings were the only type of con-
sistency event this would work well, as batch deletion groups
could be organized to match code regions. But memory modi-
fication events result 1n fine-graimned fragment invalidation,
and a fragment mvalidation that occurs 1n the middle of a
batch region requires either evicting the entire batch or split-
ting 1t up. The existence of numerous memory modification
events 1n modern, dynamic applications makes single-irag-
ment deletion the best choice for thread-private caches, for
which it can be efficiently performed.

Consistency holes 1n the code cache are often scattered,
causing fragmentation. If no capacity policy or fragmentation
solution 1s 1n place to fill 1n these holes rather than adding to
the cache, repeated cache consistency events can end up
causing unlimited growth of the code cache. The next discus-
s1on describes cache capacity management for RCM 10.

For executing a single application in 1solation, there may be
no reason to limit the code cache size. However, when execut-
ing many programs under RCM 10 simultaneously, memory
usage can become problematic. RCM 10 can reduce memory
usage by imposing a bound on the code cache size. Addition-
ally, cache consistency fragment invalidations can cause
unbounded cache growth 1n the absence of a fragmentation
solution. Of course, cache bounds come with a performance
cost, and one goal 1s to pick the bound with the best space and
time tradeodl. Two problems must be solved: how to set an
upper limit on the cache size, and how to choose which
fragments to evict when that limait 1s reached. Unlike a hard-
ware cache, a software code cache can be variable-sized. This
tflexibility makes 1t possible to tailor a different upper limit for
cach application, and for that limit to change as the applica-
tion moves through different phases.
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Many systems with a software code cache use a hardcoded
size limit, and when 1t 1s reached, the entire cache 1s flushed.
The limit 1s set generously, and 1t 1s assumed that 1t will rarely
be reached. This may work when executing a benchmark
suite, but when targeting disparate applications like desktop
programs, the value of a cache adaptively sized for the appli-
cation at hand 1s apparent. Different programs run vastly
different amounts of code, and a single program’s code cache
needs may change during 1ts execution.

Whatever limit 1s placed on the size of the code cache, a
policy 1s needed to policy, which allows it to treat the code
cache as a circular buffer and avoid any decide which frag-
ments to evict to make room for new fragments once the size
limit 1s reached. Hardware caches typically use a least-re-
cently-used (LRU) eviction policy, but even the minimal pro-
filing needed to calculate the LRU metric 1s too expensive to
use 1 soitware. RCM 10 uses a least-recently-created, or
first-in-first-out (FIFO), eviction profiling overhead from try-
ing to identily infrequently-used fragments.

FIG. 7 1llustrates RCM 10°s FIFO replacement policy. The
cache 1s depicted as a circular buffer 300 containing a set of
fragments (marked as either new or regenerated), with a new
fragment added at the current head (pointed to by pointer
302). FIG. 7 shows a new fragment 304 being added to cir-
cular butter 300.

To make room for a new fragment (e.g., new fragment 304)
when the cache 1s full, one or more contiguous fragments
(e.g., fragments 306 and 308) at the current point 1n the FIFO
are deleted. This requires single-fragment deletion, which
RCM 10 already must support for cache consistency. If un-
deletable fragments are encountered (for example, from trace
building), the current FIFO point skips over them and the
process repeats with a new target victim until enough con-
tiguous space 1s found for the fragment being added. If there
1s empty space (e.g., empty slot 310) after deleting fragments
to make room for a new fragment (due to differences in
fragment s1ze), that space will be used when the next fragment
1s added—that 1s, the FIFO pointer points at the start of the
empty space. By deleting adjacent fragments and moving in a
sequential, FIFO order, fragmentation of the cache from
capacity eviction 1s avoided.

Two other sources of cache fragmentation are deletion of
trace heads as each trace 1s built and cache consistency evic-
tions. To combat these types of fragmentation, RCM 10 uses
empty slot promotion. When a fragment 1s deleted from the
cache for a non-capacity reason, the resulting empty slot 1s
promoted to the front of the FIFO list and will be filled with
the next fragment added to the cache. To support empty slot
promotion RCM 10 must use a logical separation of the FIFO
from the actual cache address order. Logical separation 1s also
usetul for treating multiple memory allocations as a single
cache.

Independent of other factors, deleting groups of fragments
all at once for cache capacity has better performance than
single-fragment deletion. However, cache consistency events
on modern applications are frequent enough that only sup-
porting large deletions would empty the cache. Furthermore,
using single-fragment deletions for consistency thwarts any
batch flushing used for capacity, as batch flushing requires
groups of fragments to form single allocation and de-alloca-
tion units with no individual members deleted separately, and
any fragment may be invalidated at any time for consistency
reasons.

RCM 10 has a new scheme for automatically keeping the
code cache at an appropriate size for the current working set
of the application. In addition to removing requirements for
user mput to set cache sizes, the dynamically adjusted limait
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allows for applications with phased behavior that will not
work well with any hard coded limit. The method for deter-
mimng when to resize a cache could be applied to a simple
one-cache setup or to each cache i a generational cache
system. Generational caches move Irequently-used frag-
ments to successively later caches while earlier generations
are replaced by new code. While they may be useful for
separating valuable code by adding more layers than RCM
10’s basic blocks and traces, they require continuous profiling
that can be detrimental in a runtime system and do not solve
the working set sizing problem as they still require a sizing,
scheme for each cache.

FI1G. 8 1s a flow chart describing a process for automatically
changing the size of a cache, which 1s performed when adding
a new fragment to the cache (see 330 of FIG. 8). The auto-
matic resizing of the cache 1s based on measuring the ratio of
regenerated fragments (#regen of FIG. 8) to replaced frag-
ments (#replace of FIG. 8). RCM 10 begins with a small
cache. Belore the cache fills up (step 332), fragments are
added (step 344) without resizing. Once the cache fills up
(step 332), RCM 10 incorporates new fragments by removing
old fragments using an eviction policy (step 340). One
example of a suitable eviction policy 1s a first-in, first-out
policy that avoids expensive profiling and utilizes single-
fragment deletion. RCM 10 records every fragment that RCM
10 removes from the cache by setting a flag in the data
structure used for proactive linking (which contains informa-
tion on all fragments, whether currently 1n the cache or not)
and RCM 10 maintains the count of replaced fragments (#re-
place) by incrementing the count for each fragment removed
(step 342). When RCM 10 adds a new fragment (step 344 of
FIG. 8), RCM 10 checks to see whether 1t was previously 1n
the cache (step 346). If so, RCM 10 increments the count
(#regen) of regenerated fragments (step 348). FIG. 7 1llus-
trates the marking of fragments as new or regenerated.

If a significant portion of new fragments are regenerated,
the cache should be larger than it 1s. This 1s tested by deter-
mimng whether the ratio of #regen/#replace 1s greater than a
certain threshold R (step 336). If so, RCM 10 allows the cache
to be resized (step 338). Otherwise, the cache remains at its
present size. The checks are in RCM 10 code and incur no cost
while execution 1s 1n the code cache. As the working set
changes, RCM 10 will replace the old fragments with new
fragments.

In one embodiment, the determining of whether the ratio of
(#regen/#replace) 1s greater than a certain threshold (R) 1s
performed periodically.

Fifty 1s an example of a value to use for the replaced
fragment count (#replace). That 1s, 1n one embodiment RCM
10 will check the regenerated count (#regen) and the ratio
once every fifty fragments that are replaced in the cache.
Checking too frequently 1s too easily influenced by temporary
spikes, and too rarely 1s not reactive enough. One strategy 1s
to average things out a bit but not be too sluggish 1n resizing.
The goal 1s to 1dentily the proper cache size to hold the
working set of the application.

An additional 1dea 1s to shrink the cache when the working
set shrinks, which 1s much more difficult to detect than when
it grows. Size increases are driven by application requests,
while size decreases must be driven by RCM 10 via some type
of periodic interrupt in order to guarantee that the cache will
shrink for a now-1idle thread. Such interrupts are problematic
on Windows without either a dedicated RCM 10 thread or a
RCM 10 component that l1ves 1n kernel space. Explicit appli-
cation actions like unloading libraries that imply reductions
in code could also be used to drive cache shrinkage.
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Resizing the cache by allocating a larger region and re-
locating the existing one 1s expensive, as it requires updating
all control transiers that exit the cache (direct branches are
program-counter-relative on 1A-32). To provide more eifi-
cient and more tlexible cache scalability, the cache 1s divided
into units, each of which can be a different size. Asking for
more space allocates a new unit, leaving existing units alone.
Each unit 1s allocated directly from the operating system
using the mmap system call on Linux and NtAllocateVir-
tualMemory on Windows. Cache units are separate from
memory parceled out by the heap manager because of their
large size.

RCM 10 uses thread-private code caches, where each
thread has 1ts own private basic block cache and trace cache,
which are each composed of separate units. Since these units
are thread-private, no synchronization 1s required when
accessing them. Freed umits (e.g., on thread death) are either
placed on a free list for use by future threads or released back
to the operating system, according to a heuristic that keeps the
free list at a size proportional to the number of threads (RCM
10 keeps at most max (5, num_threads/4) free units at any one
time).

Adding a level of indirection between the list of fragments
in the cache and the actual layout of the cache units 1s sug-
gested for keeping the cache manageable. RCM 10 has two
methods of iterating over fragments in the cache, one by
physical order within each cache unit and the other by the
logical order used for cache management (FIFO order). This
separate logical list uses its level of indirection to build a
higher abstraction than cache units and physical placements,
tacilitating the use of multiple cache units with different sizes
to represent a single logical code cache, as well as allowing
cache management orders different from the strict cache
address order (e.g., empty slot promotion).

—

T'he physical ordering 1s only required for freeing contigu-
ous space 1n the cache. A four-byte header 220 at the top of
cach fragment slot 1s used to point to the Fragment data
structure corresponding to the fragment slot. To walk forward
on the physical list, the total fragment size 1s added to the
current header location to produce the location of the next
header. For the logical list, next and previous pointers in the
Fragment data structure are used to chain fragments mto a
double-linked list. Each empty slot in the cache (these occur
when a fragment 1s deleted from the middle of the cache) lives
on the logical list as an EmptySlot structure, pointed to by the
empty slot’s cache header.

Once an exit from a basic block 1s linked, the correspond-
ing exit stub 1s not needed again unless the exit i1s later
unlinked. By locating the exit stubs 1n a separate cache from
the basic block body, RCM 10 can delete and re-create exit
stubs on demand as they are needed. This both compacts the
cache, reducing the working set size of the program, and
reduces overall memory usage by deleting stubs no longer
needed.

By allocating the direct exits stubs 1n a separate location,
RCM 10 can compact the rest of the cache. Furthermore, once
a direct exit 1s linked up to 1ts target, the stub can be deleted,
since 1t 1s not needed. If that exit becomes unlinked later, a
new stub can be allocated on demand. The stub needs to be
kept around for certain cases, such as incrementing a target
trace head counter without leaving the cache or for certain
types of profiling. RCM 10 does use stubs to increment trace
head counters, but can still delete about half of all direct exat
stubs. Indirect stubs are always needed and can never be
deleted. They could be separated, but since they are much
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rarer the working set compaction would be less, and, more
importantly, the critical indirect branch lookup performance
might suifer.

FIGS. 9A and 9B 1illustrate a fragment 400 1n both an
unlinked state (FIG. 9A) and a linked state (FIG. 9A). Exat
stubs 407 and 408 are located 1n a separate location from the
fragment 400. Fragment 400 contains two direct exits 401 and
402. In the unlinked state (FIG. 9A) exit 401 targets exit stub
407 while exit 402 targets exit stub 408. In the linked state
(FIG. 9B), exit 401 targets another fragment 4035 while exit
402 targets a different fragment 406. In the linked state the
separate exit stubs 407 and 408 are freed and do not occupy
space.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
1s not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible 1 light of the above teaching. The described
embodiments were chosen 1n order to best explain the prin-
ciples of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention 1n
various embodiments and with various modifications as are
suited to the particular use contemplated. It 1s intended that
the scope of the invention be defined by the claims appended
hereto.

We claim:

1. A method for automatically changing the size of a cache,
comprising:

removing old entries in said cache using an eviction policy;

iserting new entries 1n said cache;

maintaiming information about regenerated entries and

replaced entries; and

resizing said cache based on a function of said information

about regenerated entries and replaced entries; and
wherein:
said cache 1s a software code cache:
said method further includes recording old entries
removed from said cache;
said recording old entries includes setting a flag 1n a data
structure which contains information on entries;

20

said old entries and said new entries are code fragments;

said eviction policy 1s a first-1n, first out policy;

said removing old entries 1s performed after said cache 1s
full;

saild maintaining information includes determining a
rat1o of regenerated entries to replaced entries; and

said resizing said cache includes resizing said cache 1f
said ratio satisfies a certain threshold.

2. An apparatus capable of automatically changing the size

10 of a cache, comprising:
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one or more storage devices;
one or more communication interfaces; and
one or more processors 1 communication with said one or
more storage devices and said one or more communica-
tion 1interfaces, said one or more processors programmed
to perform a method comprising:
receiving a new entry to add to a software cache,
adding said new entry without evicting entries 1f said
software cache 1s not full,
removing an old entry and adding said new entry 11 said
software cache 1s full,
maintaining a count of removed entries,
determining whether said new entry has previously been
1n said software cache,
incrementing a count of regenerated entries 11 said new
entry has previously been 1n said software cache,

determining a ratio of regenerated entries to replaced
entries, and

resizing said cache 1f said ratio 1s beyond a certain

threshold.
3. An apparatus according to claim 2, wherein:

said software cache 1s a soltware code cache.

4. An apparatus according to claim 3, wherein:

said new entry and said old entry are code fragments.
5. An apparatus according to claim 2, wherein:

said determining a ratio and resizing 1s performed after a
predetermined number of entries have been replaced.
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