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ABSTRACT

A system that reduces the size of a design data set. During this

design data set reduction operation, the system computes a
decision boundary which separates a first group of data pat-

terns 1n a training data set from a second group of data pat-
terns 1n the training data set. For each data pattern in the
training data set, the system determines 11 removing the data
pattern from the training data set substantially affects the

resulting decision boundary. If so, the system marks the data
pattern as a key pattern. The system then removes all data
patterns that are not marked as key patterns to produce a
reduced training data set which represents the decision

boundary.
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REDUCING THE SIZE OF A TRAINING SET
FOR CLASSIFICATION

RELATED APPLICATION

This application 1s related to a pending U.S. patent appli-
cation, entitled “Method and Apparatus for Classifying Data
Using R-Functions,” by inventors Anton A. Bougaev and
Aleksey M. Urmanov, having Ser. No. 11/387,253 and a filing
date of 22 Mar. 2006.

BACKGROUND

1. Field of the Invention

The present invention relates to techniques for automati-
cally classifying data. More specifically, the present invention
relates to a method and apparatus that reduces the size of a
training set for a classification application without substan-
tially affecting the resultant decision boundary.

2. Related Art

Automated systems for classification-type pattern recog-
nition applications, such as system fault identification and
computer network intrusion (or demial of service attack)
detection, operate by dividing mput data mnto more readily
processable subsets. More specifically, such data processing,
techniques typically employ classification-type pattern rec-
ognition mechanisms to divide the available data 1nto two
(and sometimes multiple) subsets.

Unfortunately, the computational time required to classity
input data using pattern recognition techniques, such as
k-Nearest Neighbor (kKNN) classifiers, Radial Basis Function
(RBF) networks, Least-Squares Support Vector Machines
(LSSVM), Multivariate State Estimation Techmiques
(MSET), and other techniques, increases linearly (or qua-
dratically for some techniques) with the number of training
patterns. This computational cost limits the applicability of
classification-type pattern recognition for online diagnostics
and for offline mining of large (from 10,000 patterns and up)
databases.

One techmique for reducing the computational time
required for input data classification 1s to reduce the size of
the training set. However, traiming patterns cannot be arbi-
trarily eliminated. In particular, 11 the training patterns are not
pruned judiciously, bias and inconsistency are introduced in
subsequent classification analyses.

The “condensed nearest neighbor” rule 1s used by some
systems to reduce the size of a traiming set. For example, a
system can start with a one-pattern reduced set and sequen-
tially examine the other patterns 1n the traiming set, discarding,
patterns that are correctly classified by the current reduced set
and adding patterns that are classified incorrectly to the
reduced set. The system then 1terates through the discarded
patterns until all of the remaining discarded patterns are clas-
sified correctly by the reduced tramning set. Unfortunately,
this technique 1s not “decision-boundary consistent” and does
not always find a minimal training set.

One decision-boundary-consistent technique, called the
“Voronoi-editing technique,” uses Voronoi diagrams. A
Voronoi diagram partitions the input space into regions that
are the loc1 of points 1n space closer to each data point than to
any other data point. The Voronoi-editing technique main-
tains exactly the original decision boundary of the nearest
neighbor decision rule; however, the reduced set produced by
the technique 1s not minimal. Furthermore, this technique
requires O(n??) operations, which makes it impractical for
dimensions higher than four.
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An improvement over the Voronoi-editing techmque 1s the
“Gabriel-graph-condensing technique,” which constructs the
Gabriel graph (a set of edges joining pairs of points that form
the diameter of an empty sphere) of the training set. This
technique is significantly faster and only requires O(dn”)
operations. However, the Gabriel-graph-condensing tech-
nique does not preserve the decision boundary.

Another iterative training set reduction technique applies a
deletion rule that identifies patterns to be removed, removes
the identified patterns, and applies the rule again to the
reduced set until no more patterns can be removed. More
specifically, the deletion rule can be stated as follow: for each
point X, 1if the number of other points that classity x correctly
1s greater than the number of points classified by x, then
discard point x. Unfortunately, this technique does not pre-
serve the decision boundary and may require excessively long
execution times due to 1ts iterative nature.

The above techniques and other ad-hoc techniques suffer
from one of the following deficiencies: (1) prohibitively long
running time (third order and higher order polynomaial in the
number and 1n the dimension of training patterns); (2) imncon-
sistency of the resultant decision boundary obtained on the
reduced set (1.e. the decision boundary 1s different than would
have been obtained with the complete set of training pat-
terns); and (3) suboptimal size for the reduced training set (1.¢.
there exists a smaller subset that results 1n the same decision
boundary as obtained with the complete set of training pat-
terns ).

Hence, what 1s needed 1s a method and an apparatus for
reducing the size of a training set without the above-described
problems.

SUMMARY

One embodiment of the present invention provides a sys-
tem that reduces the size of a design data set. During this
design data set reduction operation, the system computes a
decision boundary which separates a first group of data pat-
terns 1n a training data set from a second group of data pat-
terns 1n the training data set. For each data pattern in the
training data set, the system determines 11 removing the data
pattern from the training data set substantially affects the
resulting decision boundary. If so, the system marks the data
pattern as a key pattern. The system then removes all data
patterns that are not marked as key patterns to produce a
reduced training data set which represents the decision
boundary.

In a variation on this embodiment, while determining 11
removing the data pattern substantially affects the decision
boundary, the system: (1) computes a first Euclidian distance
from the data pattern to the decision boundary; (2) removes
the data pattern from the training data set; (3) computes a new
decision boundary from the data set without the data pattern;
and (4) computes a second Euclidian distance from the data
pattern to the new decision boundary. If the absolute value of
the difference between the second Euclidian distance and the
first Euclidian distance 1s greater than a pre-specified toler-
ance, the system marks the data pattern as a key pattern.

In a further variation, the pre-specified tolerance 1s zero, so
that 1f the second Fuclidian distance 1s not equal to the first
Euclidian distance, the data pattern 1s marked as a key pattern.

In a vanation on this embodiment, while computing the
new decision boundary, for each data pattern 1n the first group
of data patterns, the system: (1) selects a data pattern from the
first group of data patterns; (2) for each data pattern in the
second group of data patterns, generates a separating bound-
ary that separates the data pattern in the first group of data
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patterns from the data pattern in the second group of data
patterns; and (3) generates a separating bundle which sepa-
rates the data pattern 1n the first group of data patterns from all
data patterns in the second group of data patterns. The system
then generates the new decision boundary which separates all
data patterns in the first group of data patterns from all data
patterns in the second group of data patterns using the sepa-
rating bundles.

In a variation on this embodiment, the system uses the
reduced data set to classily a previously unseen pattern. In
doing so, the system determines the region of the input space
in which the previously unseen pattern 1s located. If the pre-
viously unseen pattern 1s located within the region which
corresponds to the first group of data patterns, the system
classifies the previously unseen data pattern as belonging to
the first group of data patterns. Otherwise, the system classi-
fies the previously unseen data pattern as belonging to the
second group of data patterns.

In a vanation on this embodiment, the system uses R-func-
tions to compute a decision boundary which 1s used to classify
data patterns. Note that an R-function 1s a function whose sign
1s determined by the signs of its arguments.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents a flow chart illustrating the process of
reducing the size of a traiming set 1 accordance with an
embodiment of the present invention.

FIG. 2 presents a flow chart illustrating the process of
turther reducing the size of a training set 1n accordance with
an embodiment of the present invention.

FIG. 3 illustrates some typically two-dimensional separat-
ing primitives 1 accordance with an embodiment of the
present invention.

FIG. 4A illustrates the process of constructing a data clas-
sifier using a linear separating primitive in accordance with an
embodiment of the present invention.

FIG. 4B 1llustrates the process of constructing a data clas-
sifler using a circular separating primitive 1n accordance with
an embodiment of the present invention.

FIG. 5A presents a flowchart illustrating the process of
constructing a classifier that distinguishes between the class-
one and class-two data points 1n accordance with an embodi-
ment of the present invention.

FIG. 5B presents a flowchart illustrating the process of
producing a point-to-class separating boundary 1n accordance
with an embodiment of the present invention.

FIG. 5C presents a flowchart illustrating the process of
producing a class-to-class separating boundary in accordance
with an embodiment of the present invention.

Table 1 presents a list of separating primitives 1n accor-
dance with an embodiment of the present invention.

Table 2 presents a list of R-cloud classifier decision making,
options 1n accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled in the art to make and use the invention, and 1s
provided 1n the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled 1n the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
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4

imnvention 1s not limited to the embodiments shown, but 1s to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described 1n this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. This
includes, but 1s not limited to, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs) and DVDs (digital versatile discs or digital video
discs).

Overview

One embodiment of the present invention provides a tech-
nique for reducing the amount of computation required for
two-group pattern classification of input data. This input data
can 1nclude data received by automated systems for various
applications, such as for hardware and software fault detec-
tion and 1solation (FDI) computer systems, or for data gener-
ated by life-sciences studies (1.e. drug trials, etc.).

In one embodiment of the present invention, a “key-pat-
tern-extraction” (KPE) techmque reduces the computation
time required for two-group pattern classification of input
data by reducing the size of a training data set without sub-
stantially affecting the decision boundary. In one embodi-
ment of the present invention, the key-pattern-extraction
technique: (1) takes advantage of the R-function based rep-
resentation (defined below) of a decision boundary; which
permits the evaluation of the shortest distance from any point
to the decision boundary; (2) requires O(dn’) operations,
which 1s significantly faster than conventional decision-
boundary-consistent techniques for dimensions greater than
three; (3) preserves the decision boundary of the region of
interest; and (4) allows for further reduction of the training set
in the cases where an admissible decision boundary change
(via a user-specified tolerance) 1s allowed.

In one embodiment of the present invention, the use of this
technique results 1n earlier detection of component degrada-
tion and better avoidance of system failures, which 1s crucial
for achieving higher availability of computer systems.

Training Set Reduction

In a two-group pattern classification application, C1, C2,
and D={C1, C2} denote the collection of data patterns in R,
where d=1, that belong to class (group) 1, the collection of
data patterns in R“ that belong to class (group) 2, and the
collection of all data patterns in the traiming data set, respec-
tively. A non-parametric pattern classifier uses training set D,
which comprises n data patterns of both classes, to assign new
unknown-class patterns into one of the two classes based on
the decision rule that the pattern classifier implements.

For example, a two-group pattern classification problem
can involve miming a large database of telemetry signals from
a population of servers that either sutfiered a particular failure
mechanism (class 1), or did not suffer the particular failure
mechanism (class 2). If a pattern recognition technique can
successiully classify the data into class 1 versus class 2 (1.e.
the “failed” versus “not failed” categories), then the trained
classification mechanism can be used to processes telemetry
data from the field. This process flags servers that are consid-
ered at elevated risk of failure.

All known types of non-parametric classifiers require O(n)
to O(n®) operations. Such a computation complexity limits
their usage for applications mvolving online diagnostics and
for applications involving offline mining of large databases.
Theretore, the goal of a training set reduction technique 1s to
reduce the traiming data set by deleting patterns that are not
required for the decision-making process. The prunming of data
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patterns 1s 1deally done judiciously so that the reduced train-
ing set preserves exactly or isignificantly changes the origi-
nal decision boundary of the classifier.

The Key-Patterns-Extraction technique exploits an
R-function-based representation of the classifier’s decision
boundary as described below. FIG. 1 presents a flow chart
illustrating the process of reducing the size of a training set 1n
accordance with an embodiment of the present invention. The
process begins when the system computes the original deci-
sion boundary using the full training set D (step 102). For
cach data pattern X in training set D, the system: (1) computes
the Euclidian distance, D1, to the original decision boundary
(step 104); (2) computes a new decision boundary using the
training set without data pattern X, represented as D\X (step
106); (3) computes the Euclidian distance, D2, to the new
decision boundary (step 108); and (4) 1t D1=D2, the system
marks data pattern X as a “key pattern” (step 110 and 112).
After 1terating through all data patterns, the system removes
all data patterns not marked as key patterns (step 114). Note
that this technique requires O(dn’) operations and exactly
preserves the original decision boundary of the classifier in
the region of interest.

In the cases where an allowable level of decision-boundary
change 1s specified, the Key-Patterns-Extraction technique
reduces the size of the training set even further.

FIG. 2 presents a tflow chart illustrating the process of
turther reducing the size of a training set 1n accordance with
an embodiment of the present invention. The process begins
when the system computes the original decision boundary
using the full training set D (step 202). For each data pattern
X 1n training set D, the system: (1) computes the Euclidian
distance, D1, to the original decision boundary (step 204); (2)
computes a new decision boundary using the training set
without data pattern X, represented as D\X (step 206); (3)
computes the Euclidian distance, D2, to the new decision
boundary (step 208); and (4) if abs(D1-D2)>tol, the system
marks data pattern X as a “key pattern” (step 210 and 212).
After 1terating through all data patterns, the system removes
all data patterns not marked as key patterns (step 214).

In this embodiment, the reduced training set changes the
decision boundary locally by no more than the user-specified
tolerance value, tol. In addition, for small values of the toler-
ance, the new decision boundary typically differs from the
original decision boundary in the region outside of the convex
hull of the training set, which 1s usually not of interest for
classification-type pattern recognition problems (the data
outside of the convex hull of the training set has minimal, 1f
any, influence on the decision boundary).

In the following sections of this disclosure, we provide a
more-detailed description of the general pattern classification
operations performed by one embodiment of the present
invention.

Pattern Recognition and Pattern Classification

Pattern recognition 1s a commonly performed task 1n engi-
neering systems. The problem of pattern recognition 1s to
assign (or classity) objects into categories. Typically, similar
objects fall into the same category. However, 1t 1s not uncom-
mon that objects 1n the same category may vary widely, while
objects 1n different categories may be very similar. The prob-
lem of two-class pattern recognition classifies mnput patterns
into only two categories (or classes). A typical example of a
two-class pattern recognition problem 1s to distinguish
between good and faulty components for fault-detection and
isolation (FDI) applications. Another example 1s to distin-
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guish between normal and runaway states of software pro-
cesses using various software metrics 1n software aging and
rejuvenation.

LetX={X,,X,,...,X | bethesetof features or parameters
describing objects as d-dimensional vectors x=[x,, X, . . .,
x” in R? and let D={x,, X,, . . . , X, }, where X=X,
Xojs « s Xz “in R, be the design data set of input data points.

Each data point 1n the design data set has a class label asso-

ciated with it, for example, :>{J,.(C):[:5{l j(c),, ij(cjj . 3X@-(Q]sz

where C&{1, 2} is a class label for two classes. When class
labels are unknown in the design set, the problem becomes an
unsupervised pattern recognition problem and 1s dealt with by
using clustering techniques.

In one embodiment of the present invention, the class
labels are known for the design data set. In this embodiment,
a decision function based on the design (training) data set 1s
found which distinguishes representatives of one class from
the representatives of the other class. The computed decision
function 1s then used to classity previously unseen patterns.
Note that the process of automated labeling of previously
unseen patterns 1s referred to as pattern classification.

R-Function-Based Representation of Geometrical Objects

A real-valued function f(x,, X,, . . ., X,) whose sign 1s
completely determined by the signs of 1ts arguments x; (1.e.
the function changes 1ts sign only when its arguments change
their signs) 1s called an R-function. The sign of an R-function
can be considered as a logical property. Negative values can
be interpreted as a logical false, and positive values can be
interpreted as alogical true. R-functions can be evaluated, can
be differentiated, and have other useful properties. One appli-
cation of R-functions 1s to represent geometrical objects 1n
Euclidean space R”, which 1s a generalization of 2-dimen-
sional and 3-dimensional spaces for a coordinate system with
n dimensions. R-functions can represent any geometrical
object S in R? by equation f(x)=0 and in equality f(x)=0,
wherein F(x) is a specified number-of-times continuously
differentiable function that satisfies (x)=0 and f(x)=0 only
for the points belonging to S. Note that f(x) is written as a
single analytical expression. The set of points 1n Euclidean
space R in which function f(x), where x=(X,, X,, . . . , X,,),
equals zero 1s called the boundary of the geometrical object
described by equation F(x)=0. The set of all points in R in
which f(x) i1s non-negative is called the region described by
inequality f(x)=0.

Separating Primitives and Point-to-Point Separating Bound-
ary

n(X; u, v) 1s a separating primitive, which 1s a real-valued
function of one vector-variable x€R?, and two vector-param-
eters U=R? and v&R%. All x, u, and v are points in d-dimen-
sional space R?. A separating primitive divides the d-dimen-
sional space R? into two subspaces or regions, one containing
point u and the other containing point v. Thus, the separating
primitive, defined on two points u and v, separates these two
points. Generally, a separating primitive can be regarded as a
decision boundary for a pair of points from two classes. Note
that p(x; u, v)>0 for all x 1n the subspace contaiming u, and
P(X; u, v)<0 for all x in the subspace containing v. Points X 1n
which p(x; u, v)=0 define a point-to-point separating bound-
ary that separates u and v.

There are many choices for separating primitives. FIG. 3
illustrates some typically two-dimensional separating primi-
tives 1n accordance with an embodiment of the present inven-
tion. In FIG. 3, the small filled circle 302 is denoted as point
u=[u,,...,u,", whichis a class-one data point, and the filled
triangle 304 is denoted as point v=[v,, ..., v]?, which is a
class-two data point. The equations defining these separating
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primitives for the general d-dimensional case are listed in
Table 1. Note that an d-dimensional spherical primitive
becomes a circle 306, and an d-dimensional linear primitive
becomes a straight line 308 in the two-dimensional space as
illustrated 1n FIG. 3. In Table 1, d(u, v) denotes the Fuclidian
distance between points u and v 1n the d-dimensional space
R? wherein points u and v are separated by a multidimen-
sional separating primitive given by the equation p(x; u, v)=0.

Point-to-Class Separating Boundary

A point-to-class separating boundary separates a single
point of class-one from all the class-two points in the training,
set D. FIG. 4A 1llustrates the process of constructing a data
classifier using a linear separating primitive 1n accordance
with an embodiment of the present invention. Similarly, FIG.
4B 1llustrates the process of constructing a data classifier
using a circular separating primitive in accordance with an
embodiment of the present invention. Note that the class-one
and class-two data points are represented by circles and tri-
angles respectively.

Consider one of the class-one data points which 1s denoted
as u. This point 1s shown as a filled circle 402 1n the middle
plot in FIG. 4A 1n the case of the linear separating primitive,
and a filled circle 412 1n the middle plot in FIG. 4B 1n the case
of the circular separating primitive. Taking each of the class-
two data points 1n the set xj(z),jZI ...k, shown as triangles
in FIGS. 4A and 4B, and constructing a separating primitive
p(*; u, x,?) for each pair of {u, x,*’}, we obtain k'*’ point-
to-point separating boundaries (shown as dashed lines 1n the
middle plots 1n FIGS. 4A and 4B), wherein each of the point-
to-point separating boundaries separates u from the corre-
sponding xj(z). Note that a point-to-point separating boundary
defined by separating primitive p(*; u, xj(z)) separates u from
Xj(z) but may or may not separate u from some other class-two
data points (i.e., x,'), where i=). For example, a linear sepa-
rating boundary 404 and a circular separating boundary 414
are shown as a solid line and a solid circle 1n the leftmost plots
in FIGS. 4A and 4B, respectively. Note that separating bound-
aries 404 and 414 separate class-one data point u from class-
two data point v, respectively.

All k® point-to-point separating boundaries are then com-
bined 1n a manner that the resulting separating boundary
separates u from all the class-two points in the training set D,
which 1s referred to as a point-to-class separating boundary.
Such a point-to-class separating boundary 1s realized as the
intersection or conjunction of the areas formed by all kK
equations p(*; U, X;»,)>0, 1.e., all the areas that include u. This
point-to-class separating boundary 1s shown in the middle
plotin FIG. 4 A as solid curved line 406 and in the middle plot
in FIG. 4B as solid circle 416. In one embodiment of the
present mnvention, the intersection of the areas 1s obtained by
using the R-function. Note that the R-function operation on
these areas mimics the logical conjunction of sets, which 1s be
referred to as R-conjunction for simplicity. Mathematically,
the point-to-class separating boundary 1s expressed as:

DO =M ), j=1 .. K, (Eq. 1)

wherein the symbol Adenotes the R-conjunction operation.

Class-to-Class Separating Boundary (Classifier)

By constructing point-to-class separating boundaries for
each class-one point in training set D, x,*, i=1 . . . 1", and
combining all 1) separating boundaries, a class-to-class
separating boundary 1s generated which separates all class-
one data points from all class-two data points 1n the design
data set D={x ", xj(z)}. This class-to-class separating bound-
ary 1s shown as solid curved lines 408 and 418 1n the rightmost
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plots 1n FIGS. 4A and 4B, respectively. Note that class-to-
class separating boundaries 408 and 418 divide each of the
2-dimensional spaces mto two domains, wherein domains
410 and 420 contains exclusively class-one data points. We
refer to these domains associated with the class-one data
point as R-clouds for simplicity.

In one embodiment of the present invention, an R-cloud
that represents a multi-dimensional classification domain of
the class-one data point 1s obtained using the R-function.
Note that each of the point-to-class separating boundaries
b™M(e; x, 1), 1=1 .. .1 divides a multi-dimensional space into
two subspaces, wherein one of the subspaces 1s a class-one
subspace. The R-function performs a logical disjunction
operation on all the class-one subspaces which are defined by
an inequality expression b‘"(+; x,!')=0, i=1 . . . 1. The
R-function operation on these subspaces 1s referred to as an
R-conjunction for simplicity.

Note that there are two symmetric class-to-class separating
boundary construction processes, one lor class-one data
points and one for class-two data points. Mathematically, the
two processes using R-function can be expressed as:

R(1)(.):Vl_b<1)(.;%(1):\/1_@‘)(.;51_(1)}xj@))? and

(Eq. 2a)
R@)(.):ij@)(.;xj(z)):Vinp(.;xj@)sz_(l>):
fori=1...1%, =1 ...k,

(Eq. 2b)

wherein the symbol Vdenotes the R-disjunction operation,
and the symbol A denotes the R-conjunction operation. The
main teature ot the resultant analytical representations R ,(*)
and R®(*) is that R"(x,1)>0 for all points belonging to
class-one in the design data set, and R (x,*)>0 for all the
points belonging to class-two in the design set. R%(¢)>0 and
R®(¢)>0 then define two spaces in which data points contain
within the spaces will be classified as class-one and class-two
data points, respectively.

Process of Constructing the Classifier

FIG. 5A presents a flowchart illustrating the process of
constructing a classifier that distinguishes between the class-
one and class-two data points 1n accordance with an embodi-
ment of the present invention.

The process begins with recerving an mput data set, which
includes class-one data points and class-two data points (step
500). In one embodiment of the present invention, data points
in the mput data set are registered and normalized prior to the
reception of the data set. Also note that each data points 1n the
input data set have been labeled as either class-one or class-
two.

The process then selects one of the commonly used sepa-
rating primitives, for example, from the list 1n Table 1 (step
502).

Next, for a class-one data point 1n the data set, the process
recursively chooses each of the class-two data points, and
uses the selected separating primitive to produce a set of
point-to-point separating boundaries, such that each of the
point-to-point separating boundary separates the class-one
data point from a different class-two data point (step 504).

The process next combines the set of point-to-point sepa-
rating boundaries from step 504 to produce a point-to-class
separating boundary that separates the class-one data point
from all of the class-two data points 1n the data set (step 506).

FIG. 3B presents a flowchart illustrating the process of
producing a point-to-class separating boundary in accordance
with an embodiment of the present invention. Specifically, the
process first computes the intersection of a set of subspaces
defined by the set of point-to-point separating boundaries,
wherein each subspace 1n the set of subspaces contains the




US 7,478,075 B2

9

class-one data point (step 520). Mathematically, each sub-
space 1n the set of subspaces satisfied the mmequality p(X; u,
v)>0 for all point x 1n the subspace containing the class-one
data point u, wheremn p(x; u, v) 1s the selected separating
primitive, and v 1s a class-two data point.

Note that the process computes the intersection of the
subspaces using an R-function, wherein the R-function per-
forms a logical conjunction (AND) operation on the set of
point-to-point separating boundaries to produce the point-to-
class separating boundary. Next, the process constructs the
point-to-class separating boundary from the boundary of the
intersection of the set of subspaces (step 522).

Referring back to FIG. SA, the process repeats steps 504
and 506 for all class-one data points and produces a set of
point-to-class separating boundaries for each of the class-one
data points.

Finally, the process combines the set ol point-to-class sepa-
rating boundaries to produce a class-to-class separating
boundary, 1.¢., the classifier that separates all of the class-one
data points from all of the class-two data points in the data set
(step 508).

FIG. 5C presents a flowchart illustrating the process of
producing a class-to-class separating boundary in accordance
with an embodiment o the present invention. Specifically, the
process first computes the union of a set of subspaces defined
by the point-to-class separating boundaries, wherein each
subspace 1n the set of subspaces contains a selected class-one
data point (step 530).

Note that the process computes the union of the set of
subspaces using an R-function, wherein the R-function per-
forms a logical disjunction (OR) operation on the set of point-
to-class separating boundaries to produce the class-to-class
separating boundary. Next, the process constructs the class-
to-class separating boundary from the boundary of the union
of the set of subspaces (step 532).

Mathematically, the class-to-class separating boundary 1s
defined 1n an d-dimensional space by an equation R(x)=0,
wherein x 1s an d-dimensional vector-variable, and R(x) 1s
defined in [Eq. 1]. Note that R(x*”)>0 for all class-one data
points x'* in the data set, while R(x‘*)<0 for all class-two
data points x'* in the data set.

Using the Classifier for Pattern Classification

In one embodiment of the present invention, the data points
used for constructing the class-to-class classifier can be con-
sidered as a group of training patterns for a pattern classifi-
cation system. When the class-to-class classifier 1s con-
structed from these train patterns, 1t can be used to classily
new, previously unseen patterns. As these new, previously
unseen patterns represented by vector-variable xeR? become
available, the following procedure 1s performed to assign
proper class labels to these new patterns. Specifically, ifa new
pattern x is inside R-cloud R™"”’ (i.e. R‘™W(x)>0) and is outside
of R-cloud R™® (i.e., R™®(x)<0), then x is labeled as a class-
one data pattern (1.e. X belongs to class-one). If x 1s outside of
R™ (i.e. R™M(x)<0), and inside of R (i.e., R®(x)>0), then x
1s labeled as a class-two data pattern.

Note that there are two more possibilities. One 1s a situation
where x is inside both R-clouds (R‘"’(x)>0 and R®(x)>0),
which can occur only when there 1s an overlap between the
two R-clouds R“Y and R®. In this case, no label can be
assigned to new pattern x and 1t should be rejected (1.¢., weak
rejection). Such situations occur when the underlying class-
generating distributions naturally overlap. For applications
whichrejection 1s undesirable, a classification decision can be
made by computing the distances from data point x to the
boundaries of each of the two overlapping R-clouds, and
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assigning the label of the R-cloud for which the computed
distance 1s larger. The rationale behind this rule for overlap-
ping R-clouds 1s that x 1s deeper 1mnside the R-cloud 1n which
the distance from x to the boundary of that R-cloud 1s the
larger one.

The other possibility 1s a situation where a new data pattern
x 1s outside of both R-clouds (R™’(x)<0 and R*(x)<0), i.e. X
does not belong to either of the two classes. In such a case, the
data pattern 1s also rejected because the pattern 1s not close to
either class (1.e., strong rejection). All four pattern classifica-
tion situations described above are summarized in Table 2.

TABL.

L1l

1

Separating Primitives

Linear p(x;u, v, a)=n' (v+u)y2-an-x),n=u-v)|u-v|

Spherical p.(X;u, v, a) = ad(v, u) - d(u, x)

Parabolic p,(X; 0, v, a) = d~t(u, vi(v-wl{au + (1 - a)v - x) -
d(x, u)

Hyperbolic  py(x;u, v, @) =d(x, u) - d(x, v) — ad(u, v)

Elliptic pP.(X;u, v, (&, P)) =(1 —a)d(u, v) +d{u,u - p(v -u)) -

d(x, u) - d(x, u - p(v - u))

TABL.

L1l

2

The R-Cloud Classifier Decision Making Options

R (%) R5(x) Decision
>() =( Class 1
=() >() Class 2
=() =() Weak rejection
=() =0 Strong rejection

The foregoing descriptions of embodiments of the present
invention have been presented only for purposes of 1llustra-
tion and description. They are not intended to be exhaustive or
to limit the present invention to the forms disclosed. Accord-
ingly, many modifications and variations will be apparent to
practitioners skilled 1n the art. Additionally, the above disclo-
sure 1s not intended to limit the present invention. The scope
of the present invention 1s defined by the appended claims.

What 1s claimed 1s:

1. A method for classifying a data pattern into one or more
groups, Comprising;:

computing a decision boundary which separates a first

group ol data patterns 1n a training data set from a second
group ol data patterns 1n the training data set;

for each data pattern 1n the training data set,

determining if removing the data pattern from the train-
ing data set substantially affects the resulting decision
boundary; and

if so, marking the data pattern as a key pattern;

removing all data patterns that are not marked as key pat-
terns to produce a reduced training data set which rep-
resents the decision boundary;

classitying a previously unseen data pattern into one or
more groups by applying the decision boundary to the
previously unseen data pattern; and

producing a result which indicates the one or more groups
of the previously unseen data pattern.

2. The method of claim 1, wherein determining 1f removing
the data pattern substantially affects the decision boundary
involves:

computing a first Fuclidian distance from the data pattern
to the decision boundary;
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removing the data pattern from the training data set;
computing a new decision boundary from the data set
without the data pattern;
computing a second Euclidian distance from the data pat-
tern to the new decision boundary; and
if the absolute value of the difference between the second
Fuclidian distance and the first Euclidian distance 1s
greater than a pre-specified tolerance, marking the data
pattern as a key pattern.

3. The method of claim 2, wherein the pre-specified toler-
ance 1s zero, so that it the second Euclidian distance 1s not
equal to the first Euclidian distance, the data pattern 1s marked
as a key pattern.

4. The method of claim 2, whereimn computing the new
decision boundary involves:

for each data pattern in the first group of data patterns,
selecting a data pattern from the first group of data
patterns;
for each data pattern in the second group of data patterns,
generating a separating boundary that separates the
data pattern 1n the first group of data patterns from the
data pattern 1n the second group of data patterns; and
generating a separating bundle which separates the data
pattern 1n the first group of data patterns from all data
patterns 1n the second group of data patterns; and
generating the new decision boundary which separates all
data patterns 1n the first group of data patterns from all
data patterns 1n the second group of data patterns using
the separating bundles.
5. The method of claim 1, further comprising using the
reduced data set to classily a previously unseen pattern by:
determining the region of the iput space i which the
previously unseen pattern 1s located;
if the previously unseen pattern 1s located within the region
which corresponds to the first group of data patterns,
classiiying the previously unseen data pattern as belong-
ing to the first group of data patterns; and
otherwise, classitying the previously unseen data pattern as
belonging to the second group of data patterns.
6. The method of claim 1, further comprising using R-func-

tions to compute a decision boundary which 1s used to classily
data patterns, wherein an R-function 1s a function whose sign

1s determined by the signs of its arguments.

7. A computer-readable storage medium storing instruc-
tions that when executed by a computer cause the computer to
perform a method for classifying a data pattern into one or
more groups, the method comprising:

computing a decision boundary which separates a first

group of data patterns 1n a training data set from a second
group of data patterns in the training data set;

for each data pattern in the training data set,

determining if removing the data pattern from the train-
ing data set substantially atffects the resulting decision
boundary; and
if so, marking the data pattern as a key pattern;
removing all data patterns that are not marked as key pat-
terns to produce a reduced training data set which rep-
resents the decision boundary;
classitying a previously unseen data pattern into one or
more groups by applying the decision boundary to the
previously unseen data pattern; and

producing a result which indicates the one or more groups

of the previously unseen data pattern.

8. The computer-readable storage medium of claim 7,
wherein determining 1f removing the data pattern substan-
tially atfects the decision boundary involves:
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computing a first Euclidian distance from the data pattern
to the decision boundary;

removing the data pattern from the traiming data set;

computing a new decision boundary from the data set
without the data pattern;

computing a second Euclidian distance from the data pat-
tern to the new decision boundary; and

i1 the absolute value of the difference between the second

Euclidian distance and the first Euclidian distance is
greater than a pre-specified tolerance, marking the data
pattern as a key pattern.

9. The computer-readable storage medium of claim 8,
wherein the pre-specified tolerance 1s zero, so that it the
second Euclidian distance 1s not equal to the first Euclidian
distance, the data pattern 1s marked as a key pattern.

10. The computer-readable storage medium of claim 8,
wherein computing the new decision boundary involves:

for each data pattern 1n the first group of data patterns,
selecting a data pattern from the first group of data

patterns;
for each data pattern in the second group of data patterns,
generating a separating boundary that separates the
data pattern in the first group of data patterns from the
data pattern 1n the second group of data patterns; and
generating a separating bundle which separates the data
pattern 1n the first group of data patterns from all data
patterns in the second group of data patterns; and
generating the new decision boundary which separates all
data patterns in the first group of data patterns from all
data patterns 1n the second group of data patterns using
the separating bundles.

11. The computer-readable storage medium of claim 7, the
method further comprising using the reduced data set to clas-
s1fy a previously unseen pattern by:

determining the region of the input space 1 which the
previously unseen pattern 1s located;

11 the previously unseen pattern 1s located within the region
which corresponds to the first group of data patterns,
classitying the previously unseen data pattern as belong-
ing to the first group of data patterns; and

otherwise, classitying the previously unseen data pattern as
belonging to the second group of data patterns.

12. The computer-readable storage medium of claim 7, the
method turther comprising using R-functions to compute a
decision boundary which 1s used to classify data patterns,
wherein an R-function is a function whose sign 1s determined
by the signs of 1ts arguments.

13. An apparatus that classifies a data pattern into one or
more groups comprising:

a computing mechanism configured to compute a decision
boundary which separates a first group of data patterns
in a training data set from a second group of data patterns
in the training data set;

a pattern-reduction mechanism configured to:
for each data pattern 1n the training data set, to

determine 1f removing the data pattern from the train-
ing data set substantially atffects the resulting deci-
sion boundary; and
11 so, to mark the data pattern as a key pattern; and to
remove all data patterns that are not marked as key
patterns to produce a reduced training data set which
represents the decision boundary;

a classification mechanism configured to classity a previ-
ously unseen data pattern into one or more groups by
applying the decision boundary to the previously unseen
data pattern; and
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a result-producing mechanism configured to produce a
result which indicates the one or more groups of the

previously unseen data pattern.

14. The apparatus of claim 13, wherein while determining
if removing the data pattern substantially affects the decision
boundary, the pattern-reduction mechanism 1s configured to:

compute a first Euclidian distance from the data pattern to
the decision boundary;

remove the data pattern from the training data set;

compute a new decision boundary from the data set without
the data pattern;

compute a second Fuclidian distance from the data pattern
to the new decision boundary; and

if the absolute value of the difference between the second
Fuclidian distance and the first Euclidian distance 1s
greater than a pre-specified tolerance, to mark the data
pattern as a key pattern.

15. The apparatus of claim 14, wherein the pre-specified
tolerance 1s zero, so that 1f the second Euclidian distance 1s not
equal to the first Euclidian distance, the data pattern 1s marked
as a key pattern.

16. The apparatus of claim 14, wherein while computing
the new decision boundary, the pattern-reduction mechanism

1s configured to:
for each data pattern in the first group of data patterns, to
select a data pattern from the first group of data patterns;

for each data pattern in the second group of data patterns,
to generate a separating boundary that separates the
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data pattern 1n the first group of data patterns from the
data pattern 1n the second group of data patterns; and
to
generate a separating bundle which separates the data
pattern 1n the first group of data patterns from all data
patterns in the second group of data patterns; and to
generate the new decision boundary which separates all
data patterns in the first group of data patterns from all
data patterns 1n the second group of data patterns using
the separating bundles.

17. The apparatus of claim 13, further comprising a pat-
tern-classifying mechamsm configured to use the reduced
data set to classity a previously unseen pattern.

18. The apparatus of claim 17, wherein while using the
reduced data set to classity a previously unseen pattern, the
pattern-classification mechanism 1s configured to:

determine the region of the 1nput space in which the pre-
viously unseen pattern 1s located;

11 the previously unseen pattern 1s located within the region
which corresponds to the first group of data patterns,
classily the previously unseen data pattern as belonging
to the first group of data patterns; and

otherwise, to classity the previously unseen data pattern as
belonging to the second group of data patterns.

19. The apparatus of claim 13, wherein the computing
mechanism 1s configured to use R-functions to compute a
decision boundary which 1s used to classify data patterns,
wherein an R-function is a function whose sign 1s determined
by the signs of its arguments.
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