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STORAGE AREA NETWORK DATA CACHE

CROSS-REFERENCES TO RELAT
APPLICATIONS
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D,

This application claims priority to provisional application
Ser. No. 60/317,817 filed Sep. 7, 2001, entitled “Method and

Apparatus for Processing Fiber Channel Frames at Wire
Speed.”

STATEMENT AS TO RIGHTS TO INVENTIONS
MADE UNDER FEDERALLY SPONSORED
RESEARCH OR DEVELOPMEN'T

Not Applicable

REFERENCE TO A “SEQUENCE LISTING,” A
TABLE, OR A COMPUTER PROGRAM LISTING

APPENDIX SUBMITTED ON A COMPACT DISK

Not Applicable

BACKGROUND OF THE INVENTION

The present invention relates to data caches for storage area
networks (SAN).

Caches are well known 1n many applications. A micropro-
cessor typically will have at least a first level cache on the
microprocessor chip itself, and may be connected to a sepa-
rate SDRAM cache which 1s a second-level cache. In storage
arrays, such as redundant arrays of independent disks
(RAID), a storage controller typically will have a cache. In a
storage area network, the same cache structure typically 1s
used, with the cache being attached to the storage controller
which 1s then connected to the network. Thus, caching 1s done
at the endpoint of the data transmission over the network.

In a virtual storage area network, a virtualization engine 1s
interposed between the host and multiple physical storage
controllers. The host can send data requests to the virtualiza-
tion engine, which then determines which storage controller
to send 1t to, and forwards the data over the network to the
storage controller. The storage controller then uses its own
associated cache in connection with data accesses.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a cache connected to the
virtualization engine in the center of a storage area network.
The mvention caches data 1n a virtual cache, without requir-
ing translation to the physical location. The caching 1s done as
the data crosses the network through the wvirtualization
engine, eliminating the need to do the further translation and
torwarding over the network to the actual storage controller 1n
the event the data i1s 1n the cache. In addition, the invention
climinates the need for multiple caches at each physical stor-
age controller.

In one embodiment, in order to handle the large amounts of
data 1n a SAN, the cache of the present invention 1s seg-
mented. A first look-up table, preferably a content address-
able memory (CAM), compares a virtual logic umit number
(VLUN) assigned to the host and a logical block address of
the data being sought to determine 1f the segment 1s 1n the
cache. If there 1s a hit, a second look-up table (e.g., a
SDRAM) 1s used to determine 11 the logical block 1s stored 1n
the data cache.

In one embodiment, the virtualization engine examines a
tag 1n the frame to determine 11 the data i1s cacheable, with
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only cacheable data being sent to the data cache, further
improving the speed. VLUNs are marked as cacheable or
non-cacheable by the operator as they are configured in the
system. When accessing data 1n a cacheable VLUN the host
may mark the transaction as non-cacheable.

In a preferred embodiment, the data cache uses a network
processor, since the cache 1s located 1n the middle of the
network, and thus network processing capabilities are
required, unlike typical storage controller caches.

For a further understanding of the nature and advantages of
the invention, reference should be made to the following
description taken i1n conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s ablock diagram of a SAN system incorporating a
data cache according to an embodiment of the present inven-
tion.

FIG. 2 1s a block diagram of the VSX Data Cache Module
of FIG. 1.

FIG. 3 1s a block diagram of a Logical VSX with VDC In A

Simple Storage Area Network according to an embodiment of
the mvention.

FIG. 4 1s a block diagram of a Single Box VSX with Cache
(VSX/C) according to an embodiment of the invention.

FIG. 5 1s a block diagram of a VSX with VSX/C In Fibre
Channel & High Available Configuration, illustrating fibre
channel connections, according to an embodiment of the
invention.

FIG. 6 1s a block diagram illustrating a logical interconnect

oI VSX and VSX/C according to an embodiment of the mnven-
tion.

FIG. 7 1s a block diagram of a Detailed VSX Data Cache
(VDC) Module according to an embodiment of the invention.

FIG. 8 15 a block diagram of a Data Cache Engine (DCE)
according to an embodiment of the mnvention.

FIG. 9 1s a diagram 1llustrating the segment mapping to
data blocks according to an embodiment of the invention.

FIG. 10 1s a diagram of an embodiment of CAM data
entries.

FIG. 11 1s a diagram of an embodiment of the segment data
structure.

FIG. 12 1s a diagram of an embodiment of a block pointer
structure.

FIG. 13 1s a diagram illustrating a look-up operation
according to an embodiment of the mnvention.

FIG. 14 1s a diagram illustrating a segment aging operation
according to an embodiment of the mnvention.

FIG. 15 1s a diagram 1llustrating a cache read according to
an embodiment of the ivention.

FIG. 16 1s a diagram of an internal cache read according to
an embodiment of the mvention.

FIG. 17 1s a diagram of a cache memory with partial data
according to an embodiment of the mnvention.

FIG. 18 1s a diagram 1illustrating a cache read with a partial
miss according to an embodiment of the invention.

FIG. 19 1s a diagram of an internal cache read with a partial
miss according to an embodiment of the invention.

FIG. 20 1s a diagram of a successtul cache write according,
to an embodiment of the invention.
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FIG. 21 1s a diagram of an internal successiul cache write
according to an embodiment of the 1nvention.

FI1G. 22 1s a diagram of a cache write through according to
an embodiment of the mvention.

DETAILED DESCRIPTION OF THE INVENTION

The SAN Data Cache of the present invention addresses
problems that are created in large SAN 1nstallations by pro-
viding a SAN-centric resource that increases overall SAN
performance and facilitates data and storage resource man-
agement. The SAN Data Cache solves and/or provides for the
following;:

1) Decreases the average write response times from server
to SAN.

2) Decreases the average read response times from SAN to
Server.

3) Facilitates efficient data replication and mirroring,
through SAN-centric data block caching.

4) Facilitates server-less backup through SAN-centric data
block caching and re-segmentation or concatenation.

5) Increases overall SAN performance and efficiency by
mimmizing physical device reads and writes.

6) Decreases the overall cost ofthe SAN by minimizing the
need for expensive Solid-State Storage Devices (SSD) and
high-end storage arrays with large amounts of array-centric
cache 1n performance critical applications

7) Additionally increases the performance of SANs that
include remotely mapped devices by caching the associated
data closer to the servers and other devices requiring access to
it.

The SAN Data Cache will be described 1n the context as it

relates to the Contluence Networks Virtual Storage Exchange
(VSX) platform and be called the VSX Data Cache.

The VSX Data Cache (VDC) 1s the system function that

caches data blocks for the VS X platform as they are accessed
from external devices. The architecture as presented here
details the hardware (and some software) mechanisms
required to satisty the overall system-level requirements of
the cache subsystem. In general, the basic functionality of this
architecture 1s independent of the details of other system level
building blocks (1.e. switch fabric, network processor, etc.),
but may make assumptions for the sake of this description. In

addition, the VDC could physically exist within the VSX
platform or external to it.

The VDC 1s designed to serve multiple purposes. One
purpose 1s to keep a local copy of frequently used disk blocks
in order to accelerate read and write accesses to the physical
disks. Another function of the VDC 1s to serve as a temporary
data store when replicating write data across an array of
mirrored disks. The VDC can also serve as a data buifer when
transierring data between disk and tape during backup and
restore procedures. The real value of the VDC 1s that 1t facili-
tates the above functions and benefits due to the VDC being a
fast solid-state entity in the middle of the SAN along with the
control and virtualization functionality as opposed to a device
at the edge of the SAN disassociated from a centralized con-
trol and virtualization function.

Internal Switch Based Data Cache

One embodiment of a VSX system 9 incorporating the
present invention 1s shown 1n FIG. 1. There are one or more
line cards 10, a Virtual Storage Controller (VSC) 11, a switch
tabric 12 and one or more VDC cards 16. Each line card 10
may contain one or more istantiations of a Central Storage
Processor (CSP), Downstream Processor (DSP) or Upstream

Processor (USP).
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The data cache hardware 1s processing transactions at the
VLUN (Virtual Logic Unit Number) level and knows nothing
about the physical mapping of LUNs. Each VLUN represents
a virtual address space (e.g., gigabytes of storage) with
defined attributes (e.g., performance parameters, reliability
level, etc.). As such, each host computer exchanges data and
commands with the VSX system with reference to a particular
VLUN. The VLUNs are translated into PLUNs (Physical
Logic Unit Numbers).

As the size of the system grows the effective size of data
under management will tend to 1ncrease. For both of these
reasons 1t will be important to support incremental cache
growth. This will allow the system to distribute data band-
width across the cache interconnect(s) and increase overall
cache size to maintain the proper cache-to-disk ratio. It will
be a system requirement to map VLUNSs to an appropriate
cache. This may be based on hot VLUNs, VLUNSs per cache,
aggregate bandwidth per cache, etc. Scalability and flexibility
here will allow performance bottlenecks to be massaged out
of the system as access patterns emerge and VLUNs are
created.

The basic building block of a cache capable VSX system 1s
the VDC Module 16. A VDC Module 16 1s shown in FIG. 2
and 1s comprised of a Data Cache Processor 18 and a Data
Cache Engine 20. In one embodiment the Data Cache Pro-
cessor (DCP)1s anetwork processor. The DCP 1s connected to
the Data Cache Engine (DCE) via a packet or streaming
interface. In one embodiment, the DCE consists of an FPGA
(or ASIC) and 1ts support logic.

Internal Switch Based Data Cache System View

The internal switch allows multiple Storage Processors
(SPs) to pass data between each other with out relying on the
external data path. With a switched architecture the addition
of the Data Cache Module 1s much cleaner 1n design and
casier to scale. FIG. 3 1s a diagram of a VSX 9 with internal
cache support. It includes DCP 18 and DCE 20 as described
above, as well as switch fabric 12. The Down Stream Proces-
sor (DSP) 13 connects to an array of disks 22, while the Up
Stream Processor (USP) 15 connects to a host 24 over a
network. A Central Storage Processor (CSP), 14, also con-
nects to the switch fabric.

External Data Cache

In an alternate embodiment, a VDC unit 1s external to the
VSX platiorm, and the cache logic 1s implemented using the
current VSX as a building block. A block diagram of such an
external cache 1s shown 1n FIG. 4. Here there 1s a caching
tunction (DCP 18+DCE 20) that 1s connected to an SP 26 and
FC (Fiber Channel) Interface chip 28 that facilitates connec-
tivity to an external VSX or FC switch fabric. So the virtual-
ization platform 1s called the VSX and that same platform
modified to become a cache function 1s called a VSX/C.

System Level View of External Data Cache

A system view of the combination of the VSX and the
VSX/C 1n a high-availability configuration 1s shown in FIG.
5. FIG. 5 shows a redundant pair of VSX 30 each with a
VSX/C 32 for cache support. Each VSX connects to a redun-
dant VSX and VSX/C leaving at least one Fibre channel port
for connectivity to hosts 24 and disks 22. The two VSX/Cs
also have a redundancy connection between them to acceler-
ate the synchronization of the two cache memories.

In one embodiment, a Fibre channel switch 1s included on
the links between the VSXs and the VSX/Cs to support the
expansion of the available cache storage by adding VS X/Cs to
the private Fibre Channel network. Of course, Fibre Channel
1s shown 1n this example, but this could be any interconnect.

The resulting logical interconnect of the VSX building
blocks 1s shown in FIG. 6. The system consists of the
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Upstream SP (USP) 13, the Downstream SP (DSP) 15 and the
Central SP (CSP) 14, with the new addition of the VDC 16.
Due to the Fibre channel interface between the VSX 30 and
the VSX/C 32 additional SPs 26, 34 will exist in the data path.
These SPs will simply forward the packets to the appropriate
hosts and will not perform processing on the packets as they
are passed through them. These SPs may serve additional
purposes, such as a CSP, DSP or USP, but appear as simple
torwarders when dealing with cache data and commands.
Data Cache Module Architecture

One embodiment of the basic data cache module (VDC) 16
hardware block diagram 1s shown in FIG. 7. The architecture
1s based around a custom cache controller design and the
Network Processor that performs the function of the DCP 18.
In one embodiment, the Network Processor 1s the NP4(GS3
available from IBM. Caching functionality 1s implemented
across these two building blocks such that the Data Cache
Engine (DCE) 20 1s responsible for speedy block lookups and
data block management and the DCP 1s responsible for main-
taining the higher-level functionality of error handling as well
as providing the interconnect into the switch fabric. The VDC
16 also consists of a large array of SDRAM memory, a Con-
tent Addressable Memory (CAM) array and various pieces of
support logic. For some applications the SDRAM memory
array may include a backup battery and its control/charge
logic. The basics of each block 1s detailed as follows:

Data Cache Engine (DCE)

This function will be detailed later, but a brief overview 1s
provided here.

The Data Cache Engine (DCE) 20 1s responsible for pars-
ing requests from the DCP 18 and performing operations with
the Data Block Memory (DBM) 38 to satisty these read and
write requests. In one embodiment the DCE 20 uses the POS
interface 21 for data and control to the NP 18. The DCE also
manages a CAM 40, the Data Block Memory (DBM) 38, a
Control Structure Memory (CSM) 42, the request queuing,
segment aging, write aging and cleansing dirty blocks stored
in the DBM 38.

Content Addressable Memory (CAM)

The CAM 40 provides the lookup as requested by the DCE
20. This CAM contains the presence of segments that may
have data blocks mapped into cache. The actual size of this
CAM depends upon the number of segments that are actively
mapped to cache blocks. This depends upon the Data Cache
s1ze, segment size, and any segment over-allocation factor.

Control Structure Memories (CSM)

These memories 42 provide fast access to control struc-
tures used to manage and flag the state of all data blocks and
segments that are mapped 1nto cache. This memory also con-
tains the pointer to the specific block locations 1n the DBM.
The memory also provides for queues used to manage free
blocks, outstanding requests and other management func-
tions. In one embodiment this memory 1s ECC or parity
protected and optimized to multiplex a number of smaller
control structure requests.

Data Block Memory (DBM)

The DBM 1s where the actual data blocks are cached. This

memory 1s ECC protected SDRAM and optimized to run
large block level reads and writes.

Data Cache Processor (DCP)

The DCP 18 1s an oif-the-shelf network processor used in
this context provides the higher-level virtualization and cache
synchronization functions that the lower level hardware waill
not be cognizant of. In addition 1t 1s tailored to handshake with
the DCE and provide the connection into the system switch-
ing fabric.
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Card Controller (CC)
A CC 44 provides for the card-level control capability. It 1s
responsible for boot-up code, diagnostics, Ethernet and con-

sole support, etc.
Data Cache Engine (DCE) Architecture

The DCE 20 1s the heart of the Data Cache architecture. It
provides many of the essential hardware mechanisms
required to implement the Data Cache. The block diagram in
FIG. 8 shows a more detailed view of the DCE.

The DCE performs the following functions:

Interface to the DCP

DCP request frame parsing and processing

DCP acknowledgement frame creation

DCE request frame creation and acknowledgement (write

flush)

Request queuing,

CAM interface and management

Read Request State Machine

Write Request State Machine

Cache control structure maintenance

Data block memory interface

Segment aging processor

Write aging and queue maintenance

Free bulfer queue (non-direct mapped blocks)

Block-level CRC generation and checking that can be

turned on and oif by software

PCI interface for side-band control

Embedded Processor for list and memory management

(optional)

Network Processor Interface (NPI)

NPI 46 1s a packet interface module that 1s responsible for
ingress and egress to/from the DCE. The ingress path on
receiving a frame (w.r.t. DCE) splits the header from the data
and sends the header to a Request Frame Parser (RFP) 48 and
the full frame to an Rx Data Path buifer 50. The POS CRC
will also be calculated on the full frame during ingress.

The egress path will transmit (w.r.t. DCE) a POS frame
over the interface 21 to the DCP. The complete frame 1s read
from a TX Data Path 52 or an Ack Frame Generator (AFG)
54. The POS CRC 1s calculated prior to writing the frame into
this butler so protection 1s maintained within the data path
buifer and AFG as well.

Request Frame Parser (RFP)

The RFP 48 1s responsible for parsing the header of the
incoming POS frame. The header information will be neatly
written into a fixed data structure that 1s allocated in a Master
State Machine (MSM) 56 and queued 1n the Work Queue for
processing by the other functional blocks. The RFP also
parses, generates and sends the appropriate key information

to the CAM Interface.

Acknowledge Frame Generator (AFG)

The AFG 54 generates frames to acknowledge requests
made by the DCP.

CAM Interface

A CAM Interface 58 1s responsible for controlling accesses
to a CAM matrix 40 made from the various requesters. It will
1ssue the commands and pass segment addresses and status
to/from the RFP 48, MSM 56 and Table Memory Controller
(TMC) 60 blocks.

CAM Matrix

This may be one or more CAMSs organized 1n a manner to
satisly the VLUN and block address mapping within the
cache 1tself. The CAM will map the VLUN/block address to
a segment address that 1t provides upon a hit. The segment
address will provide access to a data structure within the TMC
used to i1dentity the status of individual blocks within the
segment.
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Table Memory Controller (TMC)
The TMC 60 1s responsible for controlling the access to the

Control Structure Memory (CSM) 42. The TMC takes access
requests from SAP, WAP and 27¢ level lookup and processes
them accordingly.

Block Memory Controller (BMC)

The BMC 62 1s responsible for controlling the read and
write access to the Data Block Memory (DBM) 38. The BMC
takes requests from the DCI, performs memory accesses and
returns status to the DCI.

Segment Aging Processor (SAP)

The SAP 64 1s a linked list manager used to implement the
LRU aging function for the segments. As segments are
accessed the SAP places them on top of the aging queue. The
LRU segments will fall to the bottom of the queue and they
will be the ones that are aged out of the cache. See FIG. 14 for
more details.

Write Aging Processor (WAP)

The WAP 66 15 used to age dirty cache blocks for writing
out to storage. The WAP will age dirty cache blocks in much
the same way as with the SAP except the WAP must flush the
blocks 1n a more controlled and time critical manner. There
are thresholds that will determine when a write 1s aged out to
the storage device.

nd Level LU

A 2nd level LU 70 processes the segment imnformation
retrieved from the CAM interface and determines which
blocks 1n the segment are currently stored 1n the Data Block

Memory 38. The 2" level LU 70 also determined the status of
the blocks stored in the DBM.

Master State Machine (MSM)

The MSM 56 1s the master controlling function within the
chip. It 1s responsible for the coordination of the entire basis
functional blocks as well as queuing functions, movement of
data via DMA, scheduling and context management.

Data Cache Intertace (DCI)

The DCI 68 1s the iterface to the Block Memory Control-
lers. The DCI performs the mapping and muxing function of
the BMCs to the other internal data path modules within the
DCE. The DCI will perform DMAs under control of the
MSM.

Write Data Path (WDP)

The WDP (Rx Data Path 50) 1s used to write data into the
data cache. It 1s a speed-matching FIFO between the NPI and
the DCI.

Read Data Path (RDP)

The RDP (Tx Data Path 52) 1s used to read data from the
data cache. It 1s a speed-matching FIFO between the DCI and
the NPI. During reads the cache supplies data from the DCI.

Cache Data Storage

The cache data storage 1s used to store data that 1s cached
during normal read and write commands as well as the static
read and write commands. The standard data stored 1n the
DBM 1s organized in blocks and segments as illustrated 1n
FIG. 9. In one embodiment each block contains 512 bytes of
data and 1s the smallest unit that can be written to the cache
memory.

In order to ensure a greater flexibility the DCE may be
configured to support larger blocks of data in 1ts block
memory. A fixed space 1s allocated for each block stored in the
DBM. The amount of space allocated for each block 1is
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slightly larger than the largest block supported by the VSX
Data Cache. As the blocks are stored in the allocated space,
tflags will be updated to indicate the size of the block actually
stored 1n the memory. This will allow each cache module to
support a variety of block sizes in the same physical cache.
Each of the blocks stored 1in the DBM includes a CRC to
protect the integrity of the data blocks stored 1n memory.

In order to minimize the amount of search entries in the
CAM., the data stored 1n the cache memory 1s organized into
segments. In one embodiment each 1s used to track 64 blocks
of data and has an associated data structure as well as a pointer
array. The segment data structures contain information about
the status of the stored blocks while the block pointer array
contains the address at which the data blocks can be found.
FIG. 9 shows the relationship between the CAM array, the
segment data structures, the pointer array and the individual
blocks stored in the memory.

The addressing for the segment data structures and the
pointer array 1s generated from the address of the segment
entry in the CAM. Each entry 1n the CAM (FIG. 10) contains
a vector that contains the 24-b1it VLUN ID for the segment and
the upper 30 bits of 1ts starting Logical Block Address (LBA).

Each access to and from the cache memory may span
multiple segments depending on the starting address and the
s1ze ol the data access. The cache logic will generate one or
more segment addresses using the starting LBA and size of
the data access. These segment addresses are combined with
the VLUN ID of the command and are passed to the CAM as
a search key. The CAM searches 1ts internal array and returns
the address of the matching entry. In some cases new entries
will have to be created and the CAM will return the address of
the newly created entry. The address returned by the CAM 1s
shifted 6 bits and added to the segment data base address to
find the location of the data structure for the segment.

The segment data structure, shown i FIG. 11, contains all
of the information necessary to mange the blocks of data 1n
the cache memory. The data structure contains the VLUN ID
and starting L BA of the segment. This value can be compared
with the search key to verily the of the CAM lookup opera-
tion.

The data structure has 10 bit locations for segment specific
information. The segment valid indicator, bit 0, bit 1s used to
determine 1f this 1s an active segment or part of the free
segment pool. The lock indicator, bit 1, 1s used to lock the
segment data into the cache. Writes to the segment data waill
still be allowed, dirty data will still be written to the disk and
missing blocks will still be added to the cache memory when
needed. The data will not be removed from cache regardless
of 1ts age until the lock bit has been cleared. The Flush Fail bat
1s used to indicate that a flush was attempted for the data 1n
this segment that has its Flush In Progress bits set. This tlag 1s
used to block access to the data until the problem can be
resolved by the DCP. The Primary bit indicates that any dirty
data in this segment 1s owed by this cache engine and must be
flushed when possible. The segment busy bit may be used as
a lock when processing commands or when performing aging
functions. Operations on the segment are not allowed when
the busy bit 1s set. The static data bit indicates that this data 1s
being accessed as static data and should never be automati-
cally flushed. The remaiming 4 bits 1n the vector are reserved
for future use.
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Two 32-bit pointers 1n the data structure are used to hold its
place 1n an aging chain. The aging mechanism of the VSX
cache logic and the use of these pointers will be discussed
later 1n this document.

The remaining bits 1n the data structure are used to indicate
block specific values. Each of the 64 blocks of the segment
has a bit to define each of the following:

The block 1s valid and currently stored 1n cache memory

The block 1s dirty and needs to be written to the disk

A read command 1s currently active for the block

A write command 1s currently active for the block

The cache data 1s currently being written to the disk.

In addition to the above bits each block has a spare bit that
1s reserved for future use. Each data structure uses 64 bytes of
memory.

The amount of segment entries allowed 1s dependent on the
s1ze of the CAM used 1n the design. Every time a segment 1s
created to store one or more blocks the number of available
segments 1s decreased. One design approach to the cache
logic 1s to make the number of segments equal to the total
blocks the memory can support divided by the number of
blocks 1n each segment. This gives a 1 to 1 mapping between
the segments and the block memory. The design 1s simplified
because the block address can be generated directly from the
base address of the segment data structure. Indirect pointers
to the individual block locations are not needed.

This design approach results in the automatic allocation of
64 block memory locations each time a segment is created. It
1s possible that only a few blocks in each segment will contain
valid data. The remaining blocks will be unused and are
unavailable for blocks outside of the segment. Another
embodiment 1s to increase the number of segments supported
in the design while maintaining the size of the block memory.
The change necessitates the usage of indirect pointers to the
actual data stored 1n the block memory as shown 1n FIG. 9.
Each segment has an associated pointer array that contains a
pointer for each of the 64 blocks 1n the segment. The address
of the pointer array for a segment 1s generated directly from
the segment data structure address. Each pointer array con-
tains a 32-bit pointer for each of the 64 blocks supported by
the segment.

As FI1G. 12 1llustrates, the pointer array for each segment
consumes 256 bytes of memory. Each pointer location con-
tains a value that 1s used to generate the address for the
associated block. Values 1n this array are only valid i1 the data
valid bit 1s set 1n the segment data structure. When a new
segment 1s created 1t initially contains no valid data blocks. As
cach block of data 1s added to the cache the segment 1is
allocated a pointer to a location 1n block memory. The pointer
to this allocated block location 1s written to the pointer array
and the proper data valid bit 1n the segment 1s set. As a block
of data is flushed from the cache the data valid bit for the block
will be cleared and the pointer will be added to list of available
locations.

The VSX cache design can support both the direct and
indirect method of block address lookup and any ratio
between segments and block memory locations. It 1s pre-
terred that the indirect method be used to be more efficient
with DBM resources.

Segment/Block Look-Up Operation

As shown 1n FIG. 13, segment look-up operations are per-
formed by passing the VLUN number and LBA to the CAM
tunction. If the segment that the block falls within 1s 1n the
cache, then a segment hit occurs. This segment address 1s then
used to look-up the data structure containing the status infor-
mation about the segment itself. In this data structure the
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individual block status resides. If the status shows that a block
1s present 1n the cache, then a read hit occurs for a read or a
write hit for a write. There are other status bits that indicated
whether 1t 1s safe to read or write (1.e. Read-In-Progress or
Write-In-Progress). The segment address will also be used to
create the base address 1nto the data cache memory for actual
access of the data.

In the case of the imndirect method of addressing the data
blocks, the segment address 1s used to generate an address to
a data structure that contains the pointers to the cached data
blocks.

LRU Segment Aging Mechanism

The cache segments must be aged to determine which will
be replaced when new segments are required for allocation.
Segments are aged 1n hardware using a basic LRU algorithm
implemented using linked lists and head and tail pointers.
Since the segments are always kept in LRU order and the
segment that has data being accessed 1s linked into the aging
data structure there are no searches required to age the seg-
ments. An example of how this 1s done 1s shown 1n FIG. 14.

The aging mechanism will track how much data 1s cur-
rently being stored as static data. The amount of free storage
plus the amount of static data must be above the static data
threshold. If the total amount 1s below the threshold the aging
engine will begin to allocate more space. Once static data has
been unlocked 1t will be treated as normal cached data when
checking the static data threshold.

Caching Command Processing

The VDC can serve as a cache for read and write accesses
to disk as well as serving as a temporary data store for mir-
roring operations.

The following sections are a high level overview of the data
and command flow to and from the VDC starting with the
basic read and write operations to a cacheable VLUN.

Read Command

A read command (FIG. 15) 1s a host to disk read that is
routed through the VDC. This read will result 1n data being
pulled from internal cache memory or read from the disk. A
copy of the data read from disk will be stored 1n the cache
memory.

Read commands for a cacheable VLUN are routed to the
VDC for processing. The VDC will determine which data 1s
stored locally and how much data needs to be read from the
physical device. If data 1s missing from the cache memory the
VDC will attempt to read 1t from the disk and store it 1n cache
memory. Read commands are not synchronized between
redundant cache modules.

Read Hit

Read commands to the VDC may result in either a miss or
a hit on data stored in the cache memory. The first command
example demonstrates the command and data flow for a cache

read hat.

FIG. 16 shows the data flow within the VDC for the read
command shown 1n FIG. 15.

Read With Partial Miss

It 1s possible that some of the data needed to complete the
read command will be missing from the data cache memory.
FIG. 17 shows an example case where 65 blocks are requested
with the data cache memory containing some of the data
requested by the host. The arcas 80, 84 represent data cur-
rently contained 1n the cache memory. In this example the
DCE can only allocate space to store an additional 25 blocks
of data on top of the 25 blocks already stored 1n the data cache.

The DCE will first determine which data 1s stored locally 1n
the cache and which data needs to be retrieved from the disk.
As the DCE determines that data needs to be retrieved from
the disk 1t will attempt to allocate cache space to store the
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retrieved data. When the DCE runs out of space to store the
data locally 1t will mark the last block it was able to allocate
storage for. The DCE will then generate read requests to the
disk for the missing blocks of data up to the point that it was
able to allocate space.

In this example the DCE will find that 1t can allocate space
for 25 blocks of data. It will mark the 50th block as the last
block that 1t was able to allocate space for. The DCE will then
generate two read requests to the storage device. The first read
request 1s for 10 blocks of data with the second read request
being for the 15 blocks of data 1t was able to allocate space for.
When the DCE sends the read requests out i1t will set a flag 1t
indicate to the DCP that the data being read from the disk can
be received out of order.

While the DCE 1s waiting for the missing data to be
retrieved from the disk it will send any data up to the first
missing block to the host. In this example the first 20 blocks
of data can be sent to the host while the DCE 1s waiting for the
data read from the disk.

As the data read from the disk arrives at the DCE the state
of the command will determine what 1s done with the read
data. IT local storage space has been allocated for the data the
DCE will store the data in the allocated space. If the data
being received 1s the next block of data needed by the host the
data will also be forwarded to the host. In this example as the
first read of 10 blocks 1s received from the disk 1t will be
forwarded to the host as well as the local cache memory.

Once the missing 10 blocks have been sent to the host the
DCEwill then send as much data to the host as 1t has stored
locally. If the second read of 135 blocks has completed 1t will
be able to send 20 blocks to the host. If not only the 5 blocks
of data stored locally can be sent.

Once the first 50 blocks of the command have been sent to
the host the DCE will then complete the command by gener-
ating a read to the disk for the last 15 blocks of data. This data
cannot be stored locally and will be forwarded directly to the
host as it 1s recetved. When the DCE sends out this read
request 1t will flag the command to indicate to the DCP that
the data must be recerved 1n order.

The flow diagram 1n FIG. 18 shows the command steps as

they are executed.
FIG. 19 shows the data flow within the VDC for the com-

mand shown 1n FIG. 18.

As the DCP receives the VLUN RD command from the
USP 1t converts the command into a CACHE RD command
and forwards it to the DCE. The DCE then processes the
command and determines which data 1s located in the local
memory and which data needs to the retrieved from the disk.
The DCE attempts to allocate cache space for the data that 1s
to be fetched from the disk.

The DCE then generates read requests for the missing data
that 1t has allocate memory space to store. The read requests
are send to the DCP as DCP_RD_10 packets. The DCP will
convert these reads to PLUN addresses and forward to the
proper DSP. The read ahead commands will be flagged to
indicate to the DCP that the read data can be received out of
order.

Once the read ahead commands are sent to the disk the
DCE will read the 20 blocks of data it has 1n the DBM and
form this data mnto DATA packets and forward them to the
DCP. The DCP will forward the read data to the proper USP.

As the read ahead data 1s received from the disk it will be
stored at the appropriate locations in the DBM. This data may
or may not be received from the disk 1n order. If the data 1s 1n
order and the block received matches the next block to send to
the host the data will be looped internally and forwarded
directly to the host. If the data 1s coming 1n out of order 1t will
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be written directly to the memory and not forwarded to the
host until the data has been reordered. As each frame of data
1s recerved that state of the command will be checked to see 1f
any data can be sent to the host.

The DCE will continue this process until all of the data up

-

to the allocation point has been sent to the host. Once this has
occurs the DCE will generate a DCP_RD_I0 command for
the remaining data. This data will not be stored locally when
received and will simply be looped back to the DCP. The
olfsets will be adjusted to match the original command.

When the command has completed the DCE will generate
a DCP_RD_STS packet indicating that all data has been
transierred and the command 1s complete.

The1mtial RD command sent from the DCP to the DCE can
be marked as a lock read. As each segment 1s accessed or
allocated 1n the command processing 1ts lock bit 1s set. The
DCP also has the ability to send an unlock command to
unlock a range of data in the cache memory.

Read Ahead

In some cases 1t 1s beneficial from a performance stand-
point to pre-fetch data from the disk and store 1t 1n the data
cache. A field in the DCP_RD 10O command will indicate the
pre-fetch length for the read command. During the processing
of the read command the DCE will attempt to allocate enough
space to read 1n this extra data. If any space can be allocated
the data will be read into the data cache memory. This data
will not be forwarded to the host. The status of the read ahead
will be indicated to the DCP with an extra DCP_RD STS
packet.

Write Command

The write command 1s a cacheable data transter from the
host to the disk. The processing of the write command will
result in the data being stored in the data cache memory 1t
space can be allocated 1n the local and redundant cache mod-
ule. I space cannot be allocated in both cache modules the
command will be converted to a write through.

In some applications it may be necessary to ensure that any
dirty data stored within the data cache 1s also stored 1n a
redundant module. In the preferred embodiment the local
VDC will ensure that the data can be stored both locally and
in the remote VDC before the write command 1s allowed to
proceed.

Any data written to a cacheable VLUN 1s routed to the
VDC for processing. The write data can be stored locally 1
the following conditions are met:

The local DCE can allocate enough space to handle the

entire write command

The DCE on the redundant VDC can allocate enough space

to handle the entire write command

If either of these conditions 1s not met the DCE will assume
the command will be converted to a write through. In either
case an ACK will be sent to the DCP to indicate the success/
tailure of the command processing. The DCP may choose to
allow the command to continue as a write through or abort the
command and allow the write to proceed directly to the disk.
The DCE on the redundant VDC will always be aborted 1n this
case.

The VDC also supports a version of the write command
that forces the DCE to allocate space for the write command.
This command 1s used then the DCP wishes to store the write
data locally so 1t can be written to one or more disks at a later
time.

Successiul Write Command

FIG. 20 shows the data and command flows for a successiul
write command to the VDC.

The example command shown in FIG. 20 the host attempts
to write to a cacheable VL UN. The USP requests permission
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from the CSP to proceed with the command. If successiul the
USP forwards the write request to the VDC. The VDC will do

an 1nternal check to determine 11 space for the write can be
allocated 1n 1ts local cache memory. The VDC will also for-

ward a RED_WR_REQ to the remote VDC that will check it 53

it can allocate space for the write command. IT so the remote
VDC will return a RED WR _ACK to the local VDC. If the

local VDC can allocate space 1t will allow the transier to
proceed by generating a XFR_RDY packet to the host. The
host will then transfer data to the VDC through the USP. As
the VDC recetves each packet of data 1t forwards a copy to the
remote VDC. Once all of the data has been transferred the
remote VDC will send a RED WR STS to the local VDC to
indicate that the data has been successtully written. If the
local data has also been successiully written the VDC will
send a WR STS back to the initiating host. The command 1s
then completed.

FI1G. 21 shows the details of the command and data tlow
within the VDC for the command detailed 1n FIG. 20.

When the DCP recerves the write command from the USP
it translates it into a RED WR REQ to the redundant DCP.
Both the local and the remote DCP generate DCP WR 10
packets to their local DCE. Each DCE then attempts to allo-
cate space for the expected data. As space 1s allocated 1n the
cache memory the blocks are marked as valid, the dirty bits
are set and the write 1n progress bits are set. Each DCE then
responds with a DCP WR ACK packet to alert the local DCP
that 1t 1s ready to accept the write data. The remote DCP sends
a RED WR ACK to the local DCP. If the local DCP receives
ACK packets from both the local DCE and the remote DCP
the command 1s allowed to proceed. The DCP generates a
XFR RDY packet to the USP.

As the WR DATA 1is recetved from the USP the DCP must
generate a copy for the local DCE and the remote DCP. As
data enters the DCE the proper segment and blocks are
located and the data 1s written 1nto the pre-allocated locations
in cache memory. The write 1n progress bits for the written
blocks are then cleared and the dirty data bits for the blocks
are set. If the DCE 1s the primary DCE for the command as
indicated in the original write command the Primary bits for
the blocks will also be set.

When the DCE detects that it has written all of the data
associated with the command 1t sends a DCP WR STS packet
to the DCP. The remote DCP will forward the packet in the
form of a RED WR STS packet. The local DCP will wait for
the remote response and the local DCE response. When both
responses are received the DCP generates a WR STS packet
to the USP indicating a successiul write.

Write Through Command

In some applications the system may want to perform a
write through command to the VDC. In a write through com-
mand data will be written directly to the disk with a local copy
being written into cache memory. The write though command
can be used when a redundant cache module 1s not available
or 1s currently 1n a failed state. A write through command also
occurs when data cannot be allocated during a write com-
mand.

The process begins when the host imitiates a write request
to a cacheable VLUN. The write request 1s forwarded to the
DCP. The DCP will create a DCP WT 10 to the DCE and a
PLUN WR IO to the storage device through the DSP. The
DCE will attempt to allocate storage locations for the
expected data and will acknowledge the write request with a
DCP WT ACK. Any storage locations allocated or currently
in memory that are atfected by the write command have their
data valid and write 1n progress bits set. The DCE will always
return a successiul even 1t all of the blocks could not be
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allocated. The storage device will proceed with the write
request and send XFR RDY's through the DSP to the USP. As
the data 1s transferred from the host device to the storage
device 1t 1s routed through the DCP and DCE. The POS
interface on the DCE will create a copy of the write data and
route 1t back to the DCP. The DCP then forwards the write
data to the DSP and on to the storage device.

The DCE will attempt to store the write blocks into the
cache storage memory. If the blocks exist in memory the data
will be written to the block and the write 1n progress bit will
be set. The dirty bit 1s not set because the data 1s also being
written to the storage device.

The diagram 1n FIG. 22 details the data and command tlows
during a write through command.

As will beunderstood by those of skill in the art, the present
invention may be embodied 1n other specific forms without
departing from the essential characteristics thereof. For
example, the data cache could use DRAM instead of
SDRAM, and an addressing structure other than CAM could

be used. Instead of Fiber Channel, SCSI or any other inter-
connect could be used. Instead of POS or other bus could be
used. Accordingly, the foregoing description 1s intended to be
illustrative, but not limiting, of the scope of the mvention,
which 1s set forth 1n the following claims.

What 1s claimed 1s:

1. A storage area network comprising:

a virtualization engine;

a first network port connected to said virtualization engine
to receive data access requests from one or more hosts,
said data access requests 1dentifying data with virtual
addresses;

a second network port connected to said virtualization
engine to connect to a plurality of storage controllers,
said virtualization engine to ftranslate the wvirtual
addresses into physical addresses and to forward the
data access requests to one or more storage controllers of
the plurality of storage controllers according to the
physical addresses;

a data cache connected to and directly accessible by said
virtualization engine with the virtual addresses using a
segment 1dentifier for identifving at least one segment
combined with a block i1dentifier for identifying at least
one block of the identified segment to be accessed, said
data cache further including:

a first level look-up table providing a first hit signal and a
segment structure address if the segment 1dentifier cor-
responds to a segment 1n said data cache; and

a second level look-up table having a control structure
memory providing a final hit signal and a storage address
if a block being accessed corresponds to a block 1n said
data cache wherein the control structure further includes
status information bits: write 1n progress, read 1n pro-
cess, data valid, dirty and flush in progress baits.

2. The storage area network of claim 1 wherein:

said first level look-up table 1s a content addressable
memory; and

said second level look-up table 1s at least one static memory
chip.

3. The storage area network of claim 1 wherein said data

cache further comprises:

a data block memory for storage of said data;

a data cache engine to manage the storage of said data
stored 1n the data block memory; and

a network processor configured to route data accesses to
and from the data cache engine, and interface to the
virtualization engine.
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4. The storage area network of claim 1 wherein said virtu-
alization engine further comprises:

amodule for examining a cacheable tag 1n frames received,
and forwarding only cacheable frames to said data
cache.

5. The storage area network of claim 1 wherein said second

level lookup table comprises:

a control structure memory containing status information
for a data cache segment; and a block pointer structure
containing pointers to data blocks 1n said data cache
segment.

6. The storage area network of claim 1 wherein said status

information further includes:

a status data bit;

a segment busy bit;

a primary bit;

a flush fail bat;

a segment lock bit; and

a segment valid bit.

7. The storage area network of claim 1 wherein said data
cache further comprises:

a segment aging processor; and

a write aging processor.

8. The storage area network of claim 7 wherein said seg-
ment aging processor further comprises:

a doubly linked list, with an up pointer pointing to a top of
an aging queue and a bottom pointer pointing to a bottom
of said aging queue.

9. The storage area network of claim 1 wherein said data
cache 1s configured to pre-fetch data from said plurality of
storage controllers mnto said cache, in addition to data
requested by and returned to said one or more hosts.

10. A storage area network comprising:

a virtualization engine;

a first network port connected to said engine to connect to

at least one host;

a second network port connected to said engine to connect
to a plurality of storage controllers;

a data cache connected to and directly accessible by said
virtualization engine with a virtual address using a seg-
ment 1dentifier for identifying at least one segment com-
bined with a block identifier for identitying at least one
block of the 1dentified segment to be accessed; said data
cache being a virtual cache accessed directly with one or
more virtual addresses and configured to cache data
communicated between said at least one host and the
plurality of storage controllers, and comprising;:
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a first level look-up table providing a first hit signal and a
segment structure address 11 a segment 1dentifier corre-
sponds to a segment 1n said data cache;

a second level look-up table having a control structure
memory providing a final hit signal and storage address
if a block being accessed corresponds to a block 1n said
cache wherein the control structure further includes sta-
tus information bits: write 1n progress, data valid, dirty
and flush 1n progress bits;

a data block memory for storage of said data communi-
cated between said at least one host and the plurality of
storage controllers;

a data cache engine to manage the storage of data stored 1n
the data block memory; and

a network processor configured to route data accesses to
and from the data cache engine, and interface to the
virtualization engine.

11. A method comprising:

recerving a data access request from a host at a virtualiza-
tion engine; and

determining whether the data access request can be pro-
cessed using a virtual cache connected to and directly
accessible to the virtualization engine with a virtual
address using a segment 1dentifier for identifying at least
one segment combined with a block identifier for 1den-
tifying at least one block of the 1dentified segment to be
accessed said virtual cache further providing a first hit
signal and a segment structure address 1f the segment
identifier corresponds to a segment 1n said virtual cache
and providing a final hit signal and a storage address 1f a
block being accessed corresponds to a block 1n said
virtual cache and further includes status information
bits: write 1n progress, read 1n process, data valid, dirty
and flush 1n progress bits, wherein the virtual cache 1s
configured to cache data communicated between the
host and a plurality of storage controllers 1n a storage
area network.

12. The method of claim 11, further comprising processing
the data access request using the virtual cache if 1t 1s deter-
mined that data request can be processed using the virtual
cache.

13. The method of claim 11, further comprising forwarding
the data access request to at least one of the plurality of
storage controller controllers 1f 1t 1s determined that data
request can not be processed using the virtual cache.



	Front Page
	Drawings
	Specification
	Claims

