US007467387B2

12 United States Patent

Mayes et al.

US 7,467,387 B2
Dec. 16, 2008

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR OFF-LOADING USER 6,275,818 Bl 8/2001 Subramanian et al.
QUERIES TO A TASK MANAGER 6,407,680 B1* 6/2002 Laietal.ccccoue..... 341/50
(75) 1 t Peter 1. . M Reading (GB) 6,864,991 B1* 3/2005 Takahashi 358/1.15
nventors: Peter J. D. Mayes, Reading ; .
Joseph F. Skovira, Owego. NY (US) 6,976,072 B; ¥ 12/2005 Mathleso.n 709/224
2002/0019844 Al1* 2/2002 Kurowskietal. 709/201
(73) Assignee: International Business Machines 2003/0101213 Al1* 5/2003 Wrightcoooeiiiinin. 709/203
Corporation, Armonk, NY (US) 2005/0004977 Al* 1/2005 Robertsetal. 709/203
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 744 days. OTHER PUBLICATIONS
(21) Appl. No.: 10/159,546 Shen et al, Neptune: Scalable Replication Management and Program-
ming Support for Cluster-based network Services, University of Cali-
(22) Filed: May 31, 2002 fornia, 2001, pp. 1-12.*
(65) Prior Publication Data (Continued)
US 2003/0225918 Al Dec. 4, 2003 Primary Examiner—Meng-Ai1 An
Assistant Examiner—Diem K Cao
(51) Int.Cl. (74) Attorney, Agent, or Firm—Lawrence D. Cutter; Jellrey
GO6F 3/00 (2006.01) Giunta; Fleit Gibbons Gutman Bongini & Bianco P.L.
GO6l’ 9/44 (2006.01)
GO6IF 9/46 (2006.01) (57) ABSTRACT
GO6F 13/00 (2006.01)
(52) US.CL ..., 719/314; 719/320
(58) Field of Classification Search 714/4; A method that off-loads the processing associated with
364/200; 719/311-320 responding to user status requests for software task execution
See application file for complete search history. queues or for queued software tasks that are managed by a
soltware task manager. A software task manager 1s periodi-
(56) References Cited cally queried for status and the results of that periodic query

are stored 1n a file. User queries for the status of the software

U.S. PATENT DOCUMENTS
task manager are handled by a separate process that can

4,831,518 A * 5/1980 Yuetal. ..coevvvvievrnvninnnnns 714/4 operate on the same or on a separate computing node than 1s
5,797,000 A 8/1998 Bhattacharya et al. hosting the software task manager. Queries submitted by
5,881,227 A 3/1999 Brenner et al. users for the status of queues or queued software tasks man-
5,881,232 A 3/1999 Cheng et al. aged by the software task manager are satisfied by retrieving
' 3 . . .
5,925,137 A 771999 Okanoue et al. 714/4 the status data that are stored 1n the file. Alternative embodi-
6,012,150 A 1/2000 Bartial et al. ments distribute copies of the file to several computing nodes
0,085,186 A 7/2000 - Christianson et al. to further alleviate the processing bottleneck caused by
0,102,969 A 8/2000 Christianson et al. responding to frequent task manager status queries from
6,125,360 A 9/2000 Witkowski et al. malljl usergs 1 - 1
6,148,296 A 11/2000 Tabbara Y '
6,184,996 B1* 2/2001 Gase ..cccvvvvvvininnnnnn.. 358/1.15
6,263,328 Bl 7/2001 Coden et al. 9 Claims, 3 Drawing Sheets
Jo0
/f-".lﬂ-‘-l
“GLUSTER | PERIODIC QUERY
IHM_112
S e

i

|

|| QUERY
| RESPONSE
|

|

, STATUS REQUESTS!
STATUS

STORAGE

.

106

TASK j
MANAGER |,
RESPONDER ||

I

k\~~..1r.na |

I

STATUS REQUEST SERVER |

I
K11E.i

AL L EEm s . -—

US 7,467,387 B2

Page 2
OTHER PUBLICATIONS U.S. Appl. No. 09/788,892, filed Feb. 20, 2001, Lin et al.
Webopedia, “What is a database”, Jun. 2003, p. 1.* U.S. Appl. No. 09/809,253, filed Mar. 16, 2001, Tsuchida et al.

U.S. Appl. No. 09/567,959, filed May 9, 2000, Sinn et al. _ _
U.S. Appl. No. 09/728,095, filed Dec. 1, 2000, Judicibus. * cited by examiner

U.S. Patent Dec. 16, 2008 Sheet 1 of 3 US 7,467,387 B2

:104

i COMPUTER PERIODIC QUERY

CLUSTER

DAEMON |

108

STATUS REQUEST SERVER

Y
| SOFTWARE TASK | TASKS
l_ MANAGER
102 USER N o
L r-
¢
; USER 2
- USER 1 l

[~ -~~~ —=~—-—-=-—--- —_———— -: —
N> ' :
== — :
|

UERY .
| | STATUS REQUESTS/
' | RESPONSE AT
| STORAGE TASK
| \K — MANAGER
: 106 RESPONDER
i
i
{
}
}
i
i

U.S. Patent Dec. 16, 2008 Sheet 2 of 3 US 7,467,387 B2

COMPUTER
CLUSTER 200

N 112 104

102 —_l
PERIODIC QUERY
SOFTWARE TASK DAEMON
MANAGER

TASKS
202
STATUS 120 _
REQUEST X
SERVER (A) e

\'1108

USER 2
A

REQUEST

SERVER (B)
I

AN

STATUS STATUS REQUESTS/

REQUEST STATUS
SERVER (C)

110c FIG. 2

USER 1

110b

U.S. Patent Dec.

300

302

16, 2008 Sheet 3 of 3

< BEGIN >
Y

N

QUERY TASK

MANAGER STATUS

'

3(:&]

STORE QUERY
RESULTS IN QUERY

RESPONSE STORAGE
306 ————— l
“~— WAIT FOR INTER-
QUERY DELAY
430 < BEGIN)
102 v
“— RECEIVE STATUS -
QUERY
404 B A —
.| RETREIVE QUERY
RESULTS IN QUERY
RESPONSE STORAGE
406 — Y

I TRANSMIT REQUESTED

STATUS DATA

US 7,467,387 B2

Fl1G. 3

F1G. 4

US 7,467,387 B2

1

METHOD FOR OFF-LOADING USER
QUERIES TO A TASK MANAGER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to monitoring software tasks
that are executing on a computer system, and more specifi-
cally to a system and method for allowing users to query the
status of executing computer tasks. 10

2. Description of Related Art

Large computing systems are able to be used by a large
number of users that can number 1nto the hundreds and even
thousands. These computing systems have software task
management facilities that accept software tasks, which are 15
sometimes referred to as “jobs,” and that manage the execu-
tion of those software tasks. The management of these soft-
ware tasks can include queuing these jobs with or without
prioritization relative to each other and then executing the
queued jobs as computing resources become available. These 20
computing systems are sometimes made up of several com-
puters or nodes that are interconnected together and that are
configured to operate 1n a manner so as to appear to be a single
computer. An example of such a computing system 1s a com-
puter cluster, where many computers are interconnected 25
using high-speed and dedicated communications links
between one another 1n order to support eificient parallel
and/or coordinated operations and processing. Other
examples include multiple computers that are interconnected
by more conventional communications means, such as com- 30
puter networks.

The software task management system used by these com-
puter systems allows users to request the status of the execu-
tion queues that contain the tasks that are queued for execu-
tion on the one or more computers controlled by that software 35
task management system. This software task management
system also allows querying of the status of a particular task
that 1s contained within the execution queue. Determining the
status of the software task execution queue or of a particular
task within the queue 1s an additional processing burden on 40
the software task management system. The queue of software
tasks that are awaiting execution grows as the nodes of the
computer system become more heavily loaded. The users of
such heavily loaded computer systems will request the status
of the queued software tasks, as well as the status of the queue 45
itself, 1n order to determine, or to try to estimate, when their
previously submitted software task 1s likely to execute. Users
also query the status of the software task execution queue to
determine 1f 1t 1s practical to submit new tasks because the
wait for execution may be long. 50

As the computers become more heavily loaded with sub-
mitted software tasks and the queue of software tasks await-
ing execution becomes long, the users 1ssue requests for the
status of the queue and of their submitted tasks with increas-
ing frequency. Automated software programs that are able to 55
repetitively submit status requests to the software task man-
agement system can also be used by the users. In computer
systems that support hundreds or thousands of users, satisiy-
ing the status requests from all of these users clamoring for
the status of the queue and the position of their submitted 60
soltware tasks within the queue can become a significant
burden for the software task management system as well as
create a large processing demand for the computer upon
which the software task management system 1s executing.
This results 1 long delays for the return of the requested 65
status for a queue or a queued software task, and additional
delay 1n the execution of tasks as the computing resources

2

used to satisiy these many status requests cannot be used to
execute the queued software tasks.

In order to more effectively handle the many status requests
submitted to a heavily loaded computer system while mini-
mizing the processing load presented by these status requests,

an elficient way to satisly user queries to a task manager 1s
needed.

SUMMARY OF THE INVENTION

In view of these drawbacks, 1t 1s an object of the present
invention to remove the above-mentioned drawbacks and to
provide systems and methods for off-loading user queries to
a task manager.

One embodiment of the present invention provides a
method for responding to system status requests. The method
periodically stores a status of a system. The method then
receives a system status request and responds to the system
status request based upon the status of the system that was
stored.

Another embodiment of the present invention provides a
system status reporting system. The task manager status
reporting system has a status storage that stores a status of a
system. The system further has a system status request
receiver that receives a system status request. The system also
has a system status responder that responds to the system
status request based on the stored status of the system.

Other objects, features, and advantages of the present
invention will become apparent from the following detailed
description. It should be understood, however, that the
detailed description and specific examples, while indicating
preferred embodiments of the present invention, are given by
way of illustration only and various modifications may natu-
rally be performed without deviating from the present inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram of a processing architecture
for a task manager query system 1n accordance with an exem-
plary embodiment of the present invention;

FIG. 2 1s a schematic diagram of a processing architecture
for a task manager query system 1n accordance with another
exemplary embodiment of the present invention;

FIG. 3 1s a process flow diagram for periodically querying
for the status of a task manager 1n accordance with an exem-
plary embodiment of the present invention; and

FIG. 4 1s a process flow diagram for requesting task man-
ager status 1n accordance with an exemplary embodiment of
the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Preferred embodiments of the present invention will be
described in detail hereinbelow with reference to the attached
drawings.

The exemplary embodiments of the present invention
implement an efficient system to provide task manager status
information to computer users. A schematic diagram of a
processing architecture 100 for an exemplary embodiment of
the present mvention 1s 1llustrated 1n FIG. 1. The exemplary
processing architecture 100 has a software task manager 102
that accepts and submits software processing tasks, which are
simply referred to as tasks 1n this specification, to a computer
cluster 112. The computer cluster of this exemplary embodi-
ment consists of several computers or computer nodes that are
interconnected via a high speed communications network.

US 7,467,387 B2

3

Alternative embodiments of the present invention have only
one computer node or computer nodes that are interconnected
via other communications interconnections. The software
task manager 102 of the exemplary embodiment 1s the Loa-
dLeveler software package available from International Busi-
ness Machines Corporation (IBM) of Armonk, N.Y. How-
ever, the present mvention 1s not so limited. The present
invention 1s applicable to any queuing system, and 1s particu-
larly suited for use with queuing systems that handle queries
from many users.

The software task manager accepts tasks from one or more
users 120. Users 120 are software processes or human com-
puter users that have access to the software task manager.
Each user within the one or more users 120 1s not required to
be able to submut tasks to the software task manager 102, but
may be able to simply query the status of the software task
manager 102 without authorization to submit tasks.

The software task manager 102 of the exemplary embodi-
ment receives periodic status queries from a periodic query
daemon 104. The periodic query daemon 104 is the task
manager querying module of the exemplary embodiment and
1s a background processing task that 1s able to operate on any
computer with access to the software task manager 102,
including on the same computer as 1s hosting the software
task manager 102. The types of queries performed by the
periodic query daemon 104 are described in detail below.

The queries submitted by the periodic query daemon 104
are configured so as to cause the software task manager 102 to
provide the response to one or more query response storage
106 elements. The query response storage 106 1s a data file
within a shared file system space 1n the exemplary embodi-
ment. The status request server 110 1s one or more processing,
modules that accepts task manager status requests from the
one or more users 120. The status request server 110 also
contains a status responder 108 that recerves the status queries
from the one or more users 120, extracts the data required to
respond to each status query and transmits the response back
to the requesting user 120. In the exemplary embodiment, the
task manager responder 108 contains a task manager status
request recerver, which receives the status requests submitted
by the one or more users 120, and a task manager status
responder, which retrieves data from the query response stor-
age 106 and sends the status information to the destination
specified by the requesting user.

The exemplary embodiment operates with the periodic
query daemon 104 periodically submitting queries to the
software task manager 102 according to a set schedule. The
results of these status queries are stored in the status response
storage 106. User queries are sent to one or more status
request servers that respond to user requests based upon the
results stored 1n the query response storage 106. This allows
computing resources to be dedicated to the software task
manager 102 and prevents an excessive amount of these
resources from being used to respond to user status queries.
Thus, the exemplary embodiment of the present invention
advantageously 1solates the software task manager 102 from
these direct status queries.

A multiple status request server processing architecture
200 according to another exemplary embodiment of the
present invention 1s illustrated 1n FIG. 2. The multiple status
request server processing architecture 200 includes a soft-
ware task manager 102, a periodic query daemon 104 and the
one or more users 120, as are present in the exemplary pro-
cessing architecture 100 of FIG. 1. The multiple status request
server processing architecture 200, however, additionally
includes multiple status request servers 202, such as of status

10

15

20

25

30

35

40

45

50

55

60

65

4

request server (A) 110a, status request server (B) 1105, and
status request server (C) 110¢ 1n this exemplary embodiment.
Each of the status request servers within the multiple status
request servers 202 contains a query response storage 106 and
a status responder 108.

In an exemplary embodiment of the multiple status request
server processing architecture 200, the software task manager
102 communicates the results of the status query to one status
request server, e.g., status request server (A) 110q, that, in
turn, retransmits that status to each of the other the task
processing queue request servers within the multiple status
request servers 202. Alternative embodiments that similarly
have multiple status request servers are able to configure the
solftware task manager 102 to communicate the results
directly to each of the multiple status request servers. This
results 1n storing a copy of the task manager’s status in each
ol the status request servers within the multiple status request
servers 202. User status requests in this embodiment are then
distributed to these multiple status requests servers 202 either
randomly, by assigning different user sub-groups to different
status request servers, or the status requests are distributed
among the multiple status request servers 202 via other dis-
tribution rules. In an exemplary embodiment, the status query
executables themselves include random selection processing
to randomly determine which status request server to query.
In this exemplary embodiment, each of the status request
servers within the multiple status request servers 202 execute
on a different computing node 1n order to distribute the pro-
cessing load associated with receiving, processing and
responding to task manager status requests among those dif-
terent computing nodes. Thus, while a single computing node
handling all task manager status requests can become another
processing bottleneck even though the software task manager
102 1tself 1s relieved of responding to each of the user’s status
requests, this architecture of this embodiment advanta-
geously relieves any single computing node from handling all
of the task manager status requests and distributes that pro-
cessing load among several computing nodes.

Task Manager Status Request Processing

A periodic query processing tlow 300 according to an
exemplary embodiment of the present invention 1s illustrated
in FIG. 3. This processing flow begins by querying, at step
302, the software task manager 102 for a status of that task
manager. This query 1s submitted by the periodic query dae-
mon 104 in the exemplary embodiments described above.
The periodic query daemon 104 1s able to be configured to
submit different types of queries either at the same time or at
different times. Examples of the different types of queries that
are able to be submitted to the software task manager 102
include the “llq” and *“llstatus”™ status query that are supported
by the LoadLeveler software package utilized by the exem-
plary embodiments as the software task manager 102. The llg
status query causes the software task manager 102 of the
exemplary embodiments to return the status of the queue of
soltware tasks that 1s managed by the software task manager
102. The llstatus status query causes the software task man-
ager 102 ofthe exemplary embodiments to return the status of
computing nodes that are used to execute the software tasks
managed by the software task manager 102.

These and the other status query commands are able to
have command parameters, or flags, that specily different
types of data that are to be included with the status response
by the software task manager 102. Examples of command
flags for the llstatus query command include a “-~1” flag that
causes a long listing to be generated with more information
than 1s included when the -1 flag 1s not included in the

US 7,467,387 B2

S

command. Specific data items are able to be requested with
the llstatus query command by including the “-1” flag fol-
lowed by a specification of the imnformation to be returned.
Another example 1s the ability to specity the computing nodes
for which status 1s to be returned by the llstatus command.
The llg command has similar flags that are able to be speci-
fied.

The exemplary embodiment i1s configured to submit a
single status query to the software task manager 102 that
causes the software task manager to return all of the data that
users 120 can request (e.g., by including all possible flags).
Alternative embodiments of the present invention are config-
ured to submit multiple status queries to the software task
manager 102 such that each status query has different flag
combinations. These alternative embodiments submit status
queries that have flag combinations that correspond to flag
combinations that are able to be submitted by users 120.
These alternative embodiments store the status response for
cach status request and flag combination 1n separate files.
This allows these embodiments to respond to status requests
from users by simply transmitting the data file for the flag
combination submitted by that user. This simplifies status
response processing at the expense of requiring the software
task manager to respond to multiple status requests and hav-
ing to store the multiple status responses 1n multiple files.

Other alternative embodiments may restrict the status data
that the users 120 are able to request and request only a
limited amount of the possible status data from the software
task manager. Other alternative embodiments utilize the pro-
cessing ol the exemplary embodiment to provide only the
more commonly requested status elements, and allow the
users 120 to directly query the software task manager 102 fo
turther information that 1s more rarely requested.

The task manager status query submitted to the software
task manager 102 specifies that the software task manager
102 1s to provide the status output data to the one or more
query response storage 106 elements. In embodiments of the
present invention that have only one status request server 110,
the status reported by the software task manager 102 1s only
provided, at step 304, to the query response storage 106 of
that single status request server 110. In embodiments that
have multiple status request servers 202, the status request
submitted by the periodic query daemon 104 either specifies
that each query response storage within the multiple status
request servers 202 1s to recerve the status data or that a single
status request server receives the response and that status
request server communicates the response to the other status
request servers.

Once the periodic query daemon 104 has submitted a status
query to the software task manager 102 and the software task
manager 102 has provided status output data to the one or
more query response storage 106 elements, the query results
or the status output data are stored into the query response
storage 106. The query response storage 106 1n the exemplary
embodiment 1s one or more data files stored 1n shared file
system space. The exemplary embodiment of the present
invention 1s configured to request the “long” status output
from the software task manager. This long status output that is
requested in the operation of the exemplary embodiments
contains all possible status information and contains more
information than 1s requested 1 some or most of the status
requests submitted by the users 120. All of this information 1s
stored within the query response storage 106 1n order to
support responding to the wide variety of status requests that
are submitted by the users 120. Alternative embodiments of
the present invention submit multiple status queries to the
software task manager 102 such that each multiple status

10

15

20

25

30

35

40

45

50

55

60

65

6

query has a different flag combination. In these embodiments,
the responses to these multiple status queries are stored in
different data files within the query response storage 106.

After the status data are stored 1n the query response stor-
age 106, the processing of the exemplary embodiment then
waits, at step 306, for the period between status queries. The
exemplary embodiment 1s configured to delay on the order of
ten to fifteen seconds between queries, which corresponds to
the delay performed in this step. Preferably, this delay 1s
configurable by the system administrator. After this delay, the
processing again queries, at step 302, the status of the task
manager.

The status response processing flow 400 of the exemplary
embodiment 1s 1illustrated 1n FIG. 4. This status response
processing flow 400 1s mitiated when a status query 1s made
by a user 120. The exemplary embodiment replaces the
executable software that implements commands that are used
by users 120 to submit status queries to the software task
manager 102 with command scripts that implement the status
response processing. Replacing the executable software
“binaries” that implement status queries to the soitware task
manager with command scripts allows easy maintenance and
modification of these command scripts to support different
functionality and options. This also results in not requiring
modification to the software task manager code because all of
the new processing 1s contaimned within these scripts. The
exemplary embodiment utilizes PERL scripts to implement
this processing.

A status query made by a user within the one or more users
120 1s recerved, at step 402, when the user executes the status
query command script. The status query command script 1s
the task manager responder 108 in the exemplary embodi-
ment. Embodiments of the present invention that include
multiple status request servers 202 include status query com-
mand scripts that are configured to query one of the multiple
status request servers 202. These embodiments have status
query command scripts that randomly select a status request
server within the multiple status request servers 202. The
division of status requests from users 1s alternatively accom-
plished 1n some embodiments by assigning each user within
the one or more users 120 to a particular status request server.
Other embodiments distribute the status requests to the status
request servers 1 a round robin manner utilizing conven-
tional techniques. Yet other embodiments use different tech-
niques such as random distribution to distribute the received
status requests.

The status request submitted by the user 1n this exemplary
embodiment 1s able to specily the status data that are
requested, and 1s able to request all of the status data that are
requested by the periodic query daemon 104 or the status
query 1s able to request just a subset of that data. The status
data specified within the status query submitted by the user
are retrieved, at step 404, by the task manager responder 108
from the query response storage 106. The exemplary embodi-
ment stores the status query response data 1n a file and then
extracts the requested data (1.e., all or a subset based upon the
flags specified by the user 120 1n the request) from that file 1n
response to a status request. After the requested data are
obtained from the query response storage 106, a response
message 1s constructed and transmitted, at step 406, to the
requesting user. The processing then returns to await the
receipt ol a new status query, at step 402.

The present mvention allows the off-loading of the pro-
cessing queue status queries from the software task manager
102. Handling the processing queue status queries 1n a sepa-
rate process, that 1s able to be hosted on a separate computer
processor, relieves the task manager from having to respond

US 7,467,387 B2

7

to the queries. In the exemplary embodiments of the present
invention, the software task manager only receives one or a
limited number of status queries in each query period and the
results of these queries are stored in a file. The user status
requests are satisfied by simply retrieving the status from this
file. This prevents resources for the task manager being allo-
cated to responding to user requests and 1nstead allows these
computing resources to be dedicated to the task manager and
task execution for more efficient overall processing. This can
result 1n significant performance increases in a heavily-
loaded system.

The present invention can be realized in hardware, soft-
ware, or a combination of hardware and software. Any kind of
computer system-or other apparatus adapted for carrying out
the methods described herein-1s suited. A typical combina-
tion of hardware and software could be a general purpose
computer system with a computer program that, when loaded
and executed, controls the computer system such that it car-
ries out the methods described herein.

The present invention can also be embedded 1n a computer
program product, which comprises all the features enabling,
the implementation of the methods described herein, and
which-when loaded 1n a computer system-1s able to carry out
these methods. In the present context, a “computer program”™
includes any expression, in any language, code or notation, of
a set of instructions intended to cause a system having an
information processing capability to perform a particular
tunction either directly or after either or both of the following:
a) conversion to another language, code, or notation; and b)
reproduction 1n a different material form.

Each computer system may include one or more computers
and a computer readable medium that allows the computer to
read data, 1nstructions, messages, or message packets, and
other computer readable information from the computer read-
able medium. The computer readable medium may 1nclude
non-volatile memory such as ROM, Flash memory, a hard or
floppy disk, a CD-ROM, or other permanent storage. Addi-
tionally, a computer readable medium may include volatile
storage such as RAM, butfers, cache memory, and network
circuits. Furthermore, the computer readable medium may
include computer readable mmformation 1n a transitory state
medium such as a network link and/or a network interface
(including a wired network or a wireless network) that allow
a computer to read such computer readable information.

While there has been 1llustrated and described what are
presently considered to be the preferred embodiments of the
present invention, 1t will be understood by those skilled in the
art that various other modifications may be made, and equiva-
lents may be substituted, without departing from the true
scope of the present invention. Additionally, many modifica-
tions may be made to adapt a particular situation to the teach-
ings of the present invention without departing from the cen-
tral mventive concept described herein. Furthermore, an
embodiment of the present mvention may not include all of
the features described above. Therefore, 1t 1s intended that the
present imvention not be limited to the particular embodi-
ments disclosed, but that the invention include all embodi-
ments falling within the scope of the appended claims.

What 1s claimed 1s:

1. A method for responding to system status requests, the
method comprising:
periodically receiving, at a first computing processor oper-
ating on a first computing node, a computing task queue
status for a computing task queue operating on a second
computing node, the second computing node being dii-
terent than the first computing node;

10

15

20

25

30

35

40

45

50

55

60

65

8

storing, 1n response to the periodically receiving, the com-
puting task queue status on the first computing node into
a storage;

communicating, from a requesting node operating on a
requesting computing processor to an electrical data
connection of the first computing processor operating on
the first computing node, a system computing task queue
status request for at least a portion of the computing task
queue status for the computing task queue operating on
the second computing node, the requesting node com-
prising the requesting computing processor that 1s dif-
ferent than the first computing processor;

recerving, through the electrical data connection of the first

computing node, the system computing task queue sta-
tus request;
retrieving, in response to the recerving, the at least a portion
of the computing task queue status from the storage;

sending, to the requesting node 1n response to receiving the
system computing task queue status request, a comput-
ing task queue status response data message containing,
the at least a portion of the computing task queue status;

transmitting, 1n response to the receiving the computing
task queue status, the computing task queue status from
the first computing node to a third computing node;

storing the computing task queue status on the third com-
puting node;

receving, at the third computing node, a second system

task status request for at least a portion of the computing
task queue status for the task queue operating on the
second computing node; and

responding to the system status request based on the com-

puting task queue status stored on the third computing
node.

2. The method as defined 1n claim 1 wherein the system
computing task queue status request comprises a request for a
subset of data for each queue entry that 1s stored on the first
computing node describing the computing task queue status
for queue entries 1n the computing task queue operating on the
second computing node, the subset having less than all data
available for each queue entry from the second computing
node.

3. The method as defined in claim 1, further comprising the
step of periodically querying, at a time period that 1s indepen-
dent of communicating the system computing task queue
status request, the second computing node for the computing
task queue status of the second computing node, and

wherein the computing task queue status comprises a coms-
puting task queue status response describing at least one
status ol the computing task queue operating on the
second computing node.

4. The method as defined in claam 3, wherein the time
period 1s a predetermined and uniform period.

5. The method as defined 1n claim 1, wherein the comput-
ing task queue status comprises a subset of less than all
available computing task queue status provided by the second
computing node, and wherein the computing task queue sta-
tus request 1s limited to one of all of the subset of available
computing task queues status and a further subset of the
subset of available computing task queue status.

6. A method for responding to system status requests, the
method comprising:
periodically recerving, at a first computing processor oper-
ating on a first computing node, a computing task queue
status for a computing task queue operating on a second
computing node, the second computing node being dii-
terent than the first computing node;

US 7,467,387 B2

9

storing, 1n response to the periodically receiving, the com-
puting task queue status on the first computing node into
a storage;

communicating, from a requesting node operating on a
requesting computing processor to an electrical data
connection of the first computing processor operating on
the first computing node, a system computing task queue
status request for at least a portion of the computing task
queue status for the computing task queue operating on
the second computing node, the requesting node com-
prising the requesting computing processor that 1s dif-
ferent than the first computing processor;

receiving, through the electrical data connection of the first
computing node, the system computing task queue sta-
tus request;

retrieving, inresponse to the recerving, the at least a portion
of the computing task queue status from the storage;

sending, to the requesting node 1n response to receiving the
system computing task queue status request, a comput-
ing task queue status response data message containing
the at least a portion of the computing task queue status;

querying the second computing node for the computing
task queue status of the second computing node with a
query specitying that the computing task queue status 1s
to be sent to the first computing node and a third com-
puting node, the third computing node being separate
from the first computing node; and

directly sending, from the second computing node in
response to the query, the computing task queue status to
both the first computing node and a third computing
node.

7. A method for responding to system status requests, the

method comprising:

periodically receiving, at a first computing processor oper-
ating on a first computing node, a computing task queue
status for a computing task queue operating on a second
computing node, the second computing node being dii-
ferent than the first computing node, wherein the com-
puting task queue status comprises a first subset of com-
puting task queue data that contains less than all
available computing task queue data provided by the
second computing node, and wherein the periodically
receiving further comprises periodically receiving a sec-
ond computing task queue status, the second computing
task queue status comprising a second subset of com-
puting task queue data for the computing task queue
operating on the second computing node, the second
subset of computing task queue data containing a differ-

10

15

20

25

30

35

40

45

10

ent subset of the all computing task queue data than 1s
contained 1n the first subset of computing task queue
data;
storing, 1n response to the periodically receiving, the com-
puting task queue status on the first computing node mnto
a storage;

communicating, {from a requesting node operating on a
requesting computing processor to an electrical data
connection of the first computing processor operating on
the first computing node, a system computing task queue
status request for at least a portion of the computing task
queue status for the computing task queue operating on
the second computing node, and wherein the system
computing task queue status request 1s limited to
requesting one of the first subset of computing task
queue data and the second subset of computing task
queue data, the requesting node comprising the request-
ing computing processor that 1s different than the first
computing processor;

recerving, through the electrical data connection of the first

computing node, the system computing task queue sta-
tus request;

retrieving, in response to the recerving, the at least a portion

of the computing task queue status from the storage; and
sending, to the requesting node 1n response to receiving the
system computing task queue status request, a comput-
ing task queue status response data message containing,
the at least a portion of the computing task queue status.

8. The method as defined in claim 7, wherein the first set of
computing task queue data are stored within a first data file
stored 1n a shared file system space and the second set of
computing task queue data 1s stored within a second data file
stored 1n the shared file system space, and

wherein the retrieving the at least a portion of the comput-

ing task queue status comprises retrieving, i response to
a request for the first set of computing task queue data,
data stored in the first data file and retrieving, in response
to a request for the second set of computing task queue
data, data stored 1n the second data file.

9. The method as defined 1n claim 7, further comprising
querying, at a first time period, the second computing node for
the first set of computing task queue data and querying, at a
second time period, the second computing node for the sec-
ond set of computing task queue data, wherein the first time
period and the second time period are mndependent of com-
municating the system computing task queue status request.

	Front Page
	Drawings
	Specification
	Claims

