12 United States Patent

US007464251B2

(10) Patent No.: US 7,464,251 B2

Mirsky 45) Date of Patent: *Dec. 9, 2008
(54) METHOD AND APPARATUS FOR 3,887,799 A * 6/1975 Lindgren 708/209
CONFIGURING ARBITRARY SIZED DATA 4,523,292 A * 6/1985 Armercccoeeeeeeennnn. 708/703
PATHS COMPRISING MUITIPLE CONTEXT 4,597,041 A 6/1986 Guyeretal. 364/200
PROCESSING ELEMENTS 4,748,585 A 5/1988 Chiarulli et al. 364/900
(75) Inventor: Ethan A.Mirsky, Mountain View, CA (Continued)
(US) OTHER PUBLICATIONS
- : : : Valero-Garcia, et al.; “Implementation of Systolic Algorithms Using
(73) Assignee: ?&‘g?dcom Corporation, Irvine, CA Pipelined Functional Units”; IEEE Proceedings on the International
Conf. on Application Specific Array Processors; Sep. 5-7, 1990; pp.
: : : : : 272-283.
(*) Notice: SUbJeCt_ to any disclaimer > the term of this Razdan, et al.; “A High-Performance Microarchitecture with Hard-
patent 1s extended or adjusted under 35 ware-Programmable Functional Units”; Micro-27 Proceedings of the
U.5.C. 154(b) by 20 days. 27th Annual International Symposium on Microarchitecture; Nov.
30-Dec. 2, 1994, pp.172-180.
This patent 1s subject to a terminal dis- Guo, et al.; “A Novel Programmable Interconnect Architecture with
claimer. Decoded Ram Storage”; Proceedings of the IEEE Custom Integrated
Circuits Conference; May 1-4, 1994, pp. 193-196.
(21) Appl. No.: 10/375,543 (Continued)
(22) Filed: Feb. 27, 2003 Primary Examiner—Daniel Pan
(65) Prior Publication Data (57) ABSTRACT
US 2003/0182346 Al Sep. 235, 2003 _ _ ,
A method and an apparatus for configuring arbitrary sized
Related U.S. Application Data data paths comprising multiple context processing elements
(MCPEs) are provided. Multiple MCPEs may be chained to
(63) Continuation ot application No. 09/795,672, filed on form wider-word data paths of arbitrary widths, wherein a
Feb. 26, 2001, now Pat. No. 6,591,357, which is a first ALU serves as the most significant byte (IMSB) of the
continuation of application No. 09/075,412, filed on data path while a second ALU serves as the least significant
May 8, 1998, now Pat. No. 6,226,735. byte (LSB) of the data path. The ALUs of the data path are
coupled using a left-going, or forward, carry chain for trans-
(51) Int. Cl. mitting at least one carry bit from the LSB ALU to the MSB
GOGEF 15/80 (2006.01) ALU. The MSB ALU comprises configurable logic for gen-
GO6F 9/315 (2006.01) crating at least one signal 1n response to a carry bit recerved
(52) US.CL oo 712/15; 712/221; 712/225 ~ ©ver the left-going carry chain, the at least one signal com-
(58) Field of Classification Search 719/11 prising a saturation signal and a saturation value. The MCPEs
""""""""" N ’ of the data path use configurable logic to manipulate a resi-
712/14, 19, 18, 22, 15, 221, 225; _708/207" dent bit sequence 1n response to the saturation signal trans-
_ 7_08/232" 506, 509, 438, 552, 6_29" 716/16 mitted thereby reconfiguring, or changing the operation of,
See application file for complete search history. the data path 1n response to the saturation signal. The carry
(56) References Cited chains support carry operations for non-local functions com-

U.S. PATENT DOCUMENTS

prising mimmimum and maximum arithmetic functions.

3,818,203 A * 6/1974 Perlowski et al. 708/232 55 Claims, 30 Drawing Sheets

TRANSMIT CONFIGURATION
DATA TO MCPEs

{ — 5004

DEFINE A DATA PATH BY
DESIGNATING MCPEs

I - 50086

PROGRAM MCPEs OF
DATA PATH

I ~— 5008

DESIGNATE MSEB AND LG&B
MCPEs OF DATA PATH

I — 5010

TRANSMIT AT LEAST ONE |

CARRY BUT FROM LSB TO
MSB MCPE

5017 s
SATURATION NO
OCCURRED
2
5014 "YES

GENERATE SATURATION SIGNAL
IN M58 MCPE

5002

2016

TRANSMIT SATURATION SIGNAL
FROM MSB TO LSB MCPL

Emﬂh__\ J'
MANIPULATE DATA OF MCPEs

US 7,464,251 B2
Page 2

U.S. PATENT DOCUMENTS

4,754,412 A 6/1988 Deeringccevevveennnn. 364/736
4,841,468 A * 6/1989 Milleretal. 708/625
4,858,113 A 8/1989 Saccardicoenvenenn. 364/200
4,870,302 A 9/1989 Freeman 307/465
5,020,059 A 5/1991 Gormetal. 371/11.3
5,047.975 A * 9/1991 Pattietal.cooeevnen.nn 708/706
5,081,607 A * 1/1992 Batesetal. 708/710
5,233,539 A 8/1993 Agrawal etal. 364/489
5,301,340 A 4/1994 Co0K ovvvvvvrniiiiniiinnnnn, 395/800
5,317,209 A 5/1994 GQGarverick etal. 307/465
5,336,950 A 8/1994 Poplietal. 307/465
5,426,378 A 6/1995 Ong ..ooovvvvviiiiiiiniiiin.n, 326/39
5,457,408 A 10/1995 Leungcocovvvvvvvvnnnnnnn. 326/38
5,469,003 A 11/1995 Keanccoovvvviviivnninnnnn. 326/39
5,581,199 A 12/1996 Pierceetal. 326/41
5,684,728 A * 11/1997 Okayamaetal. 708/525
5,684,980 A 11/1997 Casselman 395/500
5,742,180 A 4/1998 DeHonetal. 326/40
5,754,818 A 5/1998 Mohamed 395/417
5,765,209 A 6/1998 Yetter ..ccoovvvvvvinninnnn.... 711/207
5,778,439 A 7/1998 Trimberger etal. 711/153
5,854,760 A * 12/1998 Ikenagaetal. 365/49
5,880,598 A 3/1999 Duongccvevviinnnnen. 326/41
6,055,619 A * 4/2000 Northetal 712/36
6,226,735 B1* 5/2001 Mirsky ...cocovviviiinininnin. 712/18
6,591,357 B2* 7/2003 Mirsky ..coooiiiiiiiiininin. 712/18
OTHER PUBLICATIONS

Vuillemin, et al.; “Programmable Active Memories: Reconfigurable
Systems Come of Age”; IEEE Transactions on VLSI Systems; 1995;
pp. 1-15.

Hon, et al; “Remnventing Computing”, Mar. 1996, MIT Al Lab, p. 1.
Baker, “Programming Silicon™; Aug. 28, 1995, Electronic Engineer-
ing Times, p. 73.

Brown; “Smart Compilers Puncture Code Bloat™; Oct. 9, 1995, Elec-
tronic Engineering Times; pp. 38 and 42.

Snyder; “A Taxonomy of Synchronous Parallel Machines”; Proceed-
ings of the 1988 International Conference on Parallel Processing;
Aug. 15-19, 1998; pp. 281-285.

Gray, et al.; “Configurable Hardware: A New Paradigm for Compu-
tation”; 1989; Massachusetts Institute of Technology; pp. 279-296.

Carter, et al.; “A User Programmable Reconfigurable LLogic Array”;
IEEE 1986 Custom Integrated Circuits Conference; pp. 233-235.
Johnson, et al.; “General-Purpose Systolic Arrays”; IEEE Nov. 1993;
pp. 20-31.

Clark; “Pilkington Preps Reconfigurable Video DSP”; EE Times,
week of Jul. 31, 1995.

Fiske, et al.; “Reconfigurable Arithmetic Processor”; The 15th
Annual International Symposium on Computer Architecture; May
30-Jun. 2, 1988; pp. 30-306.

Beal, et al.; Design of a Processor Element for a High Performance
Massively Parallel SIMD System; Int’l Journal of High Speed Com-
puting, vol. 7, No. 3; Sep. 1995; pp. 365-390.

Snyder; “An Inquiry into the Benefits of Multiguage Parallel Com-
putation”; Proceedings of the 1995 International Conference on Par-
allel Processing; Aug. 20-23, 1995; pp. 488-492.

Wang, et al.; “An Array Architecture for Reconfigurable Datapaths:
More FPGAs,” W.R. Moore & W. Luk; 1994 Abingdon EE&CS
Books; p. 35-46.

Bridges; “The GPA Machine: A Generally Partitionable MSIMD
Architecture”; IEEE Third Symposium on The Frontiers of Mas-
sively Parallel Computation, Feb. 1990; pp. 196-203.

Morton, et al.; “The Dynamically Reconfigurable CAP Array Chip
[”’: IEEE Journal of Solid-State Circuits, vol. SC-21, No. 5, Oct.
1986; pp. 820-826.

Alexander, et al.; “A Reconfigurable Approach to a Systolic Sorting
Architecture”; IEEE Feb. 1989; pp. 1178-1182.

Blazek, et al.; “Design of a Reconfigurable Parallel RISC-Machine”;
North-Holland Microprocessing and Microprogramming, 1987, pp.
39-46.

Masera, et al.; “A Microprogrammable Parallel Architecture for
DSP”; Proceedings of the International Conference on Circuits and
Systems, Jun. 1991; pp. 824-827.

Xilinx Advance Product Information; “XC6200 Field Programmable
Gate Arrays™; Jan. 9, 1997 (Version 1.8); pp. 1-53.

Sowa, et al.; “Parallel Execution on the Function-Partitioned Proces-
sor with Multiple Instruction Streams™; Systems and Computers in
Japan, vol. 22, No. 4, 1991, pp. 22-27.

Wang, et al.; “Distributed Instruction Set Computer”; Proceedings of
the 1988 International Conference on Parallel Processing; Aug.
15-19, 1988, pp. 426-429.

Mirsky, Ethan A., “Coarse-Grain Reconfigurable Computing,” The-
s1s submutted at the Massachusetts Institute of Technology, Jun. 1996.

* cited by examiner

US 7,464,251 B2

Sheet 1 of 30

Dec. 9, 2008

U.S. Patent

(d3TI0HINOO

I}
0.1 - 1H0d | 1804 | 1Y0d
NQTMR 0/ o/t | O/

e —

30!

4370030
NOILONHLSNI

318V3NOIINOD

-

—————

ININAYEO0Hd

— e

1304
O/

180d
0/

1504
0/

L¥0d
0/

1509 4%

Lo

US 7,464,251 B2

- S TR VTV
1IN0 AHEYD TN NI AM&VI
. — 1907 110 NI h D907 —
130d NOILONNF AHONW3N 104 INOD 77 I_Om._.ZOU.All‘WEQ& NOILONNS N1V
] INC™0 A7y 13sT4 q
AN _ AN
_ y12 LIS N ¥E
m ;] |
~ 7 N\ 7 N\ |
3 |
7 0¢Z 322
140d '8 l40d Vv

= 5 130d_JYOMLIN Va: 01 SOV Y (= ¥ 180d ASOMLIR
= %0078 '
S vee —300N 3M
- Y1v(Qd

U.S. Patent

US 7.464.251 B2

Sheet 3 of 30

Dec. 9, 2008

U.S. Patent

3N

¢ Ly0d ONILYO 14

30¢ |
AJOMLIN € T3ATT

AJOMLAN ¢ 13AIT

L 13A3T

~ [80d NOILINNS |
AJONIN _

-

S——

L 13AT)

108INOD KS4

lii 180d ONLVOU 09— 4,907 108INO)

r |
S0¢ i
|
———— J
e
I N 1404 .
Y1va/SS3HA0Y 4
'
30¢

—

g

sl

AGOMLIN T04INOI

AGOWIN

I

r

1-'!

¢ 1304 ONULFO
N
- — -
5 30¢

| 140d UNILYO 1S j——=@

S
S90%

AHOMLIN

|

[340d NOILONN S — @

Ny

30¢
_. +
- -
Mod L
VIV0/SSIH00¥ ¥ |
30¢

& I

AJOMLEN € 13A3]
NJOMIEN ¢ 12AT)

L 13AT]

US 7,464,251 B2

Sheet 4 of 30

Dec. 9, 2008

U.S. Patent

e b s T e e 2 eyt ey O el ol T

o NOMV 4bIHIINK
v0C e . |
J
_ . H | ;
U9, HOLYINKNOOY InoD - LHOIY/ 1337
4 OSW 300¢ (z¢og Z LNO—AZIVO
2 o L d \
/ / Z10¢
oz0c (93 938 yz0¢
_
o]) , 4
LHOI/L33T v _gluiy gy 1nop—~— NERETRIT N—g10¢
\ I
D10% Z00¢ — 700¢
A A
A~ 180d v
140d § — .
b d v WIN
g WIn

-—_“_____.-

US 7,464,251 B2

$ Dld

Sheet 5 of 30

Dec. 9, 2008

U.S. Patent

199[9§ 9N[EA pEOT] JOLVIIAOOV
12243 ON IO [NUWINIOY avo’l >
| dav-agayv
JOIR[NWNOIY -XTALINA _ 4
indingQ JOIB|NWNIDY _ 10908 103]98 _
JeINICS g paudiS | V pausdls aav
. . "ATdILINA suorjetad(| -y
XT1dXYINN uoneddRny 4
gSIN 910UB] NI T
paudisun AdJIAVO i ddyv 0l
. g WUaAU] | Y WaAU]
/PoU mm Owﬂ.::mm _ MlQQ.ﬁx ﬂomuﬂhuﬁmo 6
| 0-aqayv QIPWYILY 3
_ 1] 5N
123J7 ON 1224{7 ON m&ﬁm%m%”m : /
—————————— T
193]3S €/ A V LHODIY LAIHS 5
¢ vt 2lQFL 995
pausisuf) | 1oejeg 1ndu] Aue- FIVINLYS s |
/PausIS | JAAT JATHS suonnelad(y | >
gSin/gs7] . I
LAHT JHIHS B34S 1
1I99[98 2/V SSvd 3
| | d0OX {
11g-198S R Vv UAU]
1290/7 ON d0 suonelad(|
_ ANV [e21207] 0
uolOUN uonoun g uohioun,f | uohouny uolyelad
L3 91d sd Fd . 0

US 7,464,251 B2

Sheet 6 of 30

Dec. 9, 2008

U.S. Patent

———— T T i o |
HHS IN9IS o | RIS I
J0INOIS oSt L
- Lins GSNJIGNT 1430K3 T
LIHS GIN9IS 1

[IHS QIN9ISNN
aSH/8ST 40 Ad0D
0

LOdNI &

O~ N[O —

L
INGNEY | 0

103443 AN IVA

9914

104INOO L3RS

108INCI LIS

TO0dLNOY

11V _Am“@v-

Y | 7

3009d0O

US 7,464,251 B2

Sheet 7 of 30

S34ON 85T
404 AYYYD

Dec. 9, 2008

U.S. Patent

ikl

NI—AgdVvo
NI —AddVO

NI —ATEV U

Y S .IIlI.Il.I_ =

' SIJON 8ST—NON

J04 AdHVO

AddYO HLIM UV

. —Udv
O—CUV

NOLLYEIJO
aav

US 7,464,251 B2

Sheet 8 of 30

Dec. 9, 2008

U.S. Patent

& Il

LINHLINY GINOIS
SLIWHLISY GINOISND

e el p——m—— y

" 8SW IJONDI | OILINHLMY Q3LvHNLYS ﬁ]
© gSW 3SN | OU3IWHIYY TYIEON C
INdNI 8 QILYIANI LT
LAINE 8 TYIWEON w U
LNgNI vV J3Ld3AN h i}
LNANI ¥ IVAZON 0

NIN NO 104533 SAAdyY NO 103344 VA | LG

U.S. Patent Dec. 9, 2008 Sheet 9 of 30 US 7,464,251 B2

4000

403C
AP
H e

40357

AlLU =

4004 |

4014
FIG. 9

4020

4022

ALU
40072
4012

U.S. Patent Dec. 9, 2008 Sheet 10 of 30 US 7,464,251 B2

116G 10

B _} B - K,_J/SDOQ
l TRANSMIT CONFIGURATION
DATA TO MCPEs
o I B) 5004
I DEFINE A DATA PATH BY
DES!GNATENG MCPEs
| 5006

PROGRAM MCPEs OF
DATA PATH

Il e

DESIGNATE MSB AND LSB
MCPEs OF DATA PATH

R 5010
TRANSMIT AT LEAST ONE J

CARRY BUT FROM LSB TO
MSB MCPE

2012 OAS

SATURATION
OCCURRED

NC

5014 —__ ‘TZES -
GONERATE SATURATION SIGNAL l :
IN MSB MCPE |
5016 T

TRANSMIT SATURATION SIGNAL
FROM MSB 10 LSB MCPE |
5018 ;
l MANIPULATE DATA OF MCPEs] i

END

US 7,464,251 B2

NN

QINM3dId S| NI-A¥YWD 1331 | O3NM3did LON SI NI=A¥YYO 1431 Touljadi4A4ing

0INN3did S| NI-AYYYD LHOW | QINM3dI LON SI NI-A¥EVD LHOY | ¥dutjedighuic)

Sheet 11 of 30

2'S'e 318VL 335-308N0S NI-A¥YVO 1431 3HL SL103N3S 30.N0S}457
| TS 378¥L 335-308N0S NI-A¥SYO LHO 3HL SLO313S oounogiubly
gSW 3HL Sl 3dOW | 8SA 3HL LON S| 3dOW H

gS>) ddl S 3gaO0OW 9S1 3HL ION SI 3d0W 39S |

Dec. 9, 2008

Wb OL 135 NIHM 104444 (0., 0L 135 N3HM 104133 NCILVENOIINOD

U.S. Patent

US 7,464,251 B2

Sheet 12 of 30

Dec. 9, 2008

U.S. Patent

Qu3Z INVISNQD

C&3Z LINVISNOO

04532 INVISNQD

0¥3Z INVISNQOD

LNO—AdYvVY T108INOT S$M38 HLEON
LNO—=AHduvD T0HIN0D SN3E LSIM

LNO—AHEVY 10d4INDOD SN48 HLNGS
LNO—AYHVD 10MINCD sN48 LSV3

ou‘_:ewyc@mm

3INO INVISNOD

0437 wzimzoo

(€)132na3y

LNO—ANYYD L3317 SN48 W3O =t
LNO=ANEYD 1437 SN48 HIHON ———=

NO—=AZEVY 1337 SN38 LS3IM
LNO—-AJuvDO 331 sNJdE HLINOS
NO—-AYHYD 431 8138 LSV3

LAQ=AHEVD LHOIY = [N0-A53V0 O

SEIVIIETIPT SN{slg

G ol

INEJER
1SS

L 2.
W~ AJYD SHO N=Riivd (3]

}undwod |

e e ———————————————

(=

S e ——

0d=Z INVLISNOD
0¥3Z INVISNOO
Q¥3Z INVISNQOD
Cy83Z INVISNOO

O3d e N0~ ANEYD 3LVINLYS SN38 HLHON

_ i

ToulRdI4AII DD 22JN0GY 97

e —

il ——————
—————

1.I|I|ll__.

N0-R8) i LNO—AdEvY 1337

e LNO=ASEVD JLVENLVYS S48 1S3M

LNO=-AYYYD 3LIveNIvS M58 RINGS

1N0—ABIVI IVHNLVS

INO INVISNQO
w_vmm INVISNOO
132003

LNO—-AYYYD LHOIY A
[NO=-AHYV]) LHOE S
INO=-AYEVD 1HJIE ST

S48 L[SV

INO—-ASYVO LHOIE shijg W0

38 HLiZON
48 1S3M
28 HINPS

LNO~AZYVD [HOlg 51

38 1SV3

U.S. Patent Dec. 9, 2008 Sheet 13 of 30 US 7,464,251 B2

RightSource / |
LeftSource Value CARRY SOURCE

-— CONSTANT ZERC
[CONSTANT ZERO
Z FAST MCPE CARRY OuUT

:
i
O
7

NORTH MCPE CARRY-QUIT
LOCAL MCPE CARRY-OUT
REDUCE(3] (PIPELINED)

FIG. 13

U.S. Patent Dec. 9, 2008 Sheet 14 of 30
L LSB/ | Signed/ }] ,
Operatiou MSB { Unsigned CoutR Value CoutL Value

US 7,464,251 B2

Saturate Select
CGutput Value

R D 73 O A

Unsigned | «ff MSB overflows MSB carty- -out
M.sB Sivned | off word overflows past Bi{MSB-1] g 1 G _
SHIFT LEFT & posiive or negative maxint carry-out nvertof Sign Bi
Other | N/A CinL Shift Carry Value | —auurateSelect
l : Input
Uasigned _ CinR 0
MSB . Shift Carry Value _ ; ;
Stgned CinR & Sign Bt 0
SHIFTRIGHT | s | A LSB carry-out CoutR Saturate Select
[nput
Other N/A Shift Carry Value CinR Saturate Select
- - [nput
PASS | . , Saturate Select
j with SATURATE | WA 1 N/A CinL CinR Inpu
] | 1ff subtract results 1n a
_Utimgncd ‘f‘DDS 4 | MSB negative number: | L 4
with A or B inverted | Unsigned | O on the MSB oveflow bit The Addition’s
(not both) | Carry Value
and Unsigntd MIN Other Cinl. Saturate Select
| [nput
Unsigned | 1ff MSB overflows o
MSB * -
Signed | M wordoverflowspast | 4 4dition's Sign Bit
All Other ADDs positive Or negative maxint
Carry Value
Other N/A Cinl. Saturate Select
— Input
MSB | Sign Bit N Sign Bit
Signed MIN Signed The Additions S Sel
O{hﬂ[‘ , CiﬂL C&ITY Value aturate oclect
[nput
I f Accumulator MSB l
overflows
MSB | iff Accumutator word ;
: . . . The Accumulator’s : .
Multiply Operations Signed overflows past posilive) Sign But
‘ : Carry Value
or negative maxint
| 1
Other N/A Cinl. Saturate Select

Input

FIG. 14

US 7,464,251 B2

Sheet 15 of 30

Dec. 9, 2008

U.S. Patent

J0ZL

e e S e

30/ 1 30/

70/

L -~ = -

il Rl ==

70!

GFold

70/

7UL

50/

70!

US 7,464,251 B2

Sheet 16 of 30

Dec. 9, 2008

U.S. Patent

' 0GQ

059

9L 914

0G¢

069

U.S. Patent

Dec. 9, 2008 Sheet 17 of 30

l
)

~ il
A g

<)
<

US 7,464,251 B2

U.S. Patent Dec. 9, 2008 Sheet 18 of 30 US 7,464,251 B2

FIG. 18

CONFIGURATION
NETWORK SOURCE
1004

CONFIGURATION

NETWORK INTERFACE
1006

L] CONFIGURATION
NETWORK
INTERFACE

.
5 il
| i u FUH
- il&j

———

|

ol Dld

US 7,464,251 B2

- v.LVQ NYIHLS 3LA8 “
2 [0:21INNOD INAOD TLAG '

b 38N9I433S LX3INGD 9
: [0:2]SS3Haav JIAGMOTSSaHaaY | b
= [0:2] s IgMOTNSYW | e |
2

([8:711SSTHAAQY 'L03713S WOISAHANVNLYIA] JIAGHOIHSSIHAaY | ¢
(87 IISYIN 'Lq.L) JUAGHOHMSYW | 1

SINZINOD

Patent

U.S

U.S. Patent Dec. 9, 2008 Sheet 20 of 30 US 7,464,251 B2

CONTEXT BIT <7> BITS<6:3> BITS<2:0>*
READMWRITE | (MAJOR CONTEXT) | (MINOR CONTEXU
HARDWIRED
RESET CONTEXT
0
1 1
. 7

HARDWIRED
STALL CONTEXT

RUN CONTEXT | WRITE = 11 I
ROGRAMMABLE 0
RUN CONTEXT 3
10 {0 |

US 7,464,251 B2

Sheet 21 of 30

Dec. 9, 2008

U.S. Patent

m V1V(
NOILVINIIINOD
SLIAM

NOILOVSNVSL
HIOLVM

518

A%

481>

_ 48}

SARS

NOILOVSNYY .
03Y3LSVN
MHOMLIN

>S33d0V

Y 000 et S
—_—————e | WIS TEESSSear 0 WeeRempid 0 WESpmeeysl 00 "Sepmeessy 000 wmaeeseey O "Dnemass?t 0 TESaSaa—— O Saeeessn 0 SR Eamelagy 0 A0 S A0 ISy 090 Ay 090 Mgy 0 ey 090 ey 0 bDelSgene 0 A0 et 0 TSR RSy

V8019

e - e —— b i

US 7,464,251 B2

Sheet 22 of 30

cléc

Dec. 9, 2008

U.S. Patent

20¢e
LOOHID :
AV
8022 .
P
@
LIN0YID L
AV130
9023
WHOMLIN
LNOYID L 24O
AVI30
5022

U.S. Patent Dec. 9, 2008 Sheet 23 of 30 US 7,464,251 B2

2454

o
O
> N
m\
m
N
<
N i
)
L1]
o ~ LY o R
e w
AN, N SN
(N N
® N LLJ C\l
D) -)
M~ — N <
L3 o\ N
e
N
)
<t
N

U.S. Patent Dec. 9, 2008 Sheet 24 of 30 US 7,464,251 B2

2100
\\\\ﬁ

2147

2141

FIG.24

US 7,464,251 B2

Sheet 25 of 30

Dec. 9, 2008

U.S. Patent

104

LINA ONISS300dd

$¢ DI

9l¢}

c0chk

3d0OLS T0EINOD

90T
d3INNOD Wvdo0dda

US 7,464,251 B2

L IX31INOD HONIW
2 0 LX3INOJ HONIW
= |
m - NOILYHNDIINOD NNY
S L 318YIWIAVYHOO0Hd
7

| ¢ LX3LNOD

. HOM'vYWw 0%
&
N
=

Oy

U.S. Patent

9C DId

b IX3INQO 5ONIW
0 LX3LNOO JdONIN

NOILYHNYIINOD NN SJAONW TIVLS
3 18YANWYID0Ed (3dIMABYH
¢ LXJINOO | IX3INOD
dOMVW opp BOrvA

NOILYENDIINOD
g3 1T10491NOO

NOILVH[DISINOD TVEOTV

TIVLS
TS

0% |

323344
gv310

S3JOW L3534
G34IMJEVH

0 1X3INQO
HOMvYiN 0%

US 7.464.251 B2

Sheet 27 of 30

Dec. 9, 2008

U.S. Patent

LC DIA

MHOMLIN
SHHOMLIN 609 SR
£ NV | T3AT 719
. | Y3TIOHLINOD 1
S AN NOILYHNOIINOD NI-AHHYO OHINOS
_ N48 TOHINOD
| o HI1S31 JOHINOD
219 S1HOd 019

LNJINiNd8

1N0-AYBYD 209
7 d 30NG3Y T09INCT & d3 31VHALYS

SHHOMLIN
£ ANV | T3ADT

1N0-AHEVO
TO84NQOD

110
7 “AgEv0

LN
¢ d3
5

309 100NV HOIHLTAW

U.S. Patent Dec. 9, 2008 Sheet 28 of 30 US 7,464,251 B2

- 2008

CTRL
2004 FSM

CTRL

FIG. 28

U.S. Patent Dec. 9, 2008 Sheet 29 of 30 US 7,464,251 B2

ASSIGN VIRTUALID TO

= FIG. 29

TRANSMIT DATA TO
MCPE
CPES 1404

APPLY ADDRESS MASK TO
VIRTUAL [0 AND DESTINATION (D
1408

COMPARE MASKED VIRTUAL (D WITH
MASKED DESTINATION (D
1410

MATCH

BETWEEN MASKED NO DO NOT MANIPULATE MCPES
VIRTUAL iD AND MASKED HAVING NO MATCH

DESTINATION ID 1410
?

1412
YES

MANIPULATE MCPES HAVING
MATCH
1414

e ey — S E—

U.S. Patent Dec. 9, 2008 Sheet 30 of 30 US 7,464,251 B2

1551

1552
R
0001 0010
1554 {555
R
0101 0110

1857 | {558

1550

US 7,464,251 B2

1

METHOD AND APPARATUS FOR
CONFIGURING ARBITRARY SIZED DATA
PATHS COMPRISING MULTIPLE CONTEXT
PROCESSING ELEMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 09/795,672, filed on Feb. 26, 2001 now U.S. Pat. 10

No. 6,591,357, which 1s a continuation of U.S. patent appli-
cation Ser. No. 09/075,412, filed May 8, 1998, U.S. Pat. No.

6,226,733, priority of each of which 1s hereby claimed.

FIELD OF THE INVENTION 15

This invention relates to array based computing devices.
More particularly, this invention relates to a processing archi-
tecture that configures arbitrary sized data paths comprising
chained processing elements. 20

BACKGROUND OF THE INVENTION

Advances 1 semiconductor technology have greatly
increased the processing power of a single chip general pur- 54
pose computing device. The relatively slow increase 1n the
inter-chip communication bandwidth requires modern high
performance devices to use as much of the potential on chip
processing power as possible. This results 1n large, dense
integrated circuit devices and a large design space of process- 3
ing architectures. This design space 1s generally viewed 1n
terms of granularity, wherein granularity dictates that design-
ers have the option of building very large processing units, or
many smaller ones, in the same silicon area. Traditional archi-
tectures are either very coarse grain, like microprocessors, or 35
very fine grain, like field programmable gate arrays (FPGAs).

Microprocessors, as coarse grain architecture devices,
incorporate a few large processing units that operate on wide
data words, each unit being hardwired to perform a defined
set of instructions on these data words. Generally, each unitis 4q
optimized for a different set of instructions, such as integer
and floating point, and the units are generally hardwired to
operate 1n parallel. The hardwired nature of these units allows
for very rapid instruction execution. In fact, a great deal of
area on modern microprocessor chips 1s dedicated to cache 45
memories 1in order to support a very high rate of instruction
issue. Thus, the devices elliciently handle very dynamic
instruction streams.

Most of the silicon area of modern microprocessors 1s
dedicated to storing data and 1nstructions and to control cir- sg
cuitry. Therefore, most of the silicon area 1s dedicated to
allowing computational tasks to heavily reuse the small active
portion of the silicon, the arithmetic logic units (ALUs).
Consequently very little of the capacity inherent 1n a proces-
sor gets applied to the problem; most of the capacity goes into 55
supporting a high diversity of operations.

Field programmable gate arrays, as very {ine grain devices,
incorporate a large number of very small processing ele-
ments. These elements are arranged 1n a configurable inter-
connected network. The configuration data used to define the 60
tfunctionality of the processing units and the network can be
thought of as a very large semantically powertul instruction
word allowing nearly any operation to be described and
mapped to hardware.

Conventional FPGAs allow finer granularity control over 65
processor operations, and dedicate a minimal area to mnstruc-
tion distribution. Consequently, they can deliver more com-

2

putations per unit of silicon than processors, on a wide range
of operations. However, the lack of resources for instruction
distribution in a network of prior art conventional FPGAs
make them efficient only when the functional diversity 1s low,
that 1s when the same operation 1s required repeatedly and that
entire operation can be fit spatially onto the FPGAs in the
system.

Dynamically programmable gate arrays (DPGAs) dedicate
a modest amount of on-chip area to store additional mstruc-
tions allowing them to support higher operational diversity
than traditional FPGAs. However, the silicon area necessary
to support this diversity must be dedicated at fabrication time
and consumes area whether or not the additional diversity 1s
required. The amount of diversity supported, that 1s, the num-
ber of instructions supported, 1s also fixed at fabrication time.
Furthermore, when regular data path operations are required
all instruction stores are required to be programmed with the
same data using a global signal broadcasted to all DPGAs.

The limitations present 1n the prior art FPGA and DPGA
networks 1n the form of limited control over configuration of
the individual FPGAs and DPGAs of the network severely
limits the functional diversity of the networks. For example,
in one prior art FPGA network, all FPG As must be configured
at the same time to contain the same configurations. Conse-
quently, rather than separate the resources for instruction
storage and distribution from the resources for data storage
and computation, and dedicate silicon resources to each of
these resources at fabrication time, there 1s a need for an
architecture that unifies these resources. Once unified, tradi-
tional instruction and control resources can be decomposed
along with computing resources and can be deployed 1n an
application specific manner. Chip capacity can be selectively
deployed to dynamaically support active computation or con-
trol reuse of computational resources depending on the needs
of the application and the available hardware resources.

SUMMARY OF THE INVENTION

A method and an apparatus for configuring arbitrary sized
data paths comprising multiple context processing elements
(MCPES) are provided. According to one aspect of the inven-
tion, multiple MCPEs may be chained to form wider-word
data paths of arbitrary widths. A first ALU of a first MCPE
serves as the most significant byte (MSB) of the data path
while a second ALU of a second MCPE serves as the least
significant byte (LSB) of the data path. Carry chains are used
to couple the MCPEs of the data path in order to chain for-
ward a carry bit and back-propagate configuration signals
through the data path. The ALUs of the data path are coupled
using a left-going, or forward, carry chain for transmitting at
least one carry bit from the LSB ALU to the MSB ALU. The
MSB ALU comprises configurable logic for generating at
least one signal 1n response to a carry bit recerved over the
left-going carry chain, the at least one signal comprising a
saturation signal and a saturation value. The saturation signal
1s generated using logic that tests for saturation 1n the data
path.
The ALUs of the data path are coupled using a right-going,
carry chain for transmitting the saturation signal back down
the data path. The right-going carry chain may comprise two
lines coupled among the AL Us of the data path. The rnight-
going carry chain comprises at least one back propagation
channel. The saturation signal 1s transmitted from the MSB
ALU through the ALUs of the data path to the LSB ALU
using a first back propagation channel. Furthermore, a signal
that selects a saturation value 1s transmitted from the MSB
ALU to the LSB ALU using a second back propagation chan-

US 7,464,251 B2

3

nel. The MCPEs of the data path use configurable logic to
manipulate a resident bit sequence 1n response to the satura-
tion signal transmitted thereby reconfiguring, or changing the
operation of, the data path 1n response to the saturation signal.
The carry chains support carry operations for non-local func-
tions comprising minimum and maximum arithmetic func-
tions.

These and other features, aspects, and advantages of the
present mvention will be apparent from the accompanying,
drawings and from the detailed description and appended
claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example and
not limitation 1n the figures of the accompanying drawings, in
which like references indicate similar elements and 1n which:

FIG. 1 1s the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components.

FI1G. 2 1s an eight bit MCPE core of one embodiment of the

present invention.

FI1G. 3 1s a data flow diagram of the MCPE of one embodi-
ment.

FIG. 4 1s a computational unit block diagram of one
embodiment.

FI1G. 5 1s the function port encoding of one embodiment.

FI1G. 6 1s the shift operation modifier bits for the function
port encoding of one embodiment.

FIG. 7 1s the carry value of the add operations for the
function port encoding of one embodiment.

FIG. 8 1s the arithmetic operations modifier bits for the
function port encoding of one embodiment.

FI1G. 9 1s a wider-word data path formed by chained AL Us
ol one embodiment.

FI1G. 10 1s a flow diagram of a method for using a data path
comprising a number of MCPEs of one embodiment.

FI1G. 11 1s the data path configuration data of one embodi-
ment.

FI1G. 12 1s the MCPE carry architecture of one embodi-
ment.

FI1G. 13 1s the carry-in source of one embodiment.

FI1G. 14 1s the carry value for the operations of one embodi-
ment.

FI1G. 15 1s the level 1 network of one embodiment.

FI1G. 16 1s the level 2 network of one embodiment.

FI1G. 17 1s the level 3 network of one embodiment.

FIG. 18 1s the broadcast, or configuration, network used in
one embodiment.

FI1G. 19 1s the encoding of the configuration byte stream as
received by the CNI 1n one embodiment.

FIG. 20 1s the encoding of the command/context byte in
one embodiment.

FIG. 21 1s a flowchart of a broadcast network transaction.

FI1G. 22 1s the MCPE networked array with delay circuits of
one embodiment.

FI1G. 23 1s a delay circuit of one embodiment.

FIG. 24 1s a delay circuit of an alternate embodiment.

FIG. 25 1s a processing element (PE) architecture which 1s
a simplified version of the MCPE architecture of one embodi-
ment.

FIG. 26 1s the MCPE configuration memory structure of
one embodiment.

FI1G. 27 shows the major components of the MCPE control
logic structure of one embodiment.

FI1G. 28 1s the FSM of the MCPE configuration controller

ot one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 29 1s a flowchart for manipulating a networked array
of MCPEs 1n one embodiment.
FIG. 30 shows the selection of MCPEs using an address

mask 1n one embodiment.

DETAILED DESCRIPTION OF THE INVENTION

A method and an apparatus for configuring arbitrary sized
data paths comprising multiple context processing elements
(MCPEs) are provided. In the following description, for pur-
poses of explanation, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. It will be evident, however, to one skilled 1n the art
that the present invention may be practiced without these
specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention.

FIG. 1 1s the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components. While prior art chip architectures fix resources
at fabrication time, specifically mnstruction source and distri-
bution, the chip architecture of the present invention 1s flex-
ible. This architecture uses flexible istruction distribution
that allows position independent configuration and control of
a number of multiple context processing elements (MCPEs)
resulting 1n superior performance provided by the MCPEs.
The flexible architecture of the present invention uses local
and global control to provide selective configuration and con-
trol of each MCPE 1n an array; the selective configuration and
control occurs concurrently with present function execution
in the MCPFEs.

The chip of one embodiment of the present ivention 1s
composed of, but not limited to, a 10 10 array of identical
eight-bit functional units, or MCPEs 102, which are con-
nected through a reconfigurable interconnect network. The
MCPEs 102 serve as building blocks out of which a wide
variety of computing structures may be created. The array
s1ze may vary between 2x2 MCPEs and 16x16 MCPEs, or
even more depending upon the allowable die area and the
desired performance. A perimeter network ring, or a ring of
network wires and switches that surrounds the core array,
provides the interconnect between the MCPEs and perimeter
functional blocks.

Surrounding the array are several specialized units that
may perform functions that are too difficult or expensive to
decompose into the array. These specialized units may be
coupled to the array using selected MCPEs from the array.
These specialized units can include large memory blocks
called configurable memory blocks 104. In one embodiment
these configurable memory blocks 104 comprise eight
blocks, two per side, of 4 kilobyte memory blocks. Other
specialized units include at least one configurable instruction
decoder 106.

Furthermore, the perimeter area holds the various inter-
faces that the chip of one embodiment uses to communicate
with the outside world including: mput/output (I/0) ports; a
peripheral component interface (PCI) controller, which may
be a standard 32-bit PCI interface; one or more synchronous
burst static random access memory (SRAM) controllers; a
programming controller that 1s the boot-up and master control
block for the configuration network; a master clock input and
phase-locked loop (PLL) control/configuration; a Joint Test
Action Group (JTAG) test access port connected to all the
serial scan chains on the chip; and I/O pins that are the actual
pins that connect to the outside world.

FIG. 2 1s an eight bit MCPE core of one embodiment of the
present invention. Primarily the MCPE core comprises

US 7,464,251 B2

S

memory block 210 and basic ALU core 220. The main
memory block 210 1s a 256 word by eight bit wide memory,
which 1s arranged to be used in either single or dual port
modes. In dual port mode the memory size 1s reduced to 128
words 1n order to be able to perform two simultaneous read
operations without increasing the read latency of the memory.
Network port A 222, network port B 224, ALU function port
232, control logic 214 and 234, and memory function port 212
cach have configuration memories (not shown) associated
with them. The configuration memories of these elements are
distributed and are coupled to a Configuration Network Inter-
face (CNI) (not shown) in one embodiment. These connec-
tions may be serial connections but are not so limited. The
CNI couples all configuration memories associated with net-
work port A 222, network port B 224, AL U function port 232,
control logic 214 and 234, and memory function port 212
thereby controlling these configuration memories. The dis-
tributed configuration memory stores configuration words
that control the configuration of the interconnections. The
configuration memory also stores configuration information
tor the control architecture. Optionally 1t can also be a mul-
tiple context memory that receives context selecting signals
broadcasted globally and locally from a variety of sources.

The structure of each MCPE allows for a great deal of
tflexibility when using the MCPEs to create networked pro-
cessing structures. FIG. 3 1s a data tlow diagram of the MCP.
of one embodiment. The major components of the MCP.
include static random access memory (SRAM) main memory
302, ALU with multiplier and accumulate unit 304, network
ports 306, and control logic 308. The solid lines mark data
flow paths while the dashed lines mark control paths; all of the
lines are one or more bits wide 1n one embodiment. There 1s
a great deal of flexibility available within the MCPE because
most of the major components may serve several different
tfunctions depending on the MCPE configuration.

The MCPE main memory 302 1s a group of 256 eight bit
SRAM cells that can operate 1n one of four modes. It takes 1n
up to two eight bit addresses from A and B address/data ports,
depending upon the mode of operation. It also takes 1n up to
four bytes of data, which can be from four floating ports, the
B address/data port, the ALU output, or the high byte from the
multiplier. The main memory 302 outputs up to four bytes of
data. Two of these bytes, memory A and B, are available to the
MCPE=s ALU and can be directly driven onto the level 2
network. The other two bytes, memory C and D, are only
available to the network. The output of the memory function
port 306 controls the cycle-by-cycle operation of the memory
302 and the internal MCPE data paths as well as the operation
of some parts of the ALU 304 and the control logic 308. The
MCPE main memory may also be implemented as a static
register file 1n order to save power.

The ALU with multiplier and accumulate unit 304 of each
MCPE 1s the computational unit of the MCPE and 1s com-
prised of three semi-independent functional blocks. FIG. 4 1s
a computational unit 304 block diagram of one embodiment.
The three semi-independent functional blocks comprise an
cight bit wide ALU 3002, an 8x8 to sixteen bit multiplier
3004, and a sixteen bit accumulator 3006. The AL U function
port 306 specifies the cycle-by-cycle operation of the com-
putational unat.

The ALU 3002 of one embodiment performs logical, shiit,
arithmetic, and multiplication operations, but 1s not so lim-
ited. The two-bit carries 3010 and 3012 represent a one-bit
carry chain in each of the left and right directions. Moreover,
there 1s one additional carry in each direction for specific
operations. The computational umts 304 1n orthogonally
adjacent MCPEs can be chained to form wider-word data

L (L

10

15

20

25

30

35

40

45

50

55

60

65

6

paths. Correspondingly, carries can be pipelined to allow
longer data paths. In operation, minimum, maximum, and
saturated arithmetic operations use both the left and right-
going carry chains 3010 and 3012. The left-going carry chain
1s used for the normal operation while the right-going carry
chain back-propagates the saturate/minimum selection signal
in addition to carrying the right-going output during right
shiits.

Specifically, the ALU 3002 performs the following opera-

tions: logical PASS; AND; OR; XOR; set bit; shift left by 1;
shift lett by 1 with saturate; shift right by 1; add; unsigned add
with saturate; signed add with saturate; minimum; and signed
minimum. The ALU 3002 comprises independently control-
lable input mverters that allow the creation of variants of the
operations pertormed by the ALU 3002 including, but not
limited to, the following operations: NOT; NOR; NAND;
XNOR; clear bat, test bit; insert O, 1, LSB, or carry; subtract;
unsigned subtract with saturate; signed subtract with saturate;
maximum; and signed maximum. The logical operations and
the minimum operation can be converted into their variants by
inverting all mputs. The add operation 1s converted 1nto a
subtract operation by inverting the B input into the AL U 3002
and forcing the carry to a value of one.
The multiplier 3004 of each MCPE can perform (A*B+X)
and (A*B+X+Y) operations to support the creation of pipe-
lined multipliers. One floating port 3014 provides the X value
while a second floating port 3016 provides the Y value. The
multiplier 3004 supports signed arithmetic. Multipliers com-
prising multiple MCPEs may be sign extended.

The accumulator 3006 accumulates the registered multi-
plier 3004 output or the floating port iputs 3024 and 3026,
where one floating port 1s the MSB and one floating port 1s the
LSB, or the sign-extended version of the LSB floating port.
When enabled, the accumulator 3006 accumulates on every
cycle. The accumulator can be set to saturate at either 8- or
16-bit points. Signed saturation occurs at both positive and
negative infinity. The accumulator 3006 carry input 3030 1s
taken from the carry-in right selector except when the MCPE
1s an LSB; for LSB MCPEs, the carry-in accumulator 1s zero.
The accumulator 3006 carry output 3032 1s taken from either
the 8-bit carry or the 16-bit carry.

The MCPE network ports connect the MCPE network to
the mnternal MCPE logic comprising memory, ALU, and con-
trol. There are eight ports 1n each MCPE, each serving a
different set ol purposes. The eight ports comprise two
address/data ports, two function ports, and four floating ports.
The two address/data ports feed addresses and data into the
MCPE memories and ALU. The two function ports feed
instructions into the MCPE logic. The four tloating ports may
serve multiple functions. The determination of what function
they are serving 1s made by the configuration of the receivers
of their data.

As previously discussed herein, the ALU function port 306
may specily the cycle-by-cycle operation of the computa-
tional unit 304. The word that controls the operation of the
computational unit 304 1s divided into two parts where the
lower four bits consist of an operation code specifying the
function, and the upper four bits modily these tunctions. FIG.
5 1s the function port encoding of one embodiment.

Shift operations supported by the computational unit of
one embodiment include, but are not limited to: shift left; shift
left with saturate; shift right; and pass with saturate. These
operations perform 1-bit shifts. FIG. 6 1s the shift operation
modifier bits for the function port encoding of one embodi-
ment. Shifts may be made using either the A or B input of the
computational unit as a source, as controlled by bit 6 of the

function port value. If the MCPE 1s an LSB or an MSB of a

US 7,464,251 B2

7

data path comprising multiple MCPEs, bits 4 and 5 together
control the value of the carry mput. Bit 7 controls whether the
shift 1s to be handled as a signed or unsigned shift. A signed
left shift will generally shift all bits except the MSB 1n a
multiple MCPE data path. The carry-out left (CoutL) signal 1s
the [MSB-1]-bits carry-out. Signed/Unsigned may afiect the
saturation point for saturated leit shiits.

The pass with saturate operation i1s enabled using an opera-
tion code that allows wide-word saturated arithmetic to be
emulated on a narrower data path. This operation code uses
bit 6 of the function port value to select an mput. When the
carry-1n right (CinR) signal 1s zero the computational unit
passes the mput without modification, and when CinR 1s high
the computational unit saturates the word to the value on the
incoming saturate select signal; the sign and MSB/LSB 1ndi-
cators are 1gnored for this purpose. The carries are passed
through wherein CinR goes to Coutl, carry-in left (CinL)
goes to carry-out right (CoutR), and similarly for the saturate
selection and control carries.

Arithmetic operations supported by the computational unit
of one embodiment include, but are not limited to: add; sub-
tract; add with carry; and minimum. The three add nstruc-
tions 1n the function port command set control the LSB carry-
in value 1n a multiple-MCPE data path. FIG. 7 1s the carry
value of the add operations for the function port encoding of
one embodiment.

FIG. 8 1s the arithmetic operations modifier bits for the
function port encoding of one embodiment. Modifier bits 4
and 5 invert the A and B operands, respectively. Bit 6 enables
or disables saturated addition. During mimimum operations,
bit 6 may be used to disable the MSB configuration in mul-
tiple-MCPE data paths thereby allowing wide-word mini-
mum operations to be emulated on shorter data paths. Bit 7
selects between signed and unsigned arithmetic.

A first add operation 1s typically used to perform normal
addition operations. A second add operation 1s used 1n con-
junction with one of the input inverts to perform a subtraction
operation. The add with carry 1s typically used in simulating
a wider data path on a small number of MCPEs, for example,
two MCPEs may simulate a 32-bit data path over two cycles
wherein, on the second cycle, the ALUs would use the add
with carry operation to provide the bit <13> carry into the
MCPE performing the bit <23:16> addition. It1s noted that an
unsigned add operation with either, but not both, mputs
iverted 1s treated as a subtract for the purposes of saturation;
therefore, if this operation results 1n a zero carry-out from the
MSB MCPE of a multiple MCPE data path, the value is
assumed to become negative and will saturate at zero 11 satu-
ration 1s enabled.

The minimum operation 1s a special case of an add opera-
tion since it performs a subtract and then uses the resulting,
s1gn or overtlow bit to select between the A and B inputs. The
final output uses the original, non-inverted, A and B inputs. A
maximum operation 1s allowed to be performed by inverting,
both of the mputs.

As detailed herein, the computational units of multiple
MCPEs may be chained to form wider-word data paths of
arbitrary widths. FIG. 9 1s a wider-word data path 4000
formed by chained AL Us 4002-4006 of one embodiment. The
data path 4000 comprises three ALUs 4002-4006 of three
MCPEs 4012-4016, respectively, but the embodiment 1s not
so limited. Each of the three AL Us 4002-4006 1s an 8-bit ALU
so that the three ALUs 4002-4006 form a 24-bit data path
4000, but the embodiment 1s not so limited. Each of the three
MCPEs 4012-4016 may be located in different arrays of
MCPEs or coupled by different networks, but the embodi-
ment 1s not so limited. The three MCPEs 4012-4016 may be

10

15

20

25

30

35

40

45

50

55

60

65

8

located 1n different regions of a network, but the embodiment
1s not so limited. Each MCPE 4012-4016 of the data path
4000 1s programmable through at least one function port of
the MCPE 4012-4016 to efliciently support non-local func-
tions comprising saturated and minimum and maximum
arithmetic functions. The minimum and maximum functions
are of particular use 1n digital signal processing (DSP) opera-

tions.
In an embodiment comprising three MCPEs 4012-4016,

the ALU 4002 of MCPE 4012 serves as the most significant
byte (MSB) of the data path 4000 while the ALU 4006 of
MCPE 4016 serves as the least significant byte (LSB) of the
data path 4000. Carry paths are used to couple the MCPEs
4012-4016 of the data path 4000 i order to chain forward a
carry bit and back-propagate configuration signals through
the data path 4000. The ALUs 4002-4006 of the data path
4000 are coupled using a left-going, or forward, carry chain

4020 and 4030 for transmitting at least one carry bit from the
LSB ALU 4006 through ALU 4004 to the MSB ALU 4002.

The MSB ALU 4002 comprises configurable logic for gen-
erating at least one signal 1n response to a carry bit recerved
over the left-going carry chain 4020 and 4030, the at least one
signal comprising a saturation signal and a saturation value.
The saturation signal 1s generated using logic that tests for
saturation in the data path 4000.

The ALUs 4002-4006 of the data path 4000 are coupled
using a right-going carry chain 4022 and 4032 for transmit-
ting the saturation signal back down the data path 4000. In one
embodiment, the right-going carry chain 4022 and 4032 com-
prises two lines coupled among the ALUs 4002-4006 of the
data path 4000. The right-going carry chain 4022 and 4032
comprises at least one back propagation channel. The satura-
tion signal 1s transmitted from the MSB AL U 4002 through all
other AL Us 4004 of the data path 4000 to the LSB ALU 4006
using a first back propagation channel. Furthermore, a signal
that selects a saturation value 1s transmitted from the MSB
ALU 4002 to the LSB ALU 4006 using a second back propa-
gation channel. Each MCPE 4012-4016 of the data path 4000
uses configurable logic to manipulate a resident bit sequence
in response to the saturation signal transmitted thereby recon-
figuring the data path 4000 1n response to the saturation
signal. A programmable delay element may be used 1n the
back propagation channel, but the embodiment 1s not so lim-
ited. The delay element, when used, 1s configured to program-
mably delay signals between the multiple context processing
clements without requiring a multiple context processing ele-
ment to implement the delay.

FIG. 10 1s a tlow diagram of a method for using a data path
comprising a number of MCPEs of one embodiment. Opera-
tion begins at step 5002, at which configuration data 1s trans-
mitted to a plurality of MCPEs. At least one data path 1s
defined by designating the MCPEs of the data path 1n
response to the configuration data, at step 5004. The MCPEs
designated to comprise the data path are programmed, at step
5006, 1n response to the configuration data. This program-
ming includes 1dentifying to each MCPE of the data path the
neighboring MCPEs forming the data path. At step 5008, a
flag 1s set 1n the MSB and LSB MCPFEs 1n response to the
configuration data, the flag of the MSB MCPE designating
the MCPE as the MSB, and the flag of the LSB MCPE
designating the MCPE as the LSB. At least one carry bit 1s
transmitted from the LSB MCPE to the MSB MCPE, at step
5010 using the left-going carry chain. The MSB MCPE uses
logic to test for saturation in the data path, at step 5012.

I1 no saturation 1s detected in the data path, then operation
ends. I saturation has occurred, operation continues at step
5014, at which at least one signal 1s generated in the MSB

US 7,464,251 B2

9

MCPE 1n response to the received carry bit. The at least one
signal comprises a saturation signal and a saturation value. At
step 5016, the at least one signal 1s transmitted from the MSB
MCPE through each MCPE of the data path to the LSB
MCPE. Each MCPE of the data path uses configurable logic
to manipulate a resident bit sequence 1n response to the at
least one signal, thereby reconfiguring the data path, at step
5018. For example, 1f saturation to positive infinity has
occurred, all MCPEs of the data path not the MSB MCPE set
all resident bits to a logic one.

The configuration of each MCPE comprises a description
of how the MCPE fits into data paths comprising multiple
MCPEs, wherein the data paths may be of an arbitrary size
and shape. FIG. 11 1s the data path configuration data of one
embodiment. The LSB configuration, when set to 1, indicates
that the MCPE 1s the least-significant byte of the data path.
The MSB configuration, when set to 1, indicates that the
MCPE 1s the most-significant byte of the data path. The
RightSource configuration defines the source of the right, or
least significant, mput carry of the MCPE. The LeftSource
configuration defines the source of the left, or most signifi-
cant, input carry of the MCPE. The CarryPipelineR configu-
ration, when set to 1, inserts a pipeline delay on the right, or
least significant, input carry of the MCPE. The CarryPipe-
linelL configuration, when set to 1, inserts a pipeline delay on
the lett, or most significant, input carry of the MCPE.

FIG. 12 1s the MCPE carry architecture of one embodi-
ment. The input carry of the MCPE, 1n either direction, may
come from up to eight sources. FIG. 13 1s the carry-in source
of one embodiment. These sources include the carry-out from
the orthogonally neighboring MCPEs, the carry of the local
MCPE, a carry used by MCPE control logic, and a saturate
logic carry, but the embodiment i1s not so limited. The saturate
logic carry 1s used by the saturate logic to indicate whether
positive or negative saturation occurred. When the saturate
logic carry 1s set to 1 1t indicates that, 1f saturation occurred,
it occurred at positive maxint; when the saturate logic carry 1s
set to O 1t indicates that, 1f saturation occurred, 1t occurred at
negative maxint, or zero for unsigned numbers. FI1G. 14 1s the
carry value for the operations of one embodiment. The carry
value for the operations comprise the output carries of the
MCPEs under the specified operations.

When shift operations are conducted using multiple-
MCPE data paths, both the LSB and the MSB MCPE affect
shift operation; the LSB MCPE aflects left shifts and the
MSB MCPE affects rlght shifts. When the appropriate LSB/
MSB configuration 1s not set the shift proceeds normally
using the carry-in source specified 1n the data path configu-
ration (see FIG. 13). However, when the appropriate LSB/
MSB configuration is set the carry-in value 1s set by the ALU
function port command (see FIG. 6). In the case where the
appropriate LSB/MSB configuration 1s set the user has the
option of using the carry-in source. The MSB controls the
saturation point for saturated left shiits.

When addition operations are conducted using multiple-
MCPE data paths, the LSB MCPE atfects the data path by
determining the saturation point for saturated additions. As
with multiple-MCPE addition, only the LSB MCPE afiects
the accumulate operation except that the MSB sets the satu-
ration point.

In performing saturated operations using multiple-MCPE
data paths, the data path must be setup such that the leit and
right carry chains follow the same path, wherein the direction
any MCPE transmits a left-going carry-out 1s the same direc-
tion the MCPE looks to receive a right-going carry-in. Satu-
rated operations use the right-going carry chain to back-
propagate a saturate/not saturate signal. The back-propagated

10

15

20

25

30

35

40

45

50

55

60

65

10

signal carries a signal that selects the saturation point. The
saturation point may be positive or negative mfimity in the
signed mode, and positive infinity or zero in the unsigned
mode. During saturated operations, non-MSB MCPEs pass
the carry using the LeftSource mputs of the right-carry out-
puts. The MSB MCPE tests for the saturation condition and
passes a set flag out the right-going carry-out as well as using
it to atlect the ALUs of the data path. Furthermore, the MSB
MCPE generates the second right-going carry.

In performing minimum operations using multiple-MCPE
data paths, the data path may be established such that the left
and right carry chains follow the same path. The minimum
operation uses the right-going carry chain to back-propagate
an A/B selection signal. The non-MSB MCPEs pass the mini-
mum signal from the LeitSource to the right-going carry-out,
while the MSB MCPE generates the mimimum signal and
passes 1t out the right-going carry-out.

The MCPEs of one embodiment are the building blocks out
of which more complex processing structures may be created.
The structure that joins the MCPE cores into a complete array
in one embodiment i1s actually a set of several mesh-like
interconnect structures. Each interconnect structure forms a
network, and each network 1s independent in that it uses
different paths, but the networks do join at the MCPE 1nput
switches. The network structure of one embodiment of the
present invention 1s comprised of a local area broadcast net-
work (level 1), a switched interconnect network (level 2), a
shared bus network (level 3), and a broadcast, or configura-
tion, network.

FIG. 15 1s the level 1 network of one embodiment. The
level 1 network, or bit-wide local interconnect, consists of
direct point-to-point communications between each MCPE
702 and the eight nearest neighbors 704. Each MCPE 702 can
output up to 12 values comprising two in each of the orthogo-
nal directions, and one 1n each diagonal. The level 1 network
carries bit-oriented control signals between these local
groups of MCPEs. The connections of level 1 only travel one
MCPE away, but the values can be routed through the level 1
switched mesh structure to other MCPEs 706. Each connec-
tion consists of a separate input and output wire. Configura-
tion for this network 1s stored along with MCPE configura-
tion.

FIG. 16 1s the level 2 network of one embodiment. The
level 2 network, or byte-wide local iterconnect, 1s used to
carry data, instructions, or addresses 1n local groups of
MCPEs 650. It 1s a byte-wide version of level 1 having addi-
tional connections. This level uses relatively short wires
linked through a set of switches. The level 2 network 1s the
primary means ol local and semi-local MCPE communica-
tion, and level 2 does require routing. Using the level 2 net-
work each MCPE 650 can output up to 16 values, at least two
in each of the orthogonal directions and at least one 1n each
diagonal. Fach connection consists of separate input and
output wires. These connections only travel one MCPE away,
but the values can be routed through level 2 switches to other
MCPEs. Preferably configuration for this network 1s also
stored along with MCPE configuration.

FIG. 17 1s the level 3 network of one embodiment. In this
one embodiment, the level 3 network comprises connections
852 of four channels between each pair of MCPEs 854 and
856 arranged along the major axes of the MCPE array pro-
viding for communication of data, instructions, and addresses
between groups of MCPEs and between MCPEs and the
perimeter of the chip. Preferably communication using the
level 3 network 1s bi-directional and dynamically routable. A
connection between two endpoints through a series of level 3
array and periphery nodes 1s called a Acircuit@ and may be

US 7,464,251 B2

11

set up and taken down by the configuration network. In one
embodiment, each connection 852 consists of an 8-bit bi-
directional port.

FIG. 18 1s the broadcast, or configuration, network used in
one embodiment. This broadcast network 1s an H-tree net-
work structure with a single source and multiple recervers in
which individual MCPEs 1002 may be written to. This broad-
cast network 1s the mechamsm by which configuration
memories ol both the MCPEs and the perimeter units get
programmed. The broadcast network may also be used to
communicate the configuration data for the level 3 network
drivers and switches.

The broadcast network 1n one embodiment comprises a
nine bit broadcast channel that 1s structured to both program
and control the on-chip MCPE 1002 configuration memories.
The broadcast network comprises a central source, or Con-
figuration Network Source (CNS) 1004, and one Configura-
tion Network Interface (CNI) block 1006 for each major
component, or one 1 each MCPE with others assigned to
individual or groups of non-MCPE blocks. The CNI 1006
comprises a hardwired finite state machine, several state reg-
isters, and an eight bit loadable clearable counter used to
maintain timing. The CNS 1004 broadcasts to the CNIs 1006
on the chip according to a specific protocol. The network 1s
arranged so that the CNIs 1006 of one embodiment recerve
the broadcast within the same clock cycle. This allows the
broadcast network to be used as a global synchronization
mechanism as 1t has a fixed latency to all parts of the chip.
Therefore, the broadcast network functions primarily to pro-
gram the level 3 network, and to prepare recerving CNIs for
configuration transactions. Typically, the bulk of configura-
tion data 1s carried over the level 3 network, however the
broadcast network can also serve that function. The broadcast
network has overriding authority over any other program-
mable action on the chip.

A CNI block 1s the recerving end of the broadcast network.
Each CNI has two addresses: a physical, hardwired address
and a virtual, programmable address. The latter can be used
with a broadcast mask, discussed herein, that allows multiple
CNIs to recerve the same control and programming signals. A
single CNI 1s associated with each MCPE 1 the networked
MCPE array. This CNI controls the reading and writing of the
configuration of the MCPE contexts, the MCPE main
memory, and the MCPE configuration controller.

The CNS 1004 broadcasts a data stream to the CNIs 1006
that comprises the data necessary to configure the MCPEs
1002. In one embodiment, this data comprises configuration
data, address mask data, and destination 1dentification data.
FIG. 19 1s the encoding of the configuration byte stream as
received by the CNI in one embodiment. The first four bytes
are a combination ol mask and address where both mask and
address are 15 bit values. The address bits are only tested
when the corresponding mask 1s set to Al(@). The high bit of
the Address High Byte 1s a Virtual/Physical identification
selection. When set to Al (@), the masked address 1s compared
to the MCPE virtual, or programmable identification; when
set to AO(@ the masked address 1s compared to the MCPE
physical address. This address scheme applies to a CNI block
whether or not 1t 1s in an MCPE.

Following the masked address 1s a command/context byte
which specifies which memory will be read from or written to
by the byte stream. FIG. 20 1s the encoding of the command/
context byte 1n one embodiment. Following the command/
context byte 1s a byte-count value. The byte count indicates
the number of bytes that will follow.

As previously discussed, the CNS 1004 broadcasts a data
stream to the CNIs 1006 that comprises the data necessary to

10

15

20

25

30

35

40

45

50

55

60

65

12

configure the MCPEs 1002. In one embodiment, this data
comprises configuration data, address mask data, and desti-
nation identification data. A configuration network protocol
defines the transactions on the broadcast network. FIG. 21 1s
a tlowchart 800 of one embodiment of a broadcast network
transaction. In this embodiment, a transaction can contain
four phases: global address 802, byte count 804, command
806, and operation 808. The command 806 and operation 808
phases may be repeated as much as desired within a single
transaction.

The global address phase 802 1s used to select a particular
recetrver or recervers, or CNI blocks, and all transactions of an
embodiment begin with the global address phase 802. This
phase 802 comprises two modes, a physical address mode and
a virtual address mode, selected, for example, using a pre-
specified bit of a prespecified byte of the transaction. The
physical address mode allows the broadcast network to select
individual CNIs based on hardwired unique 1dentifiers. The
virtual address mode 1s used to address a single or multiple
CNIs by a programmable 1dentifier thereby allowing the sofit-
ware to design 1ts own address space. At the end of the global
address phase 802, the CNIs know whether they have been
selected or not.

Following the global address phase 802, a byte count 804
of the transaction 1s transmitted so as to allow both selected
and unselected CNIs to determine when the transaction ends.
The selected CNIs enter the command phase 806; the CNIs
not selected watch the transaction 818 and wait 816 for the
duration of the byte count. It 1s contemplated that other pro-
cesses for determining the end of a transaction may also be
used.

During the command phase 806, the selected CNIs can be
instructed to write the data on the next phase into a particular
context, configuration, or main memory (write configuration
data 814), to listen to the addresses, commands and data
coming over the network (network mastered transaction 812),
or to dump the memory data on to a network output (dump
memory data 810). Following the command phase 806, the
data 1s transmitted during the operation phase 808.

The network mastered transaction mode 812 included 1n
the present embodiment commands the CNI to look at the
data on the output of the level 3 network. This mode allows
multiple configuration processes to take place in parallel. For
example, a level 3 connection can be established between an
off-chip memory, or configuration storage, and a group of
MCPESs and the MCPEs all commanded to enter the network
mastered mode. This allows those MCPEs to be configured,

while the broadcast network can be used to configure other
MCPEs or establish additional level 3 connections to other
MCPE:s.

Following completlon of the operation phase 808, the
transaction may 1ssue anew command, or it can end. I it ends
it can immediately be followed by a new transaction. If the
byte count of the transaction has been completed, the trans-
action ends. Otherwise, the next byte 1s assumed to be a new
command byte.

Pipeline delays can be programmed into the network struc-
ture as they are needed. These delays are separate from the
networked array of MCPEs and provide data-dependent
retiming under the control of the configuration memory con-
text of a MCPE, but do not require an MCPE to implement the
delay. In this way, processing elements are not wasted 1n order
to provide timing delays. FIG. 22 1s the MCPE networked
array 2202 with delay circuits 2204-2208 of one embodiment.
The subsets of the outputs of the MCPE array 2202 are
coupled to the inputs of anumber of delay circuits 2204-2208.
In this configuration, a subset comprising seven MCPE out-

US 7,464,251 B2

13

puts share each delay circuit, but the configuration 1s not so
limited. The outputs of the delay circuits 2204-2208 are
coupled to a multiplexer 2210 that multiplexes the delay
circuit outputs to a system output 2212. In this manner, the
pipeline delays can be selectively programmed for the output
of each MCPE of the network of MCPESs. The configuration
memory structure and local control described herein are
shared between the MCPEs and the delay circuit structure.

FIG. 23 1s a delay circuit 2400 of one embodiment. This
circuit comprises three delay latches 2421-2423, a decoder
2450, and two multiplexers 2401-2402, but is not so limited.
Some number N of MCPE outputs of a network of MCPEs are
multiplexed into the delay circuit 2400 using a first multi-
plexer 2401. The output of a MCPE selected by the first
multiplexer 2401 1s coupled to a second multiplexer 2402 and
to the 1nput of a first delay latch 2421. The output of the first
delay latch 2421 1s coupled to the input of a second delay latch
2422. The output of the second delay latch 2422 1s coupled to
the mput of a third delay latch 2423. The output of the third
delay latch 2423 1s coupled to an input of the second multi-
plexer 2402. The output of the second multiplexer 2402 is the
delay circuit output. A decoder 2450 selectively activates the
delay latches 2421-2423 via lines 2431-2433, respectively,
thereby providing the desired amount of delay. The decoder 1s
coupled to receive via line 2452 at least one set of data
representative of at least one configuration memory context
of a MCPE and control latches 2421-2423 in response
thereto. The MCPE having 1t=s output coupled to the delay
circuit 2400 by the first multiplexer 2402 may be the MCPE
that 1s currently selectively coupled to the decoder 2450 via
line 2452, but 1s not so limited. In an alternate embodiment,
the MCPE receiving the output 2454 of the delay circuit 2400
from the second multiplexer 2402 may be the MCPE that 1s
currently selectively coupled to the decoder 2450 via line
2452, but 1s not so limited.

FI1G. 24 1s a delay circuit 2100 of an alternate embodiment.
This circuit comprises three delay registers 2121-2123 and
three multiplexers 2101-2103, but 1s not so limited. Several
outputs of a network of MCPFEs are multiplexed into the delay
circuit 2100 using a first multiplexer 2101. The output of a
MCPE selected by the first multiplexer 2101 1s coupled to a
second multiplexer 2102 and the input of a first delay register
2121. The output of the first delay register 2121 1s coupled to
an 1input of a third multiplexer 2103 and the input of a second
delay register 2122. The output of the second delay register
2122 1s coupled to an mput of the third multiplexer 2103 and
the input of a third delay register 2123. The output of the third
delay register 2123 i1s coupled to an input of the third multi-
plexer 2103. The output of the third multiplexer 2103 1s
coupled to an mput of the second multiplexer 2102, and the
output of the second multiplexer 2102 1s the delay circuit
output.

Each of the second and third multiplexers 2102 and 2103
are coupled to receive via lines 2132 and 2134, respectively,
at least one set of data representative of at least one configu-
ration memory context of a MCPE. Consequently, the MCPE
coupled to control the second and third multiplexers 2102 and
2104 may be the MCPE that 1s currently selectively coupled
to the delay circuit 2100 by multiplexer 2101, but 1s not so
limited. The control bits provided to multiplexer 2102 cause
multiplexer 2102 to select the undelayed output of multi-
plexer 2101 or the delayed output of multiplexer 2103. The
control bits provided to multiplexer 2103 cause multiplexer
2103 to select a signal having a delay of a particular duration.
When multiplexer 2103 1s caused to select line 2141 then the
delay duration 1s that provided by one delay register, delay
register 2121. When multiplexer 2103 1s caused to select line

10

15

20

25

30

35

40

45

50

55

60

65

14

2142 then the delay duration 1s that provided by two delay
registers, delay registers 2121 and 2122. When multiplexer
2103 1s caused to select line 2143 then the delay duration 1s
that provided by three delay registers, delay registers 2121,
2122, and 2123.

The control logic of the MCPE of one embodiment 1s
designed to allow data dependent changes in the MCPE
operation. It does so by changing the MCPE configuration
contexts which in turn change the MCPE functionality. In
order to describe the use of configuration contexts, an archi-
tecture 1s described to which they apply. FIG. 25 1s a process-
ing element (PE) architecture which 1s a simplified version of
the MCPE architecture of one embodiment. In this PE archi-
tecture, each PE has three input ports: the ALU port; the Data
port; and the External control port. The control store 1202 1s
sending the processing unit 1204 microcode instructions
1210 and the program counter 1206 jump targets 1212. The
control store 1202 takes the address of i1ts next microcode
instruction 1214 from the program counter 1206. The pro-
cessing unit 1204 1s taking the instructions 1210 from the
control store 1202, as well as data not shown, and 1s perform-
ing the microcoded operations on that data. One of the results
ol this operation 1s the production of a control signal 1216 that
1s sent to the program counter 1206. The program counter
1206 performs one of two operations, depending on the value
ol the control signal from the processing unit 1204. It either
adds one to the present value of the program counter 1206, or
it loads the program counter 1206 with the value provided by
the control store 1202.

The ports 1n each PE can either be set to a constant value or
be set to recerve their values from another PE. When the port
1s set to load the value from another PE 1t 1s said to be 1n a
static mode. Each PE has a register file and the value pre-
sented at the ALU control port can mnstruct the PE to incre-
ment an element 1n its register file or load an element 1n its
register file from the data port. The state of each port then 1s
comprised by 1ts port mode, which 1s constant or static. If the
port mode 1s constant then its state also includes the constant
value.

The PEs have multiple contexts. These contexts define the
port state for each port. The PEs also have a finite state
machine (FSM) that 1s described as a two index table that
takes the current context as the first index and the control port
as the second index. For this example, assume that there are
two contexts, 0 and 1, and there are two values to the control
signal 0 and 1.

Now considered 1s the creation of the program counter
1206 from the PEs. The definition of the context O for the
program counter 1206 1s that the ALU control port 1s setto a
constant value such that the PE will increment 1ts first register.
The state of the data port 1s static and set to input the branch
target output from the control store 1202. The state of the
control port 1s static and set to mnput the control output from
the processing unit 1204. The definition of context 1 1s that the
ALU control port 1s set to a constant value such that the PE
will load 1ts first register with the value of the data port. The
state of the data port 1s static and set to input the branch target
output from the control store 1202. The state of the control
port 1s static and set to mput the control output from the
processing unit 1204. In all contexts the unit 1s sending the
value ol 1ts first register to the control store as its next address.

Now considered is the operation of this PE unit. The PE 1s
placed into context 0 upon receiving a O control signal from
the processing unit 1204. In this context 1t increments its first
register so that the address of the next microcode 1nstruction
1s the address following the one of the present instruction.
When the PE receives a 1 control signal from the processing

US 7,464,251 B2

15

unit 1t 1s placed 1n context 1. In this context it loads 1ts first
register with the value received on the data port. This PE 1s
therefore using the context and the FSM to vary its function at
run time and thereby perform a relatively complex function.

FI1G. 26 1s the MCPE configuration memory structure of
one embodiment. Each MCPE has four major contexts 402-
408 of configuration memory. Each context contains a com-
plete set of data to tully describe the operation of the MCPE,
including the local network switching. In one embodiment
two of the contexts are hardwired and two are programmable.
Each of these contexts includes two imndependently writable
minor contexts. In the programmable major contexts the
minor contexts are a duplication of part of the MCPE con-
figuration consisting primarily of the port configurations. In
the hardwired major contexts the minor contexts may change
more than just the port configurations. The switching of these
minor contexts 1s also controlled by the configuration control.
The minor contexts are 1dentical 1n structure but contain dii-
ferent run-time configurations. This allows a greater degree of
configuration flexibility because it 1s possible to dynamically
swap some parts of the configuration without requiring
memories to store extra major contexts. These minor contexts
allow extra tlexibility for important parts of the configuration
while saving the extra memory available for those parts that
don=t need to be as flexible. A configuration controller 410
finite state machine (FSM) determines which context s active
on each cycle. Furthermore, a global configuration network
can force the FSM to change contexts.

The first two major contexts (0 and 1) may be hardwired, or
set during the design of the chip, although they are not so
limited. Major context 0 1s a reset state that serves two pri-
mary roles depending on the minor context. Major context 1
1s a local stall mode. When a MCPE 1is placed into major
context 1 1t continues to use the configuration setting of the
last non-context 1 cycle and all internal registers are frozen.
This mode allows running programs to stall as a freeze state 1n
which no operations occur but allows programming and scan
chain readout, for debugging, to occur.

Minor context 0 1s a clear mode. Minor context 0 resets all
MCPE registers to zero, and serves as the primary reset mode
of the chip. Minor context 0 also freezes the MCPE but leaves
the main memory active to be read and written over by the
configuration network.

Minor context 1 1s a freeze mode. In this mode the internal
MCPE registers are frozen while holding their last stored
value; this includes the finite state machine state register. This
mode can be used as a way to turn off MCPE=s that are not in
use or as a reset state. Minor context 1 1s useful to avoid
unnecessary power consumption in unused MCPEs because
the memory enable 1s turned off during this mode.

Major contexts 2 and 3 are programmable contexts for user
defined operations. In addition to the four major contexts the
MCPE contains some configurations that do not switch under
the control of the configuration controller. These include the
MCPE=s identification number and the configuration for the
controller itself.

FI1G. 27 shows the major components of the MCPE control
logic structure of one embodiment. The Control Tester 602
takes the output of the ALU for two bytes from floating ports
604 and 606, plus the left and right carryout bits, and performs
a configurable test on them. The result 1s one bit indicating
that the comparison matched. This bit 1s referred to as the
control bit. This Control Tester serves two main purposes.
First 1t acts as a programmable condition code generator
testing the ALU output for any condition that the application
needs to test for. Secondly, since these control bits can be
grouped and sent out across the level 2 and 3 networks, this

5

10

15

20

25

30

35

40

45

50

55

60

65

16

unit can be used to perform a second or later stage reduction
on a set of control bits/data generated by other MCPE=s.

The level 1 network 608 carries the control bits. As previ-
ously discussed, the level 1 network 608 consists of direct
point-to-point communications between every MCPE and
it=s 12 nearest neighbors. Thus, each MCPE will receive 13
control bits (12 neighbors and 1t=s own) from the level 1
network. These 13 control bits are ted into the Control Reduce
block 610 and the MCPE input ports 612. The Control
Reduce block 610 allows the control information to rapidly
elfect neighboring MCPEs. The MCPE nput ports allow the
application to send the control data across the normal network
wires so they can cover long distances. In addition the control
bits can be fed mto MCPEs so they can be manipulated as
normal data.

The Control Reduce block 610 performs a simple selection
on either the control words coming from the level 1 control
network, the level 3 network, or two of the floating ports. The
selection control 1s part of the MCPE configuration. The
Control Reduce block 610 selection results in the output of
five bits. Two of the output bits are fed into the MCPE con-
figuration controller 614. One output bit 1s made available to
the level 1 network, and one output bit1s made available to the
level 3 network.

The MCPE configuration controller 614 selects on a cycle-
by-cycle basis which context, major or minor, will control the
MCPE=s activities. The controller consists of a fimite state
machine (FSM) that 1s an active controller and not just a
lookup table. The FSM allows a combination of local and
global control over time that changes. This means that an
application may run for a period based on the local control of
the FSM while receiving global control signals that reconfig-
ure the MCPE, or a block of MCPEs, to perform different
functions during the next clock cycle. The FSM provides for
local configuration and control by locally maintaining a cur-
rent configuration context for control of the MCPE. The FSM
provides for global configuration and control by providing the
ability to multiplex and change between different configura-
tion contexts of the MCPE on each different clock cycle in
response to signals broadcasted over a network. This configu-
ration and control of the MCPE 1s powertul because 1t allows
an MCPE to maintain control during each clock cycle based
on a locally maintained configuration context while provid-
ing for concurrent global on-the-fly reconfiguration of each
MCPE. This architecture significantly changes the area
impact and characterization of an MCPE array while increas-
ing the efficiency of the array without wasting other MCPEs
to perform the configuration and control functions.

FIG. 28 1s the FSM of the MCPE configuration controller
of one embodiment. In controlling the functioning of the
MCPE, control information 2004 1s recerved by the FSM
2002 1n the form of state information from at least one sur-
rounding MCPE 1n the networked array. This control infor-
mation 1s 1n the form of two bits received from the Control
Reduce block of the MCPE control logic structure. In one
embodiment, the FSM also has three state bits that directly
control the major and minor configuration contexts for the
particular MCPE. The FSM maintains the data of the current
MCPE configuration by using a feedback path 2006 to feed
back the current configuration state of the MCPE of the most
recent clock cycle. The feedback path 2006 1s not limited to a
single path. The FSM selects one of the available configura-
tion memory contexts for use by the corresponding MCPE
during the next clock cycle 1n response to the received state
information from the surrounding MCPEs and the current
configuration data. This selection 1s output from the FSM 1n
the form of a configuration control signal 2008. The selection

US 7,464,251 B2

17

ol a configuration memory context for use during the next
clock cycle occurs, 1n one embodiment, during the execution
of the configuration memory context selected for the current
clock cycle.

FI1G. 29 15 a flowchart for manipulating a networked array
of MCPEs 1n one embodiment. Each MCPE of the networked
array 1s assigned a physical identification which, 1n one
embodiment, 1s assigned at the time of network development.
This physical i1dentification may be based on the MCPE=s
physical location 1n the networked array. Operation begins at
block 1402, at which a virtual identification 1s assigned to
cach of the MCPEs of the array. The physical identification 1s
used to address the MCPEs for reprogramming of the virtual
identification because the physical identification 1s accessible
to the programmer. The assigned virtual identification may be
initialized to be the same as the physical 1dentification. Data
1s transmitted to the MCPE array using the broadcast, or
configuration, network, at block 1404. The transmitted data
comprises an address mask, a destination identification,
MCPE configuration data, and MCPE control data. The trans-
mitted data also may be used in selecting between the use of
the physical identification and the virtual identification in
selecting MCPEs for manipulation. Furthermore, the trans-
mitted data may be used to change the virtual identification of
the MCPEs. The transmitted data 1n one embodiment is trans-
mitted from another MCPE. In an alternate embodiment, the
transmitted data 1s transmitted from an input/output device. In
another alternate embodiment, the transmitted data 1s trans-
mitted from an MCPE configuration controller. The transmit-
ted data may also be transmitted from multiple sources at the
same time.

The address mask 1s applied, at block 1408, to the virtual
identification of each MCPE and to the transmitted destina-
tion 1dentification. The masked virtual identification of each
MCPE 1s compared to the masked destination 1dentification,
at block 1410, using a comparison circuit. When a match 1s
determined between the masked virtual identification of a
MCPE and the masked destination i1dentification, at block
1412, the MCPE 1s manipulated in response to the transmitted
data, at block 1414. The manipulation 1s performed using a
manipulation circuit. When no match 1s determined between
the masked virtual identification of a MCPE, at block 1412,
the MCPE 1s not manipulated 1n response to transmitted data,
at block 1416. In one embodiment, a MCPE comprises the
comparison circuit and the manipulation circuait.

FIG. 30 shows the selection of MCPEs using an address
mask i one embodiment. The address masking selection
scheme 1s used 1n the selection and reconﬁguratlon of differ-
ent MCPESs or groups of MCPEs 1n different regions of a chip
to perform different functions 1n one embodiment. A different
configuration may be selected for each MCPE on each dii-
terent clock cycle. The selection of MCPEs for configuration
and control, as previously discussed, 1s determined by apply-
ing a transmitted mask to either the physical address 1570 or
the virtual address 1572 of the MCPEs 1550-1558. The
masked address 1s then compared to a masked destination
identification.

For example, MCPEs 1550-1558 have physical addresses
0-8, respectively. MCPE 1550 has virtual address 0000.
MCPE 1551 has virtual address 0001. MCPE 1552 has virtual
address 0010. MCPE 1553 has virtual address 0100. MCPE
1554 has virtual address 0101. MCPE 1555 has virtual
address 0110. MCPE 1356 has virtual address 1000. MCPE
1557 has virtual address 1100. MCPE 1558 has virtual
address 1110. In this example, the virtual address 1572 will be
used to select the MCPEs, so the mask will be applied to the
virtual address 1572. The mask 1s used to 1dentity the signifi-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cant bits of the virtual address 1572 that are to be compared
against the significant bits of the masked destination 1dent-
fication 1n selecting the MCPEs. When mask (0011) 1s trans-
muitted, the third and fourth bits of the virtual address 1572 are
identified as significant by this mask. This mask also 1denti-
fies the third and fourth bits of the destination identification as
significant. Therefore, any MCPE having the third and fourth
bits of the virtual address matching the third and fourth bits of
the destination identification 1s selected. In this example,
when the mask (0011) 1s applied to the virtual address and
applied to a destination identification in which the third and

fourth bits are both zero, then MCPEs 1550, 1553, 1556, and
1557 are selected. MCPEs 1550, 1553, 1556, and 1557 define
a region 1560 and execute a particular function within the

1l array 1500.

networked

When the transmitted data comprises configuration data,
mampulation of the selected MCPEs may comprise program-
ming the selected MCPEs with a number of configuration
memory contexts. This programming may be accomplished
simultaneously with the execution of a present function by the
MCPE to be programmed. As the address masking selection
scheme results 1n the selection of different MCPEs or groups
of MCPEs 1n different regions of a chip, then a first group of
MCPEs located 1n a particular region of the chip may be
selectively programmed with a first configuration while other
groups oI MCPEs located in different regions of the same
chip may be selectively programmed with configurations that
are different from the first configuration and different from
cach other. The groups of MCPEs of the different regions may
function independently of each other 1n one embodiment, and
different regions may overlap in that multiple regions may use
the same MCPEs. The groups of MCPEs have arbitrary
shapes as defined by the physical location of the particular
MCPEs required to carry out a function.

When the transmitted data comprises control data, manipu-
lation of the selected MCPEs comprises selecting MCPE
confliguration memory contexts to control the functioning of
the MCPEs. As the address masking selection scheme results
in the selection of different MCPEs or groups of MCPEs 1n
different regions of a chip, then a first group of MCPEs
located 1n a particular area of the chip may have a first con-
figuration memory context selected while other groups of
MCPE:s located 1n different areas of the same chip may have
configuration memory contexts selected that are different
from the first configuration memory context and different
from each other.

When the transmitted data comprises configuration and
control data, manipulation of the selected MCPEs may com-
prise programming the selected MCPEs of one region of the
networked array with one group of configuration memory
contexts. Moreover, the manipulation of the selected MCPEs
also comprises selecting a different group of configuration
memory contexts to control the functioning of other groups of
MCPEs located in different areas of the same chip. The
regions defined by the different groups of MCPEs may over-
lap 1n one embodiment.

Thus, a method and an apparatus for retiming in a network
of multiple context processing elements have been provided.
Although the present invention has been described with ref-
erence to specific exemplary embodiments, 1t will be evident
that various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention as set forth 1n the claims. Accordingly,
the specification and drawings are to be regarded 1n an 1llus-
trative rather than a restrictive sense.

US 7,464,251 B2

19

What 1s claimed 1s:

1. A method for using a data path comprising a plurality of
processing elements (PEs) configured to perform a first set of
tfunctions, the method comprising:

transmitting a carry bit from an arithmetic logic unit of a

first PE to an arntthmetic logic unmit of a second PE using

a first carry chain, the first carry chain coupling the first
PE with the second PE;

generating a signal 1 the second PE 1n response to the
received carry bit wherein the signal includes a satura-
tion signal and a saturation value of the data path; and

transmitting the signal from the arithmetic logic unit of the
second PE to the arithmetic logic unit of first PE using a
second carry chain, the second carry chain coupling the
second PE with the first PE and including a first back
propagation channel configured to transmit the satura-
tion signal and a second back propagation channel con-
figured to transmait the saturation value; and

in response to the signal, changing the operation of the data
path from performing the first set of functions to per-
forming a second set of functions, the first set of func-
tions and the second set of functions being different from
one another.

2. The method of claim 1, wherein the first PE comprises a

least significant byte of the data path and the second PE
comprises a most significant byte of the data path.

3. The method of claim 1, wherein transmitting the signal
from the second PE to the first PE turther comprises trans-
mitting the signal through each PE of the data path, wherein
cach PE uses logic to manipulate a resident bit sequence 1n
response to the signal.

4. The method of claim 3, wherein the logic 1s configurable.
5. The method of claim 1, further comprising:
transmitting configuration data to the plurality of PEs;

defiming the data path by designating the plurality of PEs in
response to the configuration data; and

programming the plurality of PEs that comprise the data
path 1n response to the configuration data.

6. The method of claim 5, further comprising:

setting a flag 1n the first PE 1n response to the configuration
data, the flag in the first PE designating the first PE as
comprising the least significant byte of the data path; and

setting a flag 1n the second PE 1n response to the configu-
ration data, the flag 1n the second PE designating the
second PE as comprising the most significant byte of the
data path.

7. The method of claim 1, wherein generating the signal
turther comprises using logic to test for saturation in the data
path.

8. The method of claim 1, wherein the first and second
carry chains support carry operations for non-local functions

comprising saturated and minimum and maximum arithmetic
functions.

9. The method of claim 8, wherein each PE of the data path
1s programmed to support the same function, the program-
ming occurring through a function port of each PE.

10. The method of claim 1, wherein the first carry chain
comprises a forward channel between the first and the second
PEs.

11. The method of claim 1, wherein the second carry chain
comprises a back propagation channel between the second

and the first PEs, the back propagation channel coupling the
plurality of PEs of the data path.

12. The method of claim 11, wherein a saturation signal 1s
transmitted over the back propagation channel.

10

15

20

25

30

35

40

45

50

55

60

65

20

13. The method of claim 11, wherein a signal that selects a
saturation value 1s transmitted over a second back propaga-
tion channel.

14. The method of claim 1, wherein the plurality of PEs
comprises a plurality of multiple context processing ele-
ments.

15. The method of claim 1, wherein the first carry chain
comprises a left-going carry chain.

16. The method of claim 1, wherein the second carry chain
comprises a right-going carry chain.

17. The method of claim 1, wherein transmitting the carry
bit from the first PE to the second PE further comprises
transmitting the carry bit from a first arithmetic logic unit
(ALU) of the first PE to a second ALU of the second PE.

18. The method of claim 1, wherein generating the s1 gnal n
the second PE further comprises generating the signal 1n an
arithmetic logic unit of the second PE.

19. The method of claim 1, wherein transmitting the signal
further comprises transmitting the signal from an arithmetic
logic unit (ALU) of the second PE to an ALU of the first PE.

20. The method of claim 1, wherein

the first PE includes a first arithmetic logic unit (ALU);

the second PE includes a second ALU; and

the carry bit 1s transmitted from the first ALU of the first
MCPE to the second ALU of the second MCPE.

21. The method of claim 20, wherein generating the signal
further comprises generating the signal in the second ALU of
the second PE.

22. The method of claim 21, wherein transmitting the sig-
nal further comprises transmitting the signal from the second
ALU of the second PE to the first ALU of the first PE.

23. An apparatus for using a data path comprising a plural-
ity of processing elements (PEs) configured to perform a first
set of functions, the apparatus comprising;:

a first carry chain for transmitting a carry bit from an
arithmetic logic unit of a first PE to an arithmetic logic
unit of a second PFE;

logic for generating a signal 1n the second PE in response to
the recerved carry bit, wheremn the signal includes a
saturation signal and a saturation value of the data path;

a second carry chain, the second carry chain including a
first back propagation channel and a second back propa-
gation channel configured to transmit the signal from the
arithmetic logic unit of the second PE to the arithmetic
logic unit of the first PE, wherein the saturation signal 1s
communicated over the first back propagation channel
and the saturation value 1s communicated over the sec-
ond back propagation channel; and

programmable logic configured to change the operation of
the data path from performing the first set of functions to
performing a second set of functions 1n response to the
signal, the first set of functions and the second set of
functions being different from one another.

24. The apparatus of claim 23, wherein the first PE com-
prises a least significant byte of the data path and the second
PE comprises the most significant byte of the data path.

25. The apparatus of claim 24, wherein the signal 1s trans-
mitted from the second PE to the first PE by passing through
cach PE of the data path, and wherein each PE uses logic to
mampulate a resident bit sequence 1n response to the signal.

26. The apparatus of claim 235, wherein the logic 1s config-
urable.

277. The apparatus of claim 23, further comprising;:

a controller for transmitting configuration data to the plu-

rality of PEs;

logic for defining the data path by designating the plurality
of PEs 1n response to the configuration data; and

US 7,464,251 B2

21

logic for programming the plurality of PEs that comprise
the data path 1n response to the configuration data.

28. The apparatus of claim 23, wherein the signal generated
in the second PE 1s generated using logic, the logic testing for
saturation in the data path.

29. The apparatus of claim 23, wherein the second carry
chain comprises a back propagation channel between the
second and the first PEs, the back propagation channel cou-
pling the plurality of PEs of the data path.

30. The apparatus of claim 23, wherein the plurality of PEs
comprises a plurality of multiple context processing elements
(MCPEs).

31. The apparatus of claim 30, further comprising a con-
figuration memory context in each of the plurality of MCPE:s,
the configuration memory context controlling each MCPE in
response to the configuration data.

32. The apparatus of claim 23, wherein the first carry chain
comprises a left-going carry chain.

33. The apparatus of claim 23, wherein the second carry
chain comprises a right-going carry chain.

34. The apparatus of claim 23, wherein the first carry chain

transmits the carry bit from an arlthmetlc logic unit (ALU) of
the first PE to an AL U of the second PE.

35. The apparatus of claim 23, wherein
the first PE includes a first arithmetic logic unit (ALU);
the second PE includes a second ALU; and

the carry bit 1s transmitted from the first ALU of the first
MCPE to the second ALU of the second MCPE.

36. The apparatus of claim 35, wherein the logic generates
the signal in the second ALU of the second PE.

37. The apparatus of claim 35, wherein the signal 1s trans-
mitted with the second carry ehaln from the second ALU of
the second PE to the first ALU of the first PE.

38. A system for using a data path in a reconfigurable
computing device, the system comprising;:

an array of processing elements (PEs);

a network coupled to the array of PEs, the network trans-
mitting configuration data;

a first carry chain for transmitting a carry bit from an
arithmetic logic unit of a first PE to an artthmetic logic
unit of a second PFE;

a second carry chain for transmitting a signal from the
arithmetic logic unit of the second PE to the arithmetic
logic unit of the first PE, wherein the signal includes a
saturation signal and a saturation value of the data path,
and wherein the second carry chain includes a first back
propagation channel for transmitting the saturation sig-
nal and a second back propagation channel for transmiut-
ting the saturation value; and

programmable logic configured to change the operation of
the data path from performing a first set of functions to
performing a second set of functions 1n response to the
signal, the first set of functions and the second set of
functions being different from one another.

10

15

20

25

30

35

40

45

50

55

22

39. The system of claim 38, further comprising logic for
generating a signal 1 the second PE 1n response to the
received carry bit.

40. The system of claim 39, wherein the logic 1s config-
urable.

41. The system of claim 38, wherein the first PE comprises
a least significant byte of the data path and the second PE
comprises a most significant byte of the data path.

42. The system of claim 38, wherein the signal 1s transmit-
ted from the second PE to the first PE by passing through each
PE of the data path, wherein each PE uses logic to manipulate
a resident bit sequence 1n response to the at least one signal.

43. The system of claam 38, wherein the network com-
Prises:

a transmitter for transmitting configuration data to the plu-

rality of PEs;

logic for defining the data path by designating the plurality

of PEs 1n response to the configuration data; and

logic for programming the plurality of PEs that comprise

the data path in response to the configuration data.

44. The system of claim 38, wherein the signal generated in
the second PE 1s generated using logic to test for saturation in
the data path.

45. The system of claim 38, wherein each PE of the data
path 1s programmed to support non-local functions compris-
ing saturated and minimum and maximum arithmetic func-
tions, the programming occurring through at least one func-
tion port of each PE.

46. The system of claim 38, wherein the first carry chain
comprises a forward channel between the first and the second
PEs.

4'7. The system of claim 38, wherein the second carry chain
comprises a back propagation channel between the second
and the first PEs.

48. The system of claim 47, wherein the back propagation
channel couples the plurality of PEs of the data path.

49. The system of claim 38, wherein the first carry-chain
comprises a left-going carry chain.

50.The system of claim 38, wherein the second carry-chain
comprises a right-going carry chain.

51. The system of claim 38, wherein the plurality of PEs
comprises a plurality of multiple context processing elements
(MCPEs).

52. The system of claim 351, wherein each MCPE
a configuration memory context.

53. The system of claim 38, wherein

the first PE includes a first arithmetic logic unit (ALU);

the second PE includes a second ALU; and

the carry bit 1s transmitted from the first ALU of the first

MCPE to the second ALU of the second MCPE.

54. The system of claim 33, wherein the logic generates the
signal 1n the second ALU of the second PE.

55. The system of claim 33, wherein the signal 1s transmit-
ted with the second carry chain from the second ALU of the

second PE to the first ALLU of the first PE.

G ex x = e

includes

	Front Page
	Drawings
	Specification
	Claims

