US007464171B2
a2 United States Patent (10) Patent No.: US 7,464,171 B2
Rambhia 45) Date of Patent: Dec. 9, 2008
(54) EFFECTIVE PROTECTION OF COMPUTER 2001/0009548 Al1* 7/2001 MOITiS ..oevvveveneeeennnnnn. 370/392
DATA TRAFFIC IN CONSTRAINED
RESOURCE SCENARIOS
* cited by examiner
(75) Inventor: Avni H. Rambhia, Bellevue, WA (US) | |
Primary Examiner—Jason D Cardone
(73) Assignee: Microsoft Corporation, Redmond, WA Assistant L.xaminer— lanim Hossain
(US) (74) Attorney, Agent, or Firm—Workman Nydegger
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 844 days. Described 1s a system and method that protect certain classes
‘ of sensitive data traveling across an accessible transmission
(21) Appl. No.: 10/956,451 medium, such as an internal bus in a device, from automated
(22) Filed: Oct. 1. 2004 attacks. The protection 1s particularly useful for resource-
' B constrained and/or security constrained components. Auto-
(65) Prior Publication Data mated attacks depend on analyzing data characteristics such
as bit pattern signatures and/or frequency distributions to
US 2006/0075135 Al Apr. 6, 2006 succeed. To preclude such automated attacks, various alter-
natives of the present invention internally alter the sensitive
(51) Int.Cl. data at a data source prior to transmission, 1n a synchronized
GO6F 15/173 (2006.01) way such that the altered data 1s internally reversible at the
Goof 15/16 (2006.01) destination resource. Data alteration includes interspersing
(52) US.CL ..., 709/231; 709/223; °709/236 random data into a data stream (e.g., bitstream or stream of
(58) Field of Classification Search 709/223, packets), and interspersing data of varying length on the bus.
709/231, 236 Synchronization algorithms enable the data source and the
See application file for complete search history. destination resource to pad and remove the interspersed data
(56) References Cited in relatively complex ways even with resource-constrained

5,278,844 A *

U.S. PATENT DOCUMENTS
1/1994 Murphy et al. 714/778

200

214

and/or security constrained components.

16 Claims, 6 Drawing Sheets

Synchronizer

(e.q., Clock-

based)

204

202

Alteration

(e.9., Interspersion)
Mechanism

Data Source

204+

sln[anniaials
212 T_T

Reverse Alteration (e.g.,
Extraction) Mechanism

Discarded Data
100

Destination Resource

206

US 7,464,171 B2

Sheet 1 of 6

Dec. 9, 2008

U.S. Patent

SWVY90ud 001
gSnNo
Z} NOILYOINddY W ESL

310N

(s)13ndwon
aJoway

}JOMIaN BalY 3PIM Z9}

0Li

191

¥JOM]IN €ealy [E207T]

1215

g81

N

10}JIUO
181

LGl .

.y W S3TNAOW

NVHO0d

Gel el
SWYN90¥d WILSAS

LEL

091 0S1
32el3U|
CLUITEMIT Aiowa CRITIE]
ﬁ—.—Q-.-_ ._°>...—._°Z EOEQE ._°>|=°z
.—@m: @-ﬂﬂ)OE@m 9|JEAOUWISM-UON

AR, WVHO0Nd

}JomjaN

orl LLL 9¢z1 S31NAON
NVHO0Ad 33H10

sng Wa)sAg 571 SWV¥o0ud

NOILVIIIddY
€8l

yz1 W3LSAS
ONILYYH3dO

ZZL (Wvy)

99e3ju}
jeJaydiiad

CLLIVESUT
uaaldg
-4yono|

aoelaju)
O3PIA

Inding

121 (Woy
___ 0Ll AJoWB |\ WASAS

g1 Old

US 7,464,171 B2

261
L6}
9Al(pPieH
~ NV¥AS
)Y
JuUsjuon
o L6} JuajuoY
I~
pajdAiou3
e 061
E PN
-
¥ p,
-
: ||
: diyo d4sa
: I || es
= |

|
N -
681 >ng
a01na(] 9beInig t 194003 |9d a1

G6 L 961

U.S. Patent

98l

301n0SaY Uoleullsaq

ejeq pap.lessiq

US 7,464,171 B2

wisiueyosy (uonoenx3
“£°8) uoljela)|y 9SiaNaYy

WiN| | Iminy N Ay ey

A%

JUUULLL

B}jeq aAlIsuas S0¢

Sheet 3 of 6

AV

02

Dec. 9, 2008

(paseq
-320|9) ‘'6°3)

13ZIUOJYOUAS

vic

U.S. Patent

20lN0gS Bje(

wisiueyosiy
(uoisiadsiaju] “"6:9)
Uoljela}ly

Hnunnnns

ejeq aAljIsuas

14074

0Lc

00¢

901N0S9y Uoheul}sa(d

301N0S BjeQ

US 7,464,171 B2

4%
TIT ¢ Ol =

ejeq popledsi(

ai2i23aa

\o wisiueyossy

= WiSIUBYo3aN

: osBEED; R REREERAE eorduion:

P’ .

g i i

i AP

5 il 74

: | FUNEREEE S

= ejeq oANISUSS

g 90¢

401>

140}

$0€

00¢

U.S. Patent

SpLE

OlLE

US 7,464,171 B2

Sheet Sof 6

Dec. 9, 2008

U.S. Patent

90JN0S9N

{0panaaaaa

gjeq] papieasiq

v Old

32IN0S Ele(

B0 = [p llal!

wisiueyosip uoisiadsiajuj

Wiy

A0~]0m ek ae >k @Rk b

80Y ﬂ OLY
[SINEEEELE

wsiueyosa uondLiou

wisiueyosyy
uoloeNx3y

wisiueyosiy uondAinaa

Cy Q 60V
= A1313{212|311

A1313)2)2]3|8 90 1j3ja|3)d
ST ETETS
cOv
ip0t 13ZIU0JYOUAS 140)7%

00F

G Oid

PNOOW mONm .rN.?Om NONm ._.NNOD _.ONm.. ._._‘Oom ._._..?OM ._._.Nom

US 7,464,171 B2

20 S)300 SO0 SHO0
(SPPOIE | | (anawoey | [EPP8 || (spawoey (shoxoey | | (S1HR018 | [(shooig | |
0@ €jed Aooa(£ied Ao23a(] AodaQ Ejed €jed S
jOUOD EIPON |OJJUOD EiIpaN
\&
>
& JUa1U0Y) BIP3N pPapiwsuel |
3
=
¥ p,
LSIUeyosiy 0LG
= uonela)|y
&
o VA -905 oS5 '20S
S
-

(s)oolg

(s)ooig | | (shHoolg
o0 ejeq

|0JJU0D

ejeQ]
eipsiA

eleQ]
|ojuo)

N o
v o

Jusjuo) elpay |eulbuo

U.S. Patent

US 7,464,171 B2

1

EFFECTIVE PROTECTION OF COMPUTER
DATA TRAFFIC IN CONSTRAINED
RESOURCE SCENARIOS

FIELD OF THE INVENTION

The invention relates generally to computing devices, and
more particularly to increasing security of data communica-
tion between computing device resources.

BACKGROUND

One type of computer-related attack 1s based on an inherent
access to sensitive data that 1s traveling over an easily moni-
tored path, for example, data traveling on an open bus.
Mechanical methods (e.g., based on board circuit layout) can
be used to reduce the accessibility of an open path, but these
are not always practical and increase cost. A simple but also
generally impractical solution to this problem 1s to not allow
sensitive data travel over accessible paths. This 1s often not
possible for a significant number of resource designs, such as
those 1n which cost, performance requirements and/or current
chip capabilities preclude media decryption and decompres-
sion from being feasibly implemented 1n the same physical
module.

Another apparent solution would be to strongly encrypt
any sensitive data that may be accessible to a hacker. However
this solution i1s not feasible 1n many instances, because,
among other reasons, this requires public key cryptography
and/or secure key storage capability in one or both modules,
which 1s at present a very expensive solution. Thus, strong
cryptographic protection of the key often remains an unful-
filled need. In such a situation, the key used to encrypt the
data, and/or the key used to encrypt the encryption key, even-
tually needs to be transferred from one module to another.

For compressed data, the limitation 1s one of processing
power 1n the resources. For example, it 1s precisely when a
decoder chip 1s incapable of performing real-time decryption
on media that the data travels on an open bus 1n the clear.
Therefore, encrypting this data to protect 1t 1s not an option.

A significant percentage of data-related security attacks to
casily accessible data result from the ability to automate the
analysis of the data. To this end, software and/or hardware
tools analyze transmitted data looking to match known prob-
ability patterns, bit pattern signatures and/or frequency dis-
tributions. For example, one type of attack attempts to extract
compressed media from data tapped off a bus by searching for
start codes and estimating packet lengths.

As mentioned above, with encryption-based solutions, the
inability to securely perform public key cryptography 1n a
data decryption module (where “data” refers to code, media,
text, or any other digital information) means that a data
decryption key travels from the encryption module to the
decryption module. As a result, even with encrypted data, 1n
such a “security-constrained” environment, the data 1s not
necessarily safe from an automated discovery attack. For
example, attacks exist that attempt to discover the transmaitted
encryption key wvia correct decryption hypothesis. Some
repetitive trial and error 1s required, but automated tools allow
this to be accomplished; when the key 1s discovered, 1t
becomes readily apparent from the signature of the data.

What 1s needed 1s a way to frustrate automated-analysis-
types of attacks in constrained-resource scenarios. Although
manual attacks are still possible, 1t has been found that
manual attacks require a high skill level and are expensive,

10

15

20

25

30

35

40

45

50

55

60

65

2

and thus do not spread at anywhere near the rate of that
automated attacks spread, which only require a small expense
and a low-skall level.

SUMMARY OF THE INVENTION

Briefly, the present invention 1s directed towards a system
and method 1n which a data source internally alters data prior
to transmission on an accessible transmission medium, and a
destination resource reversibly alters the received data,
thereby protecting against automated attacks that look for
patterns 1n unaltered data. The system and method are
intended to work with modules 1n which conventional
encryption/decryption techniques are unavailable, e.g.,
resource constrained modules that lack the computational
power needed to perform the encryption and/or decryption,
and/or security-constrained computer modules, 1n which the
key needs to be transmitted to the destination thereby
enabling 1ts discovery via automated techniques. In this man-
ner, various resource and/or security-constrained computer
modules, such as those communicating over an mternal bus,
are able to protect transferred data by using synchronized
logic to modity data prior to transmission and reverse modily
it after receipt, such that the data that 1s transmitted confuses
and/or breaks automated analysis techniques.

More particularly, when a data source module such as a
CPU, graphics card, consumer electronics device (e.g., por-
table audio/video player) needs to transmit some amount of
sensitive data to a resource over a transmission medium such
as a bus, the data source uses an alteration mechanism to alter
the original source data in some reversible way. For example,
the alteration mechanism may intersperse meaningless or
intentionally false data into the data stream as appropriate,
¢.g., as one or more bits, blocks, packets or other data group-
ngs.

At the destination resource, a reverse alteration mechanism
reverses the altered data to reconstruct a copy of the original
source data. The reverse alteration mechanism may comprise
an extraction mechanism that discards the interspersed data.

To keep the source and destination modules synchronized
with respect to what parts of the data 1s altered and reverse
altered, a number of algorithms may be provided that may
vary based on some external factor to make the algorithm
difficult to discover external to the modules. For example, the
system clock or a counter may be used to vary the operating,
modes at the source and destination over time, so that the data
(e.g., bits) that are padded and removed are not consistently
the same ones from the perspective of an outside observer.
Information may also be concealed within the padded data to
help synchronize.

Alternative implementations may combine an intersper-
s1on mechanism with a rearrangement mechanism so that not
only 1s data padded before transmission but order of the data
(e.g., certain bits or packets) 1s also rearranged. A like rear-
rangement and extraction mechanism on the data source
reconstructs the recerved data into a copy of the original data.

Another alternative deals with a security-constrained
resource in which a key (or an encrypted key) 1s transmitted to
the destination resource to perform decryption. Variable
length data may be interspersed to frustrate automated attacks
that operate by probability analysis 1n which the key can be
automatically found by trying values as the key and looking
for signatures of patterns of bit distributions.

Another type of data that may be protected via various
aspects of the present invention includes compressed media
content, 1n which start codes are followed by media data
blocks combined with control data blocks. By altering the

US 7,464,171 B2

3

data, such as by mserting decoy packets (e.g., blocks specifi-
cally mmtended to fool an analyzer), automated tools will be
unable to recognize the patterns needed to steal the data.

Other advantages will become apparent from the following
detailed description when taken 1n conjunction with the draw-
ings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram generally representing a com-
puter system into which the present invention may be mncor-
porated;

FIG. 1B 1s a block diagram generally representing a con-
sumer electronics device into which the present mvention
may be icorporated;

FIG. 2 1s a block diagram generally representing an
example data source and constrained resource architecture 1n
which data 1s selectively altered at the data source and reverse
altered at the destination resource to hinder automated
attacks, 1 accordance with various aspects of the present
invention;

FIG. 3 1s a block diagram generally representing an
example data source and constrained resource architecture 1n
which data 1s selectively interspersed and rearranged at the
source and extracted and rebuilt at the destination to hinder
automated attacks, 1n accordance with various aspects of the
present mvention;

FIG. 4 1s a block diagram generally representing an
example data source and constrained resource architecture 1n
which data 1s selectively interspersed and encrypted at the
source and extracted and decrypted at the destination to
hinder automated attacks, 1n accordance with various aspects
of the present invention; and

FIG. 5 15 a representation of media data blocks with inter-
spersed meaningless data arranged to hinder automated
attacks, 1 accordance with various aspects of the present
invention.

DETAILED DESCRIPTION

Exemplary Operating Environments

FIG. 1A 1llustrates an example of a suitable computing
system environment 100 on which the invention may be
implemented. The computing system environment 100 is
only one example of a suitable computing environment and 1s
not intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents 1llustrated in the exemplary operating environment 100.

The mnvention 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to:
personal computers, server computers, hand-held or laptop
devices, tablet devices, multiprocessor systems, micropro-
cessor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainirame
computers, distributed computing environments that include
any of the above systems or devices, and the like.

The mvention may be described 1n the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and so forth, which perform particular tasks or imple-

10

15

20

25

30

35

40

45

50

55

60

65

4

ment particular abstract data types. The invention may also be
practiced 1n distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located 1n local
and/or remote computer storage media including memory
storage devices.

With reference to FIG. 1A, an exemplary system for imple-
menting the mvention includes a general purpose computing
device 1n the form of a computer 105. Components of the
computer 105 may include, but are not limited to, a process-
ing unit 110, a system memory 120, and a system bus 111 that
couples various system components including the system
memory to the processing unit 110. The system bus 111 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of

example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-

tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus,

and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

The computer 105 typically includes a variety of computer-
readable media. Computer-readable media can be any avail-
able media that can be accessed by the computer 105 and
includes both volatile and nonvolatile media, and removable
and non-removable media. By way of example, and not limi-
tation, computer-readable media may comprise computer
storage media and communication media. Computer storage
media 1includes volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology
for storage of information such as computer-readable mstruc-
tions, data structures, program modules or other data. Com-
puter storage media includes, but 1s not limited to, RAM,
ROM, EEPROM, tflash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can accessed by the computer 105. Communica-
tion media typically embodies computer-readable instruc-
tions, data structures, program modules or other data 1n a
modulated data signal such as a carrier wave or other transport
mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or
more of 1ts characteristics set or changed 1n such a manner as

to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wire-
less media. Combinations of the any of the above should also
be included within the scope of computer-readable media.
The system memory 120 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 121 and random access memory
(RAM) 122. A basic input/output system 123 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 105, such as during start-
up, 1s typically stored in ROM 121. RAM 122 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 110. By way of example, and not limitation, FIG. 1A
illustrates operating system 124, application programs 125,
other program modules 126 and program data 127.

The computer 105 may also include other removable/non-

removable, volatile/nonvolatile computer storage media. By

US 7,464,171 B2

S

way of example only, FIG. 1A 1llustrates a hard disk drive 131
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 141 that reads from or
writes to a removable, nonvolatile magnetic disk 142, and an
optical disk drive 1435 that reads from or writes to a remov-
able, nonvolatile optical disk 146 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 131 1s typically
connected to the system bus 111 through a non-removable
memory interface such as iterface 130, and magnetic disk
drive 141 and optical disk drive 145 are typically connected to
the system bus 111 by a removable memory interface, such as
interface 140.

The drives and their associated computer storage media,
discussed above and illustrated 1n FIG. 1A, provide storage of
computer-readable instructions, data structures, program
modules and other data for the computer 105. In FIG. 1A, for
example, hard disk drive 131 1s 1llustrated as storing operating
system 134, application programs 135, other program mod-
ules 136 and program data 137. Note that these components
can either be the same as or different from operating system
124, application programs 125, other program modules 126,
and program data 127. Operating system 134, application
programs 133, other program modules 136, and program data
137 are given different numbers herein to illustrate that, at a
mimmum, they are different copies. A user may enter com-
mands and imnformation into the computer 105 through input
devices such as a tablet, or electronic digitizer, 154, a micro-
phone 1353, a keyboard 152 and pointing device 151, com-
monly referred to as mouse, trackball or touch pad. Other
input devices not shown 1n FIG. 1A may include a joystick,
game pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 110
through a user mput interface 150 that 1s coupled to the
system bus, but may be connected by other interface and bus
structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 181 or other type of display
device 1s also connected to the system bus 111 via an inter-
face, such as a video interface 180. The monitor 181 may also
be integrated with a touch-screen panel or the like. Note that
the monitor and/or touch screen panel can be physically
coupled to a housing in which the computing device 105 1s
incorporated, such as in a tablet-type personal computer. In
addition, computers such as the computing device 105 may
also 1include other peripheral output devices such as speakers
184 and printer 185, which may be connected through an
output peripheral interface 183 or the like.

The computer 105 may operate 1n a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 170. The remote computer
170 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 105, although only a memory storage
device 171 has been illustrated in FIG. 1A. The logical con-
nections depicted i FIG. 1A include a local area network
(LAN) 161 and a wide areanetwork (WAN) 163, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used in a LAN networking environment, the com-
puter 105 1s connected to the LAN 161 through a network
interface or adapter 160. When used in a WAN networking

10

15

20

25

30

35

40

45

50

55

60

65

6

environment, the computer 105 typically includes a modem
162 or other means for establishing communications over the
WAN 163, such as the Internet. The modem 162, which may
be 1nternal or external, may be connected to the system bus
111 via the user mput interface 150 or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 105, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1A illustrates remote
application programs 175 as residing on memory device 171.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

FI1G. 1B shows an alternative architecture 186, such as of a
consumer electronics device or the like. The device architec-
turerepresented in FIG. 1B includes a smart chip 187 (e.g., on
a card) to store and use 1ts device key, a CPU 188 for decryp-
tion and other processing, and a DSP (digital signal process-
ing) chip 189 for decoding video. Note that not all consumer
clectronic devices include a smart chip, as some may store the
private key 1n software as part of the code which is stored in
the hard disk or other external memory and moved to the CPU
for execution, while some may permanently store the private
key within the CPU module; others may use some combina-
tion of both. The encrypted content 190 and license, which
contains the content key 191 and 1s encrypted with the device
key, are stored on the device’s hard drive 192. As will be
understood, there are two ways to steal the content 190,
namely by stealing it when 1t 1s decrypted and is in the clear,
or by stealing the content key 191.

To play the content, the license 1s first sent to the smart chip
187. The smart chip 187 extracts the content key 191, and
protects 1t using one of several mechanisms such as a secret
obfuscation algorithm or encryption based on a key sent to 1t
from the CPU using PKI (which 1s feasible 1n this part of the
architecture since the smart chip contains a private key). The
smart chip 187 then sends the protected key over an open bus
to the CPU 188. The CPU 188 strips the protection off the key,

making the content key now 1n the clear.

The content 190 flows over an open bus to the CPU 188, but
1s protected by encryption. The content 190 1s decrypted in the
chup 187. The clear, compressed content then travels over an
open bus to the DSP 189 for decoding. The DSP 189 is
resource limited, so the device cannot use encryption to pro-
tect the content 1n transit. This 1s where the current invention
would be used to protect this data. In the absence of such
protection, the data could be stolen 1n a varniety of ways. For
example, 1f this bus 1s a socketed PCI bus, then a user can
simply plug 1n a mass storage device 195 to the PCI socket
196 to capture the content. Alternatively, particularly 1f there
1s no PCI socket, then a bus momitor 199 (or logic analyzer or
similar device) can be used to capture the data and send 1t to
an automated tool to extract the compressed media.

After processing in the DSP chip 189, the decoded content
1s transierred back to the CPU 188. This content could also be
stolen over the bus, but the much higher bandwidth makes this
more ditficult. Output protection 1s mserted in the CPU 188,
and the media 1s now ready for rendering.

Protecting Computer Data Traffic

The present invention 1s generally directed towards a sys-
tem and method by which various computer modules, such as
those communicating over an internal bus, may protect trans-
terred data, particularly sensitive data, against automated
attacks. As will be understood, numerous ways to implement
the present invention are feasible, and only some of the
highly-beneficial alternatives are described herein. For

US 7,464,171 B2

7

example, various aspects of the present invention are
described below with reference to a resource constrained
destination module that does not have suificient computa-
tional processing power to perform complex decryption algo-
rithms in real time. Alternatively, various aspects of the
present invention are described below with reference to a
security constrained destination module that 1s capable of
data decryption, but requires that a key be transmitted to 1t.
Notwithstanding, the present invention 1s not limited to any
particular examples, but rather may be used in other types of
scenar1os, such as 1 addition to conventional encryption/
decryption techniques, and/or over other types of communi-
cations media, including an external transmission medium.
Thus, the present invention provides benefits and advantages
in computing 1n general.

As generally represented 1in FIG. 2, there 1s shown an
example architecture 200 in which a data source module 202
such as a CPU, graphics card, consumer electronics device
(e.g., media player) needs to transmit some amount of sensi-
tive data 204 to a resource 206. Sensitive data comprises any
information that may be desirable to protect from access,
examples of which include software (e.g., to avoid reverse
engineering), media content (e.g., audio, video, 1mages, ani-
mations and the like), text, financial information, documents,
and so forth. A transmission medium 208 such as a bus
couples the data source 202 and the resource 206. Note that
although not shown 1n FIG. 2 for purposes of simplicity, it 1s
understood that data may be exchanged 1n either direction,
¢.g., the resource 206 may switch to a source role and the
module 202 to a destination role (not necessarily for sensitive
data), an acknowledge or synchromization message may be
sent back, and so forth.

In the example of FIG. 2, consider that the resource 206 1s
resource constrained, and thus 1s unable to efliciently decrypt
encrypted data at an appropriate rate. Alternatively (or 1n
addition to), the data source 202 may be resource constrained
and 1s unable to efficiently encrypt the data. As described
above, 1 such a situation, heretofore unencrypted data was
exchanged over the transmission medium 208, which 1f
physically accessible with a data analysis tool or the like,
made the data vulnerable to an automated attack.

In accordance with an aspect of the present invention, the
data source incorporates or otherwise securely works with an
alteration mechanism 210 to alter the original source data 1n
some reversible way. For example, FIG. 2 shows the alter-
ation mechamism 210 comprising an interspersion mecha-
nism that mixes meaningless or intentionally false data (e.g.,
shown as the shaded rectangular blocks) in with the sensitive
data 204 (the clear rectangular blocks) prior to transmission
to the resource 206. The interspersed data may comprise one
or more random bits, a block of bits, or whatever 1s appropri-
ate for the mixing within the separable parts (e.g., bits) of the
sensitive data. For example, with a character stream, varying
lengths of random bits would temporarily convert meaningiul
characters into entirely other characters, whereas with a
stream ol media blocks, random media data blocks may be
inserted specifically to frustrate an analyzer that was designed
made to extract media data from start codes, control data
blocks and so on.

At the resource 206, a reverse alteration mechanism 212
reverses the altered data and essentially reconstructs the origi-
nal source data. In the example of FIG. 2 1n which meaning-
less or false data was interspersed 1n the stream to alter 1t, the
reverse alteration mechanism comprises an extraction mecha-
nism that maintains the sensitive data 204 - (where the sub-
script T represents transmitted) and discards the interspersed
data. To this end, the alteration mechanism 210 and the

10

15

20

25

30

35

40

45

50

55

60

65

8

reverse alteration mechanism 212 are synchronized to agree
on which bits or blocks of bits in the data stream are to be
stripped from the data.

Synchronization may be performed by hard coding and/or
by any number of suitable algorithms of a variety of com-
plexities that may be used to determine where bits are to be
padded 1n the data stream and then extracted, even though use
of the algorithm and/or the extraction 1itself (e.g., via one or
more shift instructions) requires relatively little computa-
tional power. In one embodiment, a variable synchromzation
mechanism 214 such as one based on the system clock or a
counter may be used to keep the source and destination in the
same operating mode at the same time. For example, a value
available to both from the clock or a counter may be used to
compute values/build respective internal tables that the alter-
ation mechanism 210 uses to determine when to insert a bit,
¢.g., via a shift and OR operations. A similar computation/
internal table may be used by the logic 1n the reverse alteration
mechanism 212 to remove the padded bits. For example, a
system clock value may be used to determine where in the
data stream to pad/remove bits or blocks during one time
frame, where 1n the data stream to pad/remove bits or blocks
in the next time frame, and so on. A counter of the number of
bits may alternatively be used 1n a similar manner, e.g.,
between bytes 1 and 100 use one list of values to pad/remove
data, between 101 and 200 use another list and so on. A
counter may be used 1n conjunction with a system clock to
make the algorithm more difficult to break, and/or the com-
putations/tables may be variable per session. The extraction
information may also be transmitted, and/or even put into
some (or all) of the discarded bits, e.g., instead of sending a
random pattern of zeros and ones, a trigger value 1s occasion-
ally sent that changes the list of bits to discard to another list;
note that 1n such a case, at least some of the discarded bits are
not simply meaningless, but may form their own concealed
message. As long as the algorithm was reasonably complex
and kept confidential outside of the endpoint modules 202 and
206, automated analysis tools will be unable to recognize the
patterns needed to read the data stream.

FIG. 3 shows another alternative implementation that like-
wise Irustrates automated attacks, namely a combination
interspersion/rearrangement mechanism 310 on the data
source 302, and a like rearrangement/extraction mechanism
on the destination resource 306. In this alternative, at the
source endpoint 302 the sensitive data 304 1s rearranged
(scrambled) 1n addition to being padded. At the destination
endpoint 306, the post-transmitted, reconstructed sensitive
data 304 - 1s rearranged 1nto the proper order and the padded
bits extracted from the stream. Separate synchronizers 314,
and 314 , are shown on the data source 302 and the destination
resource 306, respectively, for purposes of example, although
as 1s understood, a common synchronization mechanism
(such as a clock or counter exemplified in F1G. 2) may be used
with this alternative.

As can be readily appreciated, the rearranging and padding
may be performed 1n the opposite order, as long as the desti-
nation resource operates in a corresponding order. Indeed, the
synchronizer or synchronizers may be arranged to flip the
order from time to time such that sometimes padded data 1s
rearranged before sending, sometimes rearranged data 1s pad-
ded belfore sending. Again, while such algorithms would be
complex to reverse engineer merely from viewing the data, as
long as the data source and destination resource are synchro-
nized to agree on the padding/rearrangement pattern (and
order), the actual implementing of the operations needed to
rearrange and extract (or extract and rearrange) require rela-
tively little computational power.

US 7,464,171 B2

9

The following sets forth example methods by which data
may be altered 1n accordance with various aspects of the
present invention to hinder detection schemes (note that com-
binations may be used as well):

To fo1l a probability analysis detection given a probability
analysis scenario (PAS)=[{(key, encrypted data) over bus}
and {known encryption algorithm} and {known decrypted
probability distribution function characteristics }], blocks of
truly random data are interspersed within the (key, encrypted
data) block. This data remains random regardless of the
decryption key attempted, whereby automated analysis will
fail to differentiate the correctly decrypted data from incor-
rectly decrypted data to a suflicient degree to find the cor-
rectly decrypted data.

To foi1l automated analysis of a data extraction scenario
(DaES)=[{(media, control data) over bus] & {known bit
stream characteristics} }, characteristic patterns are omitted/
variably transformed, and/or bogus characteristic patterns
and bits 1nserted. Note that this example 1s not limited to
media data.

As described above, for these methods to work, synchro-
nization 1s needed between the source and the destination as
to which data 1s real and which 1s not. There are various ways
to achieve this depending on the specific device design. For
example, for probability analysis scenarios 1n consumer elec-
tronic devices where the destination and source are connected
by a bus and by a control channel, software 1n both modules
1s coded with the same table of offsets, e.g., a list of (offset,
length) pairs.

Each entry (offset, length) 1s used, as follows:

After the offset (O) bytes of real data, throw away the
length (L) bytes of junk data. When transmission starts,
as part of the control protocol between the source S and
the destination D, S sends a random index 1nto this oifset
table to which D inmitializes itself. Thereafter, S causes
the offset entry in use to change, at 1ts discretion. This
can be done 1n various ways, including an example 1n
which the control channel 1s used to send the next offset
entry. This new entry will be used atter the offset O (or
the length L, or some function of O and/or L) uses of the
current offset entry. This cycle repeats until the data has
been fully transmitted; (the newly calculated offset entry
1s wrapped around 1f 1t exceeds the total length of the
ollset table).

In another example way, a clock pulse 1s periodically gen-
erated which causes both S and D to switch to another
ollset entry at a specific instance. This new offset can be
based on a pre-determined relative scheme, such as the
next entry in the table, or an absolute scheme such as the
entry [n] of the table where n 1s the value of the last byte
transmitted under the previous ofiset. The device needs
to be capable of precise synchronization around clock-
ing for this scheme to be feasible; however, 1t does
provide very strong security. Even 11 the ofiset table 1s
known to the attacker, this scheme offers resistance to
automated analysis since reliable automated intercep-
tion of clock channels and synchronization of the analy-
s1s tool to this clock 1s nearly impossible.

Another example way uses a ‘secret’ algorithm to deter-
mine which data 1s real and which 1s junk. For example,
the separation algorithm may be embedded within the
computer program itsell, and the code may be written
such that 1t properly accesses code segments 1n the cor-
rect places, and never tries to execute based on the junk
data. Note that 1n this case the junk data 1s determined
and inserted once, at the time that the software 1s devel-
oped.

10

15

20

25

30

35

40

45

50

55

60

65

10

For cases of DaES, structured data rather than random data
are 1serted. In this case, for video, the inserted data may
either be placed within RLC (run length coded) segments or
may emulate the start of a new frame. The first two methods
discussed above for the probability analysis scenario apply
equivalently to the case of DaES.

Another method which can be used 1n the DaES case 1s
masking of characteristic patterns using simple XOR tech-
niques. A basic math principle here 1s that (A XOR B) XOR
B)=A. The destination and source may be programmed to
generate a certain XOR bit pattern at run time; the destination
in fact may provide the seed for generating this pattern as part
of its startup protocol with the source, or both the destination
D and the source S may derive the seed using a secret algo-
rithm on data which 1s part of the startup protocol. At a
pre-regulated data interval or intervals, the source XORs out-
going data and the destination XORs incoming data with this
bit pattern. This masks the bit patterns upon which automated
analysis would depend to extract the data.

The data interval or intervals may be determined in a vari-
ety of ways. For example, a method similar to the offset table
methods described above may be used. Alternatively, the next
interval may be determined dynamically based on the result
ol a secret algorithm or condition upon the media data being
transmitted, e.g. starting from the tenth byte with a least
significant bit of zero, starting at every thirtieth byte, or by
calculating a running sum of each byte and applying the
pattern when the sum exceeds a certain value. Note that these
conditions are applied on “non-XORed” data in order for
synchronization between the source and the destination to be
possible. The choice of a certain algorithm for a given device
depends on the computational capability of the destination
and/or the source, as well as on the length of the XOR bat
pattern that will be used and the degree of security required
for the media.

FIG. 4 represents another alternative, in which encryption
1s available at the data source 402 via an encryption mecha-
nism 409, but in a security-constrained resource in which the
key (or the key which encrypts a decryption key 1n transit)
needs to be transmitted to the destination resource 406 to
perform decryption. The key may change from time to time,
similar to changing the data stream location 1n which bits or
blocks of bits are interspersed from time to time. However, 1T
the key does not change, once the destination has it, the need
to intersperse data 1s lessened, or even eliminated, unless the
design wishes to incorporate plausible deniability and/or hon-
eypot characteristics.

In keeping with the present invention, instead of only
encrypting the source data, bits or blocks of bits are altered
(e.g., interspersed by an interspersion mechanism 410) at the
source and reverse altered (e.g., extracted by an extraction
mechanism 412) at the destination resource 406. The key may
then be available. The extracted data 1s then decrypted via a
decryption mechanism 413 into the corresponding original
data 404 .. Sumilar to the rearrangement described above with
reference to FIG. 3, the encryption may be performed after the
interspersing of the additional data or before the interspers-
ing, and this may change from time to time, as long as the
destination resource 406 keeps 1n synchronization with the
current key and the order in which 1t decrypts and extracts.

The reason that interspersing bits imnto encrypted data with
a transmitted key frustrates automated attacks is that via
probability analysis, the key can be automatically found by
trying values as the key and looking for signatures of patterns
of bit distributions. For example, encrypted text 1s reasonably
uniform probability distribution, whereas typical plain text
has a different pattern, e.g., 1n plaintext, the English language

US 7,464,171 B2

11

has more “€” letters than “x” letters, more “a” letters than *“q
letters, and such signatures can be detected without signifi-
cant manual intervention to indicate when a guessed-atkey 1s
correct. Common words can also be searched for. Software
has another type of distribution pattern, so 1f looking for akey
among encrypted software, such a pattern often can be auto-
matically recogmzed when the key i1s found and decrypts
correctly. Compressed and uncompressed media also can be
recognized.

However, with the present invention, even with the correct
key, such signatures are not found when the padded data 1s
present 1n the data stream, thereby breaking the automated
probability analysis. Note that although not shown for pur-
poses of simplicity, 1t 1s straightforward to combine the pad-
ding and rearrangement mechanisms of FIG. 3 with the
encryption/decryption mechanisms of FI1G. 4 into a still more
complex system.

FIG. 5 represents another type of data that may be pro-
tected via various aspects of the present mvention, namely
compressed media content. In general, with media content,
start codes (e.g., 502, and 502,) are followed by media data
blocks (e.g., 504, and 504,) combined with control data
blocks (e.g., 506, and 506,). The start codes comprise well-
known, published standard bit patterns that can be quickly
recognized by a logic analyzer, from which the byte length of
subsequent packets and other data may be determined.
Present media-content attack mechanisms operate by looking
tor the start code patterns, and building probability tables over
time from one packet to the next.

In accordance with various aspects of the present mven-
tion, an alteration mechanism 510 alters the data stream, e.g.,
by 1nserting decoy (or illegitimate) packets (e.g., 520,-520,)
into the data stream, causing automated analyzing tools to
build probability tables that are unusable. As described above,
via synchronization, the properly authorized receiving mod-
ule (not shown in FIG. 5) knows which of the packets to
discard, whereby the transmitted data content 1s reassembled
properly. Note that the decoy packets can be made to resemble
start codes, media data blocks and/or control blocks, or may
simply be “noise” mserted into the stream that makes the start
code lengths incorrect unless the decoy packets are first
removed.

As can be seen from the foregoing detailed description,
there 1s provided a method and system that prevents auto-
mated attacks from stealing data from accessible paths. The
method and system generally operate by altering the source
data at a data source and synchronizing an alteration mode of
the data source with a reverse alteration mode of a destination
resource, so that the sensitive data 1s reconstructed to its
original pattern. If the alteration 1s such that automated
attacks are precluded, the proliferation of attacks 1s signifi-
cantly reduced by requiring manual intervention to steal data.

Alteration may include interspersing data of varying
lengths within the sensitive data, wherein to the extent pos-
sible, the interspersed data has the same probability distribu-
tion as the original data (or encrypted data, as the case may
require), and has bit pattern characteristics similar to the
original data. As each end-point has built-in logic to deter-
mine which of the bits are real data, the real data may be
rebuilt, however because this logic 1s not discoverable 1n open
traffic, it 1s resistant to discovery.

Further, where encrypted data travels with 1ts encryption
key, altering the data such as by interspersing random data in
the message breaks automated analysis attacks that would
otherwise determine the key, because any test decryption does
not match an expected probability distribution of the unen-
crypted data.

10

15

20

25

30

35

40

45

50

55

60

65

12

As can be seen from the foregoing detailed description,
various types of data may be protected by the present inven-
tion, including computer executable code on 1ts way from
secure storage to an execution environment. The capture of
the executable code would enable reverse engineering, which
in turn allows breaching security of the device. The present
invention hinders automated methods, which generally detect
successiul decryption of such data via probability distribution
calculations or via recognizing characteristic bit patterns of
binary code.

Another type of data that may be protected 1s compressed
multimedia data on 1ts way from the point of decryption to the
point of decompression. "

The capture of compressed data
enables the widespread unauthorized distribution of the con-
tent. The present mvention hinders automated methods,
which generally detect the successtul decryption of such data
by recognizing publicly distributed characteristic bit patterns
combined with publicly distributed syntax and semantic rules
that the compressed data stream obeys. Similarly, confiden-
tial put, output, text or any other data which should be
protected from discovery as it travels across an accessible
path 1n the device or computer can be protected using meth-
ods derived from the schemes laid out 1n the present mven-
tion.

While the invention 1s susceptible to various modifications
and alternative constructions, certain illustrated embodi-
ments thereof are shown in the drawings and have been
described above 1n detail. It should be understood, however,
that there 1s no intention to limit the mvention to the specific
torms disclosed, but on the contrary, the intention 1s to cover
all modifications, alternative constructions, and equivalents
talling within the spirit and scope of the mnvention.

What 1s claimed 1s:

1. In a digital computing system 1n which a data source and
a destination resource communicate with one another by
transierring a stream of digital data, such as bits, blocks,
packets or other data groupings, over a transmission medium
that 1s accessible and thus potentially not secure, and wherein
one or the other of the data source and the destination
resource, or both, either lack the computational resources
needed to perform encryption and decryption, or both, for the
exchanged stream of digital data, or wherein one or the other
of the data source and the destination resource, or both, are
security constrained 1n the sense that a key needs to be trans-
mitted to the destination resource 1n order to use the key to
access the transterred digital data, but the key 1s susceptible to
discovery viathe accessible unsecure transmission medium, a
method for protecting the exchanged stream of digital data
from unauthorized access when transferring it over the unse-
cure transmission medium, comprising:
at the data source of the digital computing system, altering,
the digital data stream to be transmitted by either inter-
spersing false data into the data stream prior to 1ts trans-
mission, or by rearranging the sequence of transmission
of individual data in the data stream, or both;
transmitting the altered digital data stream over the unse-
cure transmission medium to the destination resource of
the digital computing system:;
recerving the altered digital data stream at the destination
resource of the digital computing system;

at the destination resource of the digital computing system,
reversing the alteration of the digital data stream by
cither removing false data that has been interspersed into
the data stream, reversing the rearrangement of the
sequence of transmission of individual data in the data
stream, or both; and

US 7,464,171 B2

13

synchronizing the destination resource with the data source
so that the destination resource 1s able to reverse the
alteration of the digital data stream by using the synchro-
nization to either correctly detect false data that has been
interspersed into the data stream so that it can be
removed, correctly detect the rearrangement of the
sequence of transmission of individual data so the
sequence can be returned to 1ts original sequence prior to
the rearrangement, or both.

2. The method of claim 1 wherein interspersing false data
comprises padding one or more bits between other bits of a
bitstream.

3. The method of claim 2 wherein padding includes insert-
ing one or more bits 1n variable lengths.

4. The method of claim 1 wherein interspersing false data
comprises padding one or more packets between other pack-
ets.

5. The method of claim 1 wherein the digital data stream to
be transmitted includes a key used for decryption.

6. The method of claim 1 wherein rearranging the sequence
of transmission of individual data comprises changing at least
one bit to another value via at least one logical operand.

7. The method of claim 6 wherein the logical operand 1s at
least one operand of a set containing AND, OR and XOR
operands.

8. The method of claim 1 wherein synchronizing the des-
tination resource with the data source comprises synchroniz-
ing the destination resource and the data source based on a
clock value.

9. The method of claim 1 wherein synchronizing the des-
tination resource with the data source comprises synchroniz-
ing the destination resource and the data source based on
information communicated from the data source to the desti-
nation resource.

10. In a digital computing system 1n which a data source
and a destination resource communicate with one another by
transferring a stream of digital data, such as bits, blocks,
packets or other data groupings, over a transmission medium
that 1s accessible and thus potentially not secure, and wherein
one or the other of the data source and the destination
resource, or both, either lack the computational resources
needed to perform encryption and decryption, or both, for the
exchanged stream of digital data, or wherein one or the other
of the data source and the destination resource, or both, are
security constrained in the sense that a key needs to be trans-
mitted to the destination resource 1n order to use the key to
access the transferred digital data, but the key 1s susceptible to
discovery via the accessible unsecure transmission medium, a
computer-program product for implementing a method for
protecting the exchanged stream of digital data from unau-
thorized access when transferring 1t over the unsecure trans-
mission medium,

5

10

15

20

25

30

35

40

45

50

14

the computer-program product comprising a computer
storage medium containing executable instructions for
implementing the method,

and wherein the method 1s comprised of:

at the data source of the digital computing system, alter-
ing the digital data stream to be transmitted by either
interspersing false data into the data stream prior to 1ts
transmission, or by rearranging the sequence of trans-
mission of individual data 1n the data stream, or both:

transmuitting the altered digital data stream over the unse-
cure transmission medium to the destination resource
of the digital computing system;

receiving the altered digital data stream at the destina-
tion resource of the digital computing system;

at the destination resource of the digital computing sys-
tem, reversing the alteration of the digital data stream
by either removing false data that has been inter-
spersed into the data stream, reversing the rearrange-
ment of the sequence of transmission of individual
data 1n the data stream, or both; and

synchronizing the destination resource with the data
source so that the destination resource i1s able to
reverse the alteration of the digital data stream by
using the synchronization to either correctly detect
false data that has been interspersed into the data
stream so that 1t can be removed, correctly detect the
rearrangement of the sequence of transmission of
individual data so the sequence can be returned to its
original sequence prior to the rearrangement, or both.

11. The computer-program product of claim 10 wherein
interspersing additional data comprises padding one or more
bits between other bits of a bitstream.

12. The computer-program product of claim 11 wherein
padding includes inserting one or more bits 1 variable
lengths.

13. The computer-program product of claim 10 wherein
interspersing false data comprises padding one or more pack-
cts between other packets.

14. The computer-program product of claim 10 wherein
the digital data stream to be transmitted includes a key used
for decryption.

15. The computer-program product of claim 10 wherein
synchronizing the destination resource with the data source
comprises synchronizing the destination resource and the
data source based on a clock value.

16. The computer-program product of claim 10 wherein
synchronizing the destination resource with the data source
comprises synchronizing the destination resource and the
data source based on information communicated from the
data source to the destination resource.

	Front Page
	Drawings
	Specification
	Claims

