12 United States Patent

US007461057B2

(10) Patent No.: US 7,461,057 B2

Radestock et al. 45) Date of Patent: Dec. 2, 2008
(54) QUERY PLAN EXECUTION BY (5 6) References Clited
IMPLEMENTATION OF PLAN OPERATIONS
FORMING A JOIN GRAPH U.S. PATENT DOCUMENTS
5,506,984 A * 4/1996 Millerovvevninni. 707/10
(75) Inventors: Guenter Radestock, Karlsruhe (DE): 5,590,321 A * 12/1996 Linetal.ccccoceunnen.... 707/10
Franz X. Faerber, Walldort (DE); 7,310,638 B1* 12/2007 Blair ..coooevvvviviiirienininnn, 707/4
Christian M. Bartholomae, Oftersheim 2004/0030677 Al1* 2/2004 Young-Lar 707/2

(DE)

(73) Assignee: SAP AG, Walldort (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 236 days.

(21) Appl. No.: 11/322,626

(22) Filed: Dec. 30, 2005

(65) Prior Publication Data
US 2007/0156701 Al Jul. 5, 2007

(51) Int.Cl.
GOGF 7/00 (2006.01)
GOGF 17/30 (2006.01)

(52) US.CL ...l 707/4; 707/2;707/3; 707/8;
707/10

(58) Field of Classification Search 707/203,
707/2,3, 4,8, 10
See application file for complete search history.

* cited by examiner

Primary Examiner—Apu Mofiz

Assistant Examiner—Chelcie Daye

(74) Attorney, Agent, or Firm—Mintz, Levin, Cohn, Ferris,
Glovsky & Popeo, P.C.

(57) ABSTRACT

A system and method for executing a query plan are dis-
closed. In the system and method, a join graph 1s generated to
represent the query plan. The join graph includes a set of plan
operations that are to be executed for implementing the join
graph. The query plan 1s received by a distributed network of
a logical index server and one or more selected physical index
servers. Each physical index server recerves a portion of the
plan operations, and determines what plan data 1s needed to
execute the portion of the plan operations. A system and
method 1ncludes a process for determining what plan data 1s
needed from other physical index servers, or what plan data 1s
needed by other physical index servers.

4 Claims, 4 Drawing Sheets

DISTRIBUTED SERVER LANDSCAPE
-~ 102
LOGICAL
SERVER - l l l
PHYSICAL PHYSICAL PHYSICAL
INDEX SERVER INDEX SERVER INDEX SERVER
104A 1 06 104X 1 06 104Y 1 06
- - -
f EXECUTION /- EXECUTION / EXECUTION
104 ENGINE 104 ENGINE 104 ENGINE
100
Y 108
CLIENT/ ’/

APPLICATION

U.S. Patent Dec. 2, 2008 Sheet 1 of 4 US 7.461,057 B2

serverf \/d |d

FIG. 1

US 7,461,057 B2

Sheet 2 of 4

Dec. 2, 2008

U.S. Patent

901

\. NOLLYDITddY
[LNIITD .
¢ Ol
801 i
— Y -
001
INIONS vOl INION3I vOl INION3 vOl
NOILND3IX3 K NOILND3X3 \ NOILND3IX3 \
001 Q01
APOL X0l POl
HIAHIS X3IANI HIAYIS X3ANI HIAYIS XIANI
TWOISAH IVIISAHd IWVIISAHA —
A A A
H3AY3S
WVII901

ddVOSANV 1 d3AH3S d31.Ngid1SIa

¢0l

——

US 7,461,057 B2

Sheet 3 of 4

Dec. 2, 2008

U.S. Patent

v

FIG. 3

U.S. Patent

400

Dec. 2, 2008 Sheet 4 of 4

US 7,461,057 B2

Establish a session object on each

server that will execute at least
one operation of the plan.

402

/

On each server, count the number
of references to each plan data
object created or used on this
server.

404

On each server, start a thread for
each plan operation to be
executed on that server.

406

| On each server, start a thread for
| each plan data object that will be
consumed on the server and

| produced on a different server.

408

Wait for all outputs of the
execution plan to become
| avallable on the server executing
the plan and return these outputs

FIG. 4

410

|/

i |

US 7,461,057 B2

1

QUERY PLAN EXECUTION BY
IMPLEMENTATION OF PLAN OPERATIONS
FORMING A JOIN GRAPH

BACKGROUND

The execution strategy for a database query i1s called a
query plan and may be represented as a graph. A query execu-
tion engine executes the plan by implementing the steps rep-
resented 1n the graph and delivering a set of results for the
query.

A logical query plan describes an algorithm used to execute
a particular query. In general the query execution plan for a
query 1s more complicated than the join graph that describes
how indexes or database tables 1n the query are connected. In
addition to the connections in the join graph, the execution
plan will usually contain additional nodes for projection and
filter operations, and the same index may appear multiple
times 1n the execution plan.

In a query plan graph, the nodes represent plan operations
and part of the task of the execution engine 1s to orchestrate
the execution of the plan operations on the available hard-
ware. The plan operations may be individual search or jo1n or
aggregation or merge operations. The hardware may consist
of a distributed landscape of hosts communicating by means
ol a protocol such as TCP/IP.

Increasingly, queries are being made to an information
store that 1s distributed across a network of server computers
and their associated databases. In a distributed network, com-
munication among many servers to execute the plan opera-
tions of the join graph can become very complex and subject
to too much latency. What 1s needed 1s a process for executing,
a query plan efliciently in a distributed network.

SUMMARY

Disclosed herein are systems and methods for generating
and executing a query plan. The query plan can be represented
as a join graph having plan operations as nodes. In a general
aspect, a plan execution is as follows:

1. Establish a session object on each server that will
execute at least one operation of the plan. Distribute the plan
to all these servers.

2. On each server, count the number of references to each
plan data object created or used on this server. The number of
references 1s the number of plan operations on the same server
that consume a plan data object plus the number of remote
server that run at least one operation that consumes the data
object.

3. On each server, start a thread for each plan operation to
be executed on that server. Within the plan operation execu-
tion threads (1) wait for the inputs of the operation to become
available, (2) execute the operation, (3) decrement the refer-
ence counts for the inputs, deleting inputs when their count
reaches zero, (4) wake up threads that depend on the output of
the operation

4. On each server, start a thread for each plan data object
that will be consumed on the server and produced on a dii-
terent server. Within the plan data request thread, (1) send a
message to the session on the producing server requesting the
data item, (2) receiwve the data item, (3) wake up threads
waiting for the data item. The network request will create an
additional thread on the producing server that waits for the
data item and returns 1t to the requester.

5. Wait for all outputs of the execution plan to become
available on the server executing the plan and return these
outputs

10

15

20

25

30

35

40

45

50

55

60

65

2

The details of one or more embodiments are set forth 1n the
accompanying drawings and the description below. Other
teatures and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will now be described 1n detail
with reference to the following drawings.

FIG. 1 illustrates a query plan represented as a join graph.

FIG. 2 1s a block diagram of a system for executing the
query plan.

FIG. 3 1llustrates a query plan execution process.

FIG. 4 15 a flowchart of a method for query plan execution
by implementation of plan operations forming a join graph.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

This document describes a system and method for gener-
ating and executing a query plan. The query plan can be
represented as a join graph having plan operations as nodes.
The following represents query plan variables and data that 1s
operated on according to the exemplary query plan shown 1n

FIG. 1:

Host locations: server(, serverl, server?

Connectors: ,],a,b,c,d,e, 1,0
Plan operations (pops): 1,2,3,4,5,6
Inputs: value(1), value())
Outputs: value(o)
Temporaries: value(a), . . ., value(1)
Pop ID Host Inputs Outputs
1 serverz 1 a, b
2 serverz a C
3 server2 b, | d
4 serverl d f
5 serverl c,d e
6 serverz e 1, d 0

In accordance with an exemplary embodiment, and as
shown 1 FIG. 2, a system for executing the query plan
includes a distributed server landscape 100. The distributed
server landscape 100 includes a logical index server 102 and
one or more physical index servers 104 (1.e. 104A . .. 104X,
104Y, etc.). Each physical index server 104 includes an
execution engine 106, however alternatively, the execution
engine 106 can be distributed across all or a portion of two or
more physical index servers 104. The execution engine 106
coordinates execution of the query plan via the logical index
server 102.

The execution engine 106 executes the query plan by
implementing the steps of the join graph and delivering a set
of results for the query. One task of the execution engine 106
1s to orchestrate the execution of the plan operations on avail-
able hardware resources. The hardware resources may be a
distributed network of host computers (“hosts™) communi-
cating according to a network communication protocol such
as the transmission control protocol/internet protocol (TCP/
IP). Each host can be a computer or computer program, such
as a server.

The execution engine executes a query plan by arranging
for the physical index servers 104 to perform the plan opera-
tions. Each physical index server 104 may be allocated a part
or subset of the plan operations, to be performed 1n an order

US 7,461,057 B2

3

determined 1n part by any dependencies between the plan
operations specified in the query plan. Once all of the plan
operations have been performed, the execution engine 106
delivers a result set. More particularly, the execution engine
106 executes the query plan on the available physical index
servers 104, synchronizes the plan operations that make up
the query plan, and coordinates the network transier of query
parts, results, and temporary results. The execution engine
106 also creates threads as required by the operating systems
running on the physical index servers 104, and calls one or
more methods to calculate partial results and transier data.
The execution engine 106 manages any temporary results
created during the execution.

Query plan operations include:

Search: Perform a search and return relevant document I1Ds

or attribute values.

Jom1Inwards: Build a dictionary and perform the first step

of an inward jo1n.

Jom2Inwards: Rewrite the temporary reference table of an

inward jo1n.

Jom3Inwards: Build the dimension function used for

aggregation from the reference table.

Aggregate: Aggregate the results in the reference table and

write the results to a hash table.

Merge: Merge hash tables (for use 1n a case of aggregating

a distributed 1ndex).

BuildResult: Convert the hash table values using the dic-

tionary and format the result.

FIG. 3 1llustrates a query plan execution process. The fol-
lowing are plan operation data values and their definition:

Predicate: A query, or a list of query entries (i.e. for

example, the typical user input for a search).

Dictionary: A list of value IDs paired with values that can

be referenced by an 1ndex.

RefTable: A reference table, an array of pairs (value, dic-

tionary reference) ordered by value.

DimFn: A dimension function, an array of dictionary ref-

erences.

HashTable: A list of tuples containing dictionary refer-

ences and key figures.

Result: A result as passed back to the user or application

calling the query.

To process Boolean queries, attributes are accessed indi-
vidually and a query optimizer 1n the execution engine 106
selects an optimal way to execute the query. The result of a
jo1in operation 1s a dictionary and a dimension function. A fast
merge join can be performed without sorting at any step. The
coding 1s such that most of the values to be processed 1n a join
are numbers, 1.¢. integers. For cache joins, the execution
engine 106 employs distributed dimension function caching,
where dimension functions are stored on the physical index
servers 104 that use them.

To aggregate values, data 1s processed 1n chunks that are
sized to optimize the use of processor caches. To merge
aggregates, a merge operation that uses hashing 1s used. The
merge operation does not need to sort the results from the
aggregation operations. If identical hash functions are used 1n
the aggregation operations, the partial results are ordered in
accordance with the hash function values. To return the result,
characteristics are transformed 1n a cache-sensitive manner.
The result 1s serialized for fast transfer through a suitable
connection to the user or application requesting the results.

In exemplary embodiments, the query plan 1s executed as
tollows and illustrated in FIG. 4. First, at 402 a session object
1s established on each server that will execute at least one
operation of the plan. The plan 1s distributed to all these
Servers.

10

15

20

25

30

35

40

45

50

55

60

65

4

Second, on each server, at 404 the number of references to
cach plan data object created or used on this server 1s counted.
The number of references 1s the number of plan operations on
the same server that consume a plan data object plus the
number of remote server that run at least one operation that
consumes the data object.

Third, on each server, at 406 a thread 1s started for each plan
operation to be executed on that server. Within the plan opera-
tion execution threads, the server: (1) waits for the inputs of
the operation to become available, (2) executes the operation,
(3) decrements the reference counts for the inputs, deleting
inputs when their count reaches zero, and (4) wakes up
threads that depend on the output of the operation.

Fourth, on each server, at 408 a thread 1s started for each
plan data object that will be consumed on the server and
produced on a different server. Within the plan data request
thread, the server (1) sends a message to the session on the
producing server requesting the data item, (2) recerves the
data item, and (3) wakes up threads waiting for the data item.
The network request will create an additional thread on the
producing server that waits for the data 1tem and returns 1t to
the requester. Fiith, at410 all outputs of the execution plan are
waited for to become available on the server executing the
plan, and these outputs are returned by the server.

Different algorithms may be used to execute the query
plan. For example, a simple scheme involving one execution
thread per plan operation and index server has been imple-
mented. The execution engine may be used for different tasks.
Plan data and plan operation classes logically belong to the
application that uses the execution engine, and not the execu-
tion engine 1tself.

The embodiments disclosed herein include the creation of
a query execution plan that may be represented as a graph
with plan operations as nodes and the implementation of plan
execution 1n a distributed landscape. This method makes a
clean separation between the logic of the query plan and the
implementation issues that arise when the plan i1s 1mple-
mented 1n a particular server landscape.

Embodiments of the mvention and all of the functional
operations described 1n this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or 1n combina-
tions of them. Embodiments of the invention can be imple-
mented as one or more computer program products, 1.e., one
or more modules of computer program 1nstructions encoded
on a computer readable medium, e.g., a machine readable
storage device, a machine readable storage medium, a
memory device, or a machine-readable propagated signal, for
execution by, or to control the operation of, data processing
apparatus.

The term *“data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, or multiple processors or computers. The apparatus can
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of them. A propagated signal 1s an artificially gener-
ated signal, e.g., a machine-generated electrical, optical, or
clectromagnetic signal, that 1s generated to encode informa-
tion for transmission to suitable receiver apparatus.

A computer program (also referred to as a program, sofit-
ware, an application, a soltware application, a script, or code)
can be written 1n any form of programming language, includ-
ing compiled or interpreted languages, and 1t can be deployed

US 7,461,057 B2

S

in any form, including as a stand alone program or as a
module, component, subroutine, or other unit suitable for use
in a computing environment. A computer program does not
necessarily correspond to a file 1n a file system. A program can
be stored 1n a portion of a file that holds other programs or data
(e.g., one or more scripts stored 1n a markup language docu-
ment), 1n a single file dedicated to the program 1n question, or
in multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

The processes and logic tlows described 1n this specifica-
tion can be performed by one or more programmable proces-
sOors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e€.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive nstructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to, a communication interface to receive data from or
transier data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks.

Moreover, a computer can be embedded 1n another device,
¢.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio player, a Global Positioming System (GPS)
receiver, to name just a few. Information carriers suitable for
embodying computer program instructions and data include
all forms of non volatile memory, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry.

To provide for interaction with a user, embodiments of the
invention can be implemented on a computer having a display
device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and a
keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can provide mput to the computer. Other
kinds of devices can be used to provide for interaction with a
user as well; for example, feedback provided to the user can
be any form of sensory feedback, e.g., visual feedback, audi-
tory feedback, or tactile feedback; and input from the user can
be received 1n any form, including acoustic, speech, or tactile
input.

Embodiments of the mvention can be implemented in a
computing system that includes a back end component, e.g.,
as a data server, or that includes a middleware component,
¢.g., an application server, or that includes a front end com-
ponent, e.g., a client computer having a graphical user inter-
face or a Web browser through which a user can interact with
an 1implementation of the mvention, or any combination of
such back end, middleware, or front end components. The
components of the system can be mterconnected by any form

10

15

20

25

30

35

40

45

50

55

60

65

6

or medium of digital data communication, €.g., a communi-
cation network. Examples of communication networks
include a local area network (“LAN”) and a wide area net-
work (“WAN”), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

Certain features which, for clarity, are described 1n this
specification in the context of separate embodiments, may
also be provided in combination 1 a single embodiment.
Conversely, various features which, for brevity, are described
in the context of a single embodiment, may also be provided
in multiple embodiments separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting 1n certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can 1n some cases be excised from the combination,
and the claimed combination may be directed to a subcom-
bination or variation of a subcombination.

Particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. For example, the steps recited in the claims
can be performed 1n a different order and still achieve desir-
able results. In addition, embodiments of the invention are not
limited to database architectures that are relational; for
example, the invention can be implemented to provide index-
ing and archiving methods and systems for databases built on
models other than the relational model, e.g., navigational
databases or object oriented databases, and for databases
having records with complex attribute structures, e.g., object
oriented programming objects or markup language docu-
ments. The processes described may be implemented by
applications specifically performing archiving and retrieval
functions or embedded within other applications.

The mvention claimed 1s:

1. A system for executing a query plan, the system com-
prising;:

a logical index server configured to recerve the query plan;

one or more physical index servers in communication with

the logical index server, each physical index server con-
figured to receive a portion of the query plan from the
logical index server, and determine plan operations of
the portion of the query plan; and

an execution engine associated with each of the one or

more physical index servers, the execution engine con-

figured to execute the plan operations of the query plan

to generate a result, the execution engine executing plan

operations specified by a query plan by initiating opera-

tions comprising:

establishing a session object on each of the index serv-
ers;

distributing the query plan to each of the index servers;

counting, at each of the index servers, a number of
references corresponding to a number of plan opera-
tions on such index server that consume a plan data
object plus a number of remote index servers that run
at least one operation that consumes the plan data
object;

initiating, at each of the index servers, a plan operation
execution thread for each plan operation to be
executed on such index server, within such plan
operation execution thread, the server waits for inputs
of the plan operation to become available, executes
the operation, decrements reference counts for the

US 7,461,057 B2

7

inputs and deletes mnputs when their reference count
reaches zero, and wakes up plan operation execution
threads that depend on an output of the plan operation;

initiating, at each of the index servers, a plan data request
thread for each plan data object that will be consumed
on such server and produced on a different index
server, within such plan data request, the server sends
a message to the session object on the producing index
server requesting a data item, receives the data 1tem,
and wakes up plan data request threads waiting for the
data 1tem; and

returning, by each index server to the logical server, all
outputs of the execution plan when the corresponding,
outputs become available on such index server.

2. A system 1n accordance with claim 1, wherein the execu-
tion engine 1s distributed among the one or more physical
index servers.

3. A computer-implemented method for executing plan
operations specified by a query plan, configured with alogical
index server to receive the query plan, one or more physical
index servers 1n communication with the logical index server,
cach physical index server configured to receive a portion of
the query plan from the logical index server, and determine
plan operations of the portion of the query plan, and an
execution engine associated with each of the one or more
physical index servers, the execution engine configured to
execute the plan operations of the query plan to generate a
result, the method comprising:

establishing a session object on a plurality of servers used

to execute at least one plan operation;

distributing the query plan to each of the server;

counting, at each of the servers, a number of references

corresponding to a number of plan operations on such
server that consume a plan data object plus a number of
remote servers that run at least one operation that con-
sumes the plan data object;

initiating, at each of the servers, a plan operation execution

thread for each plan operation to be executed on such
server, within such plan operation execution thread, the
server waits for inputs of the plan operation to become
available, executes the operation, decrements reference
counts for the inputs and deletes inputs when their ret-
erence count reaches zero, and wakes up plan operation
execution threads that depend on an output of the plan
operation;

initiating, at each of the servers, a plan data request thread

for each plan data object that will be consumed on such
server and produced on a different server, within such

5

10

15

20

25

30

35

40

45

8

plan data request, the server sends a message to the
session object on the producing server requesting a data
item, receives the data item, and wakes up plan data
request threads waiting for the data item; and

returning, by each server, all outputs of the execution plan
when the corresponding outputs become available on
such server.

4. A computer-readable tangible storage medium contain-
ing a set of mnstructions for a distributed server network of a
plurality of servers, configured with a logical index server to
receive a query plan, one or more physical index servers in
communication with the logical index server, each physical
index server configured to receive a portion of the query plan
from the logical index server, and determine plan operations
of the portion of the query plan, and an execution engine
associated with each of the one or more physical index serv-
ers, the execution engine configured to execute the plan
operations of the query plan to generate a result, wherein the
set of instructions causing the distributed server network to:

executing plan operations specified by a query plan by:

establishing a session object on a plurality of servers used
to execute at least one plan operation;
distributing the query plan to each of the servers;
counting, at each of the servers, a number of references
corresponding to a number of plan operations on such
server that consume a plan data object plus a number of
remote servers that run at least one operation that con-
sumes the plan data object;
imitiating, at each of the servers, a plan operation execution
thread for each plan operation to be executed on such
server, within such plan operation execution thread, the
server waits for inputs of the plan operation to become
available, executes the operation, decrements reference
counts for the inputs and deletes inputs when their ret-
erence count reaches zero, and wakes up plan operation
execution threads that depend on an output of the plan
operation;
initiating, at each of the servers, a plan data request thread
for each plan data object that will be consumed on such
server and produced on a different server, within such
plan data request, the server sends a message to the
session object on the producing server requesting a data
item, receives the data item, and wakes up plan data
request threads waiting for the data item; and

returning, by each server, all outputs of the execution plan
when the corresponding outputs become available on
such server.

	Front Page
	Drawings
	Specification
	Claims

