US007457797B2
a2 United States Patent (10) Patent No.: US 7.457,797 B2
Bestgen et al. 45) Date of Patent: Nov. 25, 2008
(54) METHOD AND APPARATUS FOR 2004/0006563 Al* 1/2004 Zwiegincew et al. 707/10
ASSOCIATING LOGICAL CONDITIONS 2004/0093332 Al1* 5/2004 Hrle ..oooevvvvvnrverrininnnnnnnn, 707/3
E;Eggﬁg;{ ES:lI“JIiET(E)IF(‘}L; DATABASE QUERY OTHER PUBLICATIONS
U.S. Appl. No. 10/688,951, “Method and System for Reducing Host
(75) Inventors: Robert Joseph Bestgen, Dodge Center, Variable Impact On Access Path Selection,” filed Oct. 21, 2003 by
MN (US); Carol Ledermann Ramler, Namik Hrle.
Rochester, MN (US); Jeffrey Wayne US Appl. _No. 10/955,737, “Method and Apparatus for Re-FEvaluat-
Tenner, Rochester, MN (US) ing Execution Strategy for a Database Query,” filed Sep. 30, 2004 by
’ ’ Paul R. Day et al.
(73) Assignee: International Business Machines * cited by examiner
Corporation, Armonk, NY (US)
Primary Examiner—Cam-Y Truong
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner—Shyue Jiunn Hwa
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Roy W. Truelson
U.S.C. 154(b) by 415 days.
(37) ABSTRACT
(21) Appl. No.: 11/094,655
A query facility for database queries saves and re-uses query
(22) Filed: Mar. 30, 2005 execution strategies, and automatically determines whether a
strategy can be re-used when an imported variable changes.
rior Publication Data ¢ query facility automatically saves one or more logica
635 Prior Publication D The query facility ically logical
conditions associated with the one or more imported variables
US 2006/0224561 Al Oct. 5, 2006 in the query. When the query 1s reused, the logical conditions
are evaluated using the imported variable values, and the
(51) Int.Cl luated using the imported variabl 1 d th
GOES 12 }7 /300 (2006.01) previously saved execution strategy 1s used only 11 the condi-
(52) U.S.CI ' 207/2- 707/3: 707/107- tion or conditions are met. Preferably, the logical conditions
TUT T e ’ ’ 207/1 06 express a range of imported variable values which are
52) Field of Classification S h N included 1n a database subset data structure used by the saved
(58) S:;) 0 licaitiisoslll Elit}(;? C;ninl:ete: searchhlsto Ole query execution strategy, such as amaterialized query table or
PP P ty. partitioned table. Logical conditions are preferably generated
(56) References Cited by negating the predicates from a logical expression defining

U.S. PATENT DOCUMENTS

the applicability of the execution strategy, inserting the
negated predicates mto the query, and performing a transitive
closure.

6,112,209 A * 2000 Gusack ..covvvvivninnn.nn. 707/101

6,466,931 B1* 10/2002 Attalurietal. 707/2

6,898,588 B2* 5/2005 Kosciuszko etal. 707/2 12 Claims, 6 Drawing Sheets
100\

(-1 03

MEMORY

NETWORK
UF

U.S. Patent Nov. 25, 2008 Sheet 1 of 6 US 7,457,797 B2

103
CPU MEMORY
BUS I/F 105
104

11 113

TERMINAL /O DEVICE
I/F I/F

U.S. Patent Nov. 25, 2008 Sheet 2 of 6 US 7,457,797 B2

DB Mgmt
System

I

|

I

!

I

215 |

User App B :
| 203

|

|

|

I

| I

|

|

I

I

|

|

I

Query 212
Optimizer

Query £13
Engine Strategy 2

OS Kernel

FIG. 2

U.S. Patent Nov. 25, 2008 Sheet 3 of 6 US 7,457,797 B2

302 303 304 305
Fid C

301 —»| Val 1A Val 1B Val 1X

Val 2X

Val 2A Val 2B

Val NX

Val NA Val NB

203

Val(N+1)A | Val(N+1)B

Val (N+1)X

204B

Val MA Val MB -- Val MX
206
HDR — 314
313 ~ Query ID ‘ 315 316

312 —| RefTa1 RefTb1 | Val1D | Val 1E

RefTa2 | RefTh2 | Val 2D | Val 2E

FIG. 3

U.S. Patent Nov. 25, 2008 Sheet 4 of 6 US 7,457,797 B2

207

)

Query 412 |
> 401
413

Query Data —

Strategy Condition Expression 414
Strategy Instructions 415
. 402

Strategy Condition Expression

Strategy Instructions

U.S. Patent Nov. 25, 2008 Sheet 5 of 6 US 7,457,797 B2

START START

501 504
Formulate and Select and Submit
Submit New Query Existing Query
502

Parse Query to

Create Object Strategy

Exists
?

507

Look for
Another Strategy
503

Generate

Strategy
Conditions
Satisfied

Execution
Strategy Block

(F1g.6)

o508

Select Strategy

509

Execute Query
Per Strateqgy

Return Results
to Requestor

510

U.S. Patent

Perform Transitive Closure

Nov. 25, 2008 Sheet 6 of 6
START
601
Generate Strategy
for Query Instance
602
Strategy Uses
Subset N
Structure
?
Y
603
Subset
Defining Field an
Imported Value N
In Query
?
Y
604
Remove Non-Varying
Conditions
605
Negate Predicate from
Subset Defining Expression
606
Insert in Query
607

FIG. 6

US 7,457,797 B2

608
Generate (Other)

Conditions for
Strategy

609

Save Conditions

with Execution
Strategy Block

US 7,457,797 B2

1

METHOD AND APPARATUS FOR
ASSOCIATING LOGICAL CONDITIONS
WITH THE RE-USE OF A DATABASE QUERY
EXECUTION STRATEGY

FIELD OF THE INVENTION

The present invention relates generally to digital data pro-
cessing, and more particularly to the generation and execu-
tion of database queries 1n a digital computer system.

BACKGROUND OF THE INVENTION

In the latter half of the twentieth century, there began a
phenomenon known as the information revolution. While the
information revolution 1s a historical development broader 1n
scope than any one event or machine, no single device has
come to represent the information revolution more than the
digital electronic computer. The development of computer
systems has surely been a revolution. Each year, computer
systems grow faster, store more data, and provide more appli-
cations to their users.

A modern computer system typically comprises hardware
in the form of one or more central processing units (CPU) for
processing instructions, memory for storing instructions and
other data, and other supporting hardware necessary to trans-
fer information, communicate with the external world, and so
torth. From the standpoint of the computer’s hardware, most
systems operate 1n fundamentally the same manner. Proces-
sors are capable of performing a limited set of very simple
operations, such as arithmetic, logical comparisons, and
movement of data from one location to another. But each
operation 1s performed very quickly. Programs which direct a
computer to perform massive numbers of these simple opera-
tions give the 1llusion that the computer 1s doing something
sophisticated. What 1s perceived by the user as a new or
improved capability of a computer system 1s made possible
by performing essentially the same set of very simple opera-
tions, but doing 1t much faster. Therefore continuing improve-
ments to computer systems require that these systems be
made ever faster.

The overall speed at which a computer system performs
day-to-day tasks (also called “throughput™) can be increased
by making various improvements to the computer’s hardware
design, which in one way or another increase the average
number of stmple operations performed per unit of time. The
overall speed of the system can also be 1increased by making
algorithmic improvements to the system design, and particu-
larly, to the design of software executing on the system.
Unlike most hardware improvements, many algorithmic
improvements to software increase the throughput not by
increasing the average number of operations executed per
unit time, but by reducing the total number of operations
which must be executed to perform a given task.

Complex systems may be used to support a variety of
applications, but one common use 1s the maintenance of large
databases, from which information may be obtained. Large
databases usually support some form of database query for
obtaining information which is extracted from selected data-
base fields and records. Such queries can consume significant
system resources, particularly processor resources, and the
speed at which queries are performed can have a substantial
influence on the overall system throughput.

Conceptually, a database may be viewed as one or more
tables of information, each table having a large number of
entries (analogous to rows of a table), each entry having
multiple respective data fields (analogous to columns of the

10

15

20

25

30

35

40

45

50

55

60

65

2

table). The function of a database query 1s to find all rows, for
which the data 1n the columns of the row matches some set of
parameters defined by the query. A query may be as simple as
matching a single column field to a specified value, but 1s
often far more complex, ivolving multiple field values and
logical conditions. A query may also ivolve multiple tables
(referred to as a “j01n” query), 1n which the query finds all sets
of N rows, one row from each respective one of N tables
joined by the query, where the data from the columns of the N
rows matches some set of query parameters.

Execution of a query imvolves retrieving and examining,
records in the database according to some search strategy. For
any given logical query, not all search strategies are equal.
Various factors may aflect the choice of optimum search
strategy. One of the factors affecting choice of optimum
search strategy 1s the sequential order 1n which multiple con-
ditions joined by a logical operator, such as AND or OR, are
evaluated. The sequential order of evaluation 1s significant
because the first evaluated condition 1s evaluated with respect
to all the entries 1n a database table, but a later evaluated
condition need only be evaluated with respect to some subset
of records which were not eliminated from the determination
carlier. Therefore, as a general rule, 1t 1s desirable to evaluate
those conditions which are most selective (1.e., eliminate the
largest number of records from further consideration) first,
and to evaluate conditions which are less selective later.

Other factors can also affect the choice of optimum execu-
tion strategy. For example, certain auxiliary database struc-
tures may, 1f appropriately used, provide shortcuts for evalu-
ating a query. One well known type of auxiliary database
structure 1s an 1ndex. An index 1s conceptually a sorting of
entries 1n a database table according to the value of one or
more corresponding fields (columns). For example, 1f the
database table contains entries about people, one of the fields
may contain a birthdate, and a corresponding index contains
a sorting of the records by birthdate. If a query requests the
records of all persons born before a particular date, the sorted
index 1s used to find the responsive entries, without the need
to examine each and every entry to determine whether there 1s
a match. A well-designed database typically contains a
respective index for each field having an ordered value which
1s likely to be used 1n queries.

Another type of auxiliary database record used 1n some
databases 1s a materialized query table. A materialized query
table 1s conceptually a database subset data structure defined
by a query, the subset contaiming all entries from a database
table (or sets of entries from multiple database tables) which
satisly the defining query. Where a query includes the condi-
tions of the query defining the materialized query table or
logically requires a subset of the entries 1n the materialized
query table, 1t may be advantageous to refer to the materal-
1zed query table 1n determining those entries which satisty the
query.

Some databases also employ partitioned tables, which can
be used to advantage 1n evaluating certain queries. A parti-
tioned table 1s simply a portion of a larger conceptual data-
base table. For any of various reasons, the number of entries
in the database table may be so large that 1t 1s deemed desir-
able to divide the table into multiple “partitioned™ tables, each
entry being allocated to a respective one of the partitioned
tables. If the logical conditions of a query are such that 1t can
be known that all entries satisfying the query will be con-
tained 1n one of the partitioned tables, then 1t 1s not necessary
to examine entries 1n the other partitioned tables, resulting in
a considerable savings at query execution time.

To support database queries, large databases typically
include a query engine which executes the queries according

US 7,457,797 B2

3

to some automatically selected search strategy, using the
known characteristics of the database and other factors. Some
large database applications further have query optimizers
which construct search strategies, and save the query and its
corresponding search strategy for reuse. These strategies may
include, among other things, whether an auxiliary data struc-
ture such as an index or materialized query table will be used.
Because it 1s anticipated that a search strategy constructed by
a query optimizer may be re-used many times, the query
optimizer may be justified 1n using very complex and sophis-
ticated technique to determine an optimum query strategy.
These techniques themselves may involve considerable over-
head, much like compiling and optimizing an executable
program involves overhead, but the overhead of optimizing a
query can be outweighed by the improved elliciency of a
query which 1s executed multiple times.

A re-usable query may include one or more imported vari-
able values (*host vaniables”) 1n 1ts logical conditions. I.e.,
where the query compares a field of each database record to
some value, the query may be written so that the compared-to
value 1s a variable, to be provided (“imported”) when the
query 1s invoked for execution. In this manner, the same query
can be re-used for multiple possible compared-to values,
without the necessity of writing and maintaining separate
queries for all possible compared-to values.

A query optimizer or similar function may generate and
save a search strategy for a query based on certain assump-
tions about the use of auxiliary data structures or the number
of entries eliminated from consideration by certain logical
conditions. Since the range of entries eliminated by the
indexed value will depend on the value of the variable to
which it 1s compared, this range could vary considerably for
different executions of the same query i the query contains
imported variables. A query strategy which 1s optimized
using one variable value will not necessarily be optimal using,
a different query strategy.

This problem can be particularly acute 1f a search strategy
optimized for a particular variable value uses certain auxiliary
data structures or partitioned tables. For example, 1f a search
strategy uses a materialized query table or a partitioned table
because the originally optimized query 1involves some subset
of the table, a change in the vaniable value may cause the
responsive subset to include values outside the materialized
query table or partitioned table, which could result 1n signifi-
cantly different execution performance or incorrect results.

It would be possible to simply re-optimize a query every
time 1t 1s executed, but this involves considerable overhead. If
intelligent determinations could be made to automatically
re-evaluate the execution strategies of queries under certain
conditions, particularly where the query involves imported
variables which atffects the range of records 1n a materialized
query table, partitioned table, or similar subset of the data-
base, the execution performance of such queries could be
improved. A need therefore exists, not necessarily recog-
nized, for an improved database query engine or optimizer
which can automatically make intelligent choices 1n deter-
mining when to re-evaluate the execution strategies of certain
queries.

SUMMARY OF THE INVENTION

A query engine (or optimizer) which supports database
queries saves and re-uses query execution strategies. It the
query contains one or more imported variables, the query
engine (or optimizer) automatically saves one or more logical
conditions associated with the one or more imported variables
in the query. When the query 1s reused, the logical conditions

10

15

20

25

30

35

40

45

50

55

60

65

4

are evaluated using the imported variable values, and the
previously saved execution strategy 1s used only 11 the condi-
tion or conditions are met.

In accordance with one aspect of the preferred embodi-
ment, the logical conditions express a range of imported
variable values which are included 1n a database subset data
structure which 1s used by the saved query execution strategy.
A database subset data structure could be a matenalized
query table, a partitioned table, or some other subset of a
database which would narrow the range of entries to be exam-
ined by a search engine. The saved query execution strategy 1s
thus optimally used when all the responsive entries will be
contained in the database subset data structure. If, for a par-
ticular query, the logical condition 1s not met (indicating that
some responsive entries might not be contained 1n the data-
base subset data structure), then the previously saved execu-
tion strategy 1s not used for the query.

In accordance with another aspect of the preferred embodi-
ment, one or more logical conditions associated with an
imported variable are obtained by a process of obtaining a
logical expression defimng the applicability of the execution
strategy, negating the predicates from the logical expression
defining the applicability of the execution strategy, inserting
the negated predicates 1nto the query, and performing a tran-
sitive closure.

By associating logical conditions with a saved query
execution strategy as disclosed herein, 1t 1s possible to deter-
mine, with very little overhead, whether a new istance of the
query using one or more different imported variable values
can efficiently be executed using the previously saved execu-
tion strategy, and avoid either excessive re-optimization of a
query or use of a query execution strategy which 1s 1nappro-
priate for the imported variable values selected.

The details of the present invention, both as to its structure
and operation, can best be understood 1n reference to the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a high-level block diagram of the major hardware
components ol a computer system for executing database
queries and determining whether to re-use query execution
strategies, according to the preferred embodiment of the
present invention.

FIG. 2 1s a conceptual illustration of the major software
components of a computer system for executing database
queries and determining whether to re-use query execution
strategies, according to the preferred embodiment.

FIG. 3 15 a conceptual representation of the structure of a
database and materialized query table associated with a data-
base, according to the preferred embodiment.

FIG. 4 1s a conceptual representation of a persistent query
object, according to the preferred embodiment.

FIG. 5 1s a flow diagram illustrating at a high level the
process of executing a database query, according to the pre-
terred embodiment.

FIG. 6 shows 1n greater detail the process of generating a
query execution strategy and conditions for its use, according
to the preferred embodiment.

PR.

(L]
By

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Referring to the Drawing, wherein like numbers denote
like parts throughout the several views, FIG. 1 1s a high-level
representation of the major hardware components of a com-

US 7,457,797 B2

S

puter system 100 for use in generating and executing database
queries, optimizing query strategies, and determining
whether to re-use a previously optimized execution strategy,
according to the preferred embodiment of the present imnven-
tion. CPU 101 1s a general-purpose programmable processor
which executes mnstructions and processes data from main
memory 102. Main memory 102 1s preferably a random
access memory using any of various memory technologies, 1n
which data 1s loaded from storage or otherwise for processing,
by CPU 101.

Memory bus 103 provides a data communication path for
transferring data among CPU 101, main memory 102 and I/O
bus interface unit 105. I/O bus intertace 105 1s turther coupled
to system I/O bus 104 for transferring data to and from various

I/O units. I/O bus mterface 105 communicates with multiple
I/O interface units 111-114, which may also be known as 1/0

processors (10Ps) or I/O adapters (10As), through system 1/0
bus 104. System 1I/O bus may be, e.g., an industry standard
PCI bus, or any other appropriate bus technology. The I/O
interface units support communication with a variety of stor-
age and 1/0 devices. For example, terminal interface unit 111
supports the attachment of one or more user terminals 121-
124. Storage interface unit 112 supports the attachment of one
or more direct access storage devices (DASD) 125-127
(which are typically rotating magnetic disk drive storage
devices, although they could alternatively be other devices,
including arrays of disk drives configured to appear as a
single large storage device to a host). I/O device interface unit
113 supports the attachment of any of various other types of
I/0 devices, such as printer 128 and fax machine 129, 1t being
understood that other or additional types of I/O devices could
be used. Network interface 114 supports a connection to an
external network 130 for communication with one or more
other digital devices. Network 130 may be any of various
local or wide area networks known 1n the art. For example,
network 130 may be an Ethernet local area network, or it may
be the Internet. Additionally, network interface 114 might
support connection to multiple networks.

It should be understood that FIG. 1 1s intended to depict the
representative major components of system 100 at a high
level, that individual components may have greater complex-
ity than represented 1n FIG. 1, that components other than or
in addition to those shown 1 FIG. 1 may be present, and that
the number, type and configuration of such components may
vary, and that a large computer system will typically have
more components than represented 1n FIG. 1. Several particu-
lar examples of such additional complexity or additional
variations are disclosed herein, 1t being understood that these
are by way of example only and are not necessarily the only
such variations.

Although only a single CPU 101 1s shown for illustrative
purposes 1in FIG. 1, computer system 100 may contain mul-
tiple CPUs, as 1s known 1n the art. Although main memory
102 1s shown 1n FIG. 1 as a single monolithic entity, memory
102 may 1n fact be distributed and/or hierarchical, as 1s known
in the art. E.g., memory may exist in multiple levels of caches,
and these caches may be further divided by function, so that
one cache holds 1nstructions while another holds non-instruc-
tion data which 1s used by the processor or processors.
Memory may further be distributed and associated with dii-
terent CPUs or sets of CPUs, as 1s known 1n any of various
so-called non-uniform memory access (NUMA) computer
architectures. Although memory bus 103 1s shown 1n FI1G. 1
as a relatively simple, single bus structure providing a direct
communication path among CPU 101, main memory 102 and
I/0 bus mtertace 105, in fact memory bus 103 may comprise
multiple different buses or communication paths, which may

5

10

15

20

25

30

35

40

45

50

55

60

65

6

be arranged 1n any of various forms, such as point-to-point
links 1n hierarchical, star or web configurations, multiple
hierarchical buses, parallel and redundant paths, etc. Further-
more, while I/O bus 1nterface 105 and I/O bus 104 are shown
as single respective units, system 100 may in fact contain
multiple I/O bus mterface units 105 and/or multiple I/O buses
104. While multiple I/O interface units are shown which
separate a system 1/O bus 104 from various communications
paths running to the various I/O devices, 1t would alterna-
tively be possible to connect some or all of the I/O devices
directly to one or more system 1/0 buses.

Computer system 100 depicted in FIG. 1 has multiple
attached terminals 121-124, such as might be typical of a
multi-user “mainframe” computer system. Typically, in such
a case the actual number of attached devices 1s greater than
those shown 1n FIG. 1, although the present invention 1s not
limited to systems of any particular size. User workstations or
terminals which access computer system 100 might also be
attached to and communicate with system 100 over network
130. Computer system 100 may alternatively be a single-user
system, typically containing only a single user display and
keyboard 1nput. Furthermore, while the invention herein 1s
described for illustrative purposes as embodied 1n a single
computer system, the present invention could alternatively be
implemented using a distributed network of computer sys-
tems 1n communication with one another, 1n which different
functions or steps described herein are performed on different
computer systems.

While various system components have been described
and shown at a high level, 1t should be understood that a
typical computer system contains many other components
not shown, which are not essential to an understanding of the
present mvention. In the preferred embodiment, computer
system 100 1s a computer system based on the IBM AS/400™
or 1/Series™ architecture, 1t being understood that the present
invention could be implemented on other computer systems.

FIG. 2 1s a conceptual 1llustration of the major software
components of system 100 in memory 102. Operating system
201 provides various low-level software functions, such as
device interfaces, management of memory pages, manage-
ment and dispatching of multiple tasks, etc. as 1s well-known
in the art. A structured database 202 contains data which 1s
maintained by computer system 100 and for which the system
provides access to one or more users, who may be directly
attached to system 100 or may be remote clients who access
system 100 through a network using a client/server access
protocol. Database 202 contains one or more tables 203 (of
which one 1s shown in FIG. 2), each having a plurality of
entries or records, each entry containing at least one (and
usually many) fields, as 1s well known 1n the art. Database
table 203 might contain almost any type of data which 1s
provided to users by a computer system. As shown in FI1G. 2,
database table 203 comprises two partitions or partitioned
tables 204 A, 204B (herein generically referred to as feature
204), each partition containing some discrete portion of the
entries 1n table 203. Associated with database 202 are one or
more database indexes 205 (of which one 1s shown 1n FI1G. 2),
cach index representing an ordering of records in database
202 according to some specified criterion. Also associated
with database 202 are one or more materialized query tables
(MQT) 206 (of which one 1s shown in FIG. 2), each MQT
representing a subset of database records logically defined by
a query. Although one database 202, one database table 203
(having two partitions 204), one index 205 and one MQT 206
are shown in FIG. 2, the number of such entities may vary, and
could be much larger. The computer system may contain
multiple databases, each database may contain multiple

US 7,457,797 B2

7

tables, each table may have more than two partitions, and each
database may have associated with 1t multiple indexes or
MQT’s. Alternatively, some entities represented in FIG. 2
might not be present 1n all databases; for example, some
database tables are not partitioned, or the database might not
contain materialized query tables or the like. Additionally,
database 202 on system 100 may be logically part of a larger
distributed database which 1s stored on multiple computer
systems.

Database management system 211 provides basic func-
tions for the management of database 202. Database manage-
ment system 211 may theoretically support an arbitrary num-
ber of databases, although only one 1s shown in FIG. 2.
Database management system 211 preferably allows users to
perform basic database operations, such as defining a data-
base, altering the definition of the database, creating, editing
and removing records 1n the database, viewing records 1n the
database, defining database indexes, and so forth. Among the
functions supported by database management system 211 1s
the making of queries against data in database 202. Query
support functions 1n database management system 211
include query optimizer 212 and query engine 213. Database
management system 211 may further contain any of various
more advanced database functions. Although database man-
agement system 211 1s represented 1n FIG. 2 as an enfity
separate from operating system kernel 201, 1t will be under-
stood that 1n some computer architectures various database
management functions are itegrated with the operating sys-
tem.

Query optimizer 212 generates query execution strategies
for performing database queries. As 1s known 1n the database
art, the amount of time or resource required to perform a
complex query on a large database can vary greatly, depend-
ing on various factors, such as the availability of an index or
other auxiliary data structure, the amount of resources
required to evaluate each condition, and the expected selec-
tivity (1.e., number of records eliminated from consideration)
of the various logical conditions. Optimizer 212 determines
an optimal execution strategy according to any optimizing
algorithm, now known or hereafter developed, and generates
an execution strategy, also known as an “access plan™, accord-
ing to the determination. The execution strategy 1s a defined
series of steps for performing the query, and thus 1s, 1n effect,
a computer program. The optimizer 212 which generates the
execution strategy performs a function analogous to that of a
compiler, although the execution strategy data 1s not neces-
sarily executable-level code. It 1s, rather, a higher-level series
of statements which are interpreted and executed by query
engine 213.

A query can be saved as a persistent storage object 1n
memory, and can be written to disk or other storage. Once
created by optimizer 212, a query execution strategy can be
saved with the query as part of the persistent storage object.
For a given query, 1t 1s possible to generate and save one or
multiple optimized execution strategies. The query can be
invoked, and a saved query strategy re-used (re-executed),
many times.

FIG. 2 represents persistent storage objects Query A 207
and Query B 208. Query objects are described in further detail
herein, with respect to FIG. 4. Although two query objects,
cach containing two execution strategies, are represented for
illustrative purposes 1n FI1G. 2, 1t will be understood that the
actual number of such entities may vary, that typically a large
computer system contains a much larger number of query
objects, that each query object may contain or be associated
with zero, one, two, or more than two execution strategies.
Although these are referred to herein as “query objects”, the

10

15

20

25

30

35

40

45

50

55

60

65

8

use of the term “object” 1s not meant to 1imply that database
management system 211 or other components are necessarily
programmed using so-called object-oriented programming
techniques, or that the query object necessarily has the
attributes of an object 1n an object-oriented programming
environment, although 1t would be possible to implement
them using object-oriented programming constructs.

In addition to database management system 211, one or
more user applications 214, 2135 executing on CPU 101 may
access data 1n database 202 to perform tasks on behalf of one
or more users. Such user applications may include, e.g., per-
sonnel records, accounting, code development and compila-
tion, mail, calendaring, or any of thousands of user applica-
tions. Some of these applications may access database data in
a read-only manner, while others have the ability to update
data. There may be many different types of read or write
database access tasks, each accessing different data or
requesting different operations on the data. For example, one
task may access data from a specific, known record, and
optionally update 1t, while another task may invoke a query, 1n
which all records 1n the database are matched to some speci-
fied search criteria, data from the matched records being
returned, and optionally updated. Furthermore, data may be
read from or written to database 202 directly, or may require
mampulation or combination with other data supplied by a
user, obtained from another database, or some other source.
Although two applications 214, 215 are shown for 1llustrative
purposes 1 FIG. 2, the number of such applications may vary.
Applications 214, 213 typically utilize function calls to data-
base manager 211 to access data in database 202, and in
particular, to execute queries to data 1n the database, although
in some systems 1t may be possible to independently access
data in database 202 directly from the application.

Various software entities are represented in FIG. 2 as being
separate entities or contained within other entities. However,
it will be understood that this representation 1s for i1llustrative
purposes only, and that particular modules or data entities
could be separate entities, or part of a common module or
package ol modules. Furthermore, although a certain number
and type of software entities are shown in the conceptual
representation of FI1G. 2, 1t will be understood that the actual
number of such entities may vary, and 1n particular, that in a
complex database server environment, the number and com-
plexity of such entities 1s typically much larger. Additionally,
although software components 202-207 and 211-215 are
depicted 1 FIG. 2 on a single computer system 100 for
completeness of the representation, it 15 not necessarily true
that all programs, functions and data will be present on a
single computer system or will be performed on a single
computer system. For example, user applications may be on a
separate system from the database; a database may be distrib-
uted among multiple computer systems, so that queries
against the database are transmitted to remote systems for
resolution, and so forth.

While the software components of FIG. 2 are shown con-
ceptually as residing in memory 102, it will be understood
that in general the memory of a computer system will be too
small to hold all programs and data simultaneously, and that
information 1s typically stored in data storage devices 125-
127, comprising one or more mass storage devices such as
rotating magnetic disk drives, and that the imnformation 1s
paged into memory by the operating system as required. In
particular, database 202 1s typically much too large to be
loaded 1nto memory, and typically only a small portion of the
total number of database records 1s loaded into memory at any
one time. The full database 202 1s typically recorded 1n disk
storage 125-127. Furthermore, 1t will be understood that the

US 7,457,797 B2

9

conceptual representation of FIG. 2 1s not meant to imply any
particular memory organizational model, and that system 100
might employ a single address space virtual memory, or
might employ multiple virtual address spaces which overlap.

FIG. 3 1s a conceptual representation of the structure of 5
database table 203 and materialized query table 206 associ-
ated with database 202, according to the preferred embodi-
ment. Database table 203 contains multiple database entries
(also called records, or row) 301, each entry contaiming mul-
tiple data values logically organized as multiple data fields 10
302-305. Database table 203 1s conceptually represented 1n
FIG. 3 as atable or array, in which the rows represent database
entries, and the columns represent data fields. However, as 1s
well known 1n the art, the actual structure of the database 1n
memory typically varies due to the needs of memory organi- 15
zation, accommodating database updates, and so forth. A
database table will often occupy non-contiguous blocks of
memory; database records may vary 1n length; some fields
might be present 1n only a subset of the database records; and
individual entries may be non-contiguous. Portions of the 20
data may even be present on other computer systems. Various
pointers, arrays, and other structures (not shown) may be
required to 1identily the locations of different data contained in
the database.

In some databases, a database table 203 1s partitioned imnto 25
multiple partitions or partitioned tables 204 A, 204B, as rep-
resented 1n FIGS. 2 and 3. A partitioned table 204 contains a
subset of the entries 1n the database table 203 of which 1t 1s a
part. I.e., the partitioned table 1s conceptually a table contain-
ing exactly the same data fields 302-305 as the database table 30
203 of which it 1s a part, but containing only some of the
entries (rows) of the whole table. Each partitioned table con-
tains a discrete (1.e., non-overlapping) subset of the entries,
the union of all the partitioned tables 204 constituting the
entire database table 203. Each partitioned table 204 1s itself’ 35
a separate file, object or other data structure, although it 1s
logically part of a larger table 203. Partitioned tables are often
used because the volume of data in the whole table 203 1s so
large that including all of 1t 1n a single data structure violates
some size constraint in the system, or simply becomes 40
unwieldy, although a partitioned table may conceivably be
used for other purposes.

Where table partitioning 1s used, there must be some
method for allocating each entry to a respective one of the
partitions. This may be accomplished by using some hash 45
function of an address or record number, which will generally
allocate an approximately equal number of records to each
partition. However, 1t 1s often advantageous to allocate entries
to partitions according to the value of some data field con-
trolling the partitioning, because 1f a query should include a 50
condition referencing that field, it may be known in advance
that all of the responsive entries will be 1n a particular one of
the partitioned tables (or some subset of the partitioned
tables), thus reducing the scope of the records which must be
examined to satisty the query. In this case, the partitioned 55
tables will not generally be the same size, and there may be
substantial size differences. This data field controlling the
partitioning might contain an ordered value, where ranges of
the ordered value correspond to respective partition tables, or
might contain one of multiple discrete values, each discrete 60
value corresponding to a respective partitioned table. For
example, 1n a database table of transactions maintained by a
bank or similar financial 1nstitution, 1t may be desirable to
partition the table by ranges of dates, such as calendar year or
month. Because many queries against the database will be 65
limited to some particular range of dates, 1t 1s possible to
immediately narrow the scope of records examined by

10

removing {rom consideration any records contained 1n a par-
titioned table corresponding to a date range outside the scope
of the query.

One or more materialized query tables (MQT) 206 may be
associated with database 202. A matenalized query table 1s
conceptually a table containing a header 311 which includes
a query 1dentifier for a defining logical query of database 202,
and one or more entries (rows) 312 defined by the defining
logical query. The query identifier 1s preferably a reference,
such as an index number or pointer, referring to a query object
containing a logical representation of the query, but the
header could alternatively itself contain a logical query rep-
resentation which actually defines the query conditions and 1s
understandable by the query optimizer 212 and/or query
engine 213. In the simple case where the defining query
operates on a single database table 203, each row of the MQT
represents an entry from that single database table which
satisfies the conditions of the defining logical query. In the
case of a defimng query which joins a set of multiple database
tables, each row of the MQT represents a set of entries from
cach of the set of multiple database tables joined by the query,
the set of entries satistying the conditions of the defiming
query. FI1G. 3. represents an MQ'T in which the defining query
1s a logical join of two database tables Ta and Tb. Each row
312 of MQT 206 contains a single reference (such as a
pointer) 313 to a corresponding row of table Ta and a single
reference 314 to a corresponding row of table Th. Together the
pair of references to tables Ta and Tb within a single entry 312
of the MQT satisty the conditions of the defining query. The
row 312 preferably further contains selective fields 315, 316
from table Ta and/or table Tb, generally fewer than all fields
of the two tables. The entries 312 within the MQT could
alternatively contain only references 313, 314 to correspond-
ing entries in the tables, without containing any field values
315, 316, or could contain copies of all of the data fields from
the corresponding entries of tables Ta and Tb, or could con-
tains the field values 315, 316 without references 313, 314.
I.e., mnstead of or 1n addition to the value RefTal, the MQT
could contain all the actual data values within the row refer-
enced by RefTal in table Ta. Techniques for generating and
maintaining materialized query tables are known in the data-
base art.

FIG. 4 1s a conceptual representation of a typical persistent
query object 207, according to the preferred embodiment. A
query object contains a body portion 401, and zero, one or
multiple execution strategy blocks 402 (of which two are
represented in the example of FIG. 4). The body portion
contains a query 1dentifier field 411, a query logical represen-
tation 412, and additional query data 413. The query logical
representation 412 1s a representation of the query 1n a form
understandable by the query optimizer 212 and/or query
engine 213, from which a query execution strategy can be
constructed. Additional query data 413 includes various other
data which might be useful to database management system
211 or other applications accessing a query. For example,
additional data 413 might include a text description of the
query, performance statistics for running the query, security
and access control information, and so forth. Additional
query data 413 1s represented 1n FIG. 4 as a single block of
data for clarity of illustration; however, such additional data
will typically comprise multiple fields, some of which may be
optional or of variable length, or may reference data in other
data structures.

Execution strategy block 402 contains data relating to a
particular execution strategy for the query. Because there may
be multiple execution strategies for a single query, there may
be multiple execution strategy blocks. In some cases, each of

US 7,457,797 B2

11

different execution strategies 1s a valid algorithm for satisty-
ing the query, and will therefore produce identical sets of
records which satisiy the query conditions. However, the
resources required for executing the different strategies may
vary greatly, and an appropriate strategy should be chosen. In
other cases, a strategy may be optimized to use a subset of one
or more database tables, so that it never looks at records
outside that subset. Such a subset may be a partitioned table
204 or a materialized query table 206. In such cases, the
strategy must only be used when it can be guaranteed that the
query can be satisfied entirely within the corresponding data-
base subset data structure, or query results will be compro-
mised. Each strategy block 402 contains a query strategy
condition expression 414, and a set of strategy instructions
4185.

Strategy condition expression 414 1s a logical expression
specilying one or more conditions upon the use of the corre-
sponding strategy. I.e., strategy condition expression 1s prei-
crably a logical representation, similar to the query itself,
containing one or more conditions joined by logical opera-
tors, such as AND or OR. In the preferred embodiment, the
conditions relate specifically to the imported variable values
from the query, although 1t would conceivably be possible to
place additional conditions, unrelated to imported variable
values, 1n the strategy condition expression. Each condition
thus specifies a comparison of a particular imported variable.
For example, the condition may specily that the imported
variable be less than some constant value. A bounded range of
imported variable values can be specified by including two
conditions joined by a logical AND. An enumerated variable
may contain a list of all permissible variable values joined by
a logical OR. Strategy condition expression 414 may contain
conditions relating to multiple imported vanable values, and
may contain conditions comparing imported variable values
with one another.

Strategy mstructions 415 are instructions for executing the
corresponding strategy. In the preferred embodiment, these
are not directly executable code, but are higher-level mstruc-
tions which are iterpreted by the query engine 213 to execute
the query. These instructions determine whether or not
indexes are used to search the database records and the order
in which conditions are evaluated.

Among the functions supported by database management
system 211 1s the making of queries against data in database
202, which are executed by query engine 213. As 1s known,
queries typically take the form of statements having a defined
format, which test records 1n the database to find matches to
some set of logical conditions. Typically, multiple terms, each
expressing a logical condition, are connected by logical con-
junctives such as “AND” and “OR”. Because database 202
may be very large, having a very large number of records, and
a query may be quite complex, involving multiple logical
conditions, 1t can take some time for a query to be executed
against the database, 1.e., for all the necessary records to be
reviewed and to determine which records, 1f any, match the
conditions of the query.

The amount of time required to perform a complex query
on a large database can vary greatly, depending on many
factors. Depending on how the data 1s orgamized and indexed,
and the conditions of the query, conditions may optimally be
evaluated 1n a particular order, and certain auxiliary data
structures such as indexes or materialized query tables may be
used. Of particular interest herein, 1n the case of some queries
using particular imported variable values, 1t may be desirable
to execute the query using a database subset data structure. As
used herein, a database subset data structure 1s a data structure
which has a scope limited to only a subset of entries in a

10

15

20

25

30

35

40

45

50

55

60

65

12

database table, the subset being non-null and including fewer
than all the entries in the database table. Examples of database
subset data structures are materialized query table 207 and
partitioned table 204, although there may conceivably be
other forms of database subset data structures, now known or
hereafter developed, to which the techniques described herein
would be applicable. The database subset data structure may
contain all of the table information within this limited scope
(as 1n the case of a partitioned table), or may contain only a
part of the information (as 1s typically the case in an MQT). IT
it can be guaranteed that all entries in a database table which
satisly the query will be contained 1n some database subset
data structure, then use of the database subset data structure to
execute the query may result 1n a resource savings over some
other execution strategy which potentially examines all the
entries 1n the table. If, on the other hand, 1t can not be so
guaranteed, then use of the database subset data structure
could potentially produce inaccurate and incomplete results,
corrupt data, and so forth. An execution strategy could refer-
ence multiple database subset data structures which are col-
lectively still a subset (less than the whole database table), and
the same principles apply. These and other considerations
should be taken 1nto account 1n selecting an optimum query
execution strategy.

In accordance with the preferred embodiment, query
engine 212 executes logical queries of database 202 using
strategies generated by optimizer 212. A query may be saved,
along with one or more strategies for its execution. The query
engine therefore chooses an existing strategy for execution, or
calls the optimizer to generate one. With each strategy, there
may be associated a strategy condition expression as a con-
dition on the use of that strategy. In particular, in the case of a
strategy which employs a database subset data structure, a
strategy condition expression prevents the use of the corre-
sponding strategy 1f it can not be guaranteed 1n advance of
executing the query that all responsive records will be con-
tained 1n or referenced by the database subset data structure.
At the time that a strategy employing a database subset data
structure 1s created, the optimizer generates the strategy con-
dition expression by logical manipulation of the query, as
explained further herein. The strategy condition expression 1s
saved with the execution strategy in an execution strategy
block, and 1s checked by the query engine using the actual
imported variable values of a new query belfore executing the
new query.

FIG. 5 1s a flow diagram illustrating at a high level the
process of executing a database query, according to the pre-
ferred embodiment. Referring to FIG. 5, a query may be
initiated either as a newly defined query, or as a re-used
(previously executed and saved) query, as shown by the two
paths beginning at blocks 501 and 504, respectively.

For a new query, a requesting user formulates and submits
a database query using any of various techniques now known
or hereatter developed (step 501). E.g., the database query
might be constructed and submitted interactively using a
query interface 1n database management system 211, might
be submitted from a separate interactive query application
program, or might be embedded 1n a user application and
submitted by a call to the query engine 212 when the user
application 1s executed. A query might be submitted from an
application executing on system 100, or might be submuitted
from a remote application executing on a different computer
system. In response to recerving the query, query engine 212
parses the query mto logical conditions to generate a query
object (step 502), which may be saved for re-use. The query
engine invokes optimizer 212 to generate an optimized execu-
tion strategy block for the query. Generation of an optimized

US 7,457,797 B2

13

query execution strategy block 1s represented at a high level in
FIG. 5 as step 503, and shown in greater detail in FIG. 6.

Preferably, where this optimized strategy uses a database
subset data structure, 1t includes conditions on the use of the
subset, which are saved as a strategy block 402 with the query
object, as described further herein with respect to FIG. 6.
After generation of a suitable execution strategy at step 503,
the database management system proceeds to step 509.

Where an existing query 1s re-used, a requesting user
selects the existing query object for re-use and invokes it,
using any ol various techniques now known or hereafter
developed (step 504). E.g., the query might be selected inter-
actively from a menu 1n database management system 211,
might be submitted from a separate interactive application
program, or might be embedded 1n a user application and
submitted by a call to the query engine 212 when the user
application 1s executed, any of which might be performed
from system 100, or from a remote system. In particular, for
at least some queries, re-using an existing query may require
specilying one or more imported variable values to be used 1n
the query.

In response to invoking the query, query optimizer 212
determines whether a saved strategy exists 1n the query object
207 (step 505). If no such strategy exists (the ‘N’ branch from
step 505), the query engine 1nvokes the optimizer to generate

one (step 503), as 1n the case of a new query. If a previously
saved execution strategy exists for the query (the °Y’ branch
from step 503), the database management system tests any
logical conditions associated with the saved execution strat-
egy for the query 1n the execution strategy block 402 (step
506). I.e., each execution strategy block may optionally con-
tain a logical expression used to test whether that particular
strategy can be used (where no condition 1s present, the logi-
cal expression 1s a boolean constant). These expressions are
evaluated with respect to known parameters of the instance of
the query to be executed. In particular, these expressions are
evaluated with respect to any imported variable values for the
query to be executed. It the saved execution strategy does not
meet the logical test, then the ‘N’ branch 1s taken from step
506, and the database management system looks for another
previously saved execution strategy (step 507), continuing,
then to step 505. The database management system continues
to look for execution strategies (loop at steps 505-507) until a
strategy 1s found which meets its logical test (the °Y’ branch
from step 506) or there are no more strategies (the ‘N’ branch
from step 505).

If at least one execution strategy exists for which 1ts logical
conditions are satisfied, the °Y’ branch 1s taken from step 506,
and an execution strategy 1s selected (step 508). Where mul-
tiple execution strategies are permissible (multiple strategies
satisiy their respective logical conditions), the database man-
ager will choose one of these multiple strategies. Such a
choice could be based on priorities, or any criteria or tech-
nique now known or hereafter developed, or could be arbi-
trary. After selecting a strategy, the database management
system proceeds to step 509.

The query engine 1s then invoked to execute the query
according to the query execution strategy which was either
generated at step 503 or selected at step 508 (step 509).
Generally, this means that the query engine retrieves selective
database records according to the query execution strategy,
and evaluates the logical query conditions with respect to the
selected record 1n an order determined by the strategy, using
any known technique or technique hereaiter developed. E.g.,
for a conjunction of logical ANDs, each successive condition
1s evaluated until a condition returns “false” (which obviates
the need to evaluate any further conditions) or until all con-
ditions are evaluated.

10

15

20

25

30

35

40

45

50

55

60

65

14

The query engine then generates and returns results 1n an
appropriate form (step 510). E.g., where a user 1ssues an
interactive query, this typically means returning a list of
matching database entries for display to the user. A query
from an application program may perform some other func-
tion with respect to database entries matching a query.

FIG. 6 shows 1n greater detail the process of generating a
query execution strategy and conditions for 1ts use, according
to the preferred embodiment, represented 1 FIG. 5 as step
503. Referrning to FIG. 6, the optimizer 1s invoked and gener-
ates an optimized query execution strategy for the current
query (step 601). Specifically, this strategy 1s optimized for
the current query using the current instances of any imported
variables which are passed with the query (and not necessar-
1ly optimized for all possible values of such imported vari-
ables). The query optimizer may use any technique, now
known or hereaiter developed, for determining an optimum
query execution strategy, and may employ any of the auxil-
1ary data structures available 1n the database, may use parti-
tioned database tables to the extent they exist, and/or any
other appropriate query execution technique in the optimum
strategy. Various techniques for generating a query execution
strategy for a given query instance are known in the art.

If the execution strategy generated at step 601 employs a
database subset data structure, then the ‘Y’ branch i1s taken
from step 602 to step 603. If the execution strategy does not
employ a database subset data structure, then steps 603-607
are by-passed, and the optimizer proceeds directly to step 608
to consider whether any other conditions should be attached
to use of the strategy.

The subset logical definition 1s then examined for the pres-
ence of any database fields which correspond to imported
variables 1n the query being optimized for execution (step
603) A database subset data structure has associated with it
some rule, referred to herein as the subset definition expres-
sion, which defines which records in the database are
included 1n the database subset data structure. In the case of a
partitioned table, this subset definition expression is generally
a condition on a value of a single database field 1n the table of
which the partitioned table 1s a part. E.g., a table containing a
field “FIdA”, where FIdA 1s an ordered value, might contain
a partition having the subset definition:

C1<FIdA AND FIdA=C2, (1)
where C1 and C2 are constants. The partitioned table defined
by this expression will contain all database table entries for
which FIdA fall within the prescribed range, and all other
database table entries having a value of FIdA outside the
range will be 1n some other partitioned table. In the case of a
maternalized query table, the subset definition expression 1s a
logical query, which can have an arbitrary degree of complex-
ity, and can reference multiple database fields from a single
database table or from multiple tables. For example, an MQT
table may be created to jo1n a transaction table (Trans) with an
account table (Acct) and contain data associated with both,
including a value computed from database fields such as total
priced (quantity *price) for each transaction, according to the
following query (subset definition expression):

SELECT A.aid, T.dpgid, A.status, T.qty, T.price,
T.disc, t.qty*t.price as value

FROM Trans T, Acct A
WHERE T.faid=A.aid

AND T.disc>0.1 (2)

US 7,457,797 B2

15

If the query being optimized contains any imported vari-
ables corresponding to fields used to define the subset, the °Y’
branch 1s taken from step 603, else steps 604-607 arc by-
passed. For example, 1n the case of the partitioned table
defined by expression (1) above, 1f FIdA 1s compared to an
imported value in a query condition, then the Y’ branch
would be taken from step 603. Similarly, 1n the case of the
MQT defined by expression (2) above, 1f any of T.1aid, A.aid
or T.disc 1s compared to an imported value 1n a query condi-
tion, then the °Y’ branch would be taken from step 603.

The optimizer then logically manipulates the subset defi-
nition expression and the query being optimized to produce a
logical test for using the query execution strategy generated at
step 601, which can be applied to any future re-use of the
query with any arbitrary set of imported variable values. This
process 1s shown generally 1n steps 604-607, and can best be
understood by reference to the following simple example. It 1s
assumed that the database contains an MQT defined by the
subset definition expression (2) above. The optimizer 1s
required to generated a strategy for the following query:

SELECT A.aid, A.status, T.qty™*T.price *(1-T.disc) as
amt

FROM Trans T, Pgroup P, Acct A
WHERE P.pgid=T.ipgid and T.faid=A.aid

AND T.price>:H1 AND T.disc=:H2 AND T.disc=:
H3

AND P.pgname=:H4 (3)
In this example query, :H1, :H2, :H3 and :H4 are imported
variables. It 1s further assumed that, for the instance of the
query being optimized, the imported values of :H2 and :H3
are 0.2 and 0.7, respectively. If the values 0.2 and 0.7 are
substituted for :H2 and :H3 1n query (3), it will be observed
that the query’s condition on the field T.disc
(0.2=T.d1sc=0.7) 1s contained within the corresponding con-
dition subset definition expression (2) above for an MQT,
(1.e., T.disc>0.1). For these particular imported variable val-
ues, any pair of records from tables Trans T and Acct A which
satisiies the conditions of the query being optimized will also
be contained 1 the MQT defined by expression (2). It 1s
therefore assumed for purposes of this example that the opti-
mizer constructs a strategy at step 601 which employs the

MQT defined by expression (2).

This strategy will produce a valid result for any instance of
query (3) for which 1t can be guaranteed that any pair of
records from tables Trans A and Acct A which satisfies the
query mstance will also be contained 1n the MQT. If, however,
the values of :H2 and :H3 are such that this condition can not
be guaranteed, then a query execution strategy using the MQT
defined by expression (2) can not be guaranteed to produce
correct results. For example, 11 :H2 1s 0 and :H3 1s 0.3, then
there could be some pair of records from tables Trans A and
Acct A which satisty all the conditions of the query, but are
not contained i1n the MQT because the value of the field
T.disc=0.1.

To generate the logical test to be associated with the query
execution strategy (which uses a database subset data struc-
ture), the optimizer begins with the part of the definition
expression which defines the range of the database subset
(e.g., in the example of MQT query (2), the predicate follow-
ing “WHERE”), and removes any conditions relating to fields
which are not imported variables 1n the query, (step 604). The
reason these conditions can safely be removed 1s that, if no

5

10

15

20

25

30

35

40

45

50

55

60

65

16

imported variables are involved, then satisfaction of this con-
dition was already verified when the query was originally
optimized. These are removed immediately to simplify the
logical manipulations performed 1n later steps, although theo-
retically it would be possible to skip step 604, and the manipu-
lations performed by subsequent steps would ultimately sim-
plify to the same result. In the case of the example query (2),

the defining predicate:

T.faid=A.aid AND T.disc>0.1

1s simplified to:
T.disc>0.1.

The optimizer then negates the predicate from the previous
step (step 605). In the example, this results in negation of the
predicate: ““I.disc>0.17, which produces the condition
“T.d1sc=0.1".

The negated predicate 1s then inserted into the correspond-
ing conditions of the query being optimized (step 606), 1.c.
into those conditions which define the range of the selected
field. In the example, the query conditions relating to the
selected field are:

T.disc=:H2 AND T.disc=:H3

Inserting the negated predicate from the subset definition
expression produces:

T.disc=:H2 AND T.disc=0.1 AND

T.disc=0.1 AND T.disc=:H3.

The optimizer then performs transitive closure on the
expressions thus produced to remove the selected field and
reduce the complexity of the expression (step 607). In the
example, the expression:

T.disc=:H2 AND T.disc=0.1

1s reduced by transitive closure to:

‘H2=0.1.

The expression:

T.disc=0.1 AND T.disc=:H3

cannot be transitively closed so 1t 1s assumed to be always
true. The expression therefore reduced to :H2=0.1 AND
TRUE, which 1s the same as:

‘H2=0.1.

The expression produced by step 607 1s the logical test for
using the query execution strategy. This test 1s 1n a negated
form, 1.e., 11 the test evaluates to TRUE, then the correspond-
ing query execution strategy should not be used (and vice
versa). The expression could alternatively be negated again as
a final step (not shown) to produce an expression which
evaluates to TRUE when the query execution strategy may be
used and FALSE when it should not. The optimizer then
proceeds to step 608.

At step 608, the optimizer may optionally generate other
and additional conditions (unrelated to those created by steps
604-607) on the use of the query execution strategy. For
example, other conditions may limit the use of the strategy
according to other field values (which do not define a database
subset data structure), or even based on assumptions about
system configuration or other factors. The optimizer then
generates and saves an execution strategy block 402 for inclu-
s10n 1n the query object, the execution strategy block contain-

US 7,457,797 B2

17

ing any conditions on the use of the query strategy con-
structed as described herein (step 609).

Among the advantages of the technique described herein as
a preferred embodiment 1s the relatively low overhead of
implementation, and the fact that it can be used 1n conjunction
with, and does not foreclose the use of, other independent
techniques for choosing an optimum query execution strat-
egy. The technique described herein merely associates a logi-
cal condition with certain query execution strategies, which,
il not met, means that the strategy cannot be used because
results will be unreliable. It does not necessarily require that
a particular strategy be used 11 the logical condition 1s met,
and as explained above there could be other conditions or
priorities on the use of a strategy. However, the presence of a
logical test permits wider use of database subset data struc-
tures 1n query execution strategies, by allowing these strate-
gies to be re-used 1n at least some circumstances where the
imported variable values have changed.

In the preferred embodiment described above, the genera-
tion and execution of the query 1s described as a series of steps
in a particular order. However, 1t will be recognized by those
skilled in the art that the order of performing certain steps may
vary, and that variations 1n addition to those specifically men-
tioned above exist 1n the way particular steps might be per-
tormed. In particular, the manner in which queries are written,
parsed or compiled, and stored, may vary depending on the
database environment and other factors. Furthermore, it may
be possible to present the user with intermediate results dur-
ing the evaluation phase.

In general, the routines executed to implement the illus-
trated embodiments of the invention, whether implemented
as part ol an operating system or a specific application, pro-
gram, object, module or sequence of instructions, are referred
to herein as “programs” or “computer programs’. The pro-
grams typically comprise istructions which, when read and
executed by one or more processors 1n the devices or systems
in a computer system consistent with the invention, cause
those devices or systems to perform the steps necessary to
execute steps or generate elements embodying the various
aspects of the present invention. Moreover, while the mven-
tion has and hereinafter will be described 1n the context of
tully functioning computer systems, the various embodi-
ments of the invention are capable of being distributed as a
program product in a variety of forms, and the invention
applies equally regardless of the particular type of signal-
bearing media used to actually carry out the distribution.
Examples of signal-bearing media include, but are not limited
to, volatile and non-volatile memory devices, tfloppy disks,
hard-disk drives, CD-ROM’s, DVD’s, magnetic tape, and so
torth. Furthermore, the invention applies to any form of sig-
nal-bearing media regardless of whether data 1s exchanged
from one form of signal-bearing media to another over a
transmission network, including a wireless network.
Examples of signal-bearing media are illustrated 1n FIG. 1 as
system memory 102, and as data storage devices 125-127.

Although a specific embodiment of the invention has been
disclosed along with certain alternatives, it will be recognized
by those skilled 1n the art that additional variations 1n form
and detaill may be made within the scope of the following
claims:

What 1s claimed 1s:

1. A method for executing a database query in a computer
system, comprising the steps of:

automatically generating a re-usable query execution strat-

egy for a database query, said database query containing
at least one condition comparing a first database field to
an 1mported variable value, said re-usable query execu-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

tion strategy employing a database subset data structure
containing data from a subset of records 1n said database,
said subset having a scope defined with reference to said
first database field, said re-usable query execution strat-
egy being re-usable for multiple execution invocations
of said database query, each execution invocation
including a respective imnstance of said imported variable
value;

automatically generating a query execution strategy con-
dition expression associated with said re-usable query
execution strategy, said query execution strategy condi-
tion expression expressing at least one condition on use
of said query execution strategy, said at least one condi-
tion limiting said imported variable value to a range of
values 1n which said at least one condition of said query
1s within a scope of said database subset data structure,
wherein said step of automatically generating a query
execution strategy condition expression cComprises:

negating a predicate referencing said first database field
contained 1n a subset definition expression defining the
scope of said database subset data structure, 1nserting,
said negated predicate into said at least one condition of
said query comparing a first database field to an
imported variable value, and performing a transitive clo-
sure of the expression resulting from said inserting step,

wherein said database subset data structure comprises data
joined from a plurality of database tables;

invoking said database query including a first instance of
said imported variable value;

evaluating said query execution strategy condition expres-
ston using said {irst mstance of said imported variable
value; and

using said query execution strategy to execute said data-
base query including said first instance of said imported
variable value depending on results of said evaluating
step.

2. The method for executing a database query of claim 1,

turther comprising the step of:

invoking said database query including a second instance
of said mmported variable different from said first
instance, said step of mvoking said database query
including a second instance of said imported variable
being performed before said step of automatically gen-
erating a query execution strategy;

wherein said step of automatically generating a query
execution strategy 1s performed responsive to said step
of mvoking said database query including a second
istance of said imported variable.

3. The method for executing a database query of claim 1,
wherein said database subset data structure 1s a materialized
query table.

4. The method for executing a database query of claim 1,
wherein said database subset data structure 1s a partitioned
table.

5. A computer program product stored 1n a computer read-
able storage media for database query optimization compris-
ng:

a plurality of computer executable instructions recorded on
the computer-readable storage media, wherein said
instructions, when executed by at least one computer
system, cause the at least one computer system to per-
form the steps of:

generating a re-usable query execution strategy for a data-
base query, said database query containing at least one
condition comparing a first database field to an imported
variable value, said re-usable query execution strategy
being re-usable for multiple execution mvocations of

US 7,457,797 B2

19

said database query, each execution 1nvocation includ-
ing a respective instance of said imported variable value;

generating a query execution strategy condition expression
associated with said query execution strategy, said query
execution strategy condition expression expressing at
least one condition on the use of said query execution
strategy, said at least one condition of said query execu-
tion strategy condition expression relerencing said
imported variable value, said at least one condition of
saild query execution strategy condition expression
being generated by:

(a) negating a predicate referencing said first database field
contained 1n a logical expression defining an applicabil-
ity of said query execution strategy,

(b) mserting said negated predicate 1nto said at least one
condition of said query comparing a first database field
to an imported variable value, and

(¢) performing a transitive closure of the expression result-
ing from said nserting step;

receiving an mvocation of said database query including a
first instance of said imported variable value;

evaluating said query execution strategy condition expres-
ston using said first instance of said imported variable
value; and

using said query execution strategy to execute said data-
base query including said first instance of said imported
variable value depending on results of said evaluating
step;

wherein logical expression defining an applicability of said
query execution strategy comprises a logical expression
defining a scope of a database subset data structure
employed by said query execution strategy;

wherein said database subset data structure comprises data
joined from a plurality of database tables.

6. The computer program product of claim 5, wherein said

database subset data structure 1s a materialized query table.

7. The computer program product of claim 5, wherein said

database subset data structure 1s a partitioned table.

8. The computer program product of claim 5, wherein said

instructions, when executed by said at least one computer
system, further cause the at least one computer system to
perform the steps of:

receiving an invocation of said database query including a
second 1nstance of said imported variable different from
said {irst instance, said step of receiving an invocation of
said database query including a second 1nstance of said
imported variable being performed before said step of
generating a query execution strategy;

wherein said step of generating a query execution strategy
1s performed responsive to said step of receiving an
invocation of said database query including a second
instance of said imported variable.

9. A computer system, comprising:

at least one processor;

a data storage for storing a database, wherein said database
contains a plurality of database tables, and a database
subset data structure comprises data joined from at least
two of said database tables;

10

15

20

25

30

35

40

45

50

55

20

a database management facility embodied as a plurality of
istructions executable on said at least one processor,
said database management facility including a query
engine which executes logical queries against said data-
base and a query optimizer for generating execution
strategies for executing logical queries against said data-
base;

wherein a first execution strategy generated by said query
optimizer for a first logical query contains at least one
condition comparing a first database field of said data-
base to an imported variable value, said first execution
strategy employing a database subset data structure con-
taining data from a subset of records in said database,
said subset having a scope defined with reference to said
first database field, said first execution strategy being
re-usable for multiple execution invocations of said
database query, each execution invocation including a
respective mstance of said imported variable value;

wherein said database management facility automatically
generates a query execution strategy condition expres-
ston associated with said first execution strategy, said
query execution strategy condition expression exXpress-
ing at least one condition on use of said first execution
strategy, said at least one condition limiting said
imported variable value to a range of values in which
said at least one condition of said query 1s within scope
of said database subset data structure, wherein said data-
base management facility automatically generates said
query execution strategy condition expression by:

negating a predicate referencing said first database field
contained 1n a subset definition expression defining the
score ol said database subset data structure; inserting,
said negated predicate 1into said at least one condition of
said query comparing a first database field to an
imported variable value; and performing a transitive clo-
sure of the expression resulting from said 1nserting step;
and

wherein, responsive to mvoking said first database query
including a first instance of said imported variable value,
said database management facility evaluates said query
execution strategy condition expression using said first
instance of said imported variable value; and uses said
first execution strategy to execute said first database
query including said first instance of said imported vari-
able value depending on results of evaluation.

10. The computer system of claim 9, wherein said first

execution strategy and said query execution strategy condi-
tion expression are generated responsive to mvoking said first
database query including a second instance of said imported
variable value different from said first instance.

11.T]
subset ¢

12. 1.

ne computer system of claim 9, wherein said database
ata structure 1s a materialized query table.

ne computer system of claim 9, wherein said database

subset d

ata structure 1s a partitioned table.

	Front Page
	Drawings
	Specification
	Claims

