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READ FIFO SCHEDULING FOR MULTIPLE
STREAMS WHILE MAINTAINING
COHERENCY

This application 1s a divisional of U.S. patent application
Ser. No. 10/302,191 filed Nov. 22, 2002 now U.S. Pat. No.
7,133,821.

TECHNICAL FIELD OF THE INVENTION

The technical field of this invention 1s emulation hardware
particularly for highly integrated digital signal processing
systems.

BACKGROUND OF THE INVENTION

Advanced wafer lithography and surface-mount packaging
technology are mtegrating increasingly complex functions at
both the silicon and printed circuit board level of electronic
design. Diminished physical access to circuits for test and
emulation 1s an unfortunate consequence of denser designs
and shrinking interconnect pitch. Designed-in testability 1s
needed so the finished product 1s both controllable and
observable during test and debug. Any manufacturing defect
1s preferably detectable during final test before a product 1s
shipped. This basic necessity 1s difficult to achieve for com-
plex designs without taking testability into account in the
logic design phase so automatic test equipment can test the
product.

In addition to testing for functionality and for manufactur-
ing defects, application software development requires a
similar level of simulation, observabaility and controllability
in the system or sub-system design phase. The emulation
phase of design should ensure that a system of one or more
ICs (1integrated circuits) functions correctly 1n the end equip-
ment or application when linked with the system software.
With the increasing use of ICs 1n the automotive industry,
telecommunications, defense systems, and life support sys-
tems, thorough testing and extensive real-time debug
becomes a critical need.

Functional testing, where the designer generates test vec-
tors to ensure conformance to specification, still remains a
widely used test methodology. For very large systems this
method proves 1nadequate 1n providing a high level of detect-
able fault coverage. Automatically generated test patterns are
desirable for full testability, and controllability and observ-
ability. These are key goals that span the full hierarchy of test
from the system level to the transistor level.

Another problem 1n large designs 1s the long time and
substantial expense mvolved 1n design for test. It would be
desirable to have testability circuitry, system and methods
that are consistent with a concept of design-for-reusability. In
this way, subsequent devices and systems can have a low
marginal design cost for testability, stmulation and emulation
by reusing the testability, simulation and emulation circuitry,
systems and methods that are implemented in an initial
device. Without a proactive testability, simulation and emu-
lation plan, a large amount of subsequent design time would
be expended on test pattern creation and upgrading.

Even if a significant investment were made to design a
module to be reusable and to fully create and grade 1ts test
patterns, subsequent use of a module may bury it 1n applica-
tion specific logic. This would make 1ts access difficult or
impossible. Consequently, it 1s desirable to avoid this pitfall.

The advances of IC design are accompanied by decreased
internal visibility and control, reduced fault coverage and
reduced ability to toggle states, more test development and
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verification problems, increased complexity of design simu-
lation and continually increasing cost of CAD (computer
aided design) tools. In the board design the side eflects
include decreased register visibility and control, complicated
debug and simulation in design verification, loss of conven-
tional emulation due to loss of physical access by packaging
many circuits 1n one package, increased routing complexity
on the board, increased costs of design tools, mixed-mode
packaging, and design for produceability. In application
development, some side effects are decreased visibility of
states, high speed emulation difficulties, scaled time simula-
tion, increased debugging complexity, and increased costs of
emulators. Production side effects mnvolve decreased visibil-
ity and control, complications in test vectors and models,
increased test complexity, mixed-mode packaging, continu-
ally increasing costs of automatic test equipment and tighter
tolerances.

Emulation technology utilizing scan based emulation and
multiprocessing debug was 1ntroduced more than 10 years
ago. In 1988, the change from conventional 1n circuit emula-
tion to scan based emulation was motivated by design cycle
time pressures and newly available space for on-chip emula-
tion. Design cycle time pressure was created by three factors.
Higher integration levels, such as increased use of on-chip
memory, demand more design time. Increasing clock rates
mean that emulation support logic causes increased electrical
intrusiveness. More sophisticated packaging causes emulator
connectivity issues. Today these same factors, with new
twists, are challenging the ability of a scan based emulator to
deliver the system debug facilities needed by today’s com-
plex, higher clock rate, highly integrated designs. The result-
ing systems are smaller, faster, and cheaper. They have higher
performance and footprints that are increasingly dense. Each
of these positive system trends adversely atlects the observa-
tion of system activity, the key enabler for rapid system devel-
opment. The effect 1s called “vamishing visibility.”

FIG. 1 1llustrates the known trend 1n visibility and control
over time and greater system integration. Application devel-
opers pretfer the optimum visibility level illustrated in FIG. 1.
This optimum visibility level provides visibility and control
of all relevant system activity. The steady progression of
integration levels and increases in clock rates steadily
decrease the actual visibility and control available over time.
These forces create a visibility and control gap, the difference
between the optimum wvisibility and control level and the
actual level available. Over time, this gap will widen. Appli-
cation development tool vendors are striving to mimimize the
gap growth rate. Development tools software and associated
hardware components must do more with less resources and
in different ways. Tackling this ease of use challenge 1s ampli-
fied by these forces.

With today’s highly integrated System-On-a-Chip (SOC)
technology, the visibility and control gap has widened dra-
matically over time. Traditional debug options such as logic
analyzers and partitioned prototype systems are unable to
keep pace with the integration levels and ever increasing
clock rates of today’s systems. As integration levels increase,
system buses connecting numerous subsystem components
move on chip, denying traditional logic analyzers access to
these buses. With limited or no significant bus visibility, tools
like logic analyzers cannot be used to view system activity or
provide the trigger mechanisms needed to control the system
under development. A loss of control accompanies this loss in
visibility, as 1t 1s difficult to control things that are not acces-
sible.

To combat this trend, system designers have worked to
keep these buses exposed. Thus the system components were
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built 1n a way that enabled the construction of prototyping
systems with exposed buses. This approach 1s also under
siege from the ever-increasing march of system clock rates.
As the central processing unit (CPU) clock rates increase,
chip to chup interface speeds are not keeping pace. Developers
find that a partitioned system’s performance does not keep
pace with 1ts integrated counterpart, due to interface wait
states added to compensate for lagging chip to chip commu-
nication rates. At some point, this performance degradation
reaches intolerable levels and the partitioned prototype sys-
tem 1s no longer a viable debug option. In the current era
production devices must serve as the platform for application
development.

Increasing CPU clock rates are also limiting availability of
other simple visibility mechanisms. Since the CPU clock
rates can exceed the maximum 1/0 state rates, visibility ports
exporting information 1n native form can no longer keep up
with the CPU. On-chip subsystems are also operated at clock
rates that are slower than the CPU clock rate. This approach
may be used to simplily system design and reduce power
consumption. These developments mean simple visibility
ports can no longer be counted on to deliver a clear view of
CPU activity. As visibility and control diminish, the develop-
ment tools used to develop the application become less pro-
ductive. The tools also appear harder to use due to the increas-
ing tool complexity required to maintain wvisibility and
control. The visibility, control, and ease of use 1ssues created
by systems-on-a-chip tend to lengthen product development
cycles.

Even as the integration trends present developers with a
tough debug environment, they also present hope that new
approaches to debug problems will emerge. The increased
densities and clock rates that create development cycle time
pressures also create opportunities to solve them. On-chip,
debug facilities are more atfordable than ever before. As high
speed, high performance chips are increasingly dominated by
very large memory structures, the system cost associated with
the random logic accompanying the CPU and memory sub-
systems 1s dropping as a percentage of total system cost. The
incremental cost of several thousand gates 1s at an all time
low. Circuits of this size may 1n some cases be tucked nto a
corner of today’s chip designs. The incremental cost per pinin
today’s high density packages has also dropped. This makes
it easy to allocate more pins for debug. The combination of
affordable gates and pins enables the deployment of new,
on-chip emulation facilities needed to address the challenges
created by systems-on-a-chip.

When production devices also serve as the application
debug platform, they must provide suilicient debug capabili-
ties to support time to market objectives. Since the debugging,
requirements vary with different applications, it 1s highly
desirable to be able to adjust the on-chip debug facilities to
balance time to market and cost needs. Since these on-chip
capabilities atlect the chip’s recurring cost, the scalability of
any solution s of primary importance. “Pay only for what you
need” should be the guiding principle for on-chip tools
deployment. In this new paradigm, the system architect may
also specily the on-chip debug facilities along with the
remainder of functionality, balancing chip cost constraints
and the debug needs of the product development team.

FI1G. 2 1llustrates a prior art emulator system including four
emulator components. These four components are: a debug-
ger application program 110; a host computer 120; an emu-
lation controller 130; and on-chip debug facilities 140. FI1G. 2
illustrates the connections of these components. Host com-
puter 120 1s connected to an emulation controller 130 external
to host 120. Emulation controller 130 1s also connected to
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4

target system 140. The user preferably controls the target
application on target system 140 through debugger applica-
tion program 110.

Host computer 120 1s generally a personal computer. Host
computer 120 provides access the debug capabilities through
emulator controller 130. Debugger application program 110
presents the debug capabilities in a user-friendly form via
host computer 120. The debug resources are allocated by
debug application program 110 on an as needed basis, reliev-
ing the user of this burden. Source level debug utilizes the
debug resources, hiding their complexity from the user.
Debugger application program 110 together with the on-chip
trace and triggering facilities provide a means to select,
record, and display chip activity of interest. Trace displays are
automatically correlated to the source code that generated the
trace log. The emulator provides both the debug control and
trace recording function.

The debug facilities are preferably programmed using
standard emulator debug accesses through a JTAG or similar
serial debug interface. Since pins are at a premium, the pre-
terred embodiment of the invention provides for the sharing
of the debug pin pool by trace, trigger, and other debug
functions with a small increment in silicon cost. Fixed pin
formats may also be supported. When the pin sharing option
1s deployed, the debug pin utilization 1s determined at the
beginning of each debug session before target system 140 1s
directed to run the application program. This maximizes the
trace export bandwidth. Trace bandwidth 1s maximized by
allocating the maximum number of pins to trace.

The debug capability and building blocks within a system
may vary. Debugger application program 110 therefore estab-
lishes the configuration at runtime. This approach requires the
hardware blocks to meet a set of constraints dealing with
configuration and register organization. Other components
provide a hardware search capability designed to locate the
blocks and other peripherals in the system memory map.
Debugger application program 110 uses a search facility to
locate the resources. The address where the modules are
located and a type ID uniquely identifies each block found.
Once the IDs are found, a design database may be used to
ascertain the exact configuration and all system inputs and
outputs.

Host computer 120 generally includes atleast 64 Mbytes of
memory and 1s capable of running Windows 95, SR-2, Win-
dows N, or later versions of Windows. Host computer 120
must support one of the communications 1nterfaces required
by the emulator. These may include: Ethernet 10T and 1007T;
TCP/IP protocol; Universal Serial Bus (USB); Firewire IEEE
1394; and parallel port such as SPP, EPP and ECP.

Host computer 120 plays a major role 1n determining the
real-time data exchange bandwidth. First, the host to emula-
tor communication plays a major role i defining the maxi-
mum sustained real-time data exchange bandwidth because
emulator controller 130 must empty its receive real-time data
exchange buffers as fast as they are filled. Secondly, host
computer 120 originating or recerving the real-time data
exchange data must have suflicient processing capacity or
disc bandwidth to sustain the preparation and transmission or
processing and storing of the received real-time data
exchange data. A state of the art personal computer with a
Firewire communication channel (IEEE 1394) 1s preferred to
obtain the highest real-time data exchange bandwidth. This
bandwidth can be as much as ten times greater performance
than other communication options.

Emulation controller 130 provides a bridge between host
computer 120 and target system 140. Emulation controller
130 handles all debug information passed between debugger
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application program 110 running on host computer 120 and a
target application executing on target system 140. A presently
preferred mimmimum emulator configuration supports all of the
following capabilities: real-time emulation; real-time data
exchange; trace; and advanced analysis.

Emulation controller 130 preferably accesses real-time
emulation capabilities such as execution control, memory,
and register access via a 3, 4, or 5 bit scan based interface.
Real-time data exchange capabilities can be accessed by scan
or by using three higher bandwidth real-time data exchange
formats that use direct target to emulator connections other
than scan. The mput and output triggers allow other system
components to signal the chip with debug events and vice-
versa. Bit I/O allows the emulator to stimulate or monitor
system inputs and outputs. Bit I/O can be used to support
factory test and other low bandwidth, non-time-critical emu-
lator/target operations. Extended operating modes are used to
specily device test and emulation operating modes. Emulator
controller 130 is partitioned into communication and emula-
tion sections. The communication section supports host com-
munication links while the emulation section interfaces to the
target, managing target debug functions and the device debug
port. Emulation controller 130 commumnicates with host com-
puter 120 using one of industry standard commumnication
links outlined earlier herein. The host to emulator connection
1s established with off the shelf cabling technology. Host to
emulator separation 1s governed by the standards applied to
the 1nterface used.

Emulation controller 130 communicates with the target
system 140 through a target cable or cables. Debug, trace,
triggers, and real-time data exchange capabilities share the
target cable, and 1n some cases, the same device pins. More
than one target cable may be required when the target system
140 deploys a trace width that cannot be accommodated 1n a
single cable. All trace, real-time data exchange, and debug
communication occurs over this link. Emulator controller 130
preferably allows for a target to emulator separation of at least
two feet. This emulation technology 1s capable of test clock
rates up to 50 MHZ and trace clock rates from 200 to 300
MHZ, or higher. Even though the emulator design uses tech-
niques that should relax target system 140 constraints, sig-
naling between emulator controller 130 and target system 140
at these rates requires design diligence. This emulation tech-
nology may impose restrictions on the placement of chip
debug pins, board layout, and requires precise pin timings.
On-chip pin macros are provided to assist in meeting timing
constraints.

The on-chip debug facilities offer the developerarich setof
development capability 1n a two tiered, scalable approach.
The first tier delivers functionality utilizing the real-time
emulation capability built into a CPU’s mega-modules. This
real-time emulation capability has fixed functionality and 1s
permanently part of the CPU while the high performance
real-time data exchange, advanced analysis, and trace func-
tions are added outside of the core 1n most cases. The capa-
bilities are individually selected for addition to a chip. The
addition of emulation peripherals to the system design creates
the second tier functionality. A cost-eflective library of emu-
lation peripherals contains the building blocks to create sys-
tems and permits the construction of advanced analysis, high
performance real-time data exchange, and trace capabilities.
In the preferred embodiment five standard debug configura-
tions are offered, although custom configurations are also
supported. The specific configurations are covered later
herein.
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SUMMARY OF THE INVENTION

Emulation trace generates data streams used to trace pro-
cessor activity. When multiple data streams are employed,
they are written at different times into mndividual first-in-first-
out (FIFO) butfers. Export of these data streams may have
differing priority levels. The trace mechanism must have
some manner to order the separate data streams to preserve
coherency and the usefulness of the trace data.

This invention enables real time tracing of processor activ-
ity generating plural trace data streams. These trace data
streams enable the user to analyze and debug application
programs under development. This invention preserves

coherency of the plural data streams to enhance the usefulness
of the trace data.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are 1llustrated 1n
the drawings, 1n which:

FIG. 1 illustrates the visibility and control of typical inte-
grated circuits as a function of time due to increasing system
integration (prior art);

FIG. 2 1llustrates an emulation system to which this inven-
tion 1s applicable (prior art);

FI1G. 3 1llustrates in block diagram form a typical integrated
circuit employing configurable emulation capability (prior
art);

FIG. 4 illustrates 1n block diagram form a detail of trace
subsystem;

FIG. S illustrates in block diagram form a detail of the trace
packet merge block of FIG. 4;

FIG. 6 1illustrates the location of interruptible boundaries
according to this imvention; and

FIG. 7 illustrates in flow chart form the process of this
invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Data streams are generated for tracing target processor
activity. When multiple streams are on, they are written at
different times 1nto their individual FIFO. Their export can
have different priority levels. However the data coming out
should be 1n order so that the user does not lose coherency.

When the streams are switched on or off using the triggers,
markers are generated. Various streams are synchronized
using markers called sync points. The sync points provide a
unmique 1dentifier field and a context to the data that will follow
it. All streams may generate a sync point with this unique
identifier. The information in the sync point 1s valid only at a
legal 1nstruction boundary.

FIG. 3 illustrates an example of a prior art one on-chip
debug architecture embodying target system 140. The archi-
tecture uses several module classes to create the debug func-
tion. One of these classes 1s event detectors including bus
event detectors 210, auxiliary event detectors 211 and
counters/state machines 213. A second class of modules 1s
trigger generators including trigger builders 220. A third class
of modules 1s data acquisition including trace collection 230
and formatting. A fourth class of modules 1s data export
including trace export 240, and real-time data exchange
export 241. Trace export 240 1s controlled by clock signals
from local oscillator 245. Local oscillator 245 will be
described in detail below. A final class of modules 1s scan



US 7,457,739 B2

7

adaptor 250, which interfaces scan input/output to CPU core
201. Final data formatting and pin selection occurs in pin
manager and pin micros 260.

The size of the debug function and 1ts associated capabili-
ties for any particular embodiment of a system-on-chip may
be adjusted by either deleting complete functions or limiting,
the number of event detectors and trigger builders deployed.
Additionally, the trace function can be incrementally
increased from program counter trace only to program
counter and data trace along with ASIC and CPU generated
data. The real-time data exchange function may also be
optionally deployed. The ability to customize on-chip tools
changes the application development paradigm. Historically,
all chip designs with a given CPU core were limited to a fixed
set of debug capability. Now, an optimized debug capability 1s
available for each chip design. This paradigm change gives
system architects the tools needed to manage product devel-
opment risk at an affordable cost. Note that the same CPU
core may be used with differing peripherals with differing pin
outs to embody differing system-on-chip products. These
differing embodiments may require differing debug and emu-
lation resources. The modularity of this invention permuits
cach such embodiment to include only the necessary debug
and emulation resources for the particular system-on-chip
application.

The real-time emulation debug infrastructure component 1s
used to tackle basic debug and instrumentation operations
related to application development. It contains all execution
control and register visibility capabilities and a minimal set of
real-time data exchange and analysis such as breakpoint and
watchpoint capabilities. These debug operations use on-chip
hardware facilities to control the execution of the application
and gain access to registers and memory. Some of the debug
operations which may be supported by real-time emulation
are: setting a soltware breakpoint and observing the machine
state at that point; single step code advance to observe exact
instruction by instruction decision making; detecting a spu-
rious write to a known memory location; and viewing and
changing memory and peripheral registers.

Real-time emulation facilities are incorporated into a CPU
mega-module and are woven into the fabric of CPU core 201.
This assures designs using CPU core 201 have sufficient
debug facilities to support debugger application program 110
baseline debug, mstrumentation, and data transfer capabili-
ties. Each CPU core 201 incorporates a baseline set of emu-
lation capabilities. These capabilities include but are not lim-
ited to: execution control such as run, single instruction step,
halt and free run; displaying and moditying registers and
memory; breakpoints including software and minimal hard-
ware program breakpoints; and watchpoints including mini-
mal hardware data breakpoints.

Consider the case of tracing processor activity and gener-
ating timing, program counter and data streams. Table 1
shows the streams generated when a sync point 1s generated.
Context information 1s provided only 1n the program counter
stream. There 1s no order dependency of the various streams
with each other except that the sync point identifiers cannot
exceed each other by more than 7. Therefore, 11 program
counter stream has yet to send out program counter sync point
of 1d=1, then timing stream could have sent out 1t’s sync
points with ids from 1 to 7. The timing stream cannot send out
it’s next sync point of 1. Within each stream the order cannot
be changed between sync points.
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TABL.

L]
[

Timing stream PC stream Data stream

Timing sync point, PC sync point, Data sync point,

1id =1 id=1 id=1
Timing data
PC data Memory Data
Timing data Memory Data
Timing data PC data Memory Data
PC data
Timing data Memory Data
Timing sync point, PC sync point, Data sync point,
id=2 id=2 id=2

The program counter stream 1s further classified into
exceptions, relative branches, absolute branches and sync
points. Since the data size for each of these sub-streams 1s
different there 1s a separate FIFO for each of them. There are
the following FIFOs:

1. A timing FIFO has both timing data and timing sync

points.

2. A program counter sync point FIFO keeps track of the
program counter sync points in the program counter
stream.

3. An exceptions FIFO keeps track of all exception infor-
mation in the program counter stream.

4. An absolute branches FIFO keeps track of the registered
branches 1n the program counter stream.

5. A relative branches FIFO keeps track of the relative
branch packets 1n the program counter stream.

6. A program counter overall FIFO (val FIFO) keeps track
of the order of program counter data (program counter
sync points, exceptions, absolute branches, relative
branches) being written 1n the various program counter
streams.

7. An memory FIFO has both data logs and data sync
points.

FIG. 4 1llustrates a detail of the trace subsystem. Data to be
traced 1s generated by central processing unit core 201,
peripheral and memory system 202, the central processing
unmit mailbox 203 and application specific mtegrated circuit
(ASIC) data source 204. Central processing unit core 201
generates program counter and timing data. Peripherals and
memory system 202 generates memory read and write access
addresses and corresponding data. Central processing unit
mailbox 203 generates data handled by application programs.
ASIC data source 204 generates data from special purpose
hardware particular to that integrated circuit. These trace data
sources supply data to trace collection subunit 233. Trace
collection subunit 233 includes separate sections for receipt
of program counter/timing data from central processing unit
core 201 (sections 510/520), memory read and writes from
peripheral and memory system 202 (sections 530/540), appli-
cation program data from central processing unit mailbox 203
(section 3550) and ASIC data from ASIC data source 204
(section 560). Trace collection subunit 233 also recerves trig-
gering signals from trigger builders 220. Trace collection
subunit 233 produces plural separate data streams corre-
sponding to the recerved trace data.

Trace packet merge unit 237 receives the plural trace data
streams from trace collection subumt 233. Trace packet
merge unit 237 merges these plural data streams 1nto a single
trace data stream. Trace packet merge unit 237 supplies this
merged trace data stream to trace export 240. Trace export
240 drives pin manager 260 under timing control of export
clock generator 245 (corresponding to local oscillator 245

illustrated in FIG. 3).
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FIG. S illustrates 1n block diagram form a detail of the trace
packet merge unmit 237. FIG. 5 illustrates six separate trace
data streams that must be merged for output. Timing infor-
mation 510 comes from central processing unit core 201, has
a steady rate and a high average bandwidth. It 1s typically
output without compression. Trace packet merge unit 237
gives this data the highest priority. Because of 1ts high prior-
ity, trace imformation 510 can be builered 1n first-in-first-out
(FIFO) buffer 511 with a small capacity. The high priority
ensures that the small FIFO builer 511 will not overtlow.

Program counter flow mformation 520 also comes from
central processing unit core 210. Program counter tlow infor-
mation 520 follows the path of program execution of central
processing unit core 201. Program counter flow information
has a variable rate and a medium average bandwidth. It 1s
typically transmitted with high compression. Trace packet
merge unit 237 gives this data the second highest priority just
lower than timing information. The medium bandwidth and
high compression require a small FIFO buffer 521.

Memory write information 530 comes from peripherals
and memory system 202. The information tlow occurs prima-
rily 1n bursts of high activity interspersed with times of low
activity. This memory write mformation 530 1s typically
transmitted with low compression. A high bandwidth 1s
required to accommodate the bursts. Trace packet merge unit
237 gives this data an intermediate priority just lower than
program counter tlow information 520. The irregular rate and
low compression require a large FIFO two level buller 531.

Memory read information 540 also comes from peripherals
and memory system 202. Memory read information 540 is
similar to memory write information 530. Memory read
information 540 occurs primarily 1n bursts of high activity
interspersed with times of low activity and 1s generally trans-
mitted with low compression. A high bandwidth is required to
accommodate the bursts. Trace packet merge unit 237 gives
this data an intermediate priority just lower than memory
write information 530. The 1rregular rate and low compres-
sion require a large FIFO two level butfer 541.

Application supplied data 350 comes from central process-
ing unit mailbox 203. It 1s difficult to characterize this data
because 1t varies depending on the application program run-
ning on central processing unit 201. Application supplied data
550 1s generally believed to occur 1n bursts with a low average
bandwidth. This data 1s typically transmitted with low com-
pression. Application supplied data 550 has a low priority in
trace packet merge unit 237 below that of the memory write
information 530 and memory read information 340. The par-

ticular application program determines the size required of
FIFO butfer 551.

ASIC supplied data 560 comes from (ASIC) data source
204. The data rate, required bandwidth and required size of
FIFO butter 561 depend on the particular integrated circuit
and can’t be generalized. Trace packet merge unit 237 gives
this data the lowest prionty.

Scheduler 570 recerves data {from the six FIFO buffers 511,
521, 531, 541, 551 and 561. Scheduler 570 merges these
separate data streams 1nto a single trace packet stream for
export via the debug port (FIGS. 3 and 4).

The timing stream gets the highest priority on the read side
as long as the timing and program counter data stay in the
range of seven sync points. The program counter stream gets
the next highest priority and the data stream gets the lowest
priority. Timing packets can be sent out at any time even
though there may be incomplete program counter or memory
packets. Sending memory packets can be intervened by a
program counter packet provided the data log 1s at an inter-
ruptible boundary. An interruptible boundary for data trace 1s
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the boundary after sending out the entire data value and
betfore the data address or program counter address.

FIG. 6 1illustrates boundary 601 between data value and
data address and boundary 602 between data address and
program counter address.

FIG. 7 1llustrates process 700 which depicts the read pri-
ority for the various FIFOs. Process 700 begins with master
read block 701 which determines the full or empty states of
the various FIFOs. At decision block 702 process 700 tests to
determine if the timing FIFO 1s empty (decision block 702). If
the timing FIFO 1s not empty (No at decision block 702), then
process 700 sends a timing packet (processing block 703).
Control then returns to master read block 701.

If the process 1s at an interruptible boundary empty (Yes at
decision block 705), then process 700 performs a series of
tests to determine the type of program counter data stored. IT
this program counter data 1s program counter sync data (Yes
at decision block 707), then process 700 sends a program
counter sync packet (processing block 708). If this program
counter data 1s program counter exception data (Yes at deci-
sion block 709), then process 700 sends a program counter
exception packet (processing block 710). If this program
counter data 1s program counter relative branch data (Yes at
decision block 711), then process 700 sends a program
counter relative branch packet (processing block 712). 11 this
program counter data 1s program counter absolute branch
data (Yes at decision block 713), then process 700 sends a
program counter relative branch packet (processing block
714). Process 700 returns to master read block 701 after
sending any of these packets.

I1 the process 1s at an interruptible boundary empty (Yes at
decision block 705), then process 700 performs a series of
tests to determine the type of program counter data stored. IT
this program counter data 1s program counter sync data (Yes
at decision block 707), then process 700 sends a program
counter sync packet (processing block 708). If this program
counter data 1s program counter exception data (Yes at deci-
s1on block 709), then process 700 sends a program counter
exception packet (processing block 710). If this program
counter data 1s program counter relative branch data (Yes at
decision block 711), then process 700 sends a program
counter relative branch packet (processing block 712). If this
program counter data 1s program counter absolute branch
data (Yes at decision block 713), then process 700 sends a
program counter relative branch packet (processing block
714). Process 700 returns to master read block 701 after
sending any of these packets.

I1 the val FIFO was empty (Yes at decision block 715), then
process 700 tests to determine if the data FIFO 1s empty
(decision block 715). If the data FIFO 1s empty (Yes at deci-
s1ion block 715), then process 700 returns to master read block
701. All the FIFOs are empty, so no action 1s needed. If the
data FIFO 1s not empty (Yes at decision block 715)m then
process 700 sends a data packet (processing block 706). Pro-
cess 700 then returns to master read block 701.

What 1s claimed 1s:

1. A method of scheduling trace packets 1n an integrated
circuit generating trace packets of plural types having a pre-
determined hierarchy of trace data types from a highest pri-
ority to a lowest priority, the method comprising the steps of:

storing trace data of each of the plural types 1n a corre-

sponding first-in-first-out buifer; and

for each trace data type in a repeating circular sequence

from a highest priority trace data type to alowest priority

trace data type:

determining i1f a first-in-first-out buffer for trace data
corresponding to a current trace data type 1s empty,
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if the first-in-first-out bufiler for trace data having the
current trace data type 1s not empty, then transmitting,
a trace data packet of trace data of the current trace
data type from the corresponding first-in-first-out
butter, and
if the first-in-first-out builer for trace data having the
current trace data type 1s empty, then
setting the current trace data type to the trace data type
having a next lower priority 1 the current trace data
type does not have the lowest priority, and
setting the current trace data type to the trace data type
having the highest priority if the current trace data
type has the lowest priority;

wherein at least one of said plural trace data types includes
a plurality of trace data subtypes having a predetermined
hierarchy of trace data subtypes from a highest priority
to a lowest priority; and

said step of transmitting a trace data packet of said at least
one trace data type 11 the corresponding first-in-first-out
buifer 1s not empty includes transmitting trace data
packets 1n priority order from the highest priority trace
data subtype to the lowest priority trace data subtype.

2. A trace apparatus scheduling trace packets in an inte-

grated circuit generating trace packets of plural types having
a predetermined hierarchy of trace data types from a highest
priority to a lowest priority comprising:
a plurality of first-in-first-out buffers having an input
receiving trace data of a corresponding trace data type
and an output; and
a trace packet scheduler having a plurality of inputs con-
nected to said outputs of respective first-in-first-out buil-
ers and an output, said trace packet scheduler operative
for each trace data type 1n a repeating circular sequence
from a highest priority trace data type to alowest priority
trace data type
determine 1f said first-in-first-out buifer corresponding
to a current trace data type 1s empty,

if said first-1n-first-out butler corresponding to said cur-
rent trace data type 1s not empty, then transmit a trace
data packet of trace data of the current trace data type
from the corresponding first-in-first out buil

er, and
if said first-in-first-out butler corresponding to said cur-
rent trace data type 1s empty, then
setting the current trace data type to the trace data type
of anext lower priority 1f the current trace data type
does not have the lowest priority, and
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setting the current trace data type to the trace data type
having the highest priority 1f the current trace data
type has the lowest priority;
wherein at least one of said plural trace data types includes
a plurality of trace data subtypes having a predetermined
hierarchy of trace data subtypes from a highest priority
to a lowest prionty; and
said trace packet scheduler 1s operative to transmit a trace
data packet of said at least one trace data type if the
corresponding first-in-first-out buffer 1s not empty
including transmitting trace data packets in priority
order from the highest priority trace data subtype to the
lowest priority trace data subtype.

3. A trace apparatus scheduling trace packets 1n an inte-
grated circuit generating trace packets of plural types having
a predetermined hierarchy of trace data types from a highest
priority to a lowest priority comprising:

a plurality of first-in-first-out buifers having an input
receiving trace data of a corresponding trace data type
and an output, wherein said first-in-first-out buifer
receiving trace data of said highest priority 1s smaller
than at least one first-in-first-out builer recerving trace
data of a lower priority; and

a trace packet scheduler having a plurahty ol inputs con-
nected to said outputs of respective first-in-first-out buil-
ers and an output, said trace packet scheduler operative
for each trace data type 1n a repeating circular sequence
from a highest priority trace data type to alowest priority
trace data type

determine 1f said first-in-first-out builer corresponding
to a current trace data type 1s empty,

if said first-in-first-out butler corresponding to said cur-
rent trace data type 1s not empty, then transmit a trace
data packet of trace data of the current trace data type
from the corresponding first-in-first out buffer, and

if said first-in-first-out butler corresponding to said cur-
rent trace data type 1s empty, then

setting the current trace data type to the trace data type
of a next lower priority 1f the current trace data type
does not have the lowest priority, and

setting the current trace data type to the trace data type
having the highest priority 1f the current trace data
type has the lowest priority.
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