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MONOCULAR TRACKING OF 3D HUMAN
MOTION WITH A COORDINATED MIXTURE
OF FACTOR ANALYZERS

RELATED APPLICATIONS

This application claims prionty from U.S. provisional

application No. 60/731,399 filed Oct. 28, 2005 entitled
“Monocular Tracking of 3D Human Motion With a Coordi-
nated Mixture of Factor Analyzers” which 1s incorporated by
reference herein in their entirety.

FIELD OF THE INVENTION

The invention relates to tracking 3D human motion. More
particularly, the invention relates to a system and method for
tracking 3D articulated human motion 1n a dimensionality-
reduced space given monocular video sequences.

BACKGROUND OF THE INVENTION

Tracking articulated human motion 1s of 1interest in numer-
ous applications including video surveillance, gesture analy-
s1s, human computer interface, and computer animation. For
example, 1n creating a sports video game 1t may be desirable
to track the three-dimensional (3D) motions of an athlete in
order to realistically amimate the game’s characters. In bio-
medical applications, 3D motion tracking 1s important in
analyzing and solving problems relating to the movement of
human joints. In traditional 3D motion tracking, subjects
wear suits with special markers and perform motions
recorded by complex 3D capture systems. However, such
motion capture systems are expensive due to the required
special equipment and significant studio time. Further, con-
ventional 3D motion capture systems require considerable
post-processing work which adds to the time and cost asso-
ciated with traditional 3D tracking methods.

Various tracking algorithms have been proposed that
require neither special clothing nor markers. A number of
algorithms track body motion in the two-dimensional (2D)
image plane, thereby avoiding the need for complex 3D mod-
¢ls or camera calibration information. However, many con-
ventional methods are only able to infer 2D joint locations
and angles. As a result, many traditional 2D methods have
difficulty 1n handling occlusions and are 1nutile for applica-
tions where accurate 3D mformation 1s required.

3D tracking algorithms based on 2D 1image sequences have
been proposed but depend on detailed 3D articulated models
requiring significantly more degrees of freedom. Particularly,
particle filtering methods have been applied widely 1n track-
ing applications. However, these algorithms have convention-
ally been ineflicient due to the high dimensionality of the pose
state space. The number of particles needed to sufficiently
approximate the state posterior distribution means that sig-
nificant memory and processing power 1s required for imple-
mentation.

Several attempts have previously been made to develop
particle filtering techniques 1n a reduced state space to ease
memory and processing requirements. These efforts have
largely failed to result 1n accurate tracking methods. Specifi-
cally, the proposed algorithms tend to fail when large limb
movements occur over time.

What 1s needed 1s an efficient and accurate algorithm for
tracking 3D articulated human motion given monocular
video sequences.
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2
SUMMARY OF THE INVENTION

The present invention provides a method for efficiently and
accurately tracking 3D human motion from a 2D wvideo
sequence, even when self-occlusion, motion blur and large
limb movements occur. In an offline learning stage, 3D
motion capture data i1s acquired using conventional tech-
niques. A prediction model 1s then generated based on the
learned motions. In the online stage, 3D tracking 1s performed
without requiring any special equipment, clothing, or mark-
ers. Instead, 3D motion can be tracked from a monocular
video sequence based on the prediction model generated in
the ofiline stage.

In order to overcome the problem of high dimensionality
associated with traditional particle filtering, the motion 1s
tracked 1n a dimensionality-reduced state. Human motion 1s
limited by many physical constraints resulting from the lim-
ited angles and positions of joints. By exploiting these physi-
cal constraints, a low-dimensional latent model can be
derived from the high-dimensional motion capture data. A
probabilistic algorithm performs non-linear dimensionality
reduction to reduce the size of the original pose state space.
During off-line traiming, a mixture of factor analyzers is
learned. Each factor analyzer can be thought of as a local
dimensionality reducer that locally approximates the pose
state. Global coordination between local factor analyzers 1s
achieved by learning a set of linear mixture functions that
enforces agreement between local factor analyzers. The for-
mulation allows easy bidirectional mapping between the
original body pose space and the low-dimensional space.

The projected data forms clusters within the globally coor-
dinated low-dimensional space. This makes 1t possible to
derive a multiple hypothesis tracking algorithm based on the
distribution modes. By tracking in the low-dimensional
space, particle filtering 1s faster because significantly fewer
particles are required to adequately approximate the state
space posterior distribution. Given clusters formed 1n the
latent space, temporal smoothness 1s only enforced within
cach cluster. Thus, the system can accurately track large
movements of the human limbs 1n adjacent time steps by
propagating each cluster’s information over time.

The features and advantages described in the specification
are not all inclusive and, 1n particular, many additional fea-
tures and advantages will be apparent to one of ordinary skall
in the art in view of the drawings, specification, and claims.
Moreover, 1t should be noted that the language used 1n the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the iventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example computer system for executing the
methods of the present invention.

FIG. 2 15 a block diagram illustrating one embodiment of
the present invention.

FIG. 3a 1s an oftline learning algorithm for generating a
prediction model used 1n 3D motion tracking.

FIG. 356 1s an online tracking algorithm for tracking 3D
human motion given a monocular video sequence and the
prediction model generated in the oftline learning stage.

FIG. 4 1s a dimensionality reduction algorithm according to
one embodiment of the present invention.

FIG. 5 1s a block diagram 1llustrating a learning process for
a dimensionality reduction model.

FIG. 6 1llustrates clustering 1n a low dimensional space as
a result of the dimensionality reduction algorithm.
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FIG. 7 1s a flow diagram 1llustrating the computation per-
formed during online tracking according to one embodiment
of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

A preferred embodiment of the present invention 1s now
described with reference to the figures where like reference
numbers indicate identical or functionally similar elements.
Also 1n the figures, the left most digit of each reference
number corresponds to the figure 1n which the reference num-
ber 1s first used.

Reference 1n the specification to “one embodiment™ or to
“an embodiment” means that a particular feature, structure, or
characteristic described 1n connection with the embodiments
1s included 1n at least one embodiment of the invention. The
appearances of the phrase “in one embodiment™ in various
places 1n the specification are not necessarily all referring to
the same embodiment.

Some portions of the detailed description that follows are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
clfectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally, con-
ceived to be a self-consistent sequence of steps (instructions)
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical, magnetic or optical signals capable of being stored,
transierred, combined, compared and otherwise manipulated.
It 1s convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym-
bols, characters, terms, numbers, or the like. Furthermore, 1t 1s
also convenient at times, to refer to certain arrangements of
steps requiring physical manipulations of physical quantities
as modules or code devices, without loss of generality.

However, all of these and similar terms are to be associated
with the appropriate physical quantities and are merely con-
venient labels applied to these quantities. Unless specifically
stated otherwise as apparent from the following discussion, it
1s appreciated that throughout the description, discussions
utilizing terms such as “processing’ or “computing” or *“cal-
culating” or “determining’ or “displaying™ or “determining”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system memories or registers
or other such information storage, transmission or display
devices.

Certain aspects of the present invention include process
steps and 1instructions described herein 1n the form of an
algorithm. It should be noted that the process steps and
instructions of the present mvention could be embodied 1n
software, firmware or hardware, and when embodied 1n soft-
ware, could be downloaded to reside on and be operated from
different platforms used by a variety of operating systems.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or 1t may com-
prise a general-purpose computer selectively activated or
reconiigured by a computer program stored in the computer.
Such a computer program may be stored 1n a computer read-
able storage medium, such as, butis not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, mag-
netic-optical disks, read-only memories (ROMs), random
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4

access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, application specific integrated circuits
(ASICs), or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.
Furthermore, the computers referred to in the specification
may include a single processor or may be architectures
employing multiple processor designs for increased comput-
ing capability.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may also be used with pro-
grams 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the present mvention as
described herein, and any references below to specific lan-
guages are provided for disclosure of enablement and best
mode of the present invention.

In addition, the language used 1n the specification has been
principally selected for readability and instructional pur-
poses, and may not have been selected to delineate or circum-
scribe the mventive subject matter. Accordingly, the disclo-
sure of the present invention 1s intended to be 1llustrative, but
not limiting, of the scope of the invention, which 1s set forth in
the claims.

FIG. 1 1s a computer system according to one embodiment
of the present invention. The computer system 100 comprises
an put device 102, a memory 104, a processor 106, an
output device 108, and an 1mage processor 110. The mput
device 102 1s coupled to anetwork 120, a database 130, and a
video capture unit 140. The output device 108 1s coupled to a
database 150, a network 160, and a display 170. In other
embodiments, the mput device 1s connected to only one or
two of a network 120, a database 130, and a video capture unit
140. In yet another embodiment, the mmput device may be
connected to any device configured to input data to the com-
puter system. Similarly, in some embodiments, the output
device may be connected to one or more of a database 150,
network 160, display 170 or any other device cable of receiv-
ing outputted data. In another embodiment, the computer
system comprises one or more of a processor 106, an 1mage
processor 110, or other specialized processor.

FIG. 2 15 a block diagram illustrating one embodiment of
the present invention. The embodiment comprises an offline
learning algorithm 210 and an online tracking algorithm 220.
The offline learning algorithm 210 uses 3D motion capture
data 212 to produce a prediction model 2135 utilized by the
online tracking algorithm 220. The online tracking algorithm
220 uses a 2D 1image sequence 222 and the prediction model
215 to generate the 3D tracking data 224.

3D motion capture data 212 may be acquired by a variety of
conventional techniques during the offline stage. In one
embodiment, a subject wears a special suit with trackable
markers and performs motions captured by video cameras.
The subject may perform a series of different motions which
are captured and processed. In addition, 3D motion capture
data may be acquired from multiple subjects performing

similar sets of motions. This provides statistical data from
which the prediction model 215 can be dertved.

FIG. 3a summarizes one embodiment of the offline learn-
ing algorithm 210. A computer system 100 receives 302 3D
motion capture data 212. The pose state 1s then extracted 304
from the 3D motion capture data. The unfiltered pose state
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resides 1n a high dimensional state space and 1t 1s desirable to
reduce the dimensionality of the state space to decrease
memory requirements and 1ncrease processing eificiency. A
dimensionality reduction model 1s learned 306 to reduce the
dimensionality of the pose state from a high dimensional 5
space to a low dimensional space. Optionally, a dynamic
model 1s learned 308. The dynamic model, 1f learned, may
optimize the prediction model 215 for more efficient tracking.
The prediction model 215 1s formed by generating 310
hypotheses based on the dimensionality reduction model and 10
in some embodiments, the learned dynamic model.

The motion capture data 212 may be recerved from a video
capture umt 140 interfaced to an mnput device 102 of a com-
puter system 100. In other embodiments, the 3D motion cap-
ture data 212 may be received by the mput device 102 froma 15
database 130 or through a network 120. The 3D motion cap-
ture data 212 1s processed by the computer system 100 to
extract 304 the pose states. The pose states comprise data
which completely represent the positions of the subject
throughout a motion. In one preferred embodiment of the 20
present invention, the extracted pose state comprises a vector
ol joint angles. However, the pose state may comprise any set
of data that completely describes the pose. This may include
angles, positions, velocities, or accelerations of joints, limbs,
or other body parts or points of iterest. Any number of 25
conventional techniques may be used to extract 304 the pose
states from the raw motion capture data 212.

The 3D motion capture data 212 may be processed by a
standard computer processor 106 or by a specialized image
processor 110, for example. In addition, the pose state may be 30
stored 1n memory 104 or outputted by an output device 108.
The output device 108 interfaces to an external database 150
for storage or sends the datato anetwork 160 or a display 170.

A dimensionality reduction model 1s learned 306 based on
the extracted pose states. The dimensionality reduction model 35
takes advantage of the physical constraints of human motion
to generate a low-dimensional latent model from high-dimen-
sional motion capture data. Many algorithms for dimension-
ality reduction are known including Principal Component
Analysis (PCA), Locally Linear Embedding (LLE) described 40
in Roweis, et al., Nonlinear Dimensionality Reduction by
Locally Linear Embedding, Science 290, 2000, 2323-2326;
Isomap described 1n Tenenbaum, et al., 4 Global Geometric
Framework for Nomnlinear Dimensionality Reduction, Sci-
ence 290, 2000, 2319-2323; and Laplacian Eigenmaps 45
described 1in Belkin, etal., Laplacian Eigenmaps and Spectral
lechniques for Embedding and Clustering, Advances in Neu-
ral Information Processing Systems (NIPS), 2001, 5835-591
all of which are incorporated by reference herein in their
entirety. These conventional techniques are capable of han- 50
dling non-linear behavior inherent to 3D human motion, but
are typically not invertible. In one embodiment, regression
methods (such as Radial Bases Function, for example) are
used to learn the mapping back from the low dimensional
space to the high dimensional space. 55

In a preferred embodiment, an invertible dimensionality
reduction method 1s used. Inverse mapping of particles back
to the original human pose space allows for re-weighting of
the particles given the image measurements during online
tracking without using a regression method. Examples of 60
dimensionality reduction techmiques that provide inverse

mapping 1nclude Charting described in Brand, Charting a
Manifold, NIPS, 2001, 961-968; Locally Linear Coordina-

tion (LLC) described 1n Teh, et al., Automatic Alignment of
Local Representations, NIPS, 2002, 841-848; and Gaussian 65
Process Latent Variable Model (GPLVM) described 1n

Lawrence, Gaussian Process Models for Visualization of

6

High Dimensional Data, NIPS, 2003 all of which are incor-
porated by reference herein in their entirety.

In one embodiment, the dimensionality reduction model 1s
based on an LLC algorithm. In this embodiment, a probabi-
listic algorithm 1s employed to perform non-linear dimen-
sionality reduction and clustering concurrently within a glo-
bal coordinate system. The projected data forms clusters
within the globally coordinated low-dimensional space. A
mixture of factor analyzers 1s learned with each factor ana-
lyzer acting as a local dimensionality reducer. In an alternate
embodiment, a GPLVM algorithm or other dimensionality
reduction algorithm 1s used.

A model which performs a global coordination of local
coordinate systems 1n a mixture of factor analyzers (MFA) 1s
known 1s the art, for example, 1n Roweis, et al. Global Coor-
dination of Local Linear Models, NIPS, 2001, 889-896 which
1s incorporated by reference herein 1n its entirety. Each factor
analyzer (FA) can be regarded as a local dimensionality
reducer. Both the high-dimensional data v and its global
coordinate g are generated from the same set of latent vari-
ables s and z_, where each discrete hidden variable s refers to
the s-th FA and each continuous hidden variable z_represents
the low-dimensional local coordinates 1n the s-th FA. In the
MFA model, data generated from s-th FA with prior probabil-
ity P(s), and the distribution of z_ are Gaussian: z_|s~N(0O, I)
where 1 1s the identity matrix. Gwen s and z_, y and the global
coordinate g are generated by the following linear equations

Y= TLSZS-l-aus-l_Hs

8=T'GzAKAV, (1)

where T, and T are the transformation matrices, u_and
K are uniform translations between the coordinate systems,

-—-N(O A ) and v,~N(0O, A,,) are independent zero mean
(Gaussian noise terms. The followmg probability distributions
can be derved from Eq. 1:

}?|S, ZSNN(TLSZS_FAU.S? Aus)

g|S: ZSNN(TGSZS_FI{S? "”5) (2)
With z_being integrated out, the equation 1s

Pls~N(p, A, +T; 777 )

gls~N(,, A, +T5 T ;) (3)

57 Vg

The inference of global coordinate g conditioned on a data
point y_can be rewritten as

pglyn) =) P&]Yns $)P(s| ), (%)
where
p(gly,, s)=|plgls, z)p(zls, y,)dz, (5)

Given Eq. 1, both p(gls, z.) and p(z_Is, v, ) are Gaussian
distributions, p(gly,.s) also follows a Gaussian distribution.
Since p(sly, )oep(y, Is)p(s) can be computed and viewed as a
weight, p(gly, ) 1s essentially a mixture of Gaussians.

In one embodiment, an eflicient two stage learning algo-
rithm leverages on the mixture of local models to collapse

large groups of points together as described by Teh, et al.
referenced above. This algorithm works with the groups

rather than individual data points in the global coordination.

A graphical representation of the two stage dimensionality
reduction model 1s depicted in FIG. 4. A data point 1n the

original space, y, 402 1s characterized by S factor analyzers.
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First the MFA between y 402 and (s, z_) 406 1s learned using
the method set forth in Ghahramani, et al., 7he EM Algorithm
for Mixtures of Factor Analyzers, Technical Report CRG-TR-
96-1, University of Toronto, 1996 which 1s incorporated by
reference herein in its entirety. Given the learned MFA
model, z__ 406 1s the expected local coordinate 1n the s-th FA
for each data point y, . r, . 404 denotes the likelihood, p(yIs).
The setol z, 406 acts as a local dimensionality reducer while
the set ofr, 404 gives the responsibilities of each local dimen-
sionality reducer. The weighted combination, u, 408 1s
formed from r, and z, as

T

14 i i i

H:[rﬂlz H ] FH]’ FHZZ M FHEJ s FHSZ gt FHS]
Then from Egs. 1 and 2, g 412, the expected global coordi-
nate of y, 402 1s defined as:

8n = Fug (TG, Zng +Ks) = Lit (6)

a)

where

L={1G X, 16Ky ..., LG, Ks]

The alignment parameters L. 410 provide the mapping from
the weighted combination, u, 408 to the global coordinates,
g . 412 1n the global coordinated latent space from Eq. 6. Let
G=[g,, 2., . . . , g be the global coordinates of the whole
data set (the rows of G corresponding to the coordinated data
points) and U=[u,, u,, . . . , uy]’. This yields a compact
representation G=UL. To determine L, a cost function must
be minimized that incorporates the topological constraints
that govern g, . In one embodiment, the cost function 1s based
on LLE as described by Roweis in Nonlinear Dimensionality
Reduction by Locally Linear Embedding referenced above.

FIG. 5 represents an embodiment of a method for learming
306 a dimensionality reduction model which computes the
alignment parameters, L, and the global coordinates, G. Local
linear construction weights are first computed 502. Next, a
mixture of factor analyzers are trained 504 as local dimen-
sionality reducers. The local linear construction weights are
combined to form 506 the weighted combination matrix.
Optimal alignment parameters are determined 508 to map the
welghted combination matrix to the global coordinate sys-
tem. The global coordinates are determined 510 from the
weilghted combination matrix and alignment parameters.

The local linear reconstruction weights are computed 502
using equation 7 and as described below. For each data point
y,, 1ts nearest neighbors are denoted as y_, (m € N ) and
tollowing 1s minimized:

o=y

H

2 (7)

yn";iz Wim Ym

me Ny,

= TrY' (1 - WHI —= W)Y),

with respect to W and subject to the constraint ZmeEN
w__=1. Here the set of training data points 1s Y=[y,, v,, . . .,
v’ where each row of Y corresponds to a training data point.
The weights w,__ are unique and can be obtained via con-
strained least squares. These weights represent the locally
linear relationships between vy, and its neighbors.

The matrix U 1s formed 506 by a mixture of factor analyz-
ers as described above and the matrices A and B are computed
from Eq. 8-10 set forth below.
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For this calculation, the following cost function 1s defined:

=Y

M

2 (8)

gﬂ";Ez Em

me N,

= THG (I - WH{I - WG)

= Tr(l"AL),

where A=U(I-W*")(I-W)U”. To ensure G is invariant to
translations, rotations and scaling, the following constraints
are defined,

1 9
EZ@*H:D and )

T T T
— > engr = G G=L"BL=1,
N g gﬂ N

where 1is the identity matrix and B=1/NU?U. Both the cost
function (Eq. 8) and the constraints (Eq. 10) are quadratic and
the optimal alignment parameters, L, 1s determined 408 by
solving a generalized eigenvalue problem. Let d<<D be the
dimensionality of the underlying manifold that y 1s generated
from. In one example embodiment, D may typically be
around 50 and d may typically have a value around 3. How-
ever, these values may vary depending on the specific prob-
lem of interest. The 2"“to (d+1)™ smallest generalized vectors
solved from Av=ABv form the columns of L. The global
coordinates are then determined 510 from G=UL.

Through the two stage learning process described above,
clusters are obtained 1n the globally coordinated latent space
600 as illustrated 1n FIG. 6. Each cluster 1s modeled as a
Gaussian distribution 1n the latent space with 1ts own mean
vector and covariance matrix. Each ellipsoid 602 represents a
cluster 1n the latent space 600, where the mean of the cluster
1s the centroid 604 and the covariances are the axes of the
cllipsoids 602. This cluster-based representation leads to a
straightforward algorithm for multiple hypothesis tracking.

Referring back to FIG. 3, a dynamic model 1s optionally
learned 308 for specific motions to be tracked. The dynamic
model predicts how individual particles move over time. In
one embodiment, a different dynamic model may be learned
for each motion. Learming the dynamic model 308 optimizes
the prediction model and allows for more accurate tracking
and reduced computation for a specific motion of interest.
However, successtul tracking 1s also possible without learn-
ing the dynamic model. Thus, 1n some embodiments, this step
1s skipped. In one embodiment, a random walk model 1s used
in place of a learned dynamic model. This model 1s more
generic and can be applied to track arbitrary motions.

The online tracking algorithm 220 tracks a pose state in 3D
by utilizing a modified multiple hypothesis tracking algo-
rithm. Examples of such techniques are set forth in Isard, et
al., CONDENSATION: Conditional Density Propagation for
Visual Tracking, International Journal of Computer Vision

(IJCV) 29, 1998, 3-28; Cham, et al., 4 Multiple Hypothesis

Approach to Figure T mckm z, Proc. IE % EE Conif. on Computer

Vision and Pattern Recognition (CVPR), 1999, 239-245;
Toyama, et al., Probabilistic Tracking in a Metmc Space,
Proc. IEEE Intemational Cont. on Computer Vision (ICCV),
2001, 5057; Sidenbladh, et al., Stochastic Tracking of 3D
Human Figures Using 21 Image Motion, Proc. BEuropean
Cont. on Computer Vision (ECCV), 2000, 702-718; Sieden-
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bladh, etal., Learning Image Statistics for Bayesian Tracking,
Proc. ICCYV, 2001, 709-716; Elgammal, et al., Inferring 3D
Body Pose From Silhouettes Using Activity Manifold Learn-
ing, CVPR, 2004, 681-688; Grochow, et al., Style-based
Inverse Kinematics, ACM Computer Graphics (SIG-
GRAPH), 2004, 522-531; Safonova, et al., Synthesized
Physically Realistic Human Motion in Low Dimensional
Behavior Specific Spaces, SIGGRAPH, 2004, 514-521;
Sminchisescu, et al., Generative Modeling for Continuous
Non-linearly Embedd&d Visual Inference, Proc. IEEE Inter-
national Cont. on Machine Learning, 2004,140-147; Tian, et
al., Tracking Human Body Pose on a Leamed Smoork Space,

Technical Report 2005-029, Boston University, 2005; and
Urtasun, et al. Priors for People Tracking from Small Training
Sets, Proc. IEEE International Cont. on Computer Vision,

2003, 403-410 which are all incorporated by reference herein
n thelr entirety.

The modes of this multiple hypothesis tracker are propa-
gated over time 1n the embedded space. In the application to
3D articulated human tracking, at each time instance, the
tracker state vector 1s represented by X =(P,, g ). P, 1s the 3D
location of the pelvis (which 1s the root of the kinematic chain
of the 3D human model) and g, 1s the point 1n latent space.
Once the tracker state has been 1mitialized, a filtering based
tracking algorithm maintains a time-evolving probability dis-
tribution over the tracker state. Let Z_ denote the aggregation
of past image observations (i.e. Z={z,, 7., . ., Z,} ). Assuming
7z, 1s independent of Z,_, given X, the following standard
equation applies:

p(Xr|Zr)X p(zr|Xr)p(Xr|Zr—l) (1 1)

A multiple hypothesis tracker (MHT) together with the
learned LLC model provides the 3D motion tracker. As LLC
provides clusters 1n the latent space as a step in the global
coordination, 1t 1s natural to make use the centers of the
clusters as the mnitial modes 1n the MHT (p(glz., s) follows a
(Gaussian distribution). Given that in each cluster, the points
in the latent space represent the poses that are similar to each
other in the original space, a simple dynamic model may be
applied 1n the prediction step of the filtering algorithm. In one
embodiment, the modes are passed through a simple constant
velocity predictor 1n the latent space. In another embodiment,
the dynamic model 1s not used.

FIG. 3b summarizes one embodiment of the online track-
ing method 220. The pose state at the next time frame 1s
predicted 322 based on the prediction model 215. In one
embodiment, this prediction generates several of the most
likely pose states based on the prediction model. The 2D
image corresponding to the predicted time frame i1s then
received 324 from a video sequence. The predicted pose state
1s then updated 326 based on the 2D image information. In
one embodiment, this update comprises selecting the pose
state of the several predicted possible pose states that best
matches the data in the 2D 1mage. The time frame advances
328 and the process repeats for each frame of 2D video.

FIG. 7 summarizes the computations performed in the
online tracking stage 220. A prior probability density function
1s computed 702. This function i1s based on the prediction
model 215 and all past image observations. In one embodi-
ment, the modes of the prior probability density function are
passed through a simple constant velocity predictor to predict
322 the pose state at the next time frame. In equation 11, the
prior probability density function 1s represented by p(X |7,
1).

The likelihood function 1s computed 704 based on recerv-
ing the 2D 1mage from the 2D 1image sequence 324. In order

to compute the likelihood for the current prediction and the
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input video frame, the silhouette of the current video frame 1s
extracted through background subtraction. The predicted
model 1s then projected onto the image and the chamfier
matching cost between the projected model and the 1image
silhouettes 1s considered to be proportional to the negative
log-likelihood. In one embodiment, the projected model con-
sists of a group of cylinders as described by Sigal, et al.,
Tracking Loose-limbed People., CVPR, 2004, 421-428. By
computing the matching cost of the samples and measuring
the local statistics associated with each likelithood mode, the
predicted pose state 1s updated 326. In equation 11, the like-
lihood function 1s represented by p(z,1X)).

The posterior probability density function i1s computed 706
through equation 11, where the posterior probability density
function 1s represented by p(X,|Z,). The time frame advances
708 and the calculation 1s repeated for each time frame of
video.

The MHT algorithm proposed here differs from conven-
tional techniques 1n a varniety of ways. For example, the
present invention uses the latent space to generate proposals
in a principled way. This i1s 1n contrast with conventional
techniques, where the modes are selected empirically and the
distributions are assumed to be piecewise Gaussian. While 1n
the proposed algorithm, the output from the ofif-line learming
algorithm (LLC) forms clusters (each cluster 1s described by
a Gaussian distribution 1n latent space), the samples gener-
ated from the latent space are indeed drawn from a piecewise
(Gaussian distribution. The choice of modes to propagate over
time becomes straightforward given the statistics of the clus-
ters 1n the latent space.

While particular embodiments and applications of the
present invention have been illustrated and described herein,
it 1s to be understood that the invention 1s not limited to the
precise construction and components disclosed herein and
that various modifications, changes, and variations may be
made 1n the arrangement, operation, and details of the meth-
ods and apparatuses of the present invention without depart-
ing from the spirit and scope of the mnvention as 1t 1s defined 1n
the appended claims.

What 1s claimed 1s:

1. A method for tracking three-dimensional (3D) motion of
a subject comprising the steps of:
receving a two-dimensional (2D) image sequence;
recerving a prediction model learned 1n an offline learning
process, the prediction model specitying a mapping of
pose mnformation of the subject between a high dimen-
stonal pose space and a low dimensional pose space, the
high dimensional pose space having a higher dimension-
ality than the low dimensional pose space;
generating, 1n the low dimensional pose space, a predicted
pose state of the subject based on the prediction model;
and
generating 3D tracking data to track the motion in the high
dimensional pose space based at least 1n part on the
predicted pose state and the 2D 1mage sequence;
wherein the offline learning process comprises steps of:
capturing 3D motion data;
processing the 3D motion data to extract training pose
information;
learning a dimensionality reduction model based on the
extracted training pose mformation adapted to bidi-
rectionally map the pose training information from
the high dimensional pose space to the low dimen-
sional pose space; and
generating the prediction model based at least 1n part on the
dimensionality reduction model.
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2. The method of claim 1 wherein learning the dimension-
ality reduction model includes forming clusters in the low
dimensional pose space and modeling the clusters 1n the low
dimensional pose space as Gaussian distributions.

3. The method of claim 1 wherein learning the dimension-
ality reduction model comprises steps of:

computing local non-linear reconstruction weights to

locally approximate a first pose state representation rep-
resented using the high dimensional space;
training a mixture of factor analyzers to locally reduce the
dimensionality of the first pose state representation to
form a second pose state representation represented
using a locally coordinated low dimensional space;

determining a set of alignment parameters to map between
the locally coordinated low dimensional space and a
globally coordinated low dimensional space; and

determining a third pose state representation represented
using a globally coordinated low dimensional space
based on the second pose state representation and the
alignment parameters.

4. The method of claim 1 wherein learning the dimension-
ality reduction model includes applying a Gaussian Process

Latent Variable Model (GPLVM) algorithm.

5. The method of claim 1 wherein learning the dimension-
ality reduction model includes applying an Locally Linear
Coordination (LLC) algorithm.
6. The method of claim 1 wherein the prediction model 1s
turther based on a learned dynamic model for at least one
motion to be tracked.
7. The method of claim 1 wherein the training pose infor-
mation includes a vector of joint angles.
8. A system for tracking three-dimensional (3D) motion of
a subject comprising:
image receiving means for recerving a two-dimensional
(2D) 1image sequence;

model recerving means for receiving a prediction model
learned from offline learning means, the prediction
model specitying a mapping of pose information of the
subject between a high dimensional pose space and a
low dimensional pose space, the high dimensional pose
space having a higher dimensionality than the low
dimensional pose space;

pose prediction means for generating, in the low dimen-

stonal pose space, a predicted pose state of the subject
based on the prediction model; and

tracking means for generating 3D tracking data to track the

motion in the high dimensional pose space based at least
in part on the predicted pose state and the 2D image
sequence;

wherein the offline learning means comprises:

3D capture means for capturing 3D motion data;

processing means for processing the 3D motion data to
extract training pose mformation;

model learning means for learning a dimensionality
reduction model based on the extracted training pose
information adapted to bidirectionally map the pose
training information from the high dimensional pose
space to the low dimensional pose space; and

prediction model generating means for generating the
prediction model based at least in part on the dimen-
sionality reduction model.

9. The system of claim 8 wherein the model learning means
for learning the dimensionality reduction model includes
clustering means for forming clusters in the low dimensional
pose space and modeling the clusters 1n the low dimensional
pose space as Gaussian distributions.
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10. The system of claim 8 wherein the model learning
means Comprises:

local approximation means for computing local non-linear

reconstruction weights to locally approximate a first
pose state representation represented using the high
dimensional space;

local dimensionality reduction means for training a mix-

ture of factor analyzers to locally reduce the dimension-
ality of the first pose state representation to form a sec-
ond pose state representation represented using a locally
coordinated low dimensional space;

alignment parameters determining means for determining

a set of alignment parameters to map between the locally
coordinated low dimensional space and a globally coor-
dinated low dimensional space; and

global coordination means for determining a third pose

state representation represented using a globally coordi-
nated low dimensional space based on the second pose
state representation and the alignment parameters.

11. The system of claim 8 wherein the model learning
means for learning the dimensionality reduction model
includes Gaussian Process Latent Variable Model (GPLVM)
means for applying a GPLVM algorithm.

12. The system of claim 8 wherein the model learning
means for learning the dimensionality reduction model
includes Local Linear Coordination (LLC) means for apply-
ing a Locally Linear Coordination (LLC) algorithm.

13. The system of claim 8 wherein the prediction model 1s
further based on a learned dynamic model for at least one
motion to be tracked.

14. The system of claim 8 wherein the training pose nfor-
mation includes a vector of joint angles.

15. A computer program product, comprising a computer
readable medium storing computer executable code for track-
ing three-dimensional (3D) motion of a subject, the computer
executable code when executed causing a computer to per-
form the steps of:

receving a two-dimensional (2D) image sequence;

recerving a prediction model learned 1n an offline learning

process, the prediction model specitying a mapping of
pose mnformation of the subject between a high dimen-
stonal pose space and a low dimensional pose space, the
high dimensional pose space having a higher dimension-
ality than the low dimensional pose space;

generating, 1n the low dimensional pose space, a predicted

pose state of the subject based on the prediction model;
and

generating 3D tracking data to track the motion in the high

dimensional pose space based at least in part on the

predicted pose state and the 2D 1image sequence;

wherein the offline learning process comprises steps of:

capturing 3D motion data;

processing the 3D motion data to extract training pose
information;

learning a dimensionality reduction model based on the
extracted training pose miformation adapted to bidi-
rectionally map the pose training information from
the high dimensional pose space to the low dimen-
sional pose space; and

generating the prediction model based at least in part on the

dimensionality reduction model.

16. A method for tracking three-dimensional (3D) motion
ol a subject comprising the steps of:

receving a two-dimensional (2D) image sequence;

recerving a prediction model learned 1n an offline learning

process, the prediction model specitying a mapping of
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pose information of the subject between a high dimen-
stonal pose space and a low dimensional pose space, the
high

dimensional pose space having a higher dimensionality

than the low dimensional pose space;

generating, 1n the low dimensional pose space, a predicted

pose state of the subject based on the prediction model;
and

generating 3D tracking data to track the motion 1n the high

dimensional pose space based at least in part on the
predicted pose state and the 2D 1image sequence;
wherein generating 3D tracking data comprises:
generating a prior probability density function based on the
prediction model and at least one previous 2D 1mmage 1n
the 1mage sequence;
generating a likelihood function based on a matching cost
between the predicted pose state and the current 2D
image; and

generating a posterior probability density function based

on the prior probability density function and the likel:-
hood function.

17. The method of claim 16, wherein generating 3D track-
ing data comprises steps of:

receiving a current 2D 1mage from the 2D 1image sequence;

and

updating the predicted pose state based at least 1n part on

the current 2D 1mage.

18. The method of claim 17, wherein updating the pre-
dicted pose state comprises selecting an optimal pose state
that best matches the current 2D 1mage.

19. A computer program product comprising a computer
readable medium storing computer executable code for track-
ing three-dimensional (3D) motion of a subject, the computer
executable code when executed causing a computer to per-
form the steps of:

receiving a two-dimensional (2D) image sequence;

receiving a prediction model learned 1n an oftline learning

process, the prediction model specitying a mapping of
pose mnformation of the subject between a high dimen-
stonal pose space and a low dimensional pose space, the
high dimensional pose space having a higher dimension-
ality than the low dimensional pose space,

generating, 1n the low dimensional pose space, a predicted

pose state of the subject based on the prediction model;
and

generating 3D tracking data to track the motion 1n the high

dimensional pose space based at least in part on the
predicted pose state and the 2D 1image sequence;
wherein generating 3D tracking data comprises:
generating a prior probability density function based on the
prediction model and at least one previous 2D 1mage in
the 1mage sequence;
generating a likelihood function based on a matching cost
between the predicted pose state and the current 2D
image; and

generating a posterior probability density function based

on the prior probability density function and the likeli-
hood function.

20. The computer program product of claim 19, wherein
generating 3D tracking data comprises the steps of:

receiving a current 2D 1mage from the 2D 1image sequence;

and

updating the predicted pose state based at least 1n part on

the current 2D 1mage.

21. The computer program product of claim 20, wherein
updating the predicted pose state comprises selecting an opti-
mal pose state that best matches the current 2D 1mage.
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22. A method for learning a prediction model for three-
dimensional (3D) human motion tracking, the method com-
prising the steps of:

capturing 3D motion data;

processing the 3D motion data to extract pose information;

learning a dimensionality reduction model based on the

extracted pose information adapted to bidirectionally
map the pose information from the high dimensional
space to the low dimensional space; and

generating a prediction model based at least 1n part on the

dimensionality reduction model.

23. The method of claim 22, wherein learning the dimen-
sionality reduction model includes forming clusters 1in the low
dimensional space and modeling the clusters in the low
dimensional space as Gaussian distributions.

24. The method of claim 22, wherein learning the dimen-
sionality model comprises the steps of:

computing local non-linear reconstruction weights to

locally approximate a {irst pose state representation rep-
resented using the high dimensional space;
training a mixture of factor analyzers to locally reduce the
dimensionality of the first pose state representation to
form a second pose state representation represented
using a locally coordinated low dimensional space;

determining a set of alignment parameters to map between
the locally coordinated low dimensional space and a
globally coordinated low dimensional space; and

determiming a third pose state representation represented
using a globally coordinated low dimensional space
based on the second pose state representation and the
alignment parameters.

25. A computer program product, comprising a computer
readable medium storing computer executable code for learn-
ing a prediction model for three-dimensional human motion
tracking, the computer executable code when executed caus-
ing a computer to perform the steps of:

capturing 3D motion data;

processing the 3D motion data to extract pose information;

learning a dimensionality reduction model based on the

extracted pose mformation adapted to bidirectionally
map the pose information from the high dimensional
space to the low dimensional space; and

generating a prediction model based at least 1n part on the

dimensionality reduction model.

26. The computer program product of claim 25, wherein
learning the dimensionality reduction model includes form-
ing clusters in the low dimensional space and modeling the
clusters in the low dimensional space as Gaussian distribu-
tions.

277. The computer program product of claim 25, wherein
learning the dimensionality model comprises the steps of:

computing local non-linear reconstruction weights to

locally approximate a first pose state representation rep-
resented using the high dimensional space;
training a mixture of factor analyzers to locally reduce the
dimensionality of the first pose state representation to
form a second pose state representation represented
using a locally coordinated low dimensional space;

determining a set of alignment parameters to map between
the locally coordinated low dimensional space and a
globally coordinated low dimensional space; and

determining a third pose state representation represented
using a globally coordinated low dimensional space
based on the second pose state representation and the
alignment parameters.
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